The University of Southampton
University of Southampton Institutional Repository

Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks

Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks
Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks
By changing the ratio of resin to hardener, a series of epoxy resin samples has been produced with differing network structures and different retained chemical functionalities. The resulting materials were characterized by thermal analysis, dielectric spectroscopy, DC conductivity, and DC and AC breakdown strength measurements, to explore the effect of network structure and chemical composition on molecular dynamics and electrical properties. Differential scanning calorimetry showed that the glass transition temperature is primarily determined by the crosslinking density and indicates that, under the range of conditions employed here, side reactions, such as etherification or homopolarization, are negligible. Conversely, changes in DC conductivity with resin stoichiometry appear to occur as a result of changes in the chemical content of the system, rather than variations in network structure or dynamics. Specifically, we suggest that the DC conductivity is markedly affected by the residual amine group concentration in the system. While DC conductivity and DC breakdown appear broadly to be correlated, AC breakdown results indicated that this parameter does not vary with changing stoichiometry, which suggests that the AC and DC breakdown strengths are controlled by different mechanisms.
3739-3749
Alhabill, Fuad, N.
253d8162-b329-46cc-ace6-5e39a8caca33
Ayoob, Raed
9520a234-f49a-45b9-ba23-c4d0e500da14
Andritsch, Thomas
8681e640-e584-424e-a1f1-0d8b713de01c
Vaughan, Alun
6d813b66-17f9-4864-9763-25a6d659d8a3
Alhabill, Fuad, N.
253d8162-b329-46cc-ace6-5e39a8caca33
Ayoob, Raed
9520a234-f49a-45b9-ba23-c4d0e500da14
Andritsch, Thomas
8681e640-e584-424e-a1f1-0d8b713de01c
Vaughan, Alun
6d813b66-17f9-4864-9763-25a6d659d8a3

Alhabill, Fuad, N., Ayoob, Raed, Andritsch, Thomas and Vaughan, Alun (2017) Effect of resin/hardener stoichiometry on electrical behavior of epoxy networks. IEEE Transactions on Dielectrics & Electrical Insulation, 24 (6), 3739-3749. (doi:10.1109/TDEI.2017.006828).

Record type: Article

Abstract

By changing the ratio of resin to hardener, a series of epoxy resin samples has been produced with differing network structures and different retained chemical functionalities. The resulting materials were characterized by thermal analysis, dielectric spectroscopy, DC conductivity, and DC and AC breakdown strength measurements, to explore the effect of network structure and chemical composition on molecular dynamics and electrical properties. Differential scanning calorimetry showed that the glass transition temperature is primarily determined by the crosslinking density and indicates that, under the range of conditions employed here, side reactions, such as etherification or homopolarization, are negligible. Conversely, changes in DC conductivity with resin stoichiometry appear to occur as a result of changes in the chemical content of the system, rather than variations in network structure or dynamics. Specifically, we suggest that the DC conductivity is markedly affected by the residual amine group concentration in the system. While DC conductivity and DC breakdown appear broadly to be correlated, AC breakdown results indicated that this parameter does not vary with changing stoichiometry, which suggests that the AC and DC breakdown strengths are controlled by different mechanisms.

Text
6828 - Accepted Manuscript
Download (1MB)
Text
08315297 - Version of Record
Available under License Creative Commons Attribution.
Download (2MB)

More information

In preparation date: 2017
Submitted date: 2017
Accepted/In Press date: 12 September 2017
e-pub ahead of print date: 31 December 2017

Identifiers

Local EPrints ID: 414171
URI: https://eprints.soton.ac.uk/id/eprint/414171
PURE UUID: 24087f19-519a-48d2-9db1-52f3c4a056fb
ORCID for Thomas Andritsch: ORCID iD orcid.org/0000-0002-3462-022X
ORCID for Alun Vaughan: ORCID iD orcid.org/0000-0002-0535-513X

Catalogue record

Date deposited: 15 Sep 2017 16:30
Last modified: 09 May 2019 00:36

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×