Selective Policies for Efficient State Retention in Transiently-Powered Systems

Theodoros D. Verykios, Domenico Balsamo, Geoff V. Merrett
{T.Verykios, D.Balsamo, gvm}@ecs.soton.ac.uk
University of Southampton, UK

Energy Harvesting
- Alternative energy source to batteries to power embedded electronic devices
- Scavenge energy from the environment:
 - Light, Vibration, Motion, Temperature
- Large energy buffers to cope with source variability
- Increased weight, size and cost

Transient Systems
- Class of energy-driven systems
- Computation sustained despite variability
- No need for additional energy storage
- Figure of merit: Forward Progress
- System state (registers and main memory) saved to Non-Volatile Memory (NVM) and restored once power is available again
- Existing approaches (e.g. Hibernus [1]):
 - Save the entire state to NVM (Figure 1a)
 - Significant energy/time overhead for the saving/restoring process
 - Less energy spent on useful computations
 - Use a universal policy without regard for the characteristics of the NVM

Selective Policies
- Saving only the necessary parts of memory to reduce the energy/time overhead
- Dynamic identification of unallocated space proposed in [2] (Fig. 1b)
- We implemented this policy on different platforms: FRAM and Flash memory.
 - Positive impact on FRAM (Fig. 2a, 2b)
 - Saving cost proportionally reduced with size of allocated memory
 - Up to 85.1% energy/time savings when memory usage is 18%.
- Far less effective on Flash due to the overhead of erasing required (Fig. 2c, 2d)
- Saving process strongly affected by the erasing process which accounts for up to 94% of the total cost for saving.
- Need for novel selective policies, targeted at minimising the energy/time overhead for the saving process
- Policies need to be tailored to:
 - Specific NVM characteristics:
 - Need to erase before writing
 - Symmetric read/write
 - Memory usage

References