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Abstract The supply of oxygen in sufficient quantity is vital for the correct
functioning of all organs in the human body, namely for skeletal muscle during
exercise. Traditionally, microvascular oxygen supply capability is assessed by
analysis of morphological measures on transverse cross-sections of muscle,
e.g., capillary density or capillary-to-fibre ratio.

In this work we are investigating the relationship between microvascular
structure and muscle tissue oxygenation in mice. Phase contrast imaging was
performed using synchrotron radiation computed tomography (SR CT) to
visualize red blood cells (RBCs) within the microvasculature in mouse soleus
muscle. Image-based mathematical modelling of the oxygen diffusion from
the red blood cells into the muscle tissue was subsequently performed, as
well as a morphometric analysis of the microvasculature. The mean tissue
oxygenation was then compared to morphological measures of the microvas-
culature.

RBC volume fraction and spacing (mean distance of any point in tissue
to closest RBC) emerged as the best predictors for muscle tissue oxygenation,
followed by length density (summed RBC length over muscle volume). The
2D measures of capillary density and capillary-to-fibre ratio ranked last. We
therefore conclude, that in order to assess states of health of muscle tissue it
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is advisable to rely on 3D morphological measures rather than the traditional
2D measures.

Keywords microvasculature muscle oxygenation - image-based modelling

1 Introduction

Over the last decades, the number of non-communicable diseases, including
diabetes, heart disease, renal disease, hypertension and stroke, has increased
dramatically, accounting for 60% of deaths worldwide [Hanson et al., 2011].
The development of such cardio-metabolic diseases is associated with changes
in both macrovascular and microvascular networks in most organ systems of
the body, including liver, heart and skeletal muscle. Skeletal muscle, which
makes up almost half of a (healthy) individual’s body mass [Segovia et al.,
2014], is one of the key tissues investigated in the origin and outcomes of
cardio-metabolic disease. It is among the main consumers of oxygen in the
human body, in particular during exercise, and thus relies heavily on oxygen
to be provided by the microvasculature. The microvasculature is defined as
those blood vessels that have a diameter smaller than 150 um and whose
primary function is the delivery of nutrients and oxygen to the tissue [Clough
& Norman, 2011]. If the vascular structure changes, for instance due to vessel
rarefication, peripheral vascular resistance may increase and/or tissue oxy-
gen delivery may be impaired [Clough & Norman, 2011]. To understand the
structure-function relation between microvascular morphology and disease
a large body of research has been conducted applying a wide range disease
models in diverse vascular beds. The morphology of the microvasculature is
identified by a number of morphological measures which are often reported
in the research of cardio-metabolic disease.

These morphological measures, which are measured on two-dimensional
(2D) transverse and longitudinal cross-sections of the muscle tissue or im-
ages of scanning electron microscopy of macerated vascular networks, are
used to describe the oxygen exchange capability of the microvascular net-
work. The most frequently used measures are capillary density (number of
capillaries per cross-sectional area), capillary-to-fibre ratio (number of capil-
laries per number of muscle fibers in cross-section) and capillary tortuosity
(Euclidian distance of vessel end/branching points over total vessel segment
length)[Zeller-Plumhoffet al., 2017]. Differences in these quantitative morpho-
metric measures are investigated between healthy and diseased individuals
(animal or human) and assumed to be related to the disease. Tortuosity is
strongly disputed as a measure of oxygen delivery capability and thought to
be linked mainly to the muscle’s contractile state via the sarcomere length
[Poole et al., 1992, Mathieu-Costello, 1987, Mathieu-Costello et al., 1989, Poole
et al., 1989]. Other morphological measures investigated are length of the cap-
illary network [Dapp et al., 2004, Georgi et al., 2011], length density (microvas-
cular network length over muscle volume) [Benedict et al., 2011], volume
fraction (microvascular network volume over muscle volume) [Kondo et al.,
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2011] and fractal dimension [Gazit et al., 1995, Lorthois & Cassot, 2010]. Fractal
dimension is a measure of self-similarity of a network, i.e., the structure can
be broken down into smaller parts that are the same as the entire structure
[Peitgen et al., 1992]. Fractal dimension is however disputed as a measure as
the interpretation of results is difficult in a physiological sense. It has been
shown that tumour networks can be differentiated from normal networks
using the fractal dimension [Gazit et al., 1995, Lorthois & Cassot, 2010]. Some
researchers have shown how results differed when considering the vascular-
ization in 2D vs. three dimensions (3D) [Cebasek et al., 2006, Janacek et al.,
2009, Cebasek et al., 2010, Erzen et al., 2011] and that the three-dimensional
consideration lead to an increase in the ratio of length of adjacent capillaries
over length of the muscle fibre of 40%. This suggests that the interpretation of
3D data using 2D measures instead of 3D measures can be misleading when
predicting the muscle tissue oxygenation, as has previously been suggested
by other researchers as well [Egginton et al., n.d., Egginton & Turek, 1990].
However, little research has been performed to quantify the predictive power
of either 2D or 3D morphological measures in terms of muscle tissue oxy-
genation. In addition to morphological measures, some investigators have
suggested that the haematocrit, i.e., the ratio of red blood cell (RBC) over
overall blood volume, was linked to the metabolic syndrome [Fraser et al.,
2013, 2015]. Additionally, McClatchey et al. [2017] have recently investigated
the importance of perfused capillary density and perfusion heterogeneity.
Their findings suggest that capillary density is only weakly related to skeletal
muscle oxygenation, whereas capillary perfusion heterogeneity plays a larger
role [McClatchey et al., 2017]. In conclusion, it may be preferable to study mea-
sures quantifying the red blood cell distribution within the capillary network
rather than morphological measures of the blood vessels themselves.

One key obstacle in linking 3D microvascular morphology and tissue oxy-
genation is the lack of imaging methods that can simultaneously provide in
vivo information on oxygen concentration and penetrate the tissue sufficiently
to obtain a map of the capillary network. An alternative approach is mathe-
matical modelling, which can be used to simulate tissue oxygenation, based
on images of the vascular network obtained ex vivo.

In this work we investigate the link between microvascular morphology
and tissue oxygenation through image-based modelling informed by phase
contrast imaging based on synchrotron radiation computed tomography (SR
CT). We have visualized the red blood cells within the capillaries, from which
we have computed the oxygen diffusion into the muscle tissue. We detail the
methodology applied for animal preparation, imaging, image processing and
finally for retrieving the morphological measures for the microvasculature,
which is required for mathematical modelling of the oxygen diffusion process
in the muscle tissue. This allowed us to relate the tissue oxygenation inferred
from image-based mathematical modelling to the morphological measures of
the microvasculature. We are thus presenting the first mathematical simula-
tion of skeletal muscle tissue oxygenation based on images of red blood cells
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within the muscle, as well as the first evaluation of morphological measures
used in oxygenation prediction by means of mathematical modelling.

2 Methods

All animal procedures were in accordance with the regulations of the United
Kingdom Animals (Scientific Procedures) Act 1986 and were conducted un-
der Home Office Licence number 70-6457. The study received institutional
approval from the University of Southampton Biomedical Research Facility
Research Ethics Committee.

Male C57B/L6 mice (n=5) were maintained under controlled conditions. At 15
weeks of age the mice were killed by cervical dislocation. The soleus muscle of
the right leg was dissected and fixed in 10% formaldehyde at 4°C overnight. It
was then dehydrated in a graded series of methylated spirit and embedded in
paraffin wax in coffin moulds. The wax block was trimmed for imaging using
an industrial razor blade and glued onto a scanning electron microscopy stub
that was clamped into a standard pin chuck (fig. 1).

2.1 Imaging

Scanning of the muscles using SR CT was performed at the TOMCAT beam-
line of the Swiss Light Source (SLS) at the Paul Scherrer Institut in Villigen,
Switzerland. All scans were performed at 14 keV, at a voxel size of 0.77 ym, an
exposure time of 180 ms, where 1601 projections were acquired over an angu-
lar range of 0°-180°. For each scan we additionally recorded 32 dark field and
160 flat field images to correct the raw projections. A non-zero propagation
or sample-to-detector distance of 60 mm was chosen so that the free-space
propagation of the (coherent) X-rays transforms the phase modulation into
intensity variations providing image contrast, recorded as projections on the
charge-coupled device (CCD) detector. The phase of the projection images
was then retrieved using an in-house implementation of the Paganin single-
distance non-iterative phase retrieval algorithm [Paganin et al., 2002] and
subsequently reconstructed using an in-house implementation [Marone &
Stampanoni, 2012] of the Gridrec algorithm [Dowd ef al., 1999] at TOMCAT.

The muscles were considerably longer (~ 8 mm) than wide (~ 2 mm) and
thus they exceeded the field of view (2x2 mm?) of the detector at TOMCAT
at the chosen spatial resolution along the rotation axis. Therefore, it was
necessary to take a number of scans along the length of the muscle in order
to be able to image the whole muscle. Depending on the straightness of the
muscle and its total length, this resulted in 5-7 scans per muscle (including
overlapping regions). After reconstruction a calibration was performed by
linear transformation of the data histogram to match average greyscales of
paraffin wax and muscle fibres in all subdatasets. See figure 1 for a sketch of
the overlapping regions (blue dashed lines).
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Fig. 1 Mounting of the sample and batch scanning. The muscles were considerably longer (~
8 mm) than wide (~ 2 mm) and thus they exceeded field of view (2x2 mm?) of the detector at
TOMCAT, therefore, it was necessary to take a number of scans along the length of the muscle in
order to be able to image the whole muscle (blue dashed regions). Due to the high computational
effort, the regions for segmentation and modelling were limited to a cubic area from the muscle
belly (white dotted region). Not to scale.

Imaging of RBCs through phase contrast was validated by direct compar-
ison of the 3D SR CT images with 2D histological slides of the same muscle,
which were stained with CD31 (ab28364, Abcam, dilution 1:150) for vascu-
lar endothelium to facilitate the detection of the RBCs present in capillaries,
see figure 2. SR CT and histology images were correlated manually using
the “simple registration” tool in VGStudio Max 2.0 (Volume Graphics GmbH,
Germany). To account for the thickness of the histological sections (4 um),
a maximum intensity projection over 7 SR CT slices was performed in Fiji
[Schindelin et al., 2012]. Counting of RBCs was then performed on both image
types and the numbers were compared.

2.2 Image segmentation

Due to the computational load of processing the segmented dataset for mod-
elling, the segmentation of each muscle was limited to a (1.5mm)? cube from
the medial muscle region (white dotted region in fig. 1). As the oxygen supply
to the tissue originates mainly from the capillaries only the red blood cells in
the capillaries were segmented and not those in larger blood vessels.

To enhance the contrast between RBCs and muscle fibres a “bandpass fil-
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Fig.2 Correlated SR CT and histology images (stained with CD31) for RBC validation. SR CT
and histology images were visually correlated. To account for the thickness of the histological
sections (4 ym), a maximum intensity projection over 7 SR CT slices was performed. SR CT
images were bandpass filtered to highlight red blood cells (and muscle fibre edges). (*) highlights
the RBCs counted for the comparison and (e) marks the empty capillaries.

ter” was applied in Image]J [Schindelin et al., 2012] with an upper and lower
threshold of 3 px and 1 px, respectively. This resulted in highlighting all spa-
tially fast-changing features, such as the RBCs and muscle fibre edges, as
well as ring artefacts (originating e.g. from dead detector pixels). To reduce
the image size and smooth the artefacts a 2x2x2 binning filter in ImageJ] was
subsequently applied. The resulting image was then binarised through abso-
lute thresholding to segment bright features, i.e., the RBCs and muscle fibre
edges (see fig. 2). This was performed in Avizo Fire 9.0 (FEI, USA). The chosen
threshold was determined using a short parametric study of the influence of
the threshold on the resulting number of detected red blood cells, such that
the number of detected red blood cells per muscle cross-section was in the
range described in the literature. Highlighted muscle fibre edges were manu-
ally selected using the “magic wand tool” in Avizo to subtract them from the
segmentation. The region growing over all slices allowed for fast selection of
the edges.

The muscle tissue was segmented semi-manually by tracing the edges of
the muscle volume in Avizo in a number of slices and then connecting the
segmented areas by linear interpolation between the slices. For simplicity,
other soft tissues in skeletal muscle, such as nerves, were not segmented
separately but added to the bulk muscle tissue.

2.3 Quantitative morphometry

For the quantification of morphological measures of the microvasculature
(based on the segmented red blood cells), the binary image stacks obtained
after segmentation of the RBCs and muscle tissue, respectively, were used.
For the implementation of the procedures exlained below, an Image] plugin
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was used for the skeletonization [Schindelin et al., 2012] and the “Volume
Fraction” BoneJ plugin [Doube et al., 2010] for voxel counting.

Volumes and volume fraction Volume fraction was defined as the volume of the
RBCs over the muscle volume. Muscle volume and RBC volume were com-
puted by counting white voxels in the respective binary image. To determine
the actual volume in mm?3 the counts were corrected for the voxel resolution.
Division of both volumes provides the volume fraction of the microvascula-
ture.

Surface area density The surface area density was defined as the ratio of RBC
surface area over muscle volume. The surface area of the red blood cells
could be computed as the sum of all RBC edge voxels. These were given after
application of a Sobel edge detection filter on the RBC binary data. Counting
of the voxels, multiplication by voxel size and division by muscle volume
gave the surface area density.

Length density Length density was the length of the segmented RBC network
over the muscle volume. To determine the length density of the RBC network
(defined as overall length of RBCs over muscle volume) it was first neces-
sary to skeletonize the RBC binary images, to reduce each RBC to its center
line. Counting the remaining voxels in the image stack then equates to mea-
suring the length of the RBC network. The multiplication by voxel size was
performed and division by muscle volume as determined above.

Capillary density The number of capillaries (in this case RBCs) per muscle
cross-sectional area is defined as the capillary density. The (binary) skele-
tonized RBC dataset was used to determine the number of red blood cells per
slice by counting the number of voxels per slice. The count was divided by
the muscle tissue area from the corresponding slice, which was obtained by
counting voxels in the binary muscle volume dataset (and multiplication by
voxel size). The counting was performed for three slices in the medial region
of the muscle and the final number was obtained by averaging over these
slices.

Capillary-to-fibre ratio The capillary-to-fibre ratio was defined as the number
of RBCs over the number of muscle fibres per muscle cross-section. For the
capillary-to-fibre ratio, the capillary numbers were obtained as for the capil-
lary density. The number of muscle fibres in each slice was then determined
by selecting the appropriate images from the original (non-binary) dataset
and manually counting the number of muscle fibres. Division of the number
of red blood cells by the number of muscle fibres gave the capillary-to-fibre
ratio, which was averaged over three slices.
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Fractal dimension In order to determine the fractal dimension no image pro-
cessing steps needed to be applied. The binary RBC dataset was used to
apply a (3D) box-counting algorithm. This was implemented by applying the
Bone] plugin “Fractal Dimension” [Doube et al., 2010], which returns fractal
dimension as well as the error of the fit.

RBC spacing RBC distribution within the muscle tissue was characterised
using a spacing function. The mean distance to the next red blood cell (in
3D) for each point in the muscle tissue was computed. To this end, a distance
map was created for the binary RBC image stack computing the distance from
every voxel in the stack to the nearest RBC. Multiplication with the binary
muscle volume image stack limited the distance map to the muscle tissue. The
arithmetic mean of greyscales in the resulting dataset was taken as the mean
RBC spacing. The distance map was created using the “3D distance map”
plugin in Image] [Schindelin et al., 2012].

2.3.1 Histological validation of capillary density and capillary-to-fibre ratio

For validation of the two morphological measures used in assessing microvas-
cular oxygenation capability, i.e., capillary density and capillary-to-fibre ratio,
we have performed lectin staining using fluorescein labelled Griffonia Sim-
plicifolia lectin-1 (FL 1101, Vector Labs) on 7 C57B/L6 mouse soleus muscles.
CD and C:F were computed in three areas of 1 mm? of one thin section from
the muscle belly for each muscle.

2.4 Mathematical modelling of tissue oxygenation

For image-based modelling, ScanIP 4.4 (Simpleware Ltd, UK) was used to
generate a surface mesh of RBCs and muscle tissue respectively. OpenFOAM,
a free, open source CFD based on the programming language C [ope, 2016],
was used as numerical solver. The surface mesh was extended into a finite
element mesh by the OpenFOAM utility snappyHexMesh. ScanlP does also
have the capability of producing FE meshes, but the computational load is
significantly higher and it was not possible to produce an FE mesh of the
segmented cube. In order to correctly mesh the small RBCs, it was necessary
to refine the mesh around these by halving the size of all edges at least 5 times
using snappyHexMesh, thus reducing the edge length from the order of 0.1 mm
to nm. No refinement of the muscle surface was performed. The visualisation
of the simulation results was performed in Paraview 5.1.2 (Kitware Inc., US
and Los Alamos National Laboratory, US). The OpenFOAM model used in
this work was based on the LaplacianFoam solver that was designed to solve a
diffusion equation with constant diffusion coefficient and which we extended
toinclude a non-linear consumption term. Full simulation details are available
on request.
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The diffusion of oxygen from the RBCs into the tissue where it is consumed
was modelled using the diffusion-reaction equation

%—f =DV?C-M(C) inQy, (1)
where C is the molecular concentration in mol/m?® at time ¢ and D is the diffu-
sion coefficient in m?/s. The oxygen consumption was described by Michaelis-

Menten kinetics M(C) = CM+—°C; with Cs = 8.1-10"*mol/m? the muscle oxygen

concentration at half demand and My = 15.7-107°mlO,/(ml s) (shown in table
1).

Boundary conditions where applied at the RBC-tissue interface and the
outer tissue boundary. The flux of oxygen from the RBCs into the tissue is
described by a flow along its concentration gradient [Al-Shammari et al., 2012,
Goldman & Popel, 2001, 2000], and depends on the capillary permeability,
which is characterized by the mass transfer coefficient k [Goldman, 2008].
Thus,

—ny - (DVC) = k(Co-C), @)

where ny is the unit normal vector to the vessel surface (pointing into the
vessel), Cy is the molecular concentration in mol/m? at time ¢ = 0.

The boundary condition usually imposed at the outer tissue surface is a
no-flux boundary condition, i.e.,:

n,-DVC=0, 3)

where n, is the outer unit normal vector to the outer tissue surface. This
implies that all oxygen supplied by the blood vessels in one muscle stays
within this muscle.

Finally, as an initial condition we set

C=Cqp at t=0, (4)

with Cepp =3.24-1072 mol/m® the intra-capillary oxygen concentration (de-
rived from table 1).

Forimplementation, the model dimensions were changed into [C] = nmol/mm?,
such that in equation k = 1mm/s. Furthermore, as D/k << 1m the boundary
condition in equation (2) was approximated as C = Cp. It was assumed that
all RBCs were fully saturated with oxygen and remained so over time.

For the non-linear Michaelis-Menten it was necessary to use a mixed
Crank-Nicolson and implicit Euler scheme to be able to solve the equation nu-
merically. The solver was defined to be CrankNicolson 0.9 in the OpenFOAM
library foSchemes. The parameter ¢ = 0.9 in this case defines the blending be-
tween both methods, with ¢ =1 being a pure Crank-Nicolson scheme and
¢ =0 a pure implicit Euler scheme ope [2016]. All other solver schemes were
set to linear Gaussian interpolations.

The parameters used for modelling the diffusion and uptake of oxygen in
muscle tissue have been summarised by Al-Shammari et al. [2012, 2014] and
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Parameters defining the oxygen | Value Source
perfusion in muscle

O, Diffusion coefficient (37°C) | 2.11 Levick [2003]
[10~°m?/s] D

Consumption rate in muscle at rest | 15.7 Waust et al. [2009]
[107° ml Oy/(ml s)] My

Intracapillary PO, [mmHg] Py 20 Eggleton et al. [2000]

O, solubility [10° ml Oy (ml | 3.89 | Goldman & Popel [1999]
mmHg)] o
O; capillary wall permeability [m/s] | ~ 10-3 Levick [2003]
k

Muscle PO, at half demand | 05 Honig & Gayeski [1982]
[mmHg] Ps

Table1 Model parameters for modelling the diffusion and uptake of oxygen in skeletal muscle
tissue as described by Al-Shammari et al. [2012, 2014]. The parameters are given in terms of
tissue PO, and are converted into oxygen concentration C for model implementation.

can be found in table 1. Before integration into the model, all values were
converted into a description as oxygen concentration C rather than oxygen
partial presure P, by use of the oxygen solubility a.

For each muscle the mean oxygen concentration within the modelled cubic
muscle volume was computed. In addition, the fraction of mesh cells with an
oxygen concentration lower than Csp was determined to take into account
the variation of the oxygenation across the whole muscle volume. Respective
linear regression lines for the correlations were computed in Origin8.1 (which
uses the least squares method), returning also the adjusted R that determines
the quality of the fit. R* was used to conclude which morphological measure
best predicted the tissue oxygenation.

3 Results
3.1 Comparison between histology and SR CT

Figure 3 displays the result of the comparison of red blood cell identification
between SR CT and histology images. The counting for CD31 by observer
1 is fitted by the line 0.91x +0.58 with R? = 0.85,p < 0.001. It was found that
the number of misidentified red blood cells, i.e., those RBCs that were visible
in one image but not the other, was lower than 10% and the overall number
of RBCs identical when derived via histology or SR CT. Thus, using phase
contrast-based SR CT it was possible to image red blood cells in mouse skeletal
muscle on the whole organ scale. In order to assess the impact of error in RBC
counting on the oxygenation computation, we have investigated a test cube of
muscle from which we removed two percent and ten percent of RBCs, respec-
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tively. The change in computed muscle oxygen concentration was found to
be insignificant with 0.01% and 0.09%, respectively (see appendix for details).
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Number of RBC in SR CT

Fig. 3 Counts of red blood cells by an observer on SR CT slices vs. histology.

3.2 Quantitative morphometry of RBC networks

The mean quantitative morphometry of the RBC network based on the SR
CT images was determined for all muscles, as well as the mean tissue oxy-
genation. Due to the naturally variable perfusion of capillaries with red blood
cells the standard deviation of the different morphological measures is large.
The mean red blood cell density was determined to be 828 + 155mm?. The red
blood cell-to-fibre ratio 0.90 +0.24. The average fractal dimension was found
to be 2.53 £0.04 , the mean surface area density was 3.1+0.5 mm~! and the
mean length density was 875 + 130mm~2. Finally, the mean volume fraction
was determined as 6.5+ 1.1-10~% and the mean RBC spacing as 17.5 + 1.4 ym.

3.2.1 Histological validation of capillary density and capillary-to-fibre ratio
The mean capillary density was computed to be 1211 +167 in the lectin stained

thin sections of soleus muscle. The capillary-to-fibre ratio was determined as
0.1+0.07.

3.3 Tissue oxygenation model

Figure 4 displays the results of the tissue oxygenation in the case of Michaelis-
Menten kinetics for an exemplary muscle. The oxygen diffuses from the RBCs
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(red) into the muscle where it is consumed.

Fig. 4 Tissue oxygenation with Michaelis-Menten consumption in a cubic muscle volume.
The oxygen diffuses from the red blood cells, where oxygen is at its highest concentration C, to
the tissue where it is consumed.

To visualize the 3D nature of the data and computed oxygenation, a con-
tour plot of the oxygenation of a smaller tissue cube is depicted in figure 5.
The decrease in tissue oxygen concentration from the red blood cells outwards
is visible. Regions with fewer RBCs present reach an overall lower value of
concentration than those that are well perfused.

3.4 Relationship between tissue oxygenation and RBC network
morphometry

The mean oxygen concentration and volume ratio of cells below Csg vs. each
morphological measure and the respective fitted linear regression lines are
displayed in figure 6.

The highest coefficient of determination was obtained for the relationship
between volume fraction and mean oxygen concentration with R* = 0.97 fol-
lowed by that for the mean distance to the next RBC (RBC spacing) with
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Fig. 5 Contour plot of tissue oxygenation with Michaelis-Menten consumption in a reduced
cubic muscle volume. The oxygen diffuses from the red blood cells, where it is at its highest
concentration, to the tissue where it is consumed.

R? = 0.84. The lowest coefficients of determination in terms of mean oxygen
concentration were computed for capillary density (R* = 0.17) and capillary-
to-fibre ratio (R? = 0.26). However, in the case of volume fraction of mesh cells
with a concentration lower than Cs the relationships change. The correlation
with RBC spacing remains strong (R = 0.88), whilst that for volume fraction
decreased to R? = 0.59. Length density and surface fraction remained nearly
constant and were on a similar scale as volume fraction, with R? = 0.52 and
R? = 0.44, respectively. The correlation for capillary density remained almost
constant as well, whilst that for fractal dimension and capillary-to-fibre ratio
diminished completely (R? = 0.06).

4 Discussion

In this study we have shown that the most successful morphological measures
for the prediction of muscle tissue oxygenation are RBC volume fraction and
RBC spacing. This stands in contrast to what is currently employed in research.
Furthermore, this is the first study, where imaging of red blood cells within
muscle tissue was possible using non-destructive, three-dimensional imaging,
without application of contrast agents.

The average red blood cell density of 828 + 155mm? is in agreement with
capillary density values found in the literature, especially for young mice
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Fig.6 Relations between morphometric measures characterising the red blood cells and tissue
oxygen concentration. The mean tissue oxygenation based on Michaelis-Menten kinetics has been
plotted against the morphological measures. Additionally, the volume fraction of the cells with a
concentration lower than Csg is shown. A linear regression line was fitted for each plot, including
R?. The strongest correlations are observed for measures of volume fraction and RBC spacing
whilst capillary density, fractal dimension and capillary-to-fibre ratios were correlated to a lesser
extent to tissue oxygenation.
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(867 +£100mm? [Davidson et al., 1999]). It is 28% lower than the capillary
density computed from histological sections (1211 +167). This difference may
however be due to the fact that not all capillaries are perfused with red
blood cells at all times. The red blood cell-to-fibre ratio was determined as
0.90 £ 0.24 which is significantly lower than values found in the literature
(> 1.8 Poole et al. [1989], Hudlicka [1985], Dapp et al. [2004]). However, histo-
logical validation that was performed showed a similar capillary-to-fibre ratio
of 0.1+0.07. This suggests that the value obtained by SR CT is representative
of the capillary-to-fibre ratio in the particular breed of mouse. Furthermore,
it is likely that the computed values for RBC density and RBC:F are lower
than those found in the literature, as they are averaged over a larger volume
of the muscle, whereas the values found in the literature are often taken from
very small regions in the muscle belly. Capillary density and capillary-to-fibre
ratios computed from belly regions of muscle have been found to differ from
capillary density and capillary-to-fibre ratios computed from peripheral mus-
cle regions [Murfee et al., 2005].The average fractal dimension was 2.53 +0.04
which is slightly higher than fractal dimension reported in the literature Gazit
et al. [1995], Masters [2004], Gould et al. [2011]. A difficulty in comparisons
with the literature is that most authors do not describe the overall volume
used to determine the fractal dimension, which influences the results in fractal
box counting (the bigger the volume compared to the structure studied, the
smaller the fractal dimension). Furthermore, the value of 2.53 +0.04 is in agree-
ment with the values obtained by Peitgen et al. [1992] for 3D diffusion-limited
growth processes (2.4 —2.5), which suggests that the determined values are
meaningful. The mean length density of 875+ 130mm™~2 was significantly
lower than values found in the literature [Erzen et al., 2011]. The reason for
this is that by visualisation of RBCs in the blood vessels and not the blood
vessels themselves and if the RBCs are not everywhere within the vessels, the
length of the blood vessel network is underestimated. Moreover, the compar-
ison with the literature is difficult if the standard stereological definition of
length density was used rather than an adapted definition. Finally, the mean
volume fraction of 6.5+1.1-1072 is lower than that obtained for the rat soleus
muscle by one order of magnitude [Kondo et al., 2011]. This, however, may
be due to the difference between animals. No findings regarding volume frac-
tion in mouse soleus muscle were published in the literature. Furthermore,
no data was available on microvascular spacing or surface area densities. The
quality of the morphological analysis of the structure of the microvasculature
by visualisation of red blood cells depends on there being RBCs present in
the capillaries. The number of capillaries that contain RBCs will vary with
perfusion and haematocrit.

From the computed fits for the morphological measure vs. oxygenation
relationships it follows that 3D measures were more closely related to muscle
tissue oxygenation (except fractal dimension) than the 2D measures capillary
density and capillary-to-fibre ratio. This has been expected, as the 2D measures
fail to incorporate 3D volumetric information of the microvascular structure
as provided by the 3D CT data. This effect becomes more pronounced when
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we regard the correlation of the morphological measure with the volume
fraction of those mesh cells that are below Csp, which is the muscle oxygen
concentration at half demand at rest. During exercise this correlation is ex-
pected to become even stronger, as the oxygen demand increases significantly.
The capillary-to-fibre ratio does not take into account any area or volume of
tissue oxygenation, thus performing poorly in predicting tissue oxygenation,
especially in terms of variation of oxygenation, as does the fractal dimension
measure. The power of the capillary density to predict oxygen supply is likely
to increase if it were to be computed over a larger number of CT slices, as
variations in 3D (which are significant as shown by Murfee ef al. [2005]) would
then be taken into account. However, it would still only take into account the
number of oxygen exchange locations (RBCs or capillaries) in each slice and
not the actual exchange surface, which was shown in this study to be a better
predictor for the overall oxygen exchange and thus tissue oxygenation. Fi-
nally, the mean distance to the next RBC (in 3D) expectedly emerged as one of
the best predictors for tissue oxygenation, as the tissue oxygenation was gov-
erned by diffusion and thus mainly depending on the diffusion distance. A
stronger correlation might result if the mathematical model took into account
the soft tissues present in the muscle other than muscle fibres. To this end, the
oxygen consumption of nervous tissue and interstitial tissues, as well as the
oxygen diffusivity in these, need to be determined and the respective tissues
would require segmentation for the modelling. Overall, the presented results
are in good agreement with the theoretical modelling considerations recently
presented by McClatchey et al. [2017]. In this study, the supply of oxygen to
muscle tissue as modelled by the visualisation of red blood cells is realistic
and withstands the application of oxygen uptake. Whilst it is unrealistic for
all red blood cells present in the muscle to be fully saturated with oxygen to
be supplied to the tissue, it is a first approximation of the reality.

From the comparison between SR CT images and histology it follows that
SR CT is suited to identify the location of blood vessels with the number
of misidentified red blood cells being lower than 10%. This number may
however be overestimated as the correlation between histological slides and
SR CT images is error prone, considering the small size of the RBCs. It is
important to find the optimal set of rotations to correlate the images, as well
the right SR CT slices over which the maximum intensity projection was
applied, in order to minimize the difference between correlated SR CT and
histology images. In validating features between SR CT slices and histology
slices, the optimal alignment of these is the main challenge and much time
was therefore spent in this process. Furthermore, it needs to be noted that
a potential bias in counting by the observer cannot be excluded. However,
the computation run on a test cube showed that an error of ten percent in
number of RBCs resulted in an insignificant change of muscle oxygenation
(see appendix). Therefore, we conclude that the results of this study are indeed
predictive.

The method of overlaying these slices may not be ideal, possibly a method
averaging the greyscales in each slice would achieve a more appropriate
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comparison than the maximum intensity projection. This averaging could be
weighted depending on their position in the 7-slice stack to account for the fo-
cus of the light microscope. Finally, the application of the bandpass filter to the
phase retrieved SR CT images not only highlights the RBCs but also all edges
of muscle fibres and empty capillaries, which can lead to misidentification of
some RBCs. This however is a minor complication as the misidentification can
be expected to be consistent over all slices, thus the overall slope the linear
regression would change, yet the consistency of results remains.

Errors in the comparison may be induced during the processing of the sam-
ples for staining, e.g., microtoming the samples resulted in shearing artefacts.
Such errors in processing are however intrinsic in the process of microtoming
and histological staining and can not be entirely circumvented.

Solving the mathematical model numerically was computationally very
expensive. It required 8 computing nodes with 12 processors each and be-
tween 15 to 72 hours for the non-linear consumption function to be solved
using the mixed Crank-Nicolson scheme. The process of segmentation was
time intensive, requiring at least 2-3 days per muscle cube.

Overall, we have presented the first mathematical simulation of skeletal
muscle tissue oxygenation based on images of red blood cells within the mus-
cle. It is also the first study on 3D image data that has not been artificially
created investigating the link between morphological measures and muscle
tissue oxygenation. We conclude that the measures of capillary density and
capillary-to-fibre ratio, which are widely used in biological research to pre-
dict tissue oxygenation and thus states of tissue health, should be critically
rethought and three-dimensional imaging and analysis methods ought to be
used more frequently in pre-clinical research. If 2D measures of oxygenation
are used they should be assessed in a series of defined transections along the
whole length of the muscle. Furthermore, ex vivo techniques and assessment
should be supported using 3D in vivo experimental data and/or results from
computational modelling.

5 Appendix

A cubic testvolume of 200x200x200 pixels was extracted from a segmented
muscle volume. The segmented red blood cells were labelled by connectivity
using Avizo 9.2. This resulted in overall 7990 red blood cells in the muscle
subvolume. A Matlab R2016a (The MathWorks Inc., USA) script was then
used to remove two percent and ten percent of red blood cells randomly.
The resulting datasets were meshed as explained above and the muscle oxy-
genation was computed. We found that the mean oxygen concentration in
the muscle was changed by 0.01% after removing two percent of RBCs and
by 0.09% after removal of ten percent of RBCs. The minimal concentration of
oxygen changed by 0.08% and 0.07%, respectively.
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