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Abstract—Turbo detection performed by exchanging extrinsic
information between the soft-decision QAM detector and the
channel decoder is beneficial for the sake of exploring the bit
dependency imposed both by modulation and by channel coding.
However, when the soft-decision coherent QAM detectors are
provided with imperfect channel estimates in rapidly fading
channels, they tend to produce potentially unreliable LLRs
that deviate from the true probabilities, which degrades the
turbo detection performance. Against this background, in this
paper, we propose a range of new soft-decision Multiple-Symbol
Differential Sphere Detection (MSDSD) and Decision-Feedback
Differential Detection (DFDD) solutions for Differential QAM
(DQAM), which dispense with channel estimation in the face of
rapidly fading channels. Our proposed design aims for solving
the two inherent problems in soft-decision DQAM detection
design, which have also been the most substantial obstacle in
the way of offering a solution for turbo detected MSDSD aided
differential MIMO schemes using QAM: (1) how to facilitate
the soft-decision detection of the DQAM’s amplitudes, which
– in contrast to the DPSK phases – do not form a unitary
matrix; (2) how to separate and streamline the DQAM’s soft-
decision amplitude and phase detectors. Our simulation results
demonstrate that our proposed MSDSD aided DQAM solution
is capable of substantially outperforming its MSDSD aided
DPSK counterpart in coded systemswithout imposing a higher
complexity. Moreover, our proposed DFDD aided DQAM solution
is shown to outperform the conventional solutions in literature.
Our discussions on the important subject of coherent versus
noncoherent schemes suggest that compared to coherent Square
QAM relying on realistic imperfect channel estimation, MSDSD
aided DQAM may be deemed as a better candidate for turbo
detection assisted coded systems operating at high Doppler
frequencies.

I. I NTRODUCTION

High-complexity joint channel- and data-estimation is ca-
pable of approaching the performance of perfect channel
estimation in slowly fading channels [1]–[6], but both its com-
plexity and pilot-overhead escalate in high-Doppler scenarios
[7]. Moreover, in pursuit of an increased data-rate, the high-
order 64QAM and 256QAM schemes have been included in

C. Xu, S. X. Ng and L. Hanzo are with the School of Electronics and
Computer Science, University of Southampton, Southampton SO17 1BJ, UK
(e-mail: {cx1g08,sxn,lh}@ecs.soton.ac.uk).

L. Wang is with Huawei Technology Sweden R&D Competence Center
(e-mail: leo.li.wang@huawei.com).

The financial support of the European Research Council’s Advanced Fellow
Grant is gratefully acknowledged.

the ITU-R IMT Advanced 4G standards [8] and in IEEE
802.11ac [9]. As the modulation order increases, the depen-
dency between the modulated bits is also increased. Therefore,
it is beneficial to exchange extrinsic information between a
soft-decision QAM detector and a channel decoder in turbo
detection assisted coded systems [10]–[14], so that the capacity
limits of the coded QAM systems may be closely approached.
However, when the soft-decision coherent demodulators are
provided with imperfect Channel State Information (CSI) in
the face of rapidly fading channels, they tend to produce
potentially unreliable LLRs that deviate from the true probabil-
ities [14]. This degrades the performance of turbo detection.
By contrast, the noncoherent detection of Differential QAM
(DQAM) mitigates the above-mentioned problems, where the
CSI does not have to be estimated.

More explicitly, as an instantiation of Star QAM, the
differential encoding principle of DPSK was first applied to
DQAM’s phase only, while DQAM’s data-carrying amplitude
was directly transmitted in [15]. Without differential encoding
on amplitude, this transmission mechanism may be termed
as absolute-amplitude DQAM, which may include Absolute-
amplitude Differential Phase Shift Keying (ADPSK) [15],
Twisted ADPSK (TADPSK) [16] and TADPSK associated
with Joint Mapping (TADPSKJM) [17], where TADPSK in-
troduces a ring-amplitude-dependent phase rotation in or-
der to increase the Star QAM constellation distances, while
TADPSKJM jointly maps its bits to DQAM’s phase index
and ring-amplitude index in order to increase the correlation
between the two terms. Moreover, as a popular alternative,
Differential Amplitude Phase Shift Keying (DAPSK) [18]
applies differential encoding both to the phase and to the
ring-amplitude, which constitutes the family of differential-
amplitude DQAM schemes that may also include the constel-
lation variants of Twisted DAPSK (TDAPSK) and TDAPSK
associated with Joint Mapping (TDAPSKJM). In this paper,
the notational form ofM -DQAM(MA,MP ) is used for all the
DQAM schemes, whereM , MA andMP refer to the number
of modulation levels, ring-amplitudes and phases, respectively.
They have the relationship ofM = MAMP .

In the absence of CSI, the DQAM’s Conventional Differ-
ential Detection (CDD) suffers from a performance erosion
compared to its coherent counterparts [18], [19]. In order
to improve the CDD’s performance, Multiple-Symbol Differ-
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ential Detection (MSDD) was conceived both for DPSK in
[20]–[22] and for DQAM in [22]. More explicitly, the MSDD
extends the CDD’s observation window width fromNw = 2
to Nw ≥ 2, where a total of(Nw − 1) data-carrying symbols
are jointly detected. Consequently, the MSDD complexity may
grow exponentially withNw. In order to circumvent this
problem, Decision-Feedback Differential Detection (DFDD)
was conceived for DPSK in [23], [24] and for DQAM in
[17], [25]–[27], where the decision feedbacks concerning a
total of (Nw − 2) data-carrying symbols are obtained from
the previous detection windows, so that only a single symbol
has to be detected. However, the DFDD’s error propagation
problem results in a performance loss. In order to retain
the optimum MSDD performance, the concept of Multiple-
Symbol Differential Sphere Detection (MSDSD) was proposed
for DPSK in [28]–[30], where the Sphere Decoder (SD) was
invoked for MSDD.

Inspired by the technical breakthrough of Turbo Code
(TC) [31], [32], soft-decision DQAM detection has also been
developed throughout the last two decades. Explicitly, Trellis
decoded DQAM using the Viterbi algorithm was proposed in
[33]. Then, MSDD was invoked for DQAM in the context of
multilevel coding in [34]. Moreover, a low-complexity soft-
decision CDD was conceived for DAPSK in Rayleigh fading
channels in [35], where the ring-amplitude and phase are sep-
arately detected. However, no iteration was invoked between
the channel decoder and the DQAM detector in these con-
tributions. In [36], the CDD aided DAPSK was employed for
turbo detection, where the ring-amplitude and phase are jointly
detected. This soft-decision CDD conceived for DAPSK was
further streamlined in [37], where the authors also discov-
ered that completely separately detecting the DAPSK’s ring-
amplitude and phase may impose a performance loss, which
is more substantial in coded systems. Furthermore, in [38],
a new MSDD/MSDSD arrangement was proposed for soft-
decision DAPSK detection, which may be termed as MSDD
using Iterative Amplitude/Phase processing (MSDD-IAP). Ex-
plicitly, the MSDD-IAP of [38] invokes MSDD and MSDSD
for detecting the DAPSK’s ring-amplitudes and phases, and
then the two detectors may iteratively exchange their decisions
in order to achieve the near-optimum MSDD performance.
Against this background, at the time of writing, the soft-
decision SD has not been invoked for the DQAM’s ring-
amplitude detection. Furthermore, more soft-decision MSDSD
arrangements have to be conceived, because the MSDD-IAP
of [38] cannot be directly applied to all the aforementioned
DQAM constellations.

In recent years, the differential Multiple-Input Multiple-
Output (MIMO) schemes have attracted a lot of attention.
More explicitly, Differential Space-Time Modulation (DSTM)
design based on group codes was proposed in [39]–[41].
Moreover, Differential Space-Time Block Codes (DSTBCs)
were developed based on orthogonal code design principles
in [42], [43]. The DSTBCs were further developed for using
QAM in [44]–[46] and for employing both non-orthogonal as
well as non-unitary designs in [47]. Moreover, in pursuit of
a higher rate, the concept of Differential Linear Dispersion
Code (DLDC) was proposed in [48], which disperses a total

of NQ real-valued symbols with the aid ofNQ Hermitian
dispersion matrices, and then the Cayley transform is used for
converting the resultant Hermitian matrix into a unitary matrix.
Inspired by the DLDC and the recently developed Spatial
Modulation (SM) concept [49], Differential Space-Time Shift
Keying (DSTSK) was proposed in [50], where a single one
out of a total ofNQ unitary dispersion matrices is activated in
order to disperse a single complex-valued PSK/QAM symbol
[50]–[52]. Furthermore, the concept of Differential SM (DSM)
was proposed in [53], which may be viewed as a special case
of DSTSK [54], where only a single RF chain is employed
at the DSM transmitter. The DSM was further developed for
using QAM in [55].

Apart from these CDD aided differential MIMO schemes
operating in slowly fading channels, the hard-decision MSDD
aided DSTBC was developed in [56] for slowly fading chan-
nels, while the hard-decision MSDD aided DSTM was derived
in [57] for rapidly fading channels. Moreover, the hard-
decision DFDD aided DSTM and the hard-decision MSDSD
aided DSTM/DSTBC using PSK operating in rapidly fading
channels were proposed in [57] and [58], respectively.

At the time of writing, the employment of soft-decision
MSDSD/DFDD aided differential MIMO using QAM would
remain infeasible without solving the inherent soft-decision
DQAM’s amplitude detection problems. Let us consider the
hard-decision MSDSD aided DSTBC using QAM in [51] as an
example. In uncoded systems the amplitude of the first DSTBC
matrix transmitted in a MSDSD window, which does not
carry source information is estimated based on the decision-
feedback obtained from the previous MSDSD window in [51].
However, in coded systems we observe that the potential error
propagation problem may severely erode the LLR reliability
of the soft-decision DQAM detection, which degrades the
turbo detection performance. Moreover, without reducing the
complexity of soft-decision DQAM detection, its extensionto
differential MIMO schemes can hardly be affordable in turbo
detection assisted coded systems.

Against this background, in this paper, we opt to develop
a comprehensive solution for the soft-decision DQAM detec-
tion in rapidly fading Single-Input Multiple-Output (SIMO)
channels, which aims for solving the following two major
problems: (1)how to facilitate the soft-decision detection of
the DQAM’s amplitudes, which – in contrast to the DPSK
phases – do not form a unitary matrix;(2) how to separate
and streamline the DQAM’s soft-decision amplitude and phase
detectors.The soft-decision MSDSD arrangements proposed
in this paper are summarized in Table I. More explicitly, the
novel contributions of this paper are as follows:

1) First of all, we propose to invoke the soft-decision SD
for both ring-amplitude and phase detection, which has
not been presented in the open literature. Depending
on the specific treatment of the first DQAM symbol’s
amplitudeΓ1 of each MSDSD window, we propose the
original set, the Hard-Decision-Directed (HDD) set and
the Soft-Decision-Directed (SDD) set of MSDSD ar-
rangements of Table I, whereΓ1 is either detected as an
unknown variable or alternatively, it is estimated based
on hard-decision feedback or soft-decision feedback
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TABLE I
THE SOFT-DECISION MSDSD ARRANGEMENTS PROPOSED FORDQAM IN THIS PAPER.

Original set HDD set SDD set
Type 1 (Generic Algorithm) MSDSD HDD-MSDSD SDD-MSDSD
Type 2 (RC Algorithm) RC MSDSD RC HDD-MSDSD RC SDD-MSDSD
Type 3 (RC & IAP Algorithm) RC MSDSD-IAP RC HDD-MSDSD-IAP RC SDD-MSDSD-IAP

from the previous MSDSD window, respectively. We
will demonstrate that both the original set and the SDD
set are suitable for the differential-amplitude DQAM
schemes of DAPSK, TDAPSK and TDAPSKJM, while
the HDD set is a better choice for the absolute-amplitude
schemes of ADPSK, TADPSK and TADPSKJM.

2) Secondly, depending on the DQAM mapping technique,
we propose three types of MSDSD arrangements using
three new MSDSD algorithms, as seen in Table I.
Explicitly, the first type of generic MSDSD arrange-
ments in Table I may be invoked by the joint-mapping
based DQAM schemes of TADPSKJM and TDAPSKJM.
The second type of Reduced-Complexity (RC) MSDSD
arrangements in Table I may be employed by the
twisted DQAM of TADPSK and TDAPSK. Moreover,
the third type of RC MSDSD arrangements using IAP
in Table I, which separately and iteratively detect the
DQAM’s ring-amplitudes and phases may be employed
by ADPSK and DAPSK. Specifically, we will demon-
strate that the RC HDD-MSDSD-IAP aided ADPSK
is capable of outperforming its MSDSD aided DPSK
counterpart [30]without imposing a higher complexity.

3) Furthermore, the important subject of coherent versus
noncoherent detection is discussed. Our simulation re-
sults suggest that compared to the coherent Square QAM
relying on the classic Pilot Symbol Assisted Modulation
(PSAM) [7], the DQAM schemes employing MSDSD
may be deemed as a better candidate for turbo detection
aided coded systems operating at high Doppler frequen-
cies.

4) Moreover, we further propose improved soft-decision
DFDD solutions conceived for DQAM, which are equiv-
alent to the MSDD/MSDSD operating in decision-
feedback mode. We will demonstrate that the proposed
DFDD solutions outperform the conventional prediction-
based DFDD solutions of [17], [25]–[27].

The rest of this paper is organized as follows. The DQAM
constellations and their notations are introduced in Sec. II.
The soft-decision MSDD is configured for DQAM in Sec. III,
where the concepts of HDD and SDD are introduced. The
three new soft-decision MSDSD algorithms are proposed in
Sec. IV, and the improved soft-decision DFDD solutions are
developed in Sec. V. Our simulation results are provided in
Sec. VI, while our conclusions are offered in Sec. VII.

II. DQAM C ONSTELLATIONS

The mapping of the DQAM data-carrying symbolsx and
transmitted symbolss is summarized in Table II, where the
notationsγ, ω andψ represent the ring-amplitude, phase and
ring-amplitude-dependent phase rotation ofx, respectively.
Hence we havex = γωψ. Similarly, the notationsΓ, Ω
andΨ represent the ring-amplitude, phase and ring-amplitude-
dependent phase rotation ofs, respectively, where we have

s = ΓΩΨ. The modulation indexm = bin2dec(b1 · · · bBPS),
ring-amplitude indexa = bin2dec(bBPSP +1 · · · bBPS) and phase
index p = bin2dec(b1 · · · bBPSP

) are Gray coded indicešm, ǎ
and p̌, respectively. Moreover, for Star QAM, the notationsα

andβ =
PMA−1

µ=0 α2µ

MA
respectively represent the ring ratio and

constellation normalization factor. The advantageous choices
in Rayleigh fading channels areα = 2.0 for twin-ring Star
QAM [59], [60] and α = 1.4 for quadruple-ring Star QAM
[33], respectively.

As seen in Table II, the ADPSK scheme [15], [16] invokes
the absolute-amplitude differential encoding process as:

sn =
1

|sn−1|
xn−1sn−1, (1)

which starts froms1 = 1√
β

. More explicitly, the ADPSK’s
data-carrying symbolsxn−1 in (1) are modulated as Star
QAM symbols as seen in Table II, and then thanks to the
normalization of 1

|sn−1| in (1), the transmitted symbols always
have the absolute-amplitude ofΓn = |sn| = |xn−1| = γn−1.

By contrast, the DAPSK scheme [18], [37] invokes the
differential encoding process in the same way as the classic
DPSK as:

sn = xn−1sn−1, (2)

which also starts froms1 = 1√
β

. More explicitly, the DAPSK’s
transmitted symbolssn in (2) are encoded to be Star QAM
symbols assn = ΓnΩn = αµn√

β
exp(j 2π

MP
qn), where the trans-

mitted symbol’s ring-amplitude and phase indices are givenby
[µn = (ǎ+µn−1) mod MA] and[qn = (p̌+qn−1) mod MP ],
respectively. As a result, the modulation of the DAPSK’s
data-carrying symbolxn−1 in (2) is determined both by the
data-carrying modulation indexm as well as by the previous
transmitted ring-amplitudeΓn−1 = αµn−1√

β
, as seen in Table II.

Based on the classic ADPSK and DAPSK, four DQAM
variants in literature are also considered in Table II. More
explicitly, the TADPSK and TDAPSK schemes impose a
ring-amplitude-dependent phase rotation to the ADPSK and
DAPSK schemes, respectively [16], [17]. Moreover, the
TADPSKJM and TDAPSKJM schemes jointly modulate the
ring-amplitude and phase for the TADPSK and TDAPSK
schemes, respectively, as suggested in [16], [17]. We will
demonstrate later that a higher correlation between the ring-
amplitude and phase may improve the iteration gain on the
EXIT charts, which may result in a performance advantage in
specific coded systems.

III. M ULTIPLE-SYMBOL DIFFERENTIAL DETECTION

First of all, the signal received by theNR antennas may
be modelled asYn = snHn + Vn, where theNR-element
row-vectors Yn, Hn and Vn model the received signal,
the Rayleigh fading and AWGN, respectively. Then theNw

observations may be modelled by the MSDD as:

Y = SH + V = APOH + V, (3)
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TABLE II
MODULATION OF THE DQAM’ S DATA-CARRYING SYMBOLS.

(a) Absolute-Amplitude DQAM (sn = 1
|sn−1|xn−1sn−1)

ADPSK xm = γaωp = αǎ
√

β
exp(j 2π

MP
p̌)

TADPSK xm = γaωpψa = αǎ
√

β
exp(j 2π

MP
p̌) exp(j 2π

M
ǎ)

TADPSKJM xm = α(m̌ mod MA)
√

β
exp(j 2π

M
m̌)

(b) Differential-Amplitude DQAM (sn = xn−1sn−1)

DAPSK xm = γaωp = α
[(ǎ+µn−1) mod MA]

α
µn−1 exp(j 2π

MP
p̌)

TDAPSK xm = γaωpψa

= α
[(ǎ+µn−1) mod MA]

α
µn−1 exp(j 2π

MP
p̌) exp(j 2π

M
ǎ)

TDAPSKJM xm = α
{[(m̌ mod MA)+µn−1] mod MA}

α
µn−1 exp(j 2π

M
m̌)

where Y = [YT
Nw

,YT
Nw−1, · · · ,YT

1 ]T ,
H = [HT

Nw
,HT

Nw−1, · · · ,HT
1 ]T and V =

[VT
Nw

,VT
Nw−1, · · · ,VT

1 ]T are of size (Nw × NR).
Moreover, S = diag{[sNw

, sNw−1, · · · , s1]},
A = diag{[ΓNw

,ΓNw−1, · · · ,Γ1]}, P =
diag{[ΩNw

,ΩNw−1, · · · ,Ω1]} and O =
diag{[ΨNw

,ΨNw−1, · · · ,Ψ1]} in (3) are all of size
(Nw × Nw). We note thatO is an identity matrix for
the ADPSK and DAPSK schemes. The MSDD aims for
detecting the (Nw − 1) data-carrying symbols{xv}Nw−1

v=1 ,
rather than theNw transmitted symbols{sv}Nw

v=1. Therefore,
the reference symbols1 = Γ1Ω1Ψ1 should be separated from
the transmitted symbols seen in (3) following it, which leads
to:

Y = S̄H̄ + V = ĀP̄ŌH̄ + V, (4)

where thevth diagonal element in̄P is given byΩ̄v = ΩvΩ∗
1,

which leads toΩ̄1 = 1 and Ω̄v = ωv−1Ω̄v−1 =
∏v−1

t=1 ωt

for v > 1. Similarly, the vth diagonal element inŌ is
given by Ψ̄v = ΨvΨ∗

1, which leads to Ψ̄1 = 1 and
Ψ̄v = ψv−1Ψ̄v−1 =

∏v−1
t=1 ψt for v > 1. As a result,

the vth row in H̄ is given by H̄v = Ω1Ψ1Hv, where the
constant phaseΩ1Ψ1 does not change the correlations between
fading samples, i.e. E

{
H

H
v Hv′

}
= E

{
H̄

H
v H̄v′

}
. However,

unlike Ω1 and Ψ1, the value ofΓ1 does affect the MSDD
decision. Therefore, when̄A in (3) is detected by the MSDD,
Γ1 is considered as a known term, which is either obtained
based on previous MSDD decisions or detected separately
as an unknown variable. As a result, there areM

(Nw−1)
A

combinations forĀ in (3). Specifically, for the absolute-
amplitude ADPSK/TADPSK/TADPSKJM using (1), thevth

diagonal element in̄A is given byΓv = γv−1. By contrast,
for the differential-amplitude DAPSK/TDAPSK/TDAPSKJM

using (2), we haveΓv = γv−1Γv−1 =
(∏v−1

t=1 γt

)
Γ1.

Based on (4), the MSDD may invoke the optimum Log-
MAP algorithm [14], [61] as:

Lp(bk) = ln

P

∀Γ1∈{ αµ1√
β

}MA−1
µ1=0

P

∀S̄∈S̄bk=1
p(Y|Γ1,S̄)p(Γ1)p(S̄)

P

∀Γ1∈{ αµ1√
β

}MA−1
µ1=0

P

∀S̄∈S̄bk=0
p(Y|Γ1,S̄)p(Γ1)p(S̄)

= La(bk) + Le(bk),
(5)

whereLp(bk), Le(bk) and La(bk) represent thea posteriori
LLR and the extrinsic LLR produced by the MSDD as
well as thea priori LLR gleaned from a channel decoder,
respectively, while the subsets̄Sbk=1 and S̄bk=0 refer to the
MSDD combination sets associated with̄S = ĀP̄Ō of (4),
with the specific bitbk being fixed to 1 and 0, respectively.
Furthermore, the probability of receivingY given Γ1 and S̄

is formulated as [21], [22], [28]:

p(Y|Γ1, S̄) =
exp

{
−rvec(Y)R−1

Y Y [rvec(Y)]H
}

πNRNw det(RY Y )
, (6)

where the operation rvec(Y) forms a NRNw-element row-
vector by taking the rows ofY one-by-one. As a result,
the correlation matrix seen in (6) is given byRY Y =

E
{

[rvec(Y)]
H rvec(Y)

}
= (ŌH

P̄
H
CP̄Ō) ⊗ INR

, where

both P̄ and Ō are unitary matrices, while the operation⊗
represents the Kronecker product. Moreover, the(Nw ×Nw)-
element channel correlation matrixC is given by C =
Ā

H
RhhĀ+Rvv, where the fading correlation matrixRhh =

Toeplitz([ ρ0 ρ1 · · · ρNw−1 ]) and the AWGN correla-
tion matrix Rvv = N0INw

are the same as in the case of
DPSK usingNR = 1 in [28], [29]. However, sincēA is not
a unitary matrix, it cannot be separated fromC for DQAM
detection.

The low-complexity Max-Log-MAP algorithm may be in-
voked by the MSDD for the sake of simplifying the Log-MAP
of (5), and it is given by [61]:

Lp(bk) = max∀Γ1∈{αµ1√
β

}MA−1

µ1=0

max∀S̄∈S̄bk=1
d(Γ1, S̄)

− max∀Γ1∈{αµ1√
β

}MA−1

µ1=0
max∀S̄∈S̄bk=0

d(Γ1, S̄).

(7)
Based on (6), the probability metric seen in (7) may be
expressed as:

d(Γ1, S̄) = −tr(YH
P̄ŌC

−1
Ō

H
P̄

H
Y) − NR ln[det(C)]

+
∑(Nw−1)BPS

k̄=1
b̃k̄La(bk̄),

(8)
where the determinant in (6) is given bydet(RY Y ) =

det(C)NR , while {b̃k̄}
(Nw−1)BPS
k̄=1

denotes the bit mapping
corresponding to the MSDD candidateS̄.

Moreover, instead of assuming thatΓ1 is an equiprobable
variable in (7), soft-decision feedback on{p(Γ1)}∀Γ1

may be
obtained from the previous MSDD window, which leads us
to a SDD-MSDD. In more detail,d(Γ1, S̄) of (8) may be
modified to take{p(Γ1)}∀Γ1

into account as:

d(Γ1, S̄) = −tr(YH
P̄ŌC

−1
Ō

H
P̄

H
Y) − NR ln[det(C)]

+
∑(Nw−1)BPS

k̄=1
b̃k̄La(bk̄) + ln[p(Γ1)].

(9)
The probabilities may be updated according to{ln [p(ΓNw

)] =
max∀Ā∈〈∀Γ1,ΓNw 〉 d(Γ1, S̄)}, where the ring-amplitudesΓ1

andΓNw
transmitted both at the start and end of the MSDD

window may represent trellis states〈Γ1,ΓNw
〉, while the data-

carrying ring-amplitudesĀ govern the state transition. As
a result, all initial states∀Γ1 and all transitions∀Ā that
lead to the specific trellis termination state ofΓNw

have to
be taken into account for evaluatingln [p(ΓNw

)]. Then the
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newly updated{ln p(ΓNw
)}∀ΓNw

may be passed on to the
next MSDD window as{ln p(Γ1)}∀Γ1

.
If the hard-decision on̂Γ1 is fed back from the previous

MSDD window, then a HDD-MSDD invoking the Max-Log-
MAP may be simply formulated as:

Lp(bk) = max
∀S̄∈S̄bk=1

d(Γ̂1, S̄) − max
∀S̄∈S̄bk=0

d(Γ̂1, S̄), (10)

where the hard-decision concerningΓ̂Nw
may be passed on to

the next MSDD window aŝΓ1.

IV. M ULTIPLE-SYMBOL DIFFERENTIAL SPHERE

DETECTION

A. Generic MSDSD Algorithm

Similar to MSDSD aided DPSK of [29], [30], SD may be
invoked for MSDD aided DQAM using the Max-Log-MAP of
(7), where the maximization is converted to minimization as:

Lp(bk) = min∀Γ1∈{αµ1√
β

}MA−1

µ1=0

min∀S̄∈S̄bk=1
d

− min∀Γ1∈{αµ1√
β

}MA−1

µ1=0

min∀S̄∈S̄bk=0
d,

(11)

while the probability metrics should be guaranteed to have
positive values as:

d =
∑Nw

v=1

∥∥∥
∑v

t=1 l̃v−t+1,1Ψ̄
∗
t Ω̄

∗
t Yt

∥∥∥
2

+ NR ln
(
Γ2

1ρ0 + N0

)

+ NR

∑Nw

v=2 ln[
(
Γ2

vρ0 + N0

)
− ẽ

T
v C̃

−1
v−1

ẽv]

−
∑Nw

v=2 ξv−1 −
∑Nw

v=2

∑BPS
k̄v=1 [̃bk̄v

La(bk̄v
) − Ca,k̄v

].
(12)

In more detail, firstly, the trace term in (8) may be evaluated
by tr(YH

P̄ŌC
−1

Ō
H
P̄

H
Y) = ‖LT

Ō
H
P̄

H
Y‖2 =∑Nw

v=1

∥∥∑v
t=1 lNw−t+1,Nw−v+1Ψ̄

∗
t Ω̄

∗
t Yt

∥∥2
, where

{{lNw−t+1,Nw−v+1}v
t=1}Nw

v=1 are elements in the lower
triangular matrixL, which is obtained from the decomposition
of C

−1 = LL
T . We note that bothC = Ā

H
RhhĀ + Rvv

and L remain unknown, until all ring-amplitudes in̄A are
detected. In order to solve this problem by invoking SD,
we define the(v × v)-element partial channel correlation
matrix C̃v, which may be evaluated with the aid of the SD’s
previous decisions concerning{Γt}v−1

t=1 and a single variable
Γv as:

C̃v =




Γ2
vρ0 + N0 ΓvΓv−1ρ1 · · · ΓvΓ1ρv−1

Γv−1Γvρ1 Γ2
v−1ρ0 + N0 · · · Γv−1Γ1ρv−2

...
...

. ..
...

Γ1Γvρv−1 Γ1Γv−1ρv−2 · · · Γ2
1ρ0 + N0




=

[
Γ2

vρ0 + N0 ẽ
T
v

ẽv C̃v−1

]
,

(13)
while the (v − 1)-element column-vector̃ev in (13) is given
by ẽv = [ΓvΓv−1ρ1, · · · , ΓvΓ1ρv−1]

T . It can be read-
ily seen that C̃v is a submatrix ofC, but they become
equal, when the SD index is increased tov = Nw. As a
result, we also have the relationship of{lNw−t+1,Nw−v+1 =

l̃v−t+1,1}v
t=1, where{l̃v−t+1,1}v

t=1 are elements in the(v×v)-
element lower triangular matrix̃Lv, which is a submatrix
of L, and L̃v may be directly obtained from the subma-
trix decomposition of L̃vL̃

T
v = C̃

−1
v . Secondly, accord-

ing to the Leibniz formula [62], the determinant of̃Cv in

(13) may be evaluated bydet(C̃v) = det(C̃v−1)[(Γ2
vρ0 +

N0)− ẽ
T
v C̃

−1
v−1

ẽv]. Therefore, the complete determinant term
NR ln[det(C)] in (8) may be evaluated byNR ln[det(C̃1)] +
NR

∑Nw

v=2 ln[
(
Γ2

vρ0 + N0

)
− ẽ

T
v C̃

−1
v−1

ẽv], where the initial
term is given by NR ln[det(C̃1)] = NR ln

(
Γ2

1ρ0 + N0

)
,

as seen in (12). Thirdly, the constant ofξv−1 =
min∀Γ1···∀Γv

NR ln[(Γ2
vρ0 + N0)− ẽ

T
v C̃

−1
v−1

ẽv] and the con-
stant of Ca,k̄v

= 1
2

[
|La(bk̄v

)| + La(bk̄v
)
]

are artificially
added in order to maintain a non-negative Euclidean Distance
(ED) in (13), as discussed in the context of (17) in [30]. We
note that adding the constants of

∑Nw

v=2(ξv−1 − Ca,k̄v
) to

the MSDD metric of (8) does not impose any performance
difference, and the constants{ξv−1}Nw

v=2 may be obtained by
brute-force search in an off-line fashion before performing
MSDSD.

As a result, based on (12), the SD’s Partial ED (PED) may
be defined as:

dv = ‖lNw,Nw
Y1‖2

+ NR ln
(
Γ2

1ρ0 + N0

)

+
∑v

v̄=2

∥∥∥
∑v̄

t=1 l̃v̄−t+1,1Ψ̄
∗
t Ω̄

∗
t Yt

∥∥∥
2

+
∑v

v̄=2 Ξv̄

− ∑v
v̄=2

∑BPS
k̄v̄=1

[
b̃k̄v̄

La(bk̄v̄
) − Ca,k̄v̄

]

= dv−1 + ∆v−1.
(14)

where the PED increment is given by:

∆v−1 =
‚

‚

‚

el1,1Ψ̄
∗
v−1Ω̄

∗
v−1Yv + ωv−1ψv−1

“

Pv−1
t=1

elv−t+1,1Ψ̄
∗
t Ω̄

∗
t Yt

”

‚

‚

‚

2

+ Ξv −
PBPS

k̄v=1

h

ebk̄v
La(bk̄v

) − Ca,k̄v

i

,

(15)
while the determinant term is defined asΞv = NR ln[(Γ2

vρ0+
N0) − ẽ

T
v C̃

−1
v−1

ẽv] − ξv−1.
Based on the PED of (14), the MSDSD algorithm of

[29] may be invoked, but its ”sortDelta” subfunction should
be revised as summarized in Table III, where the subscript
m ∈ {0, · · · ,M−1} represents the data-carrying constellation
point index which may be directly translated back to binary
source bits as[b1 · · · bBPS] = dec2bin(m). Furthermore, the
subscriptm ∈ {0, · · · ,M − 1} represents the constellation
point index ordered according to the increasing values of PED
increment∆v−1. We note that the MSDD model of (3) stores
received signal vectors in a reverse order compared to the
one seen in [29] in order to detect the phases according to
Ωv = ωv−1Ωv−1, instead of detecting them backwards as
Ωv−1 = ω∗

v−1Ωv. As a result, the MSDSD algorithm of [29]
may now commence from indexv = 2 and update the sphere
radius at indexv = Nw. The child node counternv−1 in
Table III has the revised range of0 ≤ nv−1 ≤ (M − 1)
throughout the SD search, which accords with the range of the
constellation point indexm. Moreover, similar to the pseudo-
code presented in [29], the MSDSD may initialize the PED
as d1 = 0 for the sake of simplicity, but theΓ1-related term
d1 = ‖lNw,Nw

Y1‖2
+ NR ln

(
Γ2

1ρ0 + N0

)
in (14) should be

added to the SD’s output radius before comparing EDs over
Γ1 as seen in (11). It is also worth noting that a total of∑Nw

v=1 Mv
A candidates for{L̃v}Nw

v=2 and{Ξv}Nw

v=2 seen in (15)
may be pre-evaluated and pre-stored in an off-line fashion,
before performing MSDSD. The memory required for storing
{L̃v}Nw

v=2 and{Ξv}Nw

v=2 is small compared to that of MSDD.
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TABLE III
PSEUDOCODE FOR THESCHNORR-EUCHNER SEARCH STRATEGY TAILORED FOR SOFT-DECISION MSDSD AIDED DQAM.

Subfunction: [{∆m̄
v−1}

M−1
m̄=0 , {xm̄

v−1}
M−1
m̄=0 , nv−1] = sortDelta({Yt}v

t=1, {Γ̂t}
v−1
t=1 , {Ψ̂t}

v−1
t=1 , {Ω̂t}

v−1
t=1 , {La(bk̄v

)}BPS
k̄v=1

,

{Ca,k̄v
]}BPS

k̄v=1
)

Requirements:{elv−t+1,1}v
t=1 in (15) are taken fromeL({Γ̂t}

v−1
t=1 , Γv) = eLv, which are pre-evaluated and pre-stored.Ξ({Γ̂t}

v−1
t=1 , Γv) =

Ξv in (15) are also pre-evaluated and pre-stored.
1: for m=0 to M − 1 //visit all M child nodes.
2: (ADPSK/TADPSK/TADPSKJM:) Γv = γv−1 //visit xm

v−1 = γv−1ωv−1ψv−1.
(DAPSK/TDAPSK/TDAPSKJM:) Γv = γv−1Γ̂v−1

3: ∆m
v−1 = ‖el1,1Ψ̂∗

v−1Ω̂
∗
v−1Yv + ωv−1ψv−1(

Pv−1
t=1

elv−t+1,1Ψ̂∗
t Ω̂∗

t Yt)‖2 //evaluate PED increments of (15).

+Ξ({Γ̂t}
v−1
t=1 , Γv) −

PBPS
k̄v=1

[ebk̄v
La(bk̄v

) − Ca,k̄v
]

4: end for
5: [{∆m̄

v−1}
M−1
m̄=0 , {xm̄

v−1}
M−1
m̄=0 ] = sort({∆m

v−1}
M−1
m=0 ) //rank PED increments in increasing order.

6: nv−1 = 0 //initialize child node counter.

Therefore, the optimum ED is given bydMAP =
min∀Γ1

(min∀S̄ d), where (min∀S̄ d) is found by the SD
without the MSDD full search, while the corresponding hard-
bit decisions{bMAP

k }(Nw−1)BPS
k=1 may also be obtained along

with dMAP . Following this, the Max-Log-MAP of (11) may
now be completed by:

Lp(bk) =

{
−dMAP + d̄MAP , if bMAP

k = 1,
−d̄MAP + dMAP , if bMAP

k = 0,
(16)

where d̄MAP is obtained by invoking the SD again for
evaluating eachLp(bk), where the specific bitbk is fixed to
be the toggled MAP decision̄bMAP

k , i.e. we haved̄MAP =
min∀Γ1

(min∀{S̄}
bk=b̄MAP

k

d). As a result, the SD is in-

voked a total ofMA[1 + (Nw − 1)BPS] times for producing
{Lp(bk)}(Nw−1)BPS

k=1 of (16). As suggested in [30], the repeated
SD calculations may be avoided by labelling the previously
visited nodes and storing their PED metrics.

Moreover, both HDD-MSDD and SDD-MSDD of Sec. III
may be implemented as HDD-MSDSD and SDD-MSDSD,
respectively. For HDD-MSDSD,̂Γ1 is known from previ-
ous MSDSD window. Therefore, HDD-MSDSD may also
produce Lp(bk) in the same way as MSDSD of (16),
except that the comparisons over the differentΓ1 values
for obtaining dMAP and d̄MAP in (16) may be elim-
inated, and there is no need to evaluate theΓ1-related
term d1 = ‖lNw,Nw

Y1‖2
+ ln

(
Γ2

1ρ0 + N0

)
. By contrast,

for SDD-MSDSD, theΓ1-related term has to takep(Γ1)
into account asd1 = ‖lNw,Nw

Y1‖2
+ ln

(
Γ2

1ρ0 + N0

)
+

ln [p(Γ1)]. In order to obtain{ln [p(Γ1)]}∀Γ1
, the SD’s vis-

ited EDs d may be utilized for evaluatingln [p(ΓNw
)] =

max∀Ā∈〈∀Γ1,ΓNw 〉 d(Γ1, S̄), where we have{d(Γ1, S̄) =
−d}∀Γ1,∀Ā. Following this, {ln p(ΓNw

)}∀ΓNw
may become

{ln p(Γ1)}∀Γ1
for the next MSDSD window. Apart from the

extra term of{ln [p(Γ1)]}∀Γ1
, SDD-MSDSD may proceed in

the same way as MSDSD of (16).

B. RC MSDSD Algorithm

It was proposed in [30] that by exploring the constellation
symmetry provided by theMP PSK scheme’s Gray-coded la-
belling, the number of constellation points visited by the SD’s
Schnorr-Euchner search strategy may be significantly reduced
for the soft-decision MSDSD aided DPSK. In this section, we
further conceive RC design for a range of DQAM constel-
lations, including DAPSK, TDAPSK, ADPSK and TADPSK,
which modulate the ring-amplitude and phase separately, so
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Fig. 1. Constellation diagram for detecting 16-ADPSK(2,8)’s data-carrying
symbols, where the 8PSK phases are rotated anti-clockwise byπ/8 for the
sake of reduced-complexity detection design.

that theirMP PSK phase detection may be performed in the
same way as the RC DPSK detection of [30]. First of all, let
us rewrite the PED increment of (15) as:

∆v−1 = ∆̃v−1 + ∆v−1, (17)

where the ring-amplitude-related term̃∆v−1 derived from (15)
is given by:

∆̃v−1 =
∥∥∥l̃1,1Yv

∥∥∥
2

+
∥∥∥
∑v−1

t=1 l̃v−t+1,1Ψ̄
∗
t Ω̄

∗
t Yt

∥∥∥
2

+ Ξv + Ca,v−1 − La(b1)+La(b2)
2 ,

(18)

while we have the constantCa,v−1 =
∑BPS

k̄v=1 Ca,k̄v
. We

note that∆̃v−1 of (18) is invariant over the different phase
candidates forωv−1 in (15). Furthermore, theMP PSK-related
term ∆v−1 seen in (17) is given by:

∆v−1 = −2ℜ
[
(ω′

v−1)
∗z′v−1

]
− ∑BPS

k̄v=1 b̃k̄v
La(bk̄v

)

+ La(b1)+La(b2)
2

= −2ℜ(ω′
v−1)ℜ(z′v−1) − 2ℑ(ω′

v−1)ℑ(z′v−1)

− ∑BPS
k̄v=1 b̃k̄v

La(bk̄v
) + La(b1)+La(b2)

2 ,

(19)

where ℜ(·) and ℑ(·) take the real part and the imaginary
part of a complex number. In (19), we deliberately rotate all
the detectedMP PSK constellations (except for the special
case ofMP = 2) anti-clockwise by(π/MP ) as ω′

v−1 =

ωv−1 exp
(
j π

MP

)
, so that there are exactly(MP /4) PSK

phases forω′
v−1 in each quadrant [13], [30]. Accordingly, the

decision variablez′v−1 used for detectingω′
v−1 in (19) is given

by:
z′v−1 = A

SD
v−1(B

SD
v−1)

H exp(j π
MP

), (20)
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where we haveASD
v−1 = l̃1,1ψ

∗
v−1Ψ̄

∗
v−1Ω̄

∗
v−1Yv andB

SD
v−1 =

−∑v−1
t=1 l̃v−t+1,1Ψ̄

∗
t Ω̄

∗
t Yt.

For a generic DQAM scheme, we may consider theM
constellation points asM/4 groups of symmetric QPSK-like
constellation points that are associated with the same magni-
tudes but different polarities. Considering the 16-ADPSK(2,8)
scheme as an example, theM = 16 constellation points are
assigned toM/4 = 4 groups, as seen in Fig. 1. As a result,
the four candidates for∆v−1 of (19) corresponding to the four
QPSK-like constellation points in each group may always be
expressed in the following form:

∆v−1 = ±t
Reg

v−1 ± t
Img

v−1 − ∑BPS
k̄v=3 b̃k̄v

La(bk̄v
), (21)

where the real and imaginary parts ofz′v−1 are associated with
La(b2) andLa(b1), respectively:

t
Reg

v−1 = A
gℜ(z′v−1) − La(b2)

2 ,

t
Img

v−1 = B
gℑ(z′v−1) − La(b1)

2 .
(22)

The coordinates of the rotatedMP PSK constellation points
for ω′

v−1, which are located in the first quadrant may be

denoted by{(Ag, Bg)}MP /4−1
g=0 , and we haveA

g
= 2Ag

as well asB
g

= 2Bg in (22). The relationship between
the group indexg = bin2dec(̃b3 · · · b̃BPS), the PSK phase
group indexg = bin2dec(̃b3 · · · b̃BPSP

) and the ring-amplitude
index a = bin2dec(̃bBPSP +1 · · · b̃BPS) is given by {{g =

g · MA + a}MP /4−1
g=0 }MA−1

a=0 .
Considering the 16-ADPSK(2,8) example of Fig. 1, the four

candidates for∆v−1 of (19) for Group G2 may be expressed as
seen in (23), which may all be expressed in the form of (21) as
∆

2,6,10,14

v−1 = ±tRe2
v−1 ± tIm2

v−1 − La(b3), where we havetRe2
v−1 =

2 sin(π
8 )ℜ(z′v−1) − La(b2)

2 and tIm2
v−1 = 2 cos(π

8 )ℑ(z′v−1) −
La(b1)

2 .
It may be observed that the only difference between the four

candidates of∆v−1 in (21) is the polarity oftReg

v−1 and t
Img

v−1 ,
This allows us to directly obtain the local minimum metric of
Group Gg (g ∈ {0 · · · ,M/4 − 1}) by simply evaluating:

∆
g

v−1 = −
∣∣∣tReg

v−1

∣∣∣ −
∣∣∣tImg

v−1

∣∣∣ −
∑BPS

k̄v=3 b̃k̄v
La(bk̄v

). (24)

As a result, instead of evaluating and comparing four metrics
according to the four constellation points in each group, only
the constellation point in the first quadrant is visited by the
one-step evaluation of (24). Moreover, after obtaining theM/4
local minima of each group according to (24), the global
minimum PED increment candidate for∆v−1 of (17) may
be simply given by:

∆v−1 = min∀g∈{0 ··· ,M/4−1} ∆
g

v−1 + ∆̃a
v−1, (25)

which is obtained by evaluating and comparing a reduced
number ofM/4 metrics according to theM/4 constellation
points in the first quadrant.

Similar to [30], a Comparion Window (CW) may be intro-
duced in order to invoke the Schnorr-Euchner search strategy,
where the DQAM constellation points are visited in a zig-
zag fashion. More explicitly, when the SD visits a specific
index v for the first time, the CW stores the local minima
{∆g

v−1 + ∆̃a
v−1}

M/4−1
g=0 from all groups and produces the

v=3

v=2

v=1

v=2

v=1

v=3

paths that are visited by the SD
constellation points that are visited by the SD the SD’s decision

the SD’s steps

13.4519.57 23.70 33.05 37.53 55.84 47.29
5.43

42.3320.2232.7951.589.6724.81

15.91 4.9930.58 29.47 16.13 15.06 3.39 6.63 49.94 41.3 32.1752.2632.7817.758.1745.83

18.5837.52

15.458.96 10.874.2 8.37

8.13 16.38 3.61 11.98

JMa) Example of Soft−Decision MSDSD Aided 16−TDAPSK     (2,8)
(labelled with PED increment values)

(labelled with PED increment values)
b) Example of Soft−Decision MSDSD Aided 16−DAPSK(2,8)

1©, 2©, 3©, · · ·

3©

2©

1©

3©
1© 1©

3©3©

2© 2© 2©

3©
1© 1©

2©

Fig. 2. Example of soft-decision MSDSD aided 16-TDAPSKJM(2,8) invoking
the Schnorr-Euchner search strategy of Table III in comparison to soft-decision
RC MSDSD aided 16-DAPSK(2,8) invoking Tables IV and V, whichare
recorded at SNR=9 dB,fd = 0.03 andIA = 0.3, NR = 2 andNw = 3.

global minimum according to (25), which is represented by
the “findBest” subfunction of Table IV. When the SD re-visits
a specific indexv, the CW has to update a new local child
node for the group which is the one that produced the previous
global child node. A group may be marked ‘completed’ when
all its four QPSK-like child nodes have been tested using a
zigzag pattern. By contrast, each incomplete group may pro-
vide a local child node candidate in the CW, and the CW may
once again produce the global child node according to (25).
This strategy is represented by the “findNext” subfunction of
Table V. In summary, the soft-decision RC MSDSD algorithm
designed for DPSK in Table I of [30] may be invoked for
DQAM, but the subfunctions should be replaced by Tables IV
and V of this paper.

Owing to the fact that onlyM/4 candidates are evaluated
and compared by the CW, up to75% of the child nodes are
avoided by our RC MSDSD design, which is verified by the
examples portrayed in Fig. 2. It can be seen in Fig. 2 that with
the same number of SD steps, the soft-decision RC MSDSD
aided 16-DAPSK(2,8) using the Schnorr-Euchner algorithm
of Tables IV and V visits a substantially reduced number
of constellation points compared to the soft-decision MSDSD
aided 16-TDAPSKJM(2,8) invoking Table III.

Moreover, as discussed in [30], the RC Schnorr-Euchner
algorithm of Tables IV and V avoids to invoke the sorting
algorithm as seen in line 5 of Table III, where the average
number of comparisons required by the classic sorting algo-
rithms (e.g. Bubble sort, Timsort, Library sort, etc.) [63], [64]
is as high asO(M log M).

C. RC MSDSD-IAP Algorithm

In order to further reduce the MSDSD complexity in coded
DQAM systems, we propose the RC MSDSD-IAP algorithm
as follows:

Step 1: An initial estimate of the phase matrix̄P of
(4) may be obtained by the CDD as introduced in [37].
Explicitly, the data-carrying phases are given byω̂v−1 =
exp(j 2π

MP
p̌v−1), where we havěpv−1 = ⌊MP

2π ∠(YvY
H
v−1)⌉

for v ∈ {2, · · · , Nw}. Then the transmitted phases in̄̂P may
be obtained bŷ̄Ωv = ω̂v−1

ˆ̄Ωv−1 commencing fromˆ̄Ω1 = 1.
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TABLE IV
PSEUDO-CODE FOR THESCHNORR-EUCHNER SEARCH STRATEGY TAILORED FOR SOFT-DECISION RC MSDSDAIDED DQAM (PART I).

Subfunction: [{|t
Reg

v−1|}
M/4−1
g=0 , {|t

Img

v−1 |}
M/4−1
g=0 , {e∆a

v−1}
MA−1
a=0 , {CWg

v−1}
M/4−1
g=0 , {CWmg

v−1}
M/4−1
g=0 , {ng

v−1}
M/4−1
g=0 ,

∆v−1, mv−1, nv−1] = findBest({Yt}v
t=1, {Γ̂t}

v−1
t=1 , {Ψ̂t}

v−1
t=1 , {Ω̂t}

v−1
t=1 , {La(bkv

)}BPS
kv=1, Ca,v−1)

Requirements: We define thea priori knowledge of group index as{P g =
PBPS

kv=3
ebkv

La(bkv
)}

M/4−1
g=0 .

1: for a = 0 to MA − 1

2: (ADPSK/TADPSK/TADPSKJM:) Γv = γa
v−1 //fix the specificΓv for eLv andΞv

(DAPSK/TDAPSK/TDAPSKJM:) Γv = γa
v−1Γ̂v−1

3: A
SD
v−1 = el1,1ψ∗

v−1Ψ̄∗
v−1Ω̄∗

v−1Yv //evaluateASD
v−1 according to (20)

4: B
SD
v−1 = −

Pv−1
t=1

elv−t+1,1Ψ̄∗
t Ω̄∗

t Yt //evaluateBSD
v−1 according to (20)

5: z′v−1 = A
SD
v−1(BSD

v−1)
H exp

“

j π
MP

”

//evaluate decision varible of (20)

6: e∆a
v−1 = ‖ASD

v−1‖
2 +‖BSD

v−1‖
2 +Ξv +Ca,v−1 −

La(b1)+La(b2)
2

//evaluate ring-amplitude-related term of (18)
7: for g = 0 to MP /4 − 1
8: g = gMA + a //update group index

9: |t
Reg

v−1| = |A
g
ℜ(z′v−1) −

La(b2)
2

| //associateℜ(z′v−1) to La(b2) as defined in (22)

10: |t
Img

v−1 | = |B
g
ℑ(z′v−1) −

La(b1)
2

| //associateℑ(z′v−1) to La(b1) as defined in (22)

11: CWg
v−1 = −|t

Reg

v−1| − |t
Img

v−1 | − P g + e∆a
v−1 //update local minimum of each group

12: b1 = (t
Img

v−1 < 0) //update local optimum child node index

13: b2 = (t
Reg

v−1 < 0)
14: CWmg

v−1 = bin2dec(b1b2b3 · · · bBPS) //recall that we have[b3 · · · bBPS] = dec2bin(g)
15: ng

v−1 = 0 //initialize child node counter for each group
16: end for
17: end for
18: [∆v−1, ĝ] = min({CWg

v−1}
M/4−1
g=0 ) //update global minimum

19: mv−1 = CWmĝ
v−1 //initialize global optimum child node index

20: nv−1 = 0 //update global child node counter

TABLE V
PSEUDO-CODE FOR THESCHNORR-EUCHNER SEARCH STRATEGY TAILORED FOR SOFT-DECISION RC MSDSDAIDED DQAM (PART II).

Subfunction: [{CWg
v−1}

M/4−1
g=0 , {CWmg

v−1}
M/4−1
g=0 , {ng

v−1}
M/4−1
g=0 , {cdg

v−1}
M/4−1
g=0 , ∆v−1, mv−1, nv−1]

= findNext({|t
Reg

v−1|}
M/4−1
g=0 , {|t

Img

v−1 |}
M/4−1
g=0 , {e∆a

v−1}
MA−1
a=0 , {CWg

v−1}
M/4−1
g=0 , {CWmg

v−1}
M/4−1
g=0 ,

{ng
v−1}

M/4−1
g=0 , {cdg

v−1}
M/4−1
g=0 , ∆v−1, mv−1, nv−1)

1: b1 · · · bBPS = dec2bin(mv−1) //obtain the previously tested child node
2: â = bin2dec(bBPSP +1 · · · bBPS) //previously tested group’s amplitude index
3: ĝ = bin2dec(b3 · · · bBPS) //update previously tested group’s index
4: nĝ

v−1 + + //update child node counter

5: switch nĝ
v−1

6: case1: cdĝ
v−1 = sign(|t

Reĝ

v−1| − |t
Imĝ

v−1 |) //update the condition of group̂g

7: if cdĝ
v−1 == 1 //the case of|t

Reĝ

v−1| > |t
Imĝ

v−1 |

8: CWĝ
v−1 = −|t

Reĝ

v−1| + |t
Imĝ

v−1 | − P ĝ + e∆â
v−1 //alter the imaginary part of the local minimum

9: CWmĝ
v−1 = bin2dec(b̄1b2b3 · · · bBPS) //alter b1 in the mapping of the local optimum

10: else

11: CWĝ
v−1 = |t

Reĝ

v−1| − |t
Imĝ

v−1 | − P ĝ + e∆â
v−1 //alter the real part of the local minimum

12: CWmĝ
v−1 = bin2dec(b1b̄2b3 · · · bBPS) //alter b2 in the mapping of the local optimum

13: end if
14: break
15: case2: CWĝ

v−1 = −∆v−1 − 2P ĝ + 2e∆â
v−1 //alter decision made in Case 1

16: CWmv−1(ĝ) = bin2dec(b̄1b̄2b3 · · · bBPS)
17: break

18: case3: CWĝ
v−1 = |t

Reĝ

v−1| + |t
Imĝ

v−1 | − P ĝ + e∆â
v−1 //alter the local optimum child node

19: if cdĝ
v−1 == 1 CWmĝ

v−1 = bin2dec(b̄1b2b3 · · · bBPS) //alter b1 in the mapping decision maded in Case 2

20: else CWmĝ
v−1 = bin2dec(b1b̄2b3 · · · bBPS) //alter b2 in the mapping decision maded in Case 2

21: break
22: end switch
23: ∆v−1 = inf //initialize global minimum
24: for g = 0 to M/4 − 1
25: if CWg

v−1 < ∆v−1 and ng
v−1 < 4 //compare local minima from ’incompleted’ groups

26: ∆v−1 = CWg
v−1 //update global minimum

27: mv−1 = CWmg
v−1 //update global child node

28: end if
29: end for
30: nv−1 + + //update global child node counter
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∆
2
v−1 = −2 sin(π

8
)ℜ(z′

v−1) − 2 cos(π
8
)ℑ(z′

v−1) − La(b3) + La(b1)+La(b2)
2

= −t
Re2
v−1 − t

Im2
v−1 − La(b3),

∆
6
v−1 = 2 sin(π

8
)ℜ(z′

v−1) − 2 cos(π
8
)ℑ(z′

v−1) − La(b2) − La(b3) + La(b1)+La(b2)
2

= t
Re2
v−1 − t

Im2
v−1 − La(b3),

∆
10
v−1 = −2 sin(π

8
)ℜ(z′

v−1) + 2 cos(π
8
)ℑ(z′

v−1) − La(b1) − La(b3) + La(b1)+La(b2)
2

= −t
Re2
v−1 + t

Im2
v−1 − La(b3),

∆
14
v−1 = 2 sin(π

8
)ℜ(z′

v−1) + 2 cos(π
8
)ℑ(z′

v−1) − La(b1) − La(b2) − La(b3) + La(b1)+La(b2)
2

= t
Re2
v−1 + t

Im2
v−1 − La(b3),

(23)

Step 2: Upon obtainingˆ̄
P, the transmitted ring-amplitudes

Γ1 and Ā of (4) may be estimated by the Multiple-Symbol
Differential Amplitude Sphere Detection (MSDASD) as:

{Γ̂1,
ˆ̄
A} = arg min∀Γ1

min∀Ā dMSDASD. (26)

where the MSDASD’s ED ofdMSDASD is given by the MS-
DSD’s ED of (12) associated with the fixed phases{ ˆ̄Ωv}Nw

v=1

as:

dMSDASD=
∑Nw

v=1

∥∥∥
∑v

t=1 l̃v−t+1,1Ψ̄
∗
t
ˆ̄Ω∗

t Yt

∥∥∥
2

+ NR ln
(
Γ2

1ρ0 + N0

)
+

∑Nw

v=2 Ξv

−
∑Nw

v=2

∑BPS
k̄v=BPSP +1 [̃bk̄v

La(bk̄v
) − Ca,k̄v

].
(27)

We note that the phase-related term of
{−

∑Nw

v=2

∑BPSP

k̄v=1 [̃bk̄v
La(bk̄v

) − Ca,k̄v
]} in (12) is omitted

from (27). Explicitly, the MSDASD of (26) may obtain
(min∀Ā dMSDASD) with the aid of the SD algorithm
introduced in Sec. IV-A. Since all phases{ ˆ̄Ωv}Nw

v=1 are known
for the MSDASD, there are only a total ofMA candidates
for the PED increment seen in line 3 of Table III, which may

be expressed as∆a
v−1 =

∥∥∥
∑v

t=1 l̃v−t+1,1Ψ̄
∗
t
ˆ̄Ω∗

t Yt

∥∥∥
2

+ Ξv −
∑BPS

k̄v=BPSP +1 [̃bk̄v
La(bk̄v

) − Ca,k̄v
].

Step 3: After estimating the ring-amplitudeŝΓ1, ˆ̄
A and

hence also obtaininĝ̄O and Ĉ = ˆ̄
A

H
Rhh

ˆ̄
A + Rvv, the

estimate of theMP PSK candidates may be improved by the
Multiple-Symbol Differential Phase Sphere Detection (MS-
DPSD) as:

ˆ̄
P = arg min∀P̄ dMSDPSD, (28)

where the MSDPSD’s ED ofdMSDPSD is given by the
MSDSD’s ED of (12) associated with the fixed̂Γ1, ˆ̄

A and
{ ˆ̄Ψv}Nw

v=1 as:

dMSDPSD=
∑Nw

v=1

∥∥∥
∑v

t=1 lNw−t+1,Nw−v+1
ˆ̄Ψ∗

t Ω̄
∗
t Yt

∥∥∥
2

− ∑Nw

v=2

∑BPSP

k̄v=1 [̃bk̄La(bk̄) − Ca,k̄v
].

(29)
In more detail, {{lNw−t+1,Nw−v+1}v

t=1}Nw

v=1 are elements
in the lower triangular matrixL, which is decomposed
from LL

H = Ĉ
−1. Moreover, the ring-amplitude-

related term of {NR ln
(
Γ2

1ρ0 + N0

)
+

∑Nw

v=2 Ξv −∑Nw

v=2

∑BPS
k̄v=BPSP +1 [̃bk̄v

La(bk̄v
) − Ca,k̄v

]} in the ED
expression (12) is omitted from (29). It may be observed
that the MSDPSD’s ED (29) is in the same form as (17)
in [30], where the vector in (17) of [30] is now given by
{{Ut,v = lNw−t+1,Nw−v+1

ˆ̄Ψ∗
t Yt}v

t=1}Nw

v=1 according to (29),
while the phase variables{s̄t}v

t=1 in (17) of [30] correspond
to {Ω̄t}v

t=1 in (29). Therefore, the RC MSDSD aided DPSK
of [30] may be directly invoked for the MSDPSD of (28).

Step 4: In order to achieve a near-optimum MSDD per-
formance, Step 2 and Step 3 may be repeatedIRAP times.

v=1

v=2

v=3

v=3

v=2

v=1

45.79 29.33 25.66 15.468

25.66 10.9 19.34 13.62

5.2

7.81 10.65

− Reduced−Complexity MSDPSD

− MSDASD

4.42 7.91

4.89 3.0
5.57 6.88

7.62 6.94 13.23 10.43 10.56 9.13 12.2311.23
4.89 3.0 7.88

5.57 7.83 5.2 6.88 6.38

8.91 9.299.45 4.42 7.81 9.91 13.24 15.27 9.6311.87 13.6 7.91 10.65 11.28 5.42 12.32

v=3

v=2

v=1− MSDPSD

− MSDAD

b) Example of Reduced−Complexity Soft−Decision MSDSD−IAP Aided 64−DAPSK(4,16)

(labelled with PED increment values)
a) Example of Soft−Decision MSDD−IAP Aided 64−DAPSK(4,16)

19.5150.52 65.06 38.29 45.88 35.87 60.01 25.66 19.34 29.12 39.09 23.9754.1 76.62 10.9 13.62
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Fig. 3. Example of soft-decision MSDD-IAP of [38] and the proposed soft-
decision RC MSDSD-IAP conceived for 64-DAPSK(4,16), whichare recorded
at SNR=9 dB,fd = 0.03 andIA = 0.3, NR = 2 andNw = 3.

Finally, the ring-amplitude-related soft-bit decisions may be
made by the MSDASD as:

Lp(bk) =

{
−dMSDASD

MAP + d̄MSDASD
MAP , if bMAP

k = 1,
−d̄MSDASD

MAP + dMSDASD
MAP , if bMAP

k = 0,
(30)

wheredMSDASD
MAP = min∀Γ1

min∀Ā dMSDASD is obtained
by the MSDASD of (26) in Step 2, while the correspond-
ing hard-bit decisions{{bMAP

k }(v−1)BPS
k=(v−2)BPS+BPSP +1}

Nw

v=2 are
also recorded along withdMSDASD

MAP . Then d̄MSDASD
MAP =

min∀Γ1
min∀{Ā}

bk=b̄MAP
k

dMSDASD
Nw

in (30) may be ob-

tained by invoking the MSDASD algorithm again for each
Lp(bk), where bk is fixed to be the flipped MAP decision
b̄MAP
k . Furthermore, the phase-related soft-bit decisions may

be produced by the MSDPSD as:

Lp(bk) =

{
−dMSDPSD

MAP + d̄MSDPSD
MAP , if bMAP

k = 1,
−d̄MSDPSD

MAP + dMSDPSD
MAP , if bMAP

k = 0,
(31)

wheredMSDPSD
MAP = min∀P̄ dMSDPSD and the corresponding

{{bMAP
k }(v−2)BPS+BPSP

k=(v−2)BPS+1 }Nw

v=2 may be obtained by (28) in
Step 3, whiled̄MSDPSD

MAP = min∀{P̄}
bk=b̄MAP

k

dMSDPSD is

obtained by invoking the MSDPSD algorithm again for soft-
bit decisions{{Lp(bk)}(v−2)BPS+BPSP

k=(v−2)BPS+1 }Nw

v=2, when the specific
bit bk is fixed to be the flipped MAP decision̄bMAP

k .
Fig. 3 exemplifies the comparison between the conventional

MSDD-IAP of [38] and the RC MSDSD-IAP conceived for
64-DAPSK(4,16). It is evidenced by Fig. 3 that with the aid of
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sphere decoding, the MSDASD effectively reduces the num-
ber of ring-amplitude candidates visited by the conventional
Multiple-Symbol Differential Amplitude Detection (MSDAD),
while with the aid of the RCMP PSK phase detection of [30],
the RC MSDPSD also successfully reduces the number of
MP PSK candidates visited by the conventional MSDPSD.

V. DECISION-FEEDBACK DIFFERENTIAL DETECTION

In order to conceive the DFDD that is equivalent to
MSDD/MSDSD operating in decision-feedback mode, the
MSDD of (7) may be revised for DFDD as:

Lp(bk) = max∀{γNw−1,ωNw−1}bk=1
d(γNw−1, ωNw−1)

− max∀{γNw−1,ωNw−1}bk=0
d(γNw−1, ωNw−1),

(32)
where the DFDD’s probability metric is given by toggling
the polarity of the MSDSD’s PED increment∆v−1 of (15)
associated with the indexv = Nw as:

d(γNw−1, ωNw−1)= −‖l1,1Ψ̂
∗
Nw−1Ω̂

∗
Nw−1YNw

+ ωNw−1ψNw−1

(∑Nw−1
t=1 lNw−t+1,1Ψ̂

∗
t Ω̂

∗
t Yt

)
‖2

− Ξ̃Nw
+

∑BPS
k̄=1 b̃k̄La(bk̄).

(33)
The variable ring-amplitude γNw−1 determines
{lNw−t+1,1}Nw

t=1, ψNw−1 and Ξ̃Nw
in (33), where we

have Ξ̃Nw
= ln

[
(Γ2

Nw
+ N0) − ẽ

T
Nw

C̃
−1
Nw−1

ẽNw

]
. The

constantξNw
in ΞNw

as well as the constantln C
Nw−1

A seen
in (15) may be ignored by the DFDD.

Furthermore, the first transmitted ring-amplitudeΓ1 of
each DFDD window should still be treated as a separate
variable for the differential-amplitude DQAM schemes. More
explicitly, for the differential-amplitude DQAM using (2), any
erroneous decisions concerningΓ1 and{γt}v−1

t=1 may degrade

the decision reliablility concerningΓv =
(∏v−1

t=1 γt

)
Γ1. By

contrast, according to (1), we always haveΓv = γv−1 for
the absolute-amplitude DQAM schemes, which do not have
the error propagation problem. Therefore, for the differential-
amplitude DQAM of DAPSK, TDAPSK and TDAPSKJM,
the DFDD using the Max-Log-MAP of (33) may be re-
vised as (34), where the probability metric is given by
the MSDSD’s ED of (12) associated with decision feed-
back based on{x̂v = γ̂vω̂vψ̂v}Nw−2

v=1 and hence also on
{ŝv = Γ̂vΩ̂vΨ̂v}Nw−1

v=2 as (35), where the constant of∑Nw−1
v=2 [

∑(v−1)BPS
k̄=(v−2)BPS+1

b̃k̄La(bk̄) − ln C
v−1

A ] − lnC
Nw−1

A in
the MSDSD’s ED of Eq. (12) is ignored. In this way, the
potentially erroneous decision concerningΓNw

made during
the current DFDD window will not degrade the following
DFDD windows.

We note that the conventional DFDD in [17], [26], [27]
ignored the problem of having a ring-amplitude-dependent
channel correlation matrixC = Ā

H
RhhĀ + Rvv. More

explicitly, the DFDD probability metric for absolute-amplitude
DQAM is given by [17]:

d(xNw−1) = −

‚

‚

‚

‚

YNw− xNw−1ŝNw−1

Γ̂Nw−1
[
PNw

t=1 wtYt/(ŝt)]
‚

‚

‚

‚

2

1+N0−eT
Nw

w

+
∑BPS

k̄=1 b̃k̄La(bk̄),
(36)
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Fig. 5. BER performance comparison of RC MSDSD, RC SDD-MSDSD, RC
HDD-MSDSD and RC MSDSD-IAP, when they are employed for DAPSK
detection in TC coded system, where we havefd = 0.03 andNR = 2.

while that for differential DQAM is formulated as:

d(xNw−1) = −‖YNw−xNw−1ŝNw−1[
PNw

t=1 wtYt/(ŝt)]‖2

1+N0−eT
Nw

w

+
∑BPS

k̄=1 b̃k̄La(bk̄),
(37)

where the prediction-based filter taps arew =
[wNw−1, · · · , w1]

T = {Toeplitz([ρ0, · · · , ρNw−2]) +
N0INw−1}−1[ρ1, · · · , ρNw−1], which are directly given by
the filter taps of classic DPSK detection [24]. Consequently,
a performance loss is inevitable, when they are compared to
the proposed DFDD using (33) and (35).

VI. PERFORMANCERESULTS

In this section, the DQAM detection results are examined
in RSC, TC as well as IRCC and URC coded systems, where
the simulation parameters are the same as those summarized in
Table V of [30]. We note that the MSDSD window-width is set
to beNw = 4 in this paper. We will demonstrate that MSDSD
associated withNw = 4 is a compelling choice for DQAM
in terms of its performance advantage over its coherent QAM
counterpart, when relying on realistic imperfect CSI estimation
in rapidly fading channels.

A. Suitable MSDSD Arrangements for Different DQAM Con-
stellations

First of all, the EXIT charts of DAPSK employing RC
MSDSD, RC SDD-MSDSD and RC HDD-MSDSD using
the RC MSDSD algorithm of Sec. IV-B are portayed in
Fig. 4(a), which demonstrate that SDD-MSDSD exhibits a
better performance compared to both MSDSD and HDD-
MSDSD. However, considering that SDD-MSDSD has to
produce a soft decision feedback, which only provides a small
improvement over MSDSD in Fig. 4(a), we opted for invoking
the IAP algorithm of Sec. IV-C for RC MSDSD in form of
RC MSDSD-IAP associated withIRAP = 1, which does not
impose any noticeable performance difference for DAPSK, as
evidenced by Fig. 4(a).

As a further insightful aspect, the accuracy of the extrinsic
LLRs produced by the MSDSD algorithms seen in Fig. 4(a)
are tested as portrayed in Fig. 4(b), where the two PDFs
{p(Le|b)}b={0,1} are obtained by estimating the histograms
of Le, with the source bits beingb = {0, 1}. If the LLR
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Lp(bk) = max∀ Γ1 max∀{γNw−1,ωNw−1}bk=1
d(Γ1, γNw−1, ωNw−1) − max∀ Γ1 max∀{γNw−1,ωNw−1}bk=0

d(Γ1, γNw−1, ωNw−1), (34)

d(Γ1, γNw−1, ωNw−1) =−‖lNw,NwY1‖
2− ln

`

Γ2
1ρ0 + N0

´

−
PNw−1

v=2

‚

‚

‚

Pv
t=1 lNw−t+1,Nw−v+1

ˆ̄Ψ∗
t
ˆ̄Ω∗

t Yt

‚

‚

‚

2

−
‚

‚

‚

l1,1Ψ̂
∗
Nw−1Ω̂

∗
Nw−1YNw+ ωNw−1ψNw−1

“

PNw−1
t=1 lNw−t+1,1Ψ̂

∗
t Ω̂

∗
t Yt

”

‚

‚

‚

2

−
PNw

v=2
eΞv+

PBPS
k̄=1

ebk̄La(bk̄),

(35)
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Fig. 4. EXIT charts and LLR accuracy test of DAPSK employing RCMSDSD, RC SDD-MSDSD, RC HDD-MSDSD and RC MSDSD-IAP recordedat
SNR=9 dB andfd = 0.03, where we haveNR = 2.

definition of Le = ln p(Le|b=1)
p(Le|b=0) is statistically accurate, then

the LLRs accuracy test may result in a diagonal line. However,
the LLRs produced by HDD-MSDSD aided DAPSK seen
in Fig. 4(b) exhibit a poor integrity. This is because that
according to the DAPSK’s differential encoding of (2), the
potentially erroneous hard-decision feedback concerningΓ1

and {γt}v−1
t=1 may degrade the accuracy of the following

decisions onΓv =
(∏v−1

t=1 γt

)
Γ1.

The EXIT charts and LLRs accuracy analysis of Fig. 4 are
confirmed by the BER performance of Fig. 5, which demon-
strates that RC MSDSD, RC SDD-MSDSD and RC MSDSD-
IAP perform similarly, but RC HDD-MSDSD performs much
worse than its counterparts, where the BER curve of TC coded
64-DAPSK(4,16) employing RC HDD-MSDSD cannot even
be portrayed within our standardEb/N0 range. Therefore, we
conclude that RC MSDSD-IAP may be suggested for DAPSK.

Moreover, we note that the Discrete-input Continuous-
output Memoryless Channel (DCMC) capacity [14] of the
MSDD aided DQAM systems is given by (38), where
p(Y|S̄i,Γa) is given by (6), while we have{p(Γea) =
p(Γā) = 1

MA
}∀ea,∀ā. For the case of employing HDD-MSDD,

the perfect decision feedback leads to{p(Γea) = p(Γā) =
1}

ea=ā=a and {p(Γea) = p(Γā) = 0}∀ea 6=a,∀ā6=a. The resultant
DCMC capacityCHDD−MSDD

DCMC may be revised fromCMSDD
DCMC

of (38), where both
∑MA−1

ea=0 and
∑MA−1

ā=0 are omitted,
while both p(Y|S̄i,Γea) and p(Y|S̄ī,Γā) may be replaced
by p(Y|S̄i,Γa). According to the definitions of extrinsic
information IE = I(b;Le) and DCMC capacityCDCMC =
I({S̄,Γ1};Y), the area property of the EXIT charts [65] may
be expressed as

∫ 1

0
IE(SNR, IA)dIA ≈ CDCMC(SNR)

BPS , which
implies that the area under the EXIT curve is approximately
equal to the normalized DCMC capacity. The maximum
achievable rates seen in Fig. 5 are obtained based on this
property, which indicate the SNRs required for the half-rate
channel coded DQAM systems to achieve their full capacity

TABLE VI
SUMMARY OF SUITABLE MSDSD ARRANGEMENTS FOR DIFFERENT

DQAM CONSTELLATIONS.
(a) Absolute-Amplitude DQAM

ADPSK RC HDD-MSDSD-IAP
TADPSK RC HDD-MSDSD
TADPSKJM HDD-MSDSD

(b) Differential-Amplitude DQAM

DAPSK RC MSDSD-IAP
TDAPSK RC MSDSD
TDAPSKJM MSDSD

of 0.5BPS. It can be seen in Fig. 5 that the turbo detection
performed by exchanging extrinsic information between the
TC decoder and the MSDSD is capable of effectively exploit-
ing the iteration gain of the MSDSD portrayed by Fig. 4(a),
which results in a near-capacity performance.

The same analysis relying on EXIT charts, on the LLR
accuracy test and on the BER performance may be carried
out for all DQAM constellations. Due to the journal’s space
limit, we directly offer our conclusions in Table VI. More
explicitly, the absolute-amplitude DQAM schemes of ADPSK,
TADPSK and TADPSKJM may employ the HDD family of
MSDSD arrangements. For example, the LLRs produced by
RC HDD-MSDSD aided ADPSK seen in Fig. 6(a) exhibit a
good integrity. This is because according to (1), the absolute-
amplitude DQAM schemes haveΓv = γv−1, which do not
cause error propagation. Furthermore, owing to the amplitude-
phase correlation, the twisted DQAM schemes of TADPSK
and TDAPSK cannot employ the IAP algorithm of Sec. IV-C,
which is exemplified by Fig. 6(b) for the case of RC HDD-
MSDSD-IAP aided TADPSK. Moreover, the joint-mapping
DQAM schemes of TADPSKJM and TDAPSKJM can only
employ the generic MSDSD algorithm of Sec. IV-A, which
jointly detect the ring-amplitude and phase.

B. Comparison Between DQAM Constellations

First of all, Fig. 7 portrays comparison between ADPSK
and DAPSK. More explicitly, the EXIT charts of Fig. 7(a)
indicates that ADPSK outperforms DAPSK, which confirms
the capacity results shown in [16]. Furthermore, the BER per-
formance comparison of Fig. 7(b) explicitly demonstrates that
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CMSDD
DCMC (SNR) =

PMA−1
a=0

PM(Nw−1)−1
i=0 E

8

<

:

log2

2

4

M(Nw−1) PMA−1

ea=0
p(Y|S̄i,Γea)

PMA−1
ā=0

PM(Nw−1)−1
ī=0

p(Y|S̄ī,Γā)

3

5|S̄ = S̄
i, Γ1 = Γa

9

=

;

(Nw−1)MAM(Nw−1) ,
(38)
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Fig. 6. LLR accuracy test of ADPSK and TADPSK employing different MSDSD arrangements recorded at SNR=9 dB,fd = 0.03 andNR = 2.

16-ADPSK(2,8) outperforms its 16-DAPSK(2,8) counterpart
in all three of the RSC, TC and RSC-URC coded systems.

Fig. 8 further portrays our performance comparison be-
tween the classic ADPSK and its twisted counterparts of
TADPSK and TADPSKJM. More explicitly, the EXIT charts
of Fig. 8(a) demonstrate that the ADPSK, TADPSK and
TADPSKJM exhibit a similar achievable rate, which is reflected
by the area under the EXIT curves [65]. Nonetheless, TADPSK
exhibits a slightly higher iteration gain than ADPSK, while
TADPSKJM achieves the highest iteration gain, as demon-
strated by Fig. 8(a). As a result, it is demonstrated by the BER
performance of Fig. 8(b) that 16-TADPSKJM(2,8) outperforms
its counterparts in RSC coded system, while 16-ADPSK(2,8)
performs the best in TC coded system. This is because that
the steep EXIT curve of TADPSKJM matches better the EXIT
curve shape of RSC, while the less steep EXIT curve of
ADPSK matches better to the horizontal EXIT curve of TC
[14]. Furthermore, Fig. 8(b) also shows that 16-TADPSK(2,8)
may outperform its counterparts in IRCC and URC coded
near-capacity system. Explicitly, the number of iterations be-
tween the URC and MSDSD is given byIRURC−MSDSD =
2, which may not be sufficient for reaping the full benefit
of the high iteration gain of TDAPSKJM, but unfortunately a
higher IRURC−MSDSD may not be affordable. As a result,
16-TADPSKJM(2,8) performs the worst in IRCC and URC
coded system, as evidenced by Fig. 8(b).

In conclusion, ADPSK is a better choice than DAPSK in
channel coded systems, according to Fig. 7. Moreover, the
ADPSK’s twisted modulated counterparts of TADPSK and
TADPSKJM may exhibit their advantages in different coded
systems, as suggested by Fig. 8.

C. Comparison Between DQAM and DPSK

The performance comparison of Fig. 9 demonstrates that
both ADPSK and DAPSK substantially outperform their
DPSK counterparts. Explicitly, Fig. 9 shows that the RC HDD-
MSDSD-IAP (Nw = 4, IRAP = 1) aided 16-ADPSK(2,8)
outperforms RC MSDSD (Nw = 4) aided 16-DPSK of [30]
by about 1.6 dB in TC systems, where we haveNR = 2
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Fig. 9. BER comparison between ADPSK employing RC HDD-MSDSD-
IAP (Nw = 4, IRAP = 1), DAPSK employing RC MSDSD-IAP (Nw = 4,
IRAP = 1) and DPSK employing RC MSDSD (Nw = 4) in TC coded
systems, where we havefd = 0.03 andNR = 2.

andfd = 0.03. This performance difference becomes a more
substantial4.7 dB for M = 64, as seen in Fig. 9.

Moreover, the complexity of our MSDSD algorithms is
further quantified in terms of the total number of real-valued
multiplications in Fig. 10. Explicitly, Fig. 10(a) demonstrates
that the RC MSDSD algorithm of Sec. IV-B may offer a
substantial73.8% ∼ 80.7% complexity reduction compared to
the generic MSDSD algorithm of Sec. IV-A. As a result, the
MSDSD complexity becomes as low as that of the MSDD-IAP
of [38], as seen in Fig. 10(a). Furthermore, it is demonstrated
by Fig. 10(b) that the RC MSDSD-IAP of Sec. IV-C achieves
an additional61.8% ∼ 78.0% complexity reduction compared
to the conventional MSDD-IAP of [38]. Consequently, the
complexity of RC MSDSD-IAP aided DAPSK becomes com-
parable to that of the RC MSDSD aided DPSK of [30], as
evidenced by Fig. 10(b).

Fig. 11 provides our complexity comparison of DQAM
and DPSK schemes. Firstly, it is demonstrated by Fig. 11
that among the absolute-amplitude DQAM schemes of
ADPSK, TADPSK and TADPSKJM, the HDD-MSDSD aided
TADPSKJM of Sec. IV-A exhibits the highest complexity,
which is followed by the RC HDD-MSDSD aided TADPSK
of Sec. IV-B and then by the RC HDD-MSDSD-IAP aided
ADPSK of Sec. IV-C. Secondly, Fig. 11 also confirms that
RC MSDSD-IAP aided DAPSK exhibits a higher complexity
than RC HDD-MSDSD-IAP aided ADPSK, which avoided
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the comparison overΓ1. Last but not least, Fig. 11(a) shows
that the complexity of RC HDD-MSDSD-IAP (IRAP = 1)
aided 16-ADPSK(2,8) is similar to that of RC MSDSD aided
16-DPSK of [30], while Fig. 11(b) demonstrates that the
complexity of RC HDD-MSDSD-IAP (IRAP = 1) aided 64-
ADPSK(4,16) is even lower than that of RC MSDSD aided
64-DPSK. This is because the complexity order of the Schnorr-
Euchner search strategy of the RC MSDSD aided DPSK of
[30] is given byO(M/4), where only theM/4 constellation
points in the first quadrant are visited. Meanwhile, the com-
plexity order for the case of RC HDD-MSDSD-IAP (IRAP =
1) aided ADPSK is given byO(MA + MP /4) according to
Sec. IV-C. As a result, we haveO(MA + MP /4) = O(M/4)
for M = 16 and O(MA + MP /4) < O(M/4) for M = 64,
which verifies our complexity results of Fig. 11.

D. Comparison Between Coherent and Noncoherent Schemes

In this section, the important subject of coherent versus non-
coherent schemes is discussed. For the noncoherent ADPSK
scheme, RC HDD-Subset MSDSD-IAP is employed, where
the consecutive MSDSD windows are overlapped byNOL = 3
observations and the(NOL − 1 = 2) symbols detected at the
edges may be discarded, as suggested by [58]. For the coherent
Square QAM scheme, PSAM [7] associated with pilot spacing
of NPS and observation window width ofNOW (number of
filter taps) is invoked for channel estimation.

Fig. 12 demonstrates that whenfd is increased from 0.001
to 0.03, a severe deviation from the LLR definition emerges
for the extrinsic LLRs produced by the PSAM aided coherent
16QAM detector. This is because the coherent detectors as-
sume having perfect knowledge of the CSI, which is especially
unrealistic, when the fading channel fluctuates rapidly.

Finally, Fig. 13(a) demonstrates that when we havefd =
0.001, PSAM aided coherent 16QAM outperforms RC HDD-
Subset MSDSD-IAP assisted 16-ADPSK(2,8) in the RSC
coded system, TC coded system as well as in the IRCC and
URC coded system. However, when we havefd = 0.03, 16-
ADPSK(2,8) exhibits an impressive performance advantage
over coherently detected Square 16QAM, which is 0.5 dB
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and 0.9 dB in the context of our TC and IRCC-URC coded
systems, respectively, as evidenced by Fig. 13(b).
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E. Performance Results for DFDD

The BER performance results of the proposed DFDD solu-
tions and the conventional DFDD solutions [17], [26], [27] are
compared in Fig. 14 in the context of TC coded ADPSK and
DAPSK systems. The DFDD window-width is set toNw = 3,
because any further performance improvement forNw > 3
was shown to become negligible by our results not shown
in this paper due to the strict space limit. It can be seen in
Fig. 14 that the MSDSD solutions generally outperform their
DFDD counterparts. Nonetheless, Fig. 14 also demonstrates
that the proposed DFDD solutions substantially improve the
performance of the conventional DFDD solutions by 1.4 dB
and 1.3 dB in TC coded ADPSK and DAPSK systems,
respectively.

VII. C ONCLUSIONS

In this paper, we developed a comprehensive solution for
the soft-decision DQAM detection in rapidly fading channels.
First of all, we proposed the original set, the HDD set and
the SDD set of MSDD/MSDSD solutions, which respectively
correspond to having no decision feedback, hard-decision
feedback and soft-decision feedback on the first DQAM sym-
bol’s ring-amplitude in each MSDD/MSDSD window. In this
way, the potential error propagation problem in soft-decision
DQAM’s ring-amplitude detection may be avoided. Secondly,
we proposed to invoke soft-decision SD for both DQAM’s
ring-amplitude and phase detection, which has not been seen
in open literature. Thirdly, by exploring the symmetry pro-
vided by Gray-labelled DQAM constellations, we proposed
a RC MSDSD algorithm, which visit a reduced number of
constellation points without imposing any performance loss.
Fourthly, we further proposed a RC MSDSD-IAP algorithm,
which separately and iteratively detecting the DQAM’s ring-
amplitudes and phases by two soft-decision SDs. Fifthly, we
developed the improved soft-decision DFDD solutions based
on the MSDD/MSDSD operating in decision-feedback mode,
which substantially outperfom the existing prediction-based
DFDD solutions that do not take into account the DQAM
ring-amplitudes’ effect on the channel’s correlation matrix.

With the aid of EXIT charts and LLR accuracy test, the
most suitable soft-decision MSDSD arrangements of different
DQAM constellations were suggested. Our simulation results
demonstrate that the absolute-amplitude ADPSK schemes out-
perform their differential-amplitude DAPSK counterpartsin
coded systems. Furthermore, among the absolute-amplitude
DQAM schemes, ADPSK, TADPSK and TADPSKJM have a
better BER performance in TC coded, IRCC-and-URC coded
as well as RSC coded systems, respectively. Thanks to the
proposed reduced-complexity design, the RC HDD-MSDSD-
IAP aided ADPSK is capable of outperforming its MSDSD
aided DPSK counterparts in coded systemswithout imposing a
higher complexity. Moreover, our simulation results also verify
that compared to coherent Square QAM relying on realistic
imperfect channel estimation, MSDSD aided DQAM is a more
suitable candidate for turbo detection assisted coded systems
operating in rapidly fading channels.

REFERENCES

[1] M. Medard, “The effect upon channel capacity in wirelesscommunica-
tions of perfect and imperfect knowledge of the channel,”IEEE Trans.
Inf. Theory, vol. 46, no. 3, pp. 933–946, May 2000.

[2] S. Adireddy, T. Lang, and H. Viswanathan, “Optimal placement of
training for frequency-selective block-fading channels,” IEEE Trans. Inf.
Theory, vol. 48, no. 8, pp. 2338–2353, Aug. 2002.

[3] T. Yoo and A. Goldsmith, “Capacity and power allocation for fading
MIMO channels with channel estimation error,”IEEE Trans. Inf. Theory,
vol. 52, no. 5, pp. 2203–2214, May 2006.

[4] B. Hassibi and B. M. Hochwald, “How much training is neededin
multiple-antenna wireless links?,”IEEE Trans. Inf. Theory, vol. 49,
no. 4, pp. 951–963, Apr. 2003.

[5] M. Arti, R. Mallik, and R. Schober, “Joint channel estimation and
decoding of space-time block codes in AF MIMO relay networks,” in
Proc. of 2012 Int. Conf. Signal Process. and Commun. (SPCOM), pp. 1–
5, July 2012.

[6] M. Arti, “Channel estimation and detection in hybrid satellite-terrestrial
communication systems,”IEEE Trans. Veh. Tech., vol. PP, no. 99, pp. 1–
1, 2015.

[7] J. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh
fading channels,”IEEE Trans. Veh. Tech., vol. 40, no. 4, pp. 686–693,
Nov. 1991.

[8] ITU-R, “Coexistence between IMT-2000 PCDMA-DS and IMT-
2000 OFDMA TDD WMAN in the 2 500-2 690 mhz band op-
erating in adjacent bands in the same area,”[Online]. Available:
http://www.itu.int/pub/R-REP-M.2146-2009, 2009.



DRAFT 16

[9] Qualcomm, “IEEE802.11ac: The next evolu-
tion of Wi-Fi standards,” [Online]. Available:
http://www.qualcomm.com/media/documents/files/ieee802-11ac-the-
next-evolution-of-wi-fi.pdf, 2012.

[10] J. Hagenauer, “The turbo principle: Tutorial introduction and state of
the art,” in Proc. of Int. Symp. Turbo Codes and Related Topics, 1997.

[11] M. El-Hajjar and L. Hanzo, “EXIT charts for system design and
analysis,” IEEE Commun. Surveys Tutorials, vol. 16, no. 1, pp. 127–
153, First 2014.

[12] S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and
decoding for multilevel modulation,” inProc. of 1998 IEEE Global
Telecommun. Conf. (GLOBECOM’98), vol. 1, pp. 579–584, 1998.

[13] C. Xu, D. Liang, S. Sugiura, S. X. Ng, and L. Hanzo, “Reduced-
complexity Approx-Log-MAP and Max-Log-MAP soft PSK/QAM de-
tection algorithms,”IEEE Trans. Commun., vol. 61, no. 4, pp. 1415–
1425, Apr. 2013.

[14] L. Hanzo, O. Alamri, M. El-Hajjar, and N. Wu,Near-Capacity Multi-
Functional MIMO Systems: Sphere-Packing, Iterative Detection and
Cooperation. John Wiley & Sons, May, 2009.

[15] W. Weber, “Differential encoding for multiple amplitudeand phase shift
keying systems,”IEEE Trans. Commun., vol. 26, no. 3, pp. 385–391,
Mar. 1978.

[16] R. Fischer, L. Lampe, and S. Calabr, “Differential encoding strategies
for transmission over fading channels,”Int. J. of Electron. and Commun.,
vol. 54, no. 1, pp. 59–67, 2000.

[17] L. Lampe and R. Schober, “Low-complexity iterative demodulation for
noncoherent coded transmission over Ricean-fading channels,” IEEE
Trans. Veh. Technol., vol. 50, no. 6, pp. 1481–1496, Nov. 2001.

[18] W. Webb, L. Hanzo, and R. Steele, “Bandwidth efficient QAM schemes
for Rayleigh fading channels,”IEE Proc. I, Commun., Speech and Vision,
vol. 138, no. 3, pp. 169–175, June 1991.

[19] F. Adachi and M. Sawahashi, “Performance analysis of various 16 level
modulation schemes under Rayleigh fading,”Electron. Lett., vol. 28,
no. 17, pp. 1579–1581, Aug. 1992.

[20] D. Divsalar and M. K. Simon, “Multiple-symbol differential detection
of MPSK,” IEEE Trans. Commun., vol. 38, no. 3, pp. 300–308, Mar.
1990.

[21] P. Ho and D. Fung, “Error performance of multiple-symbol differential
detection of PSK signals transmitted over correlated Rayleigh fading
channels,”IEEE Trans. Commun., vol. 40, no. 10, pp. 1566–1569, Oct.
1992.

[22] D. Divsalar and M. Simon, “Maximum-likelihood differential detection
of uncoded and trellis coded amplitude phase modulation over AWGN
and fading channels-metrics and performance,”IEEE Trans. Commun.,
vol. 42, no. 1, pp. 76–89, Jan. 1994.

[23] H. Leib and S. Pasupathy, “The phase of a vector perturbed by Gaussian
noise and differentially coherent receivers,”IEEE Trans. Inf. Theory,
vol. 34, no. 6, pp. 1491–1501, Nov. 1988.

[24] R. Schober, W. Gerstacker, and J. Huber, “Decision-feedback differential
detection of MDPSK for flat Rayleigh fading channels,”IEEE Trans.
Commun., vol. 47, no. 7, pp. 1025–1035, July, 1999.

[25] R. Schober, W. Gerstacker, and J. Huber, “Decision-feedback differential
detection scheme for 16-DAPSK,”Electron. Lett., vol. 34, no. 19,
pp. 1812–1813, Sept. 1998.

[26] W. Gerstacker, R. Schober, and J. Huber, “Decision-feedback differential
detection for 16DAPSK transmitted over Rician fading channels,” in
Proc. of IEEE VTS 50th Veh. Technol. Conf. (VTC’99-Fall)., vol. 5,
pp. 2515–2519, Amsterdam, Netherlands, Sept. 1999.

[27] R. Schober, W. H. Gerstacker, and J. B. Huber, “Decision-feedback
differential detection based on linear prediction for 16DAPSK signals
transmitted over flat Ricean fading channels,”IEEE Trans. Commun.,
vol. 49, no. 8, pp. 1339–1342, Aug. 2001.

[28] L. Lampe, R. Schober, V. Pauli, and C. Windpassinger, “Multiple-symbol
differential sphere decoding,”IEEE Trans. Commun., vol. 53, no. 12,
pp. 1981–1985, Dec. 2005.

[29] V. Pauli, L. Lampe, and R. Schober, “”Turbo DPSK” using soft multiple-
symbol differential sphere decoding,”IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1385–1398, Apr. 2006.

[30] C. Xu, X. Zuo, S. X. Ng, R. G. Maunder, and L. Hanzo, “Reduced-
complexity soft-decision multiple-symbol differential sphere detection,”
IEEE Trans. Commun., vol. 63, no. 9, pp. 3275–3289, Sept. 2015.

[31] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” inProc. of
IEEE Int. Conf. Commun. (ICC’93), vol. 2, pp. 1064–1070, Geneva,
Switzerland, May 1993.

[32] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,”IEEE Trans. Commun., vol. 44, no. 10,
pp. 1261–1271, Oct. 1996.

[33] T. May, H. Rohling, and V. Engels, “Performance analysisof Viterbi
decoding for 64-DAPSK and 64-QAM modulated OFDM signals,”IEEE
Trans. Commun., vol. 46, no. 2, pp. 182–190, Feb. 1998.

[34] R. Fischer, L. Lampe, and S. Muller-Weinfurtner, “Codedmodulation
for noncoherent reception with application to OFDM,”IEEE Trans. Veh.
Technol., vol. 50, no. 4, pp. 910–919, July 2001.

[35] K. Ishibashi, H. Ochiai, and R. Kohno, “Low-complexity bit-interleaved
coded DAPSK for Rayleigh-fading channels,”IEEE J. Sel. Areas in
Commun., vol. 23, no. 9, pp. 1728–1738, Sept. 2005.

[36] D. Liang, S. X. Ng, and L. Hanzo, “Soft-decision star-QAM aided
BICM-ID,” IEEE Signal Process. Lett., vol. 18, no. 3, pp. 169–172,
Jan. 2011.

[37] C. Xu, D. Liang, S. X. Ng, and L. Hanzo, “Reduced-complexity nonco-
herent soft-decision-aided DAPSK dispensing with channelestimation,”
IEEE Trans. Veh. Technol., vol. 62, no. 6, pp. 2633–2643, Feb. 2013.

[38] L. Wang and L. Hanzo, “Low-complexity near-optimum multiple-
symbol differential detection of DAPSK based on iterative ampli-
tude/phase processing,”IEEE Trans. Veh. Technol., vol. 61, no. 2,
pp. 894–900, Jan. 2012.

[39] B. Hughes, “Differential space-time modulation,”IEEE Trans. Inf.
Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.

[40] B. Hochwald and W. Sweldens, “Differential unitary space-time mod-
ulation,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec.
2000.

[41] A. Shokrollahi, B. Hassibi, B. Hochwald, and W. Sweldens, “Represen-
tation theory for high-rate multiple-antenna code design,”IEEE Trans.
Inf. Theory, vol. 47, no. 6, pp. 2335–2367, Sept. 2001.

[42] V. Tarokh and H. Jafarkhani, “A differential detectionscheme for trans-
mit diversity,” IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp. 1169–
1174, July 2000.

[43] H. Jafarkhani and V. Tarokh, “Multiple transmit antennadifferential
detection from generalized orthogonal designs,”IEEE Trans. Inf. Theory,
vol. 47, no. 6, pp. 2626–2631, Sept. 2001.

[44] X. G. Xia, “Differentially en/decoded orthogonal space-time block codes
with APSK signals,”IEEE Commun. Lett., vol. 6, no. 4, pp. 150–152,
Apr. 2002.

[45] C. S. Hwang, S. H. Nam, J. Chung, and V. Tarokh, “Differential
space time block codes using nonconstant modulus constellations,” IEEE
Trans. Signal Process., vol. 51, no. 11, pp. 2955–2964, Nov. 2003.

[46] M. Bhatnagar, A. Hjorungnes, and L. Song, “Precoded differential
orthogonal space-time modulation over correlated Ricean MIMO chan-
nels,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 2, pp. 124–134,
Apr. 2008.

[47] M. Bhatnagar, A. Hjorungnes, and L. Song, “Differential coding for
non-orthogonal space-time block codes with non-unitary constellations
over arbitrarily correlated Rayleigh channels,”IEEE Trans. Wireless
Commun., vol. 8, no. 8, pp. 3985–3995, Aug. 2009.

[48] B. Hassibi and B. Hochwald, “Cayley differential unitary space-time
codes,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1485–1503, June
2002.

[49] R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial
modulation,” IEEE Trans. Veh. Tech., vol. 57, no. 4, pp. 2228–2241,
July 2008.

[50] S. Sugiura, S. Chen, and L. Hanzo, “Coherent and differential space-
time shift keying: A dispersion matrix approach,”IEEE Trans. Commun.,
vol. 58, no. 11, pp. 3219–3230, Nov. 2010.

[51] C. Xu, L. Wang, S. Ng, and L. Hanzo, “Multiple-symbol differential
sphere detection aided differential space-time block codesusing QAM
constellations,”IEEE Signal Process. Lett., vol. 18, no. 9, pp. 497–500,
Sept. 2011.

[52] S. Sugiura, C. Xu, S. X. Ng, and L. Hanzo, “Reduced-complexity
coherent versus non-coherent QAM-aided space-time shift keying,”
IEEE Trans. Commun., vol. 59, no. 11, pp. 3090–3101, Nov. 2011.

[53] Y. Bian, X. Cheng, M. Wen, L. Yang, H. Poor, and B. Jiao, “Differential
spatial modulation,”IEEE Trans. Veh. Tech., vol. 64, no. 7, pp. 3262–
3268, July 2015.

[54] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,”
IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.

[55] P. Martin, “Differential spatial modulation for APSK intime-varying
fading channels,”IEEE Commun. Lett., vol. 19, no. 7, pp. 1261–1264,
July 2015.

[56] M. Bhatnagar and A. Hjorungnes, “Decoding of differential OSTBC
with non-unitary constellations using multiple received data blocks,” in
Proc. of 2010 IEEE Int. Conf. Commun. (ICC’10), May 2010.



DRAFT 17

[57] R. Schober and L. Lampe, “Noncoherent receivers for differential space-
time modulation,”IEEE Trans. Commun., vol. 50, no. 5, pp. 768–777,
May 2002.

[58] V. Pauli and L. Lampe, “Tree-search multiple-symbol differential decod-
ing for unitary space-time modulation,”IEEE Trans. Commun., vol. 55,
no. 8, pp. 1567–1576, Aug. 2007.

[59] X. Dong, N. Beaulieu, and P. Wittke, “Error probabilities of two-
dimensionalM -ary signaling in fading,”IEEE Trans. Commun., vol. 47,
no. 3, pp. 352–355, Mar. 1999.

[60] L. Lampe and R. Fischer, “Comparison and optimization of differentially
encoded transmission on fading channels,” inProc. of Int. Symp.
PowerLine Commun. and its Applicat. (ISPLC’99), 1999.

[61] W. Koch and A. Baier, “Optimum and sub-optimum detection of coded
data disturbed by time-varying intersymbol interference,” in Proc. of
IEEE Global Telecommun. Conf. (GLOBECOM’90), vol. 3, pp. 1679–
1684, San Diego, USA, Dec. 1990.

[62] D. S. Bernstein,Matrix Math.: Theory, Facts, and Formulas (2nd
Edition). Princeton University Press, 2009.

[63] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to algorithms. The MIT press, 2001.

[64] M. A. Bender, M. Farach-Colton, and M. Mosteiro, “Insertion sort is
O(n log n),” Theory of Computing Systems, vol. 39, no. 3, pp. 391–397,
2006.

[65] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information
transfer functions: model and erasure channel properties,”IEEE Trans.
Inf. Theory, vol. 50, no. 11, pp. 2657–2673, 2004.

Chao Xu (S’09-M’14) received a B.Eng. degree
from Beijing University of Posts and Telecommu-
nications, China, and a BSc(Eng) with First Class
Honours from Queen Mary, University of London,
UK, through a Sino-UK joint degree program in
2008, both in Telecommunications Enginneering
with Management. He obtained a MSc degree with
distinction in Radio Frequency Communication Sys-
tems and a Ph.D. degree in Wireless Communica-
tions from the University of Southampton, UK in
2009 and 2015, respectively. He is currently a post-

doctoral researcher working at Southampton Wireless Group,University of
Southampton, UK. His research interests include reduced-complexity MIMO
design, noncoherent detection, extrinsic-information-transfer-chart-aided turbo
detection, and cooperative communications. He was awarded the Best M.Sc.
Student in Broadband and Mobile Communication Networks by theIEEE
Communications Society (United Kingdom and Republic of Ireland Chapter)
in 2009. He also received 2012 Chinese Government Award for Outstanding
Self-Financed Student Abroad.

Li Wang (S’09-M’10) was born in Chengdu, China,
in 1982. He received his Ph.D. degree from Uni-
versity of Southampton in Jan 2010. From 2010 to
2012 he conducted research as a Senior Research
Fellow in the School of Electronics and Computer
Science at the University of Southampton. During
his academic period, he was involved a number
of projects, such as those from Mobile VCE and
Indian-UK Advanced Technology Centre (IU-ATC).
In March 2012, he joined the R&D center of Huawei
Technologies in Stockholm, Sweden, and is now

working as the Principle Engineer in both radio transmissiontechnology and
radio resource management areas. He received Huawei individual contribution
award in 2015. He has published 36 research papers in IEEE/IET journals and
conferences, and he also co-authored one JohnWiley/IEEE Press book. He has
broad research interests in the field of wireless communications, including
PHY layer modeling, link adaptation, cross-layer system design, multi-carrier
transmission, MIMO techniques, CoMP, channel coding, multi-user detection,
non-coherent transmission techniques, advanced iterativereceiver design, and
adaptive filter. He is now conducting pioneering cross-discipline researches
to build next-generation communication systems with artificial intelligence.

Dr Soon Xin Ng (S’99-M’03-SM’08) received the
B.Eng. degree (First class) in electronic engineering
and the Ph.D. degree in telecommunications from
the University of Southampton, Southampton, U.K.,
in 1999 and 2002, respectively. From 2003 to 2006,
he was a postdoctoral research fellow working on
collaborative European research projects known as
SCOUT, NEWCOM and PHOENIX. Since August
2006, he has been a member of academic staff in
the School of Electronics and Computer Science,
University of Southampton. He was involved in the

OPTIMIX and CONCERTO European projects as well as the IU-ATCand
UC4G projects. He is currently an Associate Professor in telecommunications
at the University of Southampton.

His research interests include adaptive coded modulation, coded modula-
tion, channel coding, space-time coding, joint source and channel coding,
iterative detection, OFDM, MIMO, cooperative communications, distributed
coding, quantum error correction codes and joint wireless-and-optical-fibre
communications. He is currently working on an EPSRC project on‘Coop-
erative Classical and Quantum Communications Systems’. He haspublished
over 190 papers and co-authored two John Wiley/IEEE Press books in this
field. He is a Senior Member of the IEEE, a Chartered Engineer and a Fellow
of the Higher Education Academy in the UK.

Lajos Hanzo (M’91-SM’92-F’04)
(http://www-mobile.ecs.soton.ac.uk) FREng,
FIEEE, FIET, Fellow of EURASIP, DSc received
his degree in electronics in 1976 and his doctorate
in 1983. In 2009 he was awarded an honorary
doctorate by the Technical University of Budapest,
while in 2015 by the University of Edinburgh.
During his 40-year career in telecommunications
he has held various research and academic posts
in Hungary, Germany and the UK. Since 1986
he has been with the School of Electronics and

Computer Science, University of Southampton, UK, where he holds the
chair in telecommunications. He has successfully supervisedabout 100
PhD students, co-authored 20 John Wiley/IEEE Press books onmobile
radio communications totalling in excess of 10 000 pages, published 1500+
research entries at IEEE Xplore, acted both as TPC and General Chair
of IEEE conferences, presented keynote lectures and has been awarded
a number of distinctions. Currently he is directing a 60-strong academic
research team, working on a range of research projects in the field of wireless
multimedia communications sponsored by industry, the Engineering and
Physical Sciences Research Council (EPSRC) UK, the European Research
Council’s Advanced Fellow Grant and the Royal Society’s Wolfson Research
Merit Award. He is an enthusiastic supporter of industrial and academic
liaison and he offers a range of industrial courses. He is also a Governor
of the IEEE VTS. During 2008 - 2012 he was the Editor-in-Chiefof the
IEEE Press and a Chaired Professor also at Tsinghua University, Beijing.
His research is funded by the European Research Council’s Senior Research
Fellow Grant. For further information on research in progress and associated
publications please refer tohttp://www-mobile.ecs.soton.ac.ukLajos has 24
000 citations.


