Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga

Hannah K. Donald*, Justin B. Riesb, Joseph A. Stewartac, Sara E. Fowell, Gavin L. Fostera

aOcean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
bNortheastern University, Marine Science Center, 430 Nahant Road, Nahant, MA 01908, USA
cNational Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA

* Corresponding author (H. K. Donald). Tel.: +44 23805 96507, E-mail: h.k.donald@soton.ac.uk

The increase in atmospheric carbon dioxide (CO₂) observed since the industrial revolution has reduced surface ocean pH by ~0.1 pH units, with further change in the oceanic system predicted in the coming decades. Calcareous organisms can be negatively affected by extreme changes in seawater pH (pHsw) such as this due to the associated changes in the oceanic carbonate system. The boron isotopic composition (δ¹¹B) of biogenic carbonates has been previously used to monitor pH at the calcification site (pHcf) in scleractinian corals, providing mechanistic insights into coral biomineralisation and the impact of variable pHsw on this process. Motivated by these investigations, this study examines the δ¹¹B of the high-Mg calcite skeleton of the coralline red alga Neogoniolithon sp. to constrain pHcf, and investigates how this taxon’s pHcf is impacted by ocean acidification. δ¹¹B was measured in multiple algal replicates (n = 4 to 5) cultured at four different pCO₂ scenarios – averaging (± 1σ) 409 (± 6), 606 (± 7), 903 (± 12) and 2856 (± 54) μatm, corresponding to average pHsw (± 1σ) of 8.19 (± 0.03), 8.05 (± 0.06), 7.91 (± 0.03) and 7.49 (± 0.02) respectively. Results show that skeletal δ¹¹B is elevated relative to the δ¹¹B of seawater borate at all pHsw treatments by up to 18 ‰. Although substantial variability in δ¹¹B exists between replicate samples cultured at a given pHsw (smallest range = 2.32 ‰ at pHsw 8.19, largest range = 6.08 ‰ at pHsw 7.91), strong correlations are identified between δ¹¹B and pHsw (R² = 0.72, p < 0.0001, n = 16) and between δ¹¹B and B/Ca (R² = 0.72, p < 0.0001, n = 16). Assuming that skeletal δ¹¹B reflects pHcf as previously observed for scleractinian corals, the average pHcf across all experiments was 1.20 pH units (0.79 to 1.56) higher than pHsw, with the
magnitude of this offset varying parabolically with decreasing pH\textsubscript{sw}, with a maximum difference between pH\textsubscript{sw} and pH\textsubscript{cf} at a pH\textsubscript{sw} of 7.91. Observed relationships between pH\textsubscript{sw} and calcification rate, and between pH\textsubscript{sw} and pH\textsubscript{cf}, suggest that coralline algae exhibit some resilience to moderate ocean acidification via increase of pH\textsubscript{cf} relative to pH\textsubscript{sw} in a similar manner to scleractinian corals. However, these results also indicate that pH\textsubscript{cf} cannot be sufficiently increased by algae exposed to a larger reduction in pH\textsubscript{sw}, adversely impacting calcification rates of coralline red algae.

1.0 Introduction
Atmospheric CO\textsubscript{2} has been increasing since the Industrial Revolution, from 280 ppm to more than 400 ppm today (Tans and Keeling, 2016). This increase has led to changes in ocean carbon chemistry, ultimately lowering seawater pH (pH\textsubscript{sw}) by 0.1 pH units. Climate models predict that by 2100, a high-end “business as usual” emission scenario (\textit{i.e.} Intergovernmental Panel on Climate Change: Representative Concentration Pathway 8.5) will result in a global average surface pH\textsubscript{sw} of ca. 7.8, potentially reaching even lower levels at high latitudes. This large and rapid reduction in global pH\textsubscript{sw} will result in an environment that is potentially challenging to marine organisms that rely on biogenically produced CaCO\textsubscript{3} (Doney et al., 2009).

Ocean acidification affects biogenic calcification by reducing the CaCO\textsubscript{3} saturation state of seawater ($\Omega = [\text{Ca}^{2+}][\text{CO}_3^{3-}]/K^*_{sp}$, where K^*_{sp} is the stoichiometric solubility product of CaCO\textsubscript{3} at in situ conditions of temperature, salinity and pressure). Reductions in Ω of seawater have been shown to reduce calcification rates and, in some cases, cause net dissolution of the calcareous shells and skeletons of marine organisms (Gattuso et al., 1998; Riebesell et al., 2000; De’ath et al., 2009; Ries et al., 2009; Ries et al., 2016). Indeed, a recent study investigating a sub-marine volcanic CO\textsubscript{2} seep as an analogue for the effects of ocean acidification found that, over time, the nearby coral reef system was largely replaced by fleshy algae-covered rocks (Enochs et al., 2015). This, and a wealth of other studies (Gattuso et al., 2015; and references therein), indicate
that ocean acidification can directly affect calcareous organisms through changing ocean
carbonate chemistry, as well as indirectly via inter-species competition and modification of
species interactions (e.g., Dodd et al., 2015).

Coralline algae are important CaCO$_3$ producers and are often found in high latitude waters. They
also comprise a large component of modern coral reefs, confer stability to the reef crest, and are
a vital food source for marine grazers such as sea urchins (McCoy and Kamenos, 2015). Hence,
coralline algae play an important role in the marine food web, but also act as ecosystem
engineers by providing defence against coastal erosion. Coralline algae are predominantly
composed of high-Mg calcite (> 15 mol % MgCO$_3$), which is more soluble than aragonite or low-
Mg calcite found in other calcareous organisms such as corals, scallops and oysters (Ries et al.,
2016). Since CO$_2$ is more soluble in colder water, it is likely that global high latitude regions are
more vulnerable to ocean acidification than lower latitude regions (Gattuso et al., 2015). Thus,
ocean acidification poses a severe threat to coralline algae and their interdependent ecosystems
(Kuffner et al., 2008; Gao and Zheng, 2009; Ragazzola et al., 2012).

Coralline red algae calcify by depositing calcite within their cell walls, but exterior to their cell
membrane. This is in contrast to foraminifera that calcify within seawater vacuoles (Erez,
2003), scleractinian corals that calcify in a fluid between their skeleton and calicoblastic
epithelium (Cohen and McConnaughey, 2003; Gagnon et al., 2012), and coccolithophores that
calcify in an intracellular vesicle (Mackinder et al., 2010), but is similar to calcification within
Bryopsidalean calcareous green algae, which occurs extracellularly within interutricular space
(Ries, 2009).

Several studies have examined the influence of ocean acidification on the nature and rate of
calcification in a variety of coralline red algae (Hall-Spencer et al., 2008; Martin and Gattuso,
2009; Roleda et al., 2015; Cornwall et al., 2017). For instance, Ries et al. (2009) and Smith and
Roth (1979) documented a parabolic response in calcification rate of the coralline red algae to decreasing pH$_{sw}$, suggesting that the algal calcification increases in response to moderate elevations in pCO$_2$, but decreases in response to extreme increases. However, Ries et al. (2009) observed maximum calcification between pH$_{sw}$ 7.9 and 8.1 ($\Omega_A \sim$ 2.0 to 2.3; where Ω_A is the saturation state for the aragonite CaCO$_3$ polymorph), while Smith and Roth (1979) observed maximum calcification between pH$_{sw}$ 7.6 and 8.3 (Figure 1). These non-linear relationships suggest that coralline algae utilise biological processes to confer resilience to moderate-to-extreme changes in pH$_{sw}$.

The calcification response of coralline algae to ocean acidification has been shown to vary between species (Borowitzka, 1981; Semesi et al., 2009; Comeau et al., 2013). Despite this, a result common to the various species investigated in the different experiments is their ability to continue calcifying, albeit at slower rates, even under extremely reduced pH$_{sw}$. This mitigation of extreme ocean acidification has been shown to translate into coralline algae survival in low pH$_{sw}$ environments across a range of natural ecosystems (Kamenos et al., 2016). Coralline red algae perform both calcification and photosynthesis (e.g., Buitenhuis et al., 1999), and the balance between these two key biological processes is important for coralline algae survival.

Many marine organisms utilise carbon concentrating mechanisms intracellularly to ensure calcification can still occur under CO$_2$-limited conditions. Experimental work has shown that photosynthesis in some marine algae is CO$_2$-limited up to ca. 1000 μatm pCO$_2$ (Bowes, 1993).

Therefore, the additional energy from photosynthesis as pCO$_2$ becomes elevated up to ca. 1000 μatm may stimulate calcification within calcifying marine algae, despite the associated decrease in pH$_{sw}$. This effect has previously been observed for zooxanthellate scleractinian corals (e.g., Castillo et al., 2014). Furthermore, photosynthesis increases local pH through the removal of dissolved CO$_2$ from seawater proximal to the algae (Gao et al., 1993), and respiration may reduce calcification rates by decreasing local pH as a consequence of CO$_2$ release (De Beer and Larkum, 2001). Calcification in coralline algae is therefore likely regulated by a number of
important metabolic activities that influence the carbonate system within and around the algal cell (Smith and Roth, 1979; Gao et al., 1993; Hurd et al., 2011; Martin et al., 2013).

The impact of pH$_{sw}$ and CaCO$_3$ saturation state on inorganic calcification differs from their impact on biogenic calcification (Ries et al., 2009; McCulloch et al., 2012a). The IpHRAC model by McCulloch et al. (2012b) ascribes the reduced sensitivity of scleractinian coral calcification in response to changing seawater aragonite saturation state to the increase of the calcification site pH (pH$_{cf}$), as determined from the boron isotopic composition of the coral skeleton, proton-sensitive microelectrodes (Ries, 2011a), and pH-sensitive dyes (Venn et al., 2013). Recent studies investigating δ11B of the coralline algae *Clathromorphum nereostratum* via laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reveal that skeletal δ11B within this species is also consistent with a pH$_{cf}$ that is significantly higher than measured ambient pH$_{sw}$ (by ca. 0.6 pH units; ∆pH = pH$_{cf}$ - pH$_{sw}$), suggesting an increase of pH$_{cf}$ may play a similarly important role in coralline algal calcification (Fietzke et al., 2015). However, skeletal δ11B data for coralline algae species cultured under a range of controlled pH$_{sw}$ conditions that demonstrate the response of pH$_{cf}$ to changes in pH$_{sw}$ are currently sparse (e.g. the only other such study is Cornwall et al., 2017). Here, the boron isotope approach to estimating pH$_{cf}$ is applied to a branched *Neogoniolithon* sp. cultured under four pCO$_2$ conditions that allow us to assess the potential impacts of ocean acidification on pH$_{cf}$ regulation in coralline red algae.

2.0 Methods

2.1 Boron isotopes

Numerous papers have presented detailed discussions about the basis for the boron isotope proxy of pH$_{sw}$ (Hemming and Hanson, 1992; Zeebe and Wolf-Gladrow, 2001; Foster and Rae, 2016). Briefly, the proxy arises because (1) the abundance of the two major aqueous forms of boron in seawater are pH dependent and (2) there is boron isotope fractionation between these two boron species (Dickson, 1990). Trigonal planar boric acid (B(OH)$_3$) dominates at low pH,
and the tetrahedral tetrahydroxyborate anion (B(OH)_4^-; henceforth referred to as borate) dominates when pH exceeds 8.6 in typical surface ocean conditions. The two stable isotopes of boron (^{10}B and ^{11}B) occur roughly in a 1:4 ratio, and the structural difference between the aqueous species leads to an enrichment of ^{11}B in boric acid of approximately 27.2 ‰ (Klochko et al., 2006; Nir et al., 2015) because the more stable trigonal structure has the stronger B-O bonds. Boron isotopic composition is described using the delta notation $\delta^{11}\text{B}$ relative to a boric acid standard (NIST SRM 951 boric acid according to Catanzaro et al., 1970) shown in equation (1).

$$\delta^{11}\text{B} = \left[\left(\frac{^{11}\text{B}_{\text{sample}}}{^{11}\text{B}_{\text{standard}}} \right) - 1 \right] \times 1000$$ \hspace{1cm} (1)

Since the $\delta^{11}\text{B}$ of total boron in seawater (boric acid and borate) is constant at 39.61 ± 0.04 ‰ (Foster et al., 2010), as the proportions of boric acid and borate change with pH$_{sw}$, the $\delta^{11}\text{B}$ composition of each species also varies as a function of pH, with borate $\delta^{11}\text{B}$ increasing with pH$_{sw}$ as described in equation (2).

$$\delta^{11}\text{B}_{\text{B(OH)}_4^-} = \frac{\delta^{11}\text{B}_{\text{sw}} + \left(\delta^{11}\text{B}_{\text{sw}} - 1000(\alpha_B - 1) \right) 10^{pK_B^* - pH}}{1 + \alpha_B 10^{pK_B^* - pH}}$$ \hspace{1cm} (2)

Where pK^*_B is the dissociation constant (dependent on temperature and salinity; Dickson, 1990), $\delta^{11}\text{B}_{\text{sw}}$ is the $\delta^{11}\text{B}$ composition of total boron in seawater, $\delta^{11}\text{B}_{\text{B(OH)}_4^-}$ is the $\delta^{11}\text{B}$ composition of aqueous borate, and α_B is a constant (1.0272; Klochko et al., 2006) describing the equilibrium mass dependent boron isotope fractionation between boric acid and borate.

Although borate is assumed to be the most likely form of aqueous boron incorporated into CaCO$_3$, the $\delta^{11}\text{B}$ of many biogenic carbonates is elevated relative to the $\delta^{11}\text{B}$ of seawater borate (Figure 2 and references therein; see also Vengosh et al., 1991; Gaillardet and Allègre, 1995). As noted above, this increase in the $\delta^{11}\text{B}$ of scleractinian deep-sea and tropical corals is thought to be predominantly caused by the elevation of pH$_{cf}$ via enzymatic activity (e.g. Ca-ATPase; McConnaughey and Falk, 1991). In this case, pH$_{cf}$ can be calculated using boron isotopes by substituting $\delta^{11}\text{B}$ of the coral sample for $\delta^{11}\text{B}$ of aqueous borate in equation (3).
\[pH = pK_B^* - \log \left(\frac{\delta^{11}B_{SW} - \delta^{11}B(OH)_{H,4}}{\delta^{11}B_{SW} - \alpha_B \delta^{11}B(OH)_{H,4}} \times 1000 \times (a_B - 1) \right) \]

Figure 2 shows $\delta^{11}B$ data from previous studies for several coral taxa grown over a range of pH$_{sw}$ conditions (Hönisch et al., 2004; Reynaud et al., 2004; Krief et al., 2010; Anagnostou et al., 2012; McCulloch et al., 2012b; Holcomb et al., 2014). In all cases pH$_{cf}$ is elevated by around 0.5 pH units at pH$_{sw}$ 8, which is similar to observations of the calcifying fluid from micro-electrodes (Al-Horani et al., 2003; Krief et al., 2010; Ries, 2011a; Trotter et al., 2011; McCulloch et al., 2012b) and pH sensitive dyes (Venn et al., 2011; Venn et al., 2013; Holcomb et al., 2014). Furthermore, the majority of corals examined thus far show that as ambient pH$_{sw}$ decreases, pH$_{cf}$ declines at a reduced rate (Venn et al., 2011; Venn et al., 2013; Holcomb et al., 2014).

2.2 Algal Culture

A single species of tropical coralline red alga, Neogoniolithon sp., was cultured at four pCO_2 ($\pm 1\sigma$) levels: 409 (± 6), 606 (± 7), 903 (± 12) and 2856 (± 54) μatm, resulting in pH$_{sw}$ values (± 1σ) of 8.19 (± 0.03), 8.05 (± 0.06), 7.91 (± 0.03) and 7.49 (± 0.02), respectively (Ries et al., 2009). The algae were grown for 60 days in 38 L aquaria in filtered Atlantic Ocean seawater (0.2 μm; Cape Cod, Massachusetts). The cultures were maintained at average aragonite saturation states ($\pm 1\sigma$) of 3.12 (± 0.22), 2.40 (± 0.42), 1.84 (± 0.13) and 0.90 (± 0.05), and temperatures of 25°C using 50 W electric heaters, and illuminated on a 10hr:14hr light:dark cycle. This species of coralline red algae exhibited an apparent parabolic calcification response to increasing pCO_2, with net calcification rate increasing with an increase in pCO_2 from 409 to 606 μatm, and declining with an increase in pCO_2 to 903 and 2856 μatm (see Ries et al., 2009 and Table SM1 in the supplementary materials for further details; Figure 1).

2.3 Sample Preparation

Neogoniolithon sp. is a non-geniculate branched rhodolith form of coralline red algae. Replicate specimens were analysed for boron isotope composition at each culture pH$_{sw}$ ($n = 5$ for pH$_{sw}$
7.91, and $n = 4$ for pH$_{sw}$ 8.19, 8.05 and 7.49). Duplicate analyses were performed on all replicate specimens except those from the pH$_{sw}$ 7.49 treatment, due to the small mass of CaCO$_3$ mineralised under these high-pCO$_2$ conditions. Skeletal material produced exclusively under the experimental treatments was identified relative to a 137Ba isotope marker emplaced in the skeletons at the start of the experiment (Ries, 2011b). Branches of the specimens were powdered using a pestle and mortar in a clean laboratory fitted with boron-free HEPA filters at the University of Southampton to produce homogenous bulk sample replicates for each specimen. Following previous studies (Foster, 2008; Krief et al., 2010), approximately 3 mg of each sample was cleaned using 500 µl of an oxidative mixture of 10% hydrogen peroxide (H$_2$O$_2$) buffered with 0.1 M ammonium hydroxide (NH$_4$OH). The samples were heated in a water bath and briefly ultra-sonicated a total of six times. The oxidative mixture was removed, and the samples were rinsed and transferred to clean plastic vials. The samples were leached in 0.0005 M nitric acid (HNO$_3$) and then dissolved in a minimal volume of 0.5 M HNO$_3$.

2.4 Trace element and isotopic analysis

Oxidatively cleaned and dissolved samples were transferred to Teflon vials and a 7% aliquot was removed for trace element analysis. Elemental analysis (B/Ca and Sr/Ca) of matrix-matched sample solutions was performed using ICPMS on a Thermo Scientific Element 2 mass spectrometer following the protocol of Henehan et al. (2015). Replicates of well-characterised solution consistency standards measured during this study are precise to ±5.6% and ±2.0% for B/Ca and Sr/Ca (95% confidence), respectively.

The remainder of each dissolved sample was reserved for boron isotope analysis and processed at the University of Southampton according to well-established methods (Foster, 2008). Samples were passed through micro-columns containing the boron-specific anion exchange resin Amberlite IRA-743 and boron was eluted in Teflon distilled 0.5M HNO$_3$. Boron isotopic composition of each purified sample was then measured using a Thermo Scientific Neptune
multi-collector ICPMS (MC-ICPMS) using two Faraday detectors fitted with $10^{12} \, \Omega$ resistors at the University of Southampton following methods detailed in Henehan et al. (2013) and Foster et al. (2013). Samples were bracketed with NIST SRM 951 standard boric acid to correct for variability in instrument induced mass fractionation. The long-term reproducibility of standards is approximately $\pm 0.2 \, \%_o$ for 20 ng of boron (95% confidence), and analytical uncertainty is described by equation (4), where $[^{11}\text{B}]$ is the voltage measured on the H3 faraday detector with one of the $10^{12} \, \Omega$ resistors.

$$2\sigma = 12960 e^{-212[^{11}\text{B}]} + 0.3385 e^{-1544[^{11}\text{B}]} \quad (4)$$

3.0 Results

The coralline algae across all pH treatments yield $\delta^{11}\text{B}$ values ranging from 24.42 ($\pm 0.22 \, \%_o$ to 36.26 ($\pm 0.10 \, \%_o$) (Table 1). One sample replicate at pH$_{sw}$ 8.19 was deemed anomalous, as duplicate analyses differed by 1.4 \% compared with an average difference between other duplicate analyses of 0.18 \%. This outlying sample is therefore excluded from the discussion, and $n = 16$ for all subsequent regression analyses.

The range of $\delta^{11}\text{B}$ for each pH treatment varies from 2.3 \% at pH$_{sw}$ 8.19 to 6.1 \% at pH$_{sw}$ 7.91. The relationship between $\delta^{11}\text{B}$ of Neogoniolithon sp. calcite and pH$_{sw}$ (Figure 2) demonstrates that all $\delta^{11}\text{B}$ measurements in this study lie considerably above the pH$_{sw}$ vs. aqueous borate $\delta^{11}\text{B}$ curve (Klochko et al., 2006), and are also elevated compared to other examples of biogenic carbonates thus far quantified (McCulloch et al., 2012b), with the exception of some deep-sea scleractinian corals (e.g. Blamart et al., 2007). The high $\delta^{11}\text{B}$ compositions observed in this study of a branching species of Neogoniolithon are also similar to those found in a crustose species of the same genus (Cornwall et al., 2017), suggesting that closely related species of coralline algae exhibit similar boron isotope systematics and pH$_{cl}$ and that growth form (i.e. crustose vs. branching) alone does not necessarily impart large differences in these systems. Although the
offset of the algae’s pH\textsubscript{sw} vs. δ11B curve from the pH\textsubscript{sw} vs. aqueous borate δ11B curve is generally consistent with the offset previously observed for corals grown at various pH\textsubscript{sw} (Hönisch et al., 2004; Reynaud et al., 2004; Krief et al., 2010; Anagnostou et al., 2012; McCulloch et al., 2012a; Holcomb et al., 2014), the pH\textsubscript{sw} vs. δ11B relationship for the algae is better fit (with respect to minimising residuals) with a parabolic model (R2 = 0.73 and p < 0.001, vs. R2 = 0.53 and p < 0.01 for linear fit) while the pH\textsubscript{sw} vs. δ11B relationships for corals are better fit with linear models (Trotter et al., 2011; McCulloch et al., 2012b; Holcomb et al., 2014). Details of all regressions, gradients and intercepts can be found in Table SM2 in the supplementary materials.

The measured B/Ca and δ11B compositions are also highly linearly correlated (R2 = 0.77, p < 0.0001; Figure 3A), a trend that is predicted from boron isotope systematics yet rarely observed so clearly in biogenic carbonates (Foster, 2008; Henehan et al., 2015) with the possible exception of recent work with deep-sea corals (Stewart et al., 2016). Sr/Ca has significant negative correlation with δ11B (R2 = 0.33, p < 0.05; Figure 3B).

Following the interpretations of δ11B in corals (Hemming et al., 1998; Rollion-Bard et al., 2003; Allison and Finch, 2010; Rollion-Bard et al., 2011; McCulloch et al., 2012b), pH\textsubscript{cf} calculated using equation 3 (assuming boron in the algal calcite is sourced solely from seawater borate) reveals an elevation of pH\textsubscript{cf} relative to pH\textsubscript{sw} by an average of 1.20 (± 0.22) pH units (Figure 4A). There is a statistically significant linear positive correlation (R2 = 0.45, p < 0.01) between pH\textsubscript{cf} and pH\textsubscript{sw}, although once again a second-order polynomial model with an optimum near pH\textsubscript{sw} 7.95 better describes the data (R2 = 0.66, p < 0.001). If this model of boron incorporation is correct, ΔpH plotted against pH\textsubscript{sw} exhibits an apparent parabolic relationship with pH\textsubscript{sw} (R2 = 0.46, p < 0.01; Figure 4B). ΔpH approaches a maximum mean of 1.26 pH units under the second most acidic treatment, and although these measurements fall within 1σ of each mean, there is a significant reduction of ΔpH at the most acidic treatment (pH\textsubscript{sw} 7.49). For instance, t-tests reveal there is a
significant difference between the mean δ¹¹B composition of the algae cultured at pH_sw 8.19, 8.05 and 7.91 when compared to the algae cultured at pH_sw 7.49, confirming that a reduction in pH_sw causes a decrease in pH.cf of coralline red algae.

The B/Ca of the algal specimens range from 352 (± 18) to 670 (± 84) µmol mol⁻¹ (Figure 5B), and is therefore comparable to B/Ca in scleractinian corals, but exceeds that found in coccolithophores (Stoll et al., 2012) and foraminifera (Henehan et al., 2015). Although both linear (R² = 0.49, p < 0.01) and second-order polynomial regressions (R² = 0.72, p < 0.001) of the B/Ca vs. pH_sw data are statistically significant, the polynomial model better describes the data (lower p-value and higher R²). Ranges within treatments vary from 182 µmol mol⁻¹ at pH_sw 7.91 to 52 µmol mol⁻¹ at pH_sw 7.49.

Calcite Sr/Ca ranges from 2.85 (± 0.10) to 3.54 (± 0.13) mmol mol⁻¹ and exhibits a statistically significant negative linear correlation with pH_sw (R² = 0.59, p < 0.001; Figure 5A). A negative trend is also observed between Sr/Ca and B/Ca, although it is just outside of significance at the 95% level (R² = 0.22, p = 0.06; Figure 5C).

4.0 Discussion

4.1 δ¹¹B and B/Ca as tracers of pH

The boron isotope palaeo-pH proxy has been primarily applied to foraminifera, and tropical and deep-sea corals (e.g. Spivack et al., 1993; Sanyal et al., 1996; Palmer, 1998; Krief et al., 2010; Rae et al., 2011; Anagnostou et al., 2012; Henehan et al., 2013). Calcification in foraminifera occurs via vacuolisation of seawater (Erez, 2003; de Nooijer et al., 2014), while corals are thought to biomineralise from a discrete fluid between their calicoblastic epithelium and skeleton (Cohen and McConnaughey, 2003). As outlined above, calcification in coralline algae occurs extracellularly within and between the cell walls of the algae yet external to their cell membrane (Ries, 2009). The application of the foraminifera or coral model for the δ¹¹B proxy in coralline
algae therefore requires some key assumptions, including in particular that the algal calcification fluid has a total δ^{11}B and salinity similar to that of ambient seawater. Nonetheless, recent studies have shown that calcein, which cannot be transported across cellular membranes, is incorporated into the skeleton of the coralline algae *Lithothamnion glaciale* (Pauly et al., 2015), supporting the assumption that the site of calcification in coralline algae is at least partially open to seawater exchange (Comeau et al., 2012; Adey et al., 2013).

Regardless of the precise mechanism of calcification within this species, the strong positive correlations observed here between δ^{11}B composition, B/Ca ratio and pH$_{sw}$ indicate that boron systematics of coralline algae do vary with respect to pH$_{sw}$. As expected from the existing understanding of the proxy, cultures at lower pH$_{sw}$ have lower δ^{11}B and B/Ca; both, in theory, resulting from a reduction in borate concentration relative to boric acid at lower pH$_{sw}$.

Nonetheless, the δ^{11}B data for the coralline algae presented here plot well above the borate δ^{11}B vs. pH$_{sw}$ curve. Therefore, following the model for boron isotopes in corals proposed by McCulloch et al., (2012a), the results of our study suggest that coralline algae substantially increase pH$_{cf}$ to promote calcification. Indeed pH$_{cf}$ has been shown to increase during seasonal variations in ΔpH of 0.5 to 0.7 pH units within the coralline algae species *Clathromorphum nereostratum* (Fietzke et al., 2015), and the more recent study by Cornwall et al. (2017) shows that a crustose species of the *Neogoniolithon* genus exhibits a ΔpH of ca. 0.8 – 1.1 pH units, depending on pH$_{sw}$.

Interpreting the results of the boron isotope data presented here following standard boron isotope pH proxy assumptions that (1) boron enters the algal calcification site unfractionated from seawater, (2) boron isotope fractionation in coralline algae is controlled only by pH$_{cf}$ and (3) only seawater borate is incorporated into the coralline algal skeleton, suggests that *Neogoniolithon* sp. undergoes a large pH$_{cf}$ increase of, on average, 1.20 units (Figure 4). In light of these findings, and the unique calcification mechanism in coralline algae compared to other
marine calcifiers, some alternative models of boron systematics within coralline algae should be
explored to ensure that these standard assumptions are met in coralline algae. The impact of
possible boric acid incorporation, and Rayleigh fractionation of the calcifying medium and other
processes affecting coralline algal skeletal chemistry are discussed in the following sections.

4.1.1 Boric acid incorporation

Isotopically heavy boric acid has a similar size and the same trigonal planar structure as the
carbonate ion (CO$_3^{2-}$) found in the algal calcite lattice and, whilst boric acid holds no charge, it
may be incorporated as an impurity. Solid state 11B nuclear magnetic resonance (NMR)
spectroscopy on coralline algal calcite has revealed that approximately 30% of boron is present
in a trigonal geometry, and Cusack et al. (2015) suggested that boric acid may therefore be
directly incorporated into the high-Mg calcite of Neogoniolithon sp. The incorporation of 11B
enriched boric acid into the calcite lattice would result in higher skeletal δ^{11}B. Therefore, boric
acid incorporation may partially explain the positive shift in skeletal δ^{11}B compositions (relative
to δ^{11}B of seawater borate) that we report here (Figure 2).

Assuming that both seawater borate and boric acid are incorporated into coralline algal calcite,
the proportion of boric acid required to match the mean skeletal δ^{11}B compositions of the algae
is between 44 and 60% (Table 2), thereby greatly exceeding the ~30% suggested from in situ
11B MAS NMR studies (Cusack et al., 2015), yet it should also be noted that Cusack et al. (2015)
examined a different species of coralline algae (Lithothamnion glaciale). Furthermore, given that
the abundance of boric acid is pH dependent, it would be expected that the percentage of boric
acid incorporated should increase with decreasing pH$_{sw}$ (i.e. with increasing boric acid in
solution; Noireaux et al., 2015). This was not observed for the specimens of Neogoniolithon sp.
investigated here, as the percentage of boric acid incorporation required to explain the 11B
enrichment levels off for the two lowest pH$_{sw}$ treatments.
11B NMR studies by Mavromatis et al. (2015) and Noireaux et al. (2015) have recently shown that inorganically precipitated calcite contains up to 65% trigonal boron, although a linear relationship between pHsw and measured δ11B of the calcite was maintained. However, these studies did identify a significant relationship between the percentage of trigonal boron in the lattice and calcite growth rate. Noireaux et al. (2015) observed that slow growth rate led to a higher percentage of trigonal boron in the calcite lattice, and suggested that this indicates an increase in boric acid incorporation (see also Mavromatis et al., 2015). The slowest growth rates in our cultured Neogoniolithon sp. are found at pHsw 8.19 and 7.49, where in contrast, our boron isotope data suggests the smallest boric acid incorporation (Table 2). In light of these findings, it seems unlikely that boric acid incorporation is a dominant driver of the heavy δ11B (relative to δ11B of aqueous borate expected at that pHsw) observed in cultured Neogoniolithon sp., or has a significant influence on the relationship between skeletal δ11B and pHsw in this species.

Furthermore, although 11B NMR studies may reveal that trigonal boron is present in the calcite lattice, this may be a result of geometry change of the borate molecule during incorporation into the calcite lattice, rather than direct incorporation of boric acid (Balan et al., 2016).

4.1.2 Rayleigh fractionation

Coralline algae calcification occurs intercellularly within the cell walls of the algae, which are semi-isolated from seawater by adjacent cells. Nevertheless, these extracellular restricted environments are likely to be permeable to seawater and maintained at elevated pH and calcite saturation state to promote calcification. Rayleigh fractionation describes the process by which molecules or ions are continuously removed from a closed or semi-closed system, leading to progressive change in the elemental and/or isotopic composition of the residual fluid. The precipitation of CaCO3 in this semi-isolated calcification space may therefore lead to changes in the elemental and isotopic composition of the algal calcite (as proposed for corals by Gaetani and Cohen, 2006; Gagnon et al., 2007). For example, assuming that borate (isotopically lighter
than total seawater boron) is solely incorporated into coralline algal calcite, the remaining fluid would become enriched in 11B, imposing a heavier δ^{11}B composition on the later forming calcite.

The partition coefficient (K_D) of boron into calcite is described by equation (5).

$$K_D = \frac{[B/Ca]_{CaCO_3}}{[B/Ca]_{seawater}}$$

(5)

There are several estimates for the K_D of boron, and all are much less than one (ca. 0.0005; Yu et al., 2007; Stoll et al., 2012). Consequently, as calcification progresses, Rayleigh fractionation drives an increase in the B/Ca ratio of the residual fluid, thereby increasing B/Ca of the latterly precipitated CaCO$_3$. In theory, therefore, Rayleigh fractionation may be sufficient to describe both the observed enrichment in 11B in coralline algae calcite relative to seawater borate (Figure 2), the observed relationships between pH$_{sw}$ and both coralline algal B/Ca (Figure 5) and δ^{11}B (Figure 2), as well as the observed correlation between coralline algal B/Ca and δ^{11}B (Figure 3).

However, the study of boron incorporation into deep sea scleractinian corals by Stewart et al. (2016) shows that Rayleigh fractionation is unable to drive significant changes in skeletal δ^{11}B and B/Ca from unmodified seawater (i.e. [B] of 432 µmol kg$^{-1}$; [Ca] of 10.3 mmol kg$^{-1}$; salinity 35 psu) given a typical biogenic carbonate B/Ca of ~600 µmol mol$^{-1}$ because insufficient borate is removed at each incremental step of precipitation to drive the observed change in CaCO$_3$ δ^{11}B. Thus Rayleigh fractionation can only explain the relationship observed in Figure 3 between B/Ca and δ^{11}B if the B/Ca ratio of the calcifying fluid is very much reduced relative to that of seawater and the partition coefficient is higher than estimates from inorganic experiments (in order to maintain the observed B/Ca ratio). For instance, a Rayleigh model fitted to the δ^{11}B and B/Ca data in this study suggests a high K_D of 0.5, and a 98.5% reduction in seawater boron content at the site of calcification. While this is a possibility in coralline algae as calcification occurs within a semi-restricted space, the inverse correlation between Sr/Ca and B/Ca when both elements have a K_D of <1 within calcite (defined in equation 5; Figure 5), suggests that
Rayleigh fractionation is unlikely to account for the entirety of the observed 11B enrichment in *Neogoniolithon* sp. relative to seawater borate, as well as the observed relationships between pH$_{sw}$ and δ^{11}B, and B/Ca.

4.2 Calcification rate and implications for coralline red algae in a high-CO$_2$ world

Boron isotope characteristics of *Neogoniolithon* coralline red algae are unlikely to result from boric acid incorporation or Rayleigh fractionation. Recent inorganic precipitation experiments have highlighted the importance of calcification rate in controlling B/Ca in calcite (Gabitov et al., 2014; Mavromatis et al., 2015; Noireaux et al., 2015; Uchikawa et al., 2015). Here we find strong correlation between calcification rate and B/Ca ($R^2 = 0.40$, $p < 0.01$), which is therefore entirely consistent with pH$_{cf}$ elevation increasing Ω and borate concentration at the site of calcification, thereby driving increased boron incorporation into the algal calcite. Although this might be expected to also increase Sr/Ca given inorganic experiments (e.g. Böhm et al., 2012), the Sr/Ca in the cultured coralline algae exhibits a positive correlation with DIC (umol kg$_{sw}^{-1}$; Figure SM1A); a relationship recently documented in foraminifera (Keul et al., 2017). This points towards a new proxy in coralline algae that has potential to fully resolve the carbonate system.

We are then left with the possibility that δ^{11}B of the algal calcite reflects pH$_{cf}$ pursuant to the δ^{11}B-pH$_{sw}$ relationship, as proposed for scleractinian corals (e.g. McCulloch et al., 2012b). Since pH$_{cf}$ will largely control calcite saturation state (Ω) at the site of calcification, calcification rate should exhibit a strong relationship with δ^{11}B and pH$_{cf}$. This is apparent when calcification rates of individual algal specimens (Ries et al., 2009) are plotted against their respective δ^{11}B-derived values of pH$_{cf}$ (Figure 6A). The observed relationship between coralline algal calcification rate and pH$_{sw}$ (Figure 6B; i.e., increased calcification under slightly elevated pCO$_2$, reduced calcification at extremely elevated pCO$_2$; Ries et al., 2009) may thus arise from the relationship between pH$_{sw}$ and pH$_{cf}$ (Figure 4). Furthermore, the ability of *Neogoniolithon* algae to raise pH$_{cf}$ relative to pH$_{sw}$ increases under more acidified conditions, with ΔpH increasing from 0.85 (\pm
0.11) to 1.26 (± 0.22) between pHsw of 8.19 to 7.91. These results are consistent with three coralline algae species (including a crustose Neogoniolithon sp.) cultured at variable pHsw by Cornwall et al. (2017), which also exhibit a similar increase in ΔpH from ca. 0.8 to ca. 1.1 between pHsw of 8.08 to 7.64 (Cornwall et al., 2017). However, our observation that ΔpH levelled off under the two most acidic treatments suggests that there is a limit to the extent to which the branching species of Neogoniolithon can elevate pHcf relative to pHsw. This limit may also exist for those species examined by Cornwall et al. (2017) but is not resolvable because their pHcf data are confined to a narrower pHsw range, with only three pHsw treatments examined that fall within the linear portion of our pHcf vs. pHsw relationship. Nonetheless, taken together, our study and that of Cornwall et al. (2017) illustrate that pHcf in coralline algal therefore appears to promote calcification in moderately acidified seawater (down to pHsw 7.95), which is most likely due to CO2-fertilisation of photosynthesis. This supports the previous observation that photosynthesis in some marine algae is CO2-limited up to ca. 1000 μatm pCO2 (Bowes, 1993). Our new data at low pHsw, however, reveals that no additional benefit for photosynthesis in this coralline alga appears to be conferred by increasing pCO2 from 903 to 2856 μatm pCO2, while the accompanying increase in acidity and resulting decrease in Ω of the culture solution has a clear detrimental effect on the calcification rate of the algae.

As has been demonstrated for scleractinian corals (McCulloch et al., 2012b), the ability of coralline algae to elevate pHcf may confer resilience to the deleterious effects of ocean acidification, thereby giving them an advantage over calcifying taxa competing for space on the seafloor that lack this ability. Specifically, our data suggest that species-specific pHsw optima exist at pHsw ca. 8 for maximising both pHcf and calcification rates of Neogoniolithon sp. However, that pHcf and algal calcification rates begin to dramatically decline as pHsw is decreased from 7.9 to 7.5 indicates that there are limits to the extent that coralline algae can mitigate the effects of more extreme ocean acidification. Indeed, at extremely low pHsw, mineralogical changes (high Mg calcite to gypsum ratio) are induced in other species of coralline
algae (Kamenos et al., 2016). Together, these findings have implications for how Neogoniolithon sp. will cope with increasing ocean acidification in the future.

4.3 Intra-treatment variability and implications for the boron isotope proxy

One notable feature of the δ11B presented here for Neogoniolithon sp. is the degree of variability between specimen replicates within pH_{sw} treatments. Although some degree of scatter between replicates is often observed in other culture studies, in this case it reached ca. 6 ‰. Some of this scatter may be influenced by the heterogeneity of the bulk samples, as microstructural differences have been shown to affect δ11B in aragonitic corals by up to 10 ‰ (Blamart et al., 2007), and laser ablation δ11B has revealed variations of up to 6 ‰ in other species of coralline algae (Fietzke et al., 2015). That the spread in δ11B is still fairly large at the pH_{sw} closest to ambient confirms this is not a methodological artefact where pre-experimental skeleton is inadvertently sampled, but rather is a primary feature of this species of coralline red algae. This is also confirmed by the lack of correlation between the scatter from the mean δ11B for each treatment and the mass of CaCO_3 measured (Figure SM2).

Despite this spread in δ11B for a given treatment, there remains good correlation between B/Ca and δ11B (Figure 3). Although the strength of this correlation is perhaps unexpected given some related studies (e.g. Douville et al., 2010; Henehan et al., 2015), this further supports the assertion that coralline algal calcification rate, δ11B and B/Ca are controlled by pH_{cf} of the algae, and that there is considerable variability in pH_{cf} amongst individuals.

The finding that coralline red algal δ11B responds to pH_{sw} suggests that this is a potential taxon for reconstructing palaeo-pH_{sw}; a conclusion that is particularly noteworthy given coralline algae’s ability to produce long growth records in high-latitude oceans, where palaeo-pH_{sw} records are sparse (Fietzke et al., 2015). Despite these encouraging results, further work on Neogoniolithon is clearly required to determine whether the δ11B of this genus of coralline algae
offers the precision and accuracy needed to reliably reconstruct past changes in pHsw,
particularly in light of their strong inter-specimen variability in boron geochemistry.

5.0 Conclusion

We find that statistically significant relationships exist in cultures of the coralline red algae *Neogoniolithon* sp. between $\delta^{11}B$ and pHsw, $\delta^{11}B$ and skeletal B/Ca, and pHcf and net calcification rate. Skeletal $\delta^{11}B$ in this species is considerably elevated compared to $\delta^{11}B$ of both seawater borate and most other examples of biogenic carbonate, suggesting an average pHcf increase of more than 1 pH unit relative to pHsw. An observed correlation between calcification rate and pHcf suggests that the algae promote calcification by elevating pHcf. Furthermore, the observation that ΔpH increased as pHsw decreased from 8.2 to 7.9 suggests that this species of coralline red algae is able to mitigate the effects of moderate ocean acidification via pH regulation at the site of calcification. However, the observation that pHcf and calcification rates decreased when pHsw was reduced to 7.5 suggest that there is a limit to the extent to which this species can mitigate the effects of extreme ocean acidification.

Acknowledgements

Financial support for this study was provided by the Natural Environmental Research Council (UK) to H.K.D. (grant number 1362080) and G.L.F. (NE/H017356/1). J.B.R. acknowledges funding from NSF-BIO-OCE 1437371 and NSF-BIO-OCE 1459706 and acknowledges Northeastern University’s Marine Science Center. We thank J. A. Milton and M. J. Cooper (University of Southampton) for their assistance during MC-ICPMS work. Discussions with A. J. Poulton and C. M. Moore are gratefully acknowledged. The authors also thank associate editor Claire Rollion-Bard, and three reviewers (Nick Kamenos and two anonymous) for their constructive feedback that led to an improved version of this manuscript.
References

for ocean and society from different anthropogenic CO2 emissions scenarios. *Science (80-.).* **349, aac4722-1-aac4722-10.

180, 185–195.

Figure captions

Figure 1. Calcification rates of coralline red algae plotted against pH_{sw}. Comparison between calcification trends in coralline red algae described in Smith and Roth (1979); Bossiella orbigniana (A) and Ries et al. (2009; Neogoniolithon sp.) (B). Although calcification rates are reported in different units, both studies suggest that coralline algae exhibit a parabolic calcification response to CO_{2}-induced ocean acidification, with an optimum near pH_{sw} 7.9.

Figure 2. δ^{11}B of the coralline red algae Neogoniolithon sp. measured using MC-ICPMS, plotted against pH_{sw}. Black circles filled with grey represent replicates measured at each pH_{sw}, and the mean δ^{11}B of each culture experiment is shown as a filled black circle. The δ^{11}B of all measured samples are elevated relative to aqueous borate (blue line) by +12 % on average. δ^{11}B compositions of a crustose species of Neogoniolithon coralline red alga and various scleractinian corals grown at different pH_{sw} are plotted in open coloured symbols (Cornwall et al., 2017; Honisch et al., 2004; Reynaud et al., 2004; Krief et al., 2010; Anagnostou et al., 2012; McCulloch et al., 2014).

Figure 3. Least squares linear regression of B/Ca and Sr/Ca against δ^{11}B composition. (A) B/Ca ratios in Neogoniolithon sp. show a strong positive correlation when regressed against δ^{11}B composition. (B) Sr/Ca ratios show slightly less well-defined trends when regressed against δ^{11}B composition, although both reveal statistically significant correlations.

Figure 4. pH_{cf} vs. pH_{sw} (A) and ΔpH (pH_{cf} – pH_{sw}) vs. pH_{sw} (B). An apparent parabolic relationship is observed in A, with a maximum at pH_{cf} ~7.95. In B, ΔpH also exhibits a similar relationship with pH_{sw} suggesting that coralline red algae increase their pH_{cf} by increasingly larger amounts under acidified conditions to support biogenic calcification. At extremely low pH_{sw}, the shape of the curve suggests that coralline red algae have reached the limit of the extent to which they can elevate pH_{cf} relative to pH_{sw}. The filled black circles indicate mean values. This branching species of Neogoniolithon coralline red algae is compared with a crustose species of Neogoniolithon (stars) from Cornwall et al. (2017).

Figure 5. B/Ca and Sr/Ca regressed against pH_{sw}. Sr/Ca ratios (A) of Neogoniolithon sp. are strongly linearly correlated with pH_{sw}, while B/Ca is strongly correlated with an apparent parabolic relationship with pH_{sw} (B). Sr/Ca (C) is not significantly correlated with B/Ca, although the trend is nearly significant. The filled black circles indicate mean values.

Figure 6. The relationship between the pH_{cf} and net calcification of Neogoniolithon sp. (A) This positive correlation between the mean pH_{cf} and mean calcification rate indicates a reduction in calcification rate with decreasing pH_{cf} (B) Across treatments, pH_{cf} (black circles) is influenced by pH_{sw}, which also affects net calcification (red squares). The similarity between the two negative curves highlights the link between calcification rate and pH_{sw}, but also reveals the resilience of coralline red algae to moderate ocean acidification. The algae are able to mitigate moderate pH_{sw} reduction, but are unable to calcify efficiently at extremely low pH_{sw} values.

Table captions

Table 1. Summary of each experimental treatment showing measured element ratios and δ^{11}B composition. The mean of each variable measured is shown in bold, 1σ are shown in parentheses. The sample shown in red is anomalous and is therefore excluded from subsequent discussion (also excluded from means). Therefore n = 16 for all regression analyses.

Table 2. Mean skeletal δ^{11}B compositions for each experimental treatment, along with percentage of boric acid (enriched in ^{11}B by 27.2 %) required to be incorporated into the algal calcite to generate the measured δ^{11}B composition, assuming that δ^{11}B of the borate portion of the algal calcite is equal to seawater borate. Net calcification indicates that algae from the pH_{sw} 8.19 and 7.49 treatments have the slowest calcification rates, yet also require the smallest apparent proportion of boric acid. pH_{cf} indicates mean calcification site pH for each treatment, and ΔpH describes the change in pH according to the equation ΔpH = pH_{cf} – pH_{sw}. 1σ are shown in parentheses.
<table>
<thead>
<tr>
<th>ρCO₂</th>
<th>pH</th>
<th>δ^{13}B ‰</th>
<th>B/Ca µmol mol$^{-1}$</th>
<th>11B nmol</th>
<th>Sr/Ca mmol mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Replicate</td>
<td>Duplicate</td>
<td>Average</td>
<td>Experiment mean</td>
</tr>
<tr>
<td>409 (6)</td>
<td>8.19</td>
<td>40.61 (0.10) 39.18 (0.11) 39.90</td>
<td>815 (41) 686 (34) 751</td>
<td>800 (132) 533 (57) 667</td>
<td>2.89 (0.14) 2.99 (0.15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.44 (0.13) 31.38 (0.11) 31.41 (1.33) 32.17</td>
<td>454 (29) 439 (39) 447</td>
<td>511 (78)</td>
<td>415 (62)</td>
</tr>
<tr>
<td>606 (7)</td>
<td>8.05</td>
<td>35.02 (0.10) 34.60 (0.11) 34.81</td>
<td>628 (52) 521 (24) 575</td>
<td>545 (24) 440 (50) 493</td>
<td>3.07 (0.06)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.90 (0.10) 32.03 (0.14) 35.77 (0.11)</td>
<td>516 (27) 565 (8) 542 (9)</td>
<td>550 (26)</td>
<td>516 (36)</td>
</tr>
<tr>
<td>903 (12)</td>
<td>7.91</td>
<td>32.05 (0.16) 31.99 (0.10) 32.02 (2.16) 33.45</td>
<td>488 (44) 572 (15) 530</td>
<td>452 (18) 513 (25) 483</td>
<td>2.95 (0.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.75 (0.11) 30.18 (0.15) 36.26 (0.10) 34.03 (0.10)</td>
<td>547 (3) 506 (32) 670 (84) 524 (19)</td>
<td>555 (66)</td>
<td>477 (49)</td>
</tr>
<tr>
<td>2856 (54)</td>
<td>7.49</td>
<td>27.31 (0.18) 27.47 (0.18) 27.78 (0.21)</td>
<td>352 (18) 404 (19) 352 (18)</td>
<td>377 (29)</td>
<td>373 (149) 163 (74)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.42 (0.22) 26.75 (1.56)</td>
<td>401 (17)</td>
<td>108 (39)</td>
<td>108 (39)</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th>pCO_2</th>
<th>pH$_{sw}$</th>
<th>δ^{11}B</th>
<th>B(OH)$_3$</th>
<th>Net calcification</th>
<th>pH$_{cf}$</th>
<th>ΔpH</th>
</tr>
</thead>
<tbody>
<tr>
<td>μatm</td>
<td></td>
<td>%</td>
<td>%</td>
<td>wt% / 60 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>409 (6)</td>
<td>8.19 (0.03)</td>
<td>32.17 (1.33)</td>
<td>44 (4)</td>
<td>5.7 (2.9)</td>
<td>9.04 (0.11)</td>
<td>0.85 (0.11)</td>
</tr>
<tr>
<td>606 (7)</td>
<td>8.05 (0.06)</td>
<td>33.58 (2.16)</td>
<td>57 (7)</td>
<td>14.5 (6.6)</td>
<td>9.18 (0.20)</td>
<td>1.13 (0.20)</td>
</tr>
<tr>
<td>903 (12)</td>
<td>7.91 (0.03)</td>
<td>33.45 (2.38)</td>
<td>60 (8)</td>
<td>10.7 (4.7)</td>
<td>9.17 (0.22)</td>
<td>1.26 (0.22)</td>
</tr>
<tr>
<td>2856 (54)</td>
<td>7.49 (0.02)</td>
<td>26.75 (1.56)</td>
<td>46 (6)</td>
<td>3.6 (3.5)</td>
<td>8.67 (0.10)</td>
<td>1.18 (0.10)</td>
</tr>
</tbody>
</table>
Table SM1. Further details of the culture experiment from Ries et al. (2009). Values for all tanks as well as individual culture treatment tanks are shown with ± 1σ.

Table SM2. Statistical analysis of all parameters investigated in this study. Regressions, regression equations and significance values are all described in further detail.

Figure SM1. Sr/Ca vs. DIC (A), B/Ca vs. DIC (B), and B/Ca vs. net calcification (C). These relationships were explored further following a recent paper investigating foraminalfer Sr/Ca as a new carbonate system proxy (Keul et al., 2017). With an enhanced DIC influx, Ω increases, and therefore Ca influx decreases, hence a positive relationship can be found between DIC and Sr/Ca. Net calcification appears to have a dominant role in determining B/Ca, as opposed to DIC determining Sr/Ca. B/Ca ratios have a strong positive correlation with net calcification, and whilst there is a negative relationship present between B/Ca and DIC, this is most likely due to typically lower calcification rates at higher DIC.

Figure SM2. Size of sample plotted against difference from mean δ¹¹B. This relationship reveals there are comparable ranges of difference between the measured δ¹¹B and the mean δ¹¹B for every pHsw treatment, no matter the size of sample measured. This indicates there is no bias towards larger samples, and that δ¹¹B is unaffected by the size of the initial sample.

References

Table SM1.

<table>
<thead>
<tr>
<th>Sample location</th>
<th>All</th>
<th>pH 8.19</th>
<th>pH 8.05</th>
<th>pH 7.91</th>
<th>pH 7.49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tanks</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter rate (L/h)</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irradiance (W/m²)</td>
<td>426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{sp} (Mucci, 1983)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1 and K_2 (Roy et al., 1993)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature (°C)</td>
<td>25.0 ± 0.055</td>
<td>25.0 ± 0.152</td>
<td>25.1 ± 0.164</td>
<td>24.9 ± 0.130</td>
<td></td>
</tr>
<tr>
<td>Salinity (psu)</td>
<td>31.8 ± 0.207</td>
<td>31.7 ± 0.118</td>
<td>31.5 ± 0.155</td>
<td>31.8 ± 0.258</td>
<td></td>
</tr>
<tr>
<td>Ω_{arag}</td>
<td>3.12 ± 0.221</td>
<td>2.40 ± 0.420</td>
<td>1.84 ± 0.129</td>
<td>0.90 ± 0.050</td>
<td></td>
</tr>
<tr>
<td>DIC</td>
<td>1738 ± 50.35</td>
<td>1786 ± 100.71</td>
<td>1903 ± 45.91</td>
<td>2350 ± 33.21</td>
<td></td>
</tr>
</tbody>
</table>
Table SM2.

<table>
<thead>
<tr>
<th>Parameter 1</th>
<th>Parameter 2</th>
<th>Regression</th>
<th>Equation</th>
<th>R^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{11}B</td>
<td>pH$_{sw}$</td>
<td>Curve</td>
<td>$y = -30x^2 + 472x - 1846$</td>
<td>0.73</td>
<td>< 0.001</td>
</tr>
<tr>
<td>δ^{11}B</td>
<td>B/Ca</td>
<td>Linear</td>
<td>$y = 0.034x + 14.8$</td>
<td>0.77</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>δ^{11}B</td>
<td>Sr/Ca</td>
<td>Linear</td>
<td>$y = -10.8x + 65.6$</td>
<td>0.33</td>
<td>< 0.05</td>
</tr>
<tr>
<td>pH$_{cf}$</td>
<td>pH$_{sw}$</td>
<td>Curve</td>
<td>$y = -2.4x^2 + 38.5x - 143.8$</td>
<td>0.66</td>
<td>< 0.001</td>
</tr>
<tr>
<td>ΔpH</td>
<td>pH$_{sw}$</td>
<td>Curve</td>
<td>$y = -2.4x^2 + 37.6x - 144.3$</td>
<td>0.46</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Sr/Ca</td>
<td>pH$_{sw}$</td>
<td>Linear</td>
<td>$y = -0.53x + 7.3$</td>
<td>0.59</td>
<td>< 0.001</td>
</tr>
<tr>
<td>B/Ca</td>
<td>pH$_{sw}$</td>
<td>Curve</td>
<td>$y = -833x^2 + 13258x - 52173$</td>
<td>0.72</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sr/Ca</td>
<td>B/Ca</td>
<td>Linear</td>
<td>$y = -0.001x + 3.6$</td>
<td>0.22</td>
<td>0.06</td>
</tr>
<tr>
<td>pH$_{cf}$</td>
<td>Calcification rate</td>
<td>Linear</td>
<td>$y = 0.023x + 8.8$</td>
<td>0.29</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Calcification rate</td>
<td>pH$_{sw}$</td>
<td>Curve</td>
<td>$y = -34x^2 + 545x - 2161$</td>
<td>0.94</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>