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Abstract. We aim to develop a process by which we can extract generic
features from aerial image data that can both be used to infer the pres-
ence of objects and characteristics and to discover new ways of represent-
ing the landscape. We investigate the fine-tuning of a 50-layer ResNet
deep convolutional neural network that was pre-trained with ImageNet
data and extracted features at several layers throughout these pre-trained
and the fine-tuned networks. These features were applied to several su-
pervised classification problems, obtaining a significant correlation be-
tween the classification accuracy and layer number. Visualising the ac-
tivation of the networks’ nodes found that fine-tuning had not achieved
coherent representations at later layers. We conclude that we need to
train with considerably more varied data but that, even without fine
tuning, features derived from a deep network can produce better classi-
fication results than with image data alone.

Keywords: Remote sensing, Deep learning, Feature extraction

1 Introduction

To serve its public task and meet customers’ requirements, Ordnance Survey,
Britain’s mapping agency, interprets the landscape to create digital representa-
tions portraying and characterising human-made (e.g. pylons, buildings, roads)
and natural (e.g. rivers, moorland, boulder fields) real-world objects for a wide
range of applications such as routing, asset management, planning and geospatial
modelling. Increasingly diverse and subtle objects and landscape characteristics
are required such as the location of hedgerows or the age of buildings. In a
rapidly changing commercial environment, it is essential that mapping agencies
build approaches that can respond quickly to customers’ changing needs - both in
response to customers’ requests and in anticipation of their future requirements.

Both field survey and remote sensing survey are used to create and maintain
detailed mapping products. The majority of information extraction from remote
sensing data is done so by expert interpreters using manual processes. For ex-
ample, digital plotting using stereo imagery is employed to define the perimeter
of real-world objects. With better instrumentation and the pressure to improve
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data currency, the volume of data being acquired is increasing. Clearly, man-
ual capture methods will struggle to scale with increased data and demand. A
few, rules-based, automatic approaches are also used but as data and products
develop, these rules need to be manually updated, usually at considerable cost.

Machine learning offers an approach that allows models to develop as the
real world, data and customer needs change. Recent breakthroughs in image
interpretation have used deep learning [9, 8], which has the ability to extract
“hierarchies of representations” [4]. However, most applications focus on only
the the final layers of the network: either training the network to find the classes
of interest [10, 2] or using the features extracted by the penultimate layer as
inputs to a shallow learning algorithm [7, 6].

Given the complexity of the model being learned [12], deep networks require
a considerable amount of data. Adequate labelled data are rarely available and
so it is impractical to train a deep model for each customer requirement. Instead,
we aim to extract, from remote sensing data, features that are generic to our
existing and future inference problems. Our hypothesis is that we can decode
the signatures of human activities and non-human processes that have shaped
the landscape - Bengio et al.’s “underlying explanatory factors hidden in the
observed data” [1] - to extract descriptors of the landscape. These descriptors
can then be applied as input features to infer the presence of real-world objects or
landscape characteristics . As well as this inference goal, we conjecture that these
features will serve a second, discovery, goal by providing new ways of describing
the landscape. For example, the features may represent the era in which regions
were developed (as is evident in the layout of roads and buildings) or they
may pertain to the risk of flood inundation (as results in identifiable patterns
of vegetation). This presented work focuses on our inference goal by testing
extracted features against a set of classification problems. We also begin to
address our discovery goal by interrogating the weights in the trained networks.

2 Approach

We used the 3-band aerial imagery that makes up our OS MasterMap R© Imagery
Layer (Imagery Layer) product. These images are orthorectified to 25 cm spatial
resolution and are available for all of Great Britain. We also have a topographic
vector product, OS MasterMap R© Topography Layer (Topography Layer), that
portrays real-world objects, such as buildings, roads and fields, as area, line and
point vectors with a range of descriptive attributes. Because the aerial imagery
is orthorectified using detailed terrain and object height data, Topography Layer
has a strong correspondence to Imagery Layer.

In essence, our problem is one of unsupervised learning in that we want to
transform our input data in such a way that draws out factors that we have only
loosely defined in advance - the underlying explanatory factors, or descriptors,
of the landscape. Unsupervised targets can be difficult to specify and so we
opted to set a supervised target for training - Topography Layer data. Our
assumption is that this target will ‘guide’ training towards forming a hierarchy
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of representations of the factors that, in combination, define the landscape as
described in Topography Layer.

From Imagery Layer, we extracted overlapping patches of 224 × 224 pix-
els, corresponding to a square of 56 m × 56 m on the ground. Each patch was
labelled with attribution taken from the vector feature in Topography Layer
that overlaid its centre. To achieve this, we combined the ‘Theme’ attributes for
the vector feature into a string resulting in the following 22 classes: {Roads Tracks

And Paths; Land; Water; Rail; Buildings; Structures; Heritage And Antiquities; Land,Water; Rail,Roads Tracks And Paths; Build-

ings,Structures; Roads Tracks And Paths,Structures; Land,Structures; Land,Roads Tracks And Paths; Roads Tracks And Paths,Rail;

Structures,Water; Water,Structures; Rail,Structures; Water,Land; Roads Tracks And Paths,Water; Land,Rail; Heritage And Antiq-

uities,Land; Buildings,Roads Tracks And Paths}.

To investigate the features learned at depth, we chose to adapt a 50-layer
ResNet [5] (ResNet50) that had been trained on the ImageNet dataset [11]
(weights available in Keras [3]) by performing a fine-tuning operation to en-
able the network to better learn internal representations of our aerial imagery.
With limited processing capacity, fine-tuning allowed the re-use of learned low-
level image features, such as edge and colour filters, focussing the computational
effort on tailoring the network to a new data domain. Fine-tuning was performed
by fixing all layers of the network except the last one for 50 epochs, and then
training all layers for a further 50 epochs. We used a stochastic gradient de-
scent optimiser with an initial learning rate of 1e-4 and momentum of 0.8 for
fine-tuning. Each epoch consisted of approximately 1.2 million image-class pairs
sampled from the Southampton area in the South of the UK (containing a mix
of water, urban and rural settings). The training pairs were sampled randomly
against the same underlying distribution as the training region. Because of the
vast size of the data used for training it is extremely unlikely that the network
saw the same training instance more than once during the entire training pro-
cess. With a batch size of 32, training the last layer alone took slightly over
9000s per epoch on a single Titan X GPU, and training the entire network took
around 23000s for each epoch. Overall training accuracy was 84.3% and valida-
tion accuracy (on 16000 image-class pairs taken from a region that was not used
during training) was 78.2%.

Towards our inference goal, we performed a series of trials of the features
extracted from the ResNet50 networks for a small labelled dataset from Lin-
colnshire in the East Midlands of the UK. Three different classification prob-
lems were investigated: 1) finding inland water; 2) finding roads and tracks; and
3) differentiating metalled roads and tracks, unmetalled roads and tracks and
a mixture of other classes. These classification problems were selected from a
wider set of manually labelled data because they were particularly difficult for
our rules-based approaches. We did not perform any further training of the deep
networks for these trials. It was noted that they were similar, but not identical,
to classes in the target data.

A patch of 224 × 224 pixels, centred on the location of the class label, was
extracted from the image data. For each classification problem, an ‘other’ class
was drawn from labelled patches not currently being used (these included classes
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such as ‘scrub’, ‘solar panels’). The patches were shuffled and balanced such that
the same number of patches was available for each class, including the ‘other’
class, in each trial. The numbers of examples were approximately 100, 90 and
40 for problems 1), 2) and 3), respectively. Each patch was forward-propagated
through both the ImageNet and fine-tuned ResNet50 networks and the maximum
activation at each node was returned forming a feature set for each selected layer.
For comparison, we also created a feature set from values taken directly from
the central 12 by 12 pixels of each patch, which resulted in a vector of similar
magnitude to feature sets from the later layers of the deep networks. Feature
sets were input to linear support vector machine classifiers, which were trained
against each of the 3 classification problems. For each classification problem and
feature set combination, training was performed over 10 different folds of the
data. For 5 of these, the regularization parameter, C, was tuned using 10 folds
of a separate verification dataset. For the other 5 folds, the C parameter was
set to 1.0. For each test, the average classification accuracy was taken over the
5 folds of the data. The resulting accuracies are compared in Figure 1. Towards
our discovery goal, we studied the nodes’ receptive fields by visualising the parts
of the data that most activated each node using a similar method to [14].
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Fig. 1: Boxplots showing the accuracy against (1a) the classification problem,
(1b) the network weights, (1c) the layer from which the features were extracted
and (1d) whether or not the C parameter was tuned. In (1b) and (1c), ‘im-
age’ refers to the trials using pixel values as input features. ‘conv1’, ‘conv3 x’,
‘conv4 x’ and ‘conv5 x’ are regions increasingly deep within the network as de-
scribed in [11]. The number of trials for each plot is given above the x-axis.
Outliers are represented by dots.

Over the 54 tests, the classification accuracy averaged 73.8%. It is evident
in 1b that using features derived from the deep networks increases classification
accuracy but that there is only a small improvement with fine-tuning. In 1c,



Inference and Discovery in Remote Sensing Data with Deep Networks V

deeper features tend to result in higher classification accuracy and a large cor-
relation (r=.70) was found between layer number and classification accuracy.

The early layers of the network responded to our data as would be expected
for any image data, having nodes that are activated by edges and colours and,
at intermediary layers, particular shapes such as circles. However, although we
observed a divergence between the receptive fields in the ImageNet and the
fine-tuned network, at later layers, no discernable label could be applied to the
activations of the nodes, even with fine-tuned weights.

3 Discussion and Conclusions

We have initiated research into extracting generic features from remote sensing
data and applied these to our inference and discovery goals. Topography Layer
provided labels for a large training dataset. However, the chosen 22 classes were
poorly balanced resulting in few examples for some classes. For future work, we
are developing a more balanced set of labels based on Topography Layer.

The large correlation between accuracy and layer number is evidence that
more useful features are learned deeper within the network. Even features taken
from deep layers of the network trained only with ImageNet achieved promising
classification accuracies. Our investigation of the receptive fields demonstrated
that early layers of the network represented generic image features, yet we were
not able to interpret the representations at later layers even following fine-tuning.
Further, it is likely that concepts are represented as a combination of activations
within the network (and not just high activations). Future research will therefore
investigate how the whole layer represents the input data using techniques such
as clustering and dimensionality reduction on outputs at each layer.

Most image datasets applied to deep learning, such as the ImageNet chal-
lenge data, comprise scenes in which the labelled objects are well framed within
the view. Even aerial image benchmark datasets, such as UC Merced Land Use
Dataset [13], feature objects centred within the frame. In contrast, region- and
country-wide aerial imagery comprise continuous real-world features that occur
with equal probability anywhere within the view, at any orientation. Further, the
kinds of real-world objects that remote sensing is often concerned with (roads,
fields, buildings, etc.) are extremely variable in scale and shape. One way of
interpreting a trained CNN is as a set of templates that represent the most
commonly encountered structure within the dataset. The variation in position,
orientation, scale and shape presents a particular problem for feature learning
from remote sensing data. Thus, the training data for our classification problems
were not typical of most patches from remote sensing data because the objects
were centred in the patch, even for the ‘other’ class. Whilst the classification ac-
curacy within these tests was promising, when we applied the classifier to whole
images the results were noisy and demonstrated that more typical training ex-
amples are needed to develop a usable inference tool for our data. This principle
is also pertinent to training and fine-tuning a deep network and may explain
why fine-tuning did not result in interpretable representations in later layers.
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To date, we have not extracted the underlying explanatory factors that we
desire from our remote sensing data. We conclude that greater consideration of
the training data is required to ensure that datasets, for both deep networks and
shallow inference networks, protray real-world objects with the full variance of
position, orientation, scale and shape.
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