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Abstract  

 

 The processing of bulk metals through the application of severe plastic deformation 

leads to significant grain refinement and a consequent strengthening of the material.  High-

pressure torsion (HPT) generally refers to the processing of disk samples and this technique is 

especially effective in producing extremely small grains.  Recently, new experiments were 

conducted in which disks of two different alloys, based on aluminum and magnesium, were 

stacked together and then processed by HPT for up to 20 turns at room temperature. Analysis 

after processing revealed the formation of a multi-layered structure in the central region of 

the disks but with a true nanoscale microstructure containing different types of intermetallic 

compounds within an Al matrix leading to the formation of metal matrix nanocomposites at 

the disk edges.  Measurements showed a lowering of density at the disk edges, thereby 

confirming the potential for using HPT to fabricate materials with exceptionally high 

strength-to-weight ratio. 
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1. Introduction 

True nanostructures in bulk materials are difficult to produce using established 

engineering techniques, especially when considering the practical and societal needs of 

materials selection. Light-weight metals of aluminum and magnesium are conventional 

materials having excellent mechanical properties and with good strength-to-weight ratios in 

the finished products so that these metals are widely used for structural applications in the 

automotive, aerospace and electronic industries.  

An earlier report demonstrated an increase in the strength limit of an aerospace-grade 

Al-7075 alloy through the application of high-pressure torsion (HPT) while maintaining 

appropriate formability.1 Processing by HPT is a most promising severe plastic deformation 

(SPD) technique producing true nanometer grains leading to and providing an excellent 

potential for achieving high hardness in most bulk metals.2 In recent years, because of the 

introduction of intense plastic strain during processing, HPT has also been applied for the 

consolidation of metallic powders3-10 and the bonding of machining chips11,12. 

There is, however, a saturation in the improved mechanical properties by grain 

refinement and further superior properties are not easy to obtain by processing directly on the 

alloy unless a subsequent SPD processing technique is applied on the processed material.13 

Utilizing the conventional processing of HPT, it is anticipated that it may be possible to 

produce a new metal system from a combination of simple dissimilar metal solids and, in 

addition, the metal system may exhibit superior mechanical properties which are above the 

upper limit of the properties that may be achieved by these individual base metals through 

SPD.  Thus, this report was initiated to suggest an alternative method for fabricating a high 

performance material by bonding dissimilar metals for synthesizing new metal systems 

through the application of HPT.   
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Accordingly, a new approach of applying conventional HPT processing was studied 

for the formation of an Al-Mg hybrid system and ultimately attaining a metal matrix 

nanocomposite (MMNC) from separate Al and Mg disks at room temperature through 

diffusion bonding of Al and Mg alloys at room temperature (RT). The present study shows 

the unique microstructure and hardness distributions and also provides a detailed analysis of 

the strengthening mechanism for the Al-Mg hybrid system formed by HPT. The results 

demonstrate the feasibility of HPT processing in the preparation of new alloy systems and a 

wide range of MMNCs exhibiting exceptionally high strength-to-weight ratio.  

2. Processing of the Al-Mg system 

The experiments were conducted using a commercial purity Al-1050 aluminum alloy 

and a ZK60 magnesium alloy where these materials were received as extruded bars having 

diameters of ~10 mm.  These bars were cut into billets with lengths of ~65 mm and a number 

of disks was sliced from the billets and polished to achieve uniform thicknesses of ~0.83 mm. 

The direct bonding of the Al and Mg disks was performed through conventional HPT 

processing at RT following the general processing procedure described earlier14 using a 

quasi-constrained facility15,16 under a hydraulic pressure of 6.0 GPa for 1, 5, 10 and 20 turns 

at a rotational speed of 1 rpm. In particular, separate disks of the Al and Mg alloys were 

placed in the depression on the lower anvil in the order of Al/Mg/Al where the Mg disk was 

positioned between the two Al disks but without using any glue or metal brushing treatment. 

A schematic illustration of the piled up disks between the conventional HPT anvil set-up is 

shown in Fig. 1(a).17,18   

Overviews of the microstructures are shown in Fig. 1(b)17,18 at the cross-sections of 

the disks by optical microscopy (OM) after HPT for 1, 5 and 10 turns from the top, 

respectively, where the bright regions denote the Al-rich phase and the dark regions 

correspond to the Mg-rich phase in these micrographs. As is apparent in Fig. 1(b), a multi-
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layered structure with fragmented Mg layers with thicknesses of ~200 µm was visible 

without any segregation throughout the disk after 1 turn.  A similar microstructure consisting 

of multi-layers of the Al and Mg phases was observed at the central regions at r <2.0 and 

<1.0 mm of the disks after 5 and 10 turns, respectively, where r denotes the radius of the HPT 

disk. However, the disk edge at r >2.5 mm after 5 turns demonstrated a unique microstructure 

involving a homogeneous distribution of very fine Mg phases with thicknesses of ~5-10 µm 

to even a true nano-scale of ~100-500 nm within the Al matrix. Moreover, there was no 

evidence of visible Mg phases at the disk edge at ~3< r <5 mm after 10 turns.  

Figure 1(c) shows the distribution of Vickers microhardness over the vertical cross-

sections of the processed Al-Mg disks after 1-10 turns. The measured hardness values were 

visualized by constructing color-coded hardness contour maps for the disks after 1, 5 and 10 

HPT turns from the top, respectively, where the detailed hardness values are indicated in the 

key on the right. For reference, the Vickers microhardness, Hv, were ~65 for the Al-1050 

alloy20 and ~110 for the ZK60 alloy21 when processed by HPT for 5 turns and thus these Hv 

values reached a saturation level across the disk diameters due to sufficient torsional 

straining.22,23 

The overall cross-section after HPT for 1 turn shows an average microhardness value 

of ~70 which is similar to the value for the base material of the Al alloy processed for 5 HPT 

turns.  This low hardness value remains constant at the disk centers at r <3.0 mm and <2.5 

mm of the Al-Mg disks after 5 and 10 HPT turns, respectively. However, high hardness with 

a maximum of Hv ≈ 130 was observed at the periphery of the disk after 5 turns where the fine 

Mg phase was homogeneously distributed within the Al matrix.  Moreover, there is a 

significant increase in Hv after 10 turns where a maximum hardness of ~270 was achieved at 

the peripheral region at r >3.0 mm. These high hardness values measured in the Al-Mg 

system after HPT are much higher than the base alloys of Al and Mg after HPT and a detailed 
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microstructural analysis was followed in order to understand the hardening mechanism of this 

unique Al-Mg system produced by HPT processing.  

3. Formation of MMNCs and the hardening mechanism 

The detailed microstructure was analyzed at the disk edges after 5 and 10 turns and 

these results are shown in Figs 2 and 3, respectively. A micrograph taken by transmission 

electron microscopy (TEM) is shown in Fig. 2(a) for the disk edge after 5 HPT turns17-19 

where the Al matrix phase consists of a layered microstructure with thicknesses of ~90-120 

nm and the average spatial grain size, d, in the Al matrix phase was ~190 nm. As indicated, 

there is a single visible Mg phase in the TEM micrograph and it has a homogeneous bonding 

interface with the Al matrix without any visible voids. Moreover, within the Al matrix phase 

there were several very thin layers with an average thickness of ~20 nm as indicated by the 

white arrows. 

Close examination was conducted on the thin layers through quantitative chemical 

analysis by point scanning at the two different locations on a thin layer and a location out of 

the thin layer and by line scanning at the location across the thin layer where these examined 

locations are marked in blue points and a white line, respectively, in Fig. 2(b) and the result 

of the line scanning is shown in Fig. 2(c) for elements of Al, Mg and O marked in different 

colors.17    

The point scanning and the line profile revealed that the thin layers are composed of 

an intermetallic compound of β-Al3Mg2 which has a low density of ~2.25 g/cm3.24   Since the 

thin layers existed irregularly in the Al matrix as seen in Fig. 2(a), the HPT processing 

demonstrated the formation of an intermetallic-based MMNC in the Al-Mg system at the disk 

edge after 5 turns. It is anticipated that β-Al3Mg2 provides an excellent potential for 

reinforcing the MMNC by improving the hardness and strength as was shown in Fig. 1(c). 

The point analysis also demonstrated that the Al matrix contains ~0.21 wt.% Mg which is 
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higher than ~0.05 wt.% Mg in the initial Al-1050 alloy.  However, it is lower than the 

maximum solubility of ~1.4 wt.% Mg in Al at RT, thereby suggesting no formation of a 

supersaturated solid solution in the Al-Mg system at the disk edge after 5 HPT turns.  

Detailed microstructural characterization was conducted on the Al-Mg disk after 10 

HPT turns using a high resolution TEM analysis, a chemical analysis by energy-dispersive X-

ray spectroscopy (EDS) in a scanning transmission electron microscope (STEM) and an X-

ray diffraction (XRD) analysis using Materials Analysis Using Diffraction (MAUD) 

software.  It should be noted that there was no evidence of an Mg-rich phase at the disk edge 

after HPT for 10 turns.  

A TEM micrograph in Fig. 3(a) showed a true nanostructure with a spatial grain size 

of ~90 nm at the disk edge.17 A detailed chemical analysis observed an irregularly-distributed 

intermetallic compound, β-Al3Mg2, as a form of thin layers of ~30 nm in the Al matrix as 

shown in Fig. 3(b). In addition, a high resolution TEM analysis and an XRD analysis as 

shown in Fig. 3(c) and (d), respectively, revealed the formation of another intermetallic 

compound of γ-Al12Mg17 in the Al matrix, while the very small amount of β-Al3Mg2 with <5 

vol.% was not detected in the X-ray analysis. It should be noted that the additional point 

analysis at the Al-rich phase revealed a supersaturated solid solution state with an Mg content 

of >4.7 at.% at the disk edge after 10 turns.17 

It is emphasized that the rapid diffusivity of Mg atoms into the Al matrix is a key 

process for the diffusion bonding of Al and Mg and for the formation of intermetallic 

compounds through HPT.18 Several recent studies demonstrated experimental evidence for 

enhanced atomic diffusion in nanostructured materials processed by ECAP25 and HPT17,26. 

The fast diffusivity in these processed materials may be attributed to the processing 

conditions including severe hydraulic pressure17 and torsional stress26 during HPT processing 

and the high population of lattice defects produced in the nanostructure.25 A recent review 
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describes the significance of the fast atomic mobility during SPD by recognizing the 

significant increase in the vacancy concentration through SPD processing.27 

 The major strengthening mechanisms for achieving exceptional hardness were 

evaluated for the intermetallic-based MMNC synthesized by HPT for 10 turns under 6.0 GPa 

at RT.  Thus, it is assumed to achieve the Vickers microhardness values by the sum of the 

separate strengthening mechanisms expressed by Hall-Petch strengthening due to significant 

grain refinement, solid solution strengthening because of the high content of Mg atoms 

leading to the increased frictional stress within the crystal lattices, and precipitation 

hardening by the thin layers of the β-Al3Mg2 intermetallic compound.28   

The total achievable hardness was estimated with increasing Mg content in an Al 

solid solution matrix in the disk after HPT for 10 turns and the estimation is shown in Fig. 

4.17  Although there was an increasing contribution of solution strengthening with increasing 

Mg contents in the Al matrix, Hall-Petch strengthening by grain refinement was anticipated 

to provide the highest contribution to the total hardness where precipitation hardening was 

almost negligible due to the very small volume of intermetallic compounds in the form of 

thin layers in the synthesized MMNC after 10 turns.  This estimate was in excellent 

agreement with the experimental values of hardness in the synthesized Al-Mg alloy after 

HPT, thereby confirming the simultaneous occurrence of these separate strengthening 

mechanisms. Moreover, the exceptional hardness was also a consequence of the low 

processing temperature and the short operating time which prevents the occurrence of any 

significant microstructural recovery.  Consequently, the synthesis of the MMNC may provide 

the possibility of improving the upper limit on the maximum hardness value in the hybrid Al-

Mg system through HPT processing.   
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4. Future potential of the HPT technique for synthesized hybrid metals  

There have been extensive investigations for improving the physical and mechanical 

properties of metals and materials by grain refinement through the application of SPD.  In 

particular, research in the last decade has demonstrated that SPD processing is also feasible 

for the production of unusual phase transformations and in the introduction of a range of 

nanostructural features.29,30 Therefore, not only improving mechanical properties of separate 

metal samples but also processing by SPD can be developed for the alternative method of 

introducing high performance materials through diffusion bonding of dissimilar metals.  This 

may involve the production of MMNCs as demonstrated by the bonding of Al and Mg alloys 

through HPT. There are limited numbers of reports to date demonstrating a sold-state reaction 

in an Al-Cu system through the bonding of semicircular half-disks of Al and Cu through HPT 

up to 100 turns at ambient temperature31, bonding of a set of two disks of separate Al and Mg 

through HPT for up to 20 turns32 and a vision of architecturing hybrid metals through HPT by 

computational modeling33.   

A very recent report evaluated the upper limitation of achievable hardness when a 

MMNC in the Al-Mg system was processed by HPT for higher numbers of turns. Thus, the 

consistent HPT procedure was applied for a set of three Al and Mg disks for 20 turns and the 

Vickers microhardness was recorded at the vertical cross-section of the processed disk where 

the results of the micrograph and the color-coded hardness map are shown in Fig. 5.34  

It is apparent that the deformed microstructure is reasonably similar to the sample 

conditions in the Al-Mg system after HPT for 5-10 turns as shown in Fig. 1(b).  However, an 

exceptionally high hardness of Hv ≈ 330 was recorded at r ≈ 4.0–5.0 mm followed by Hv ≈ 

150–240 at r ≈ 2.5–3.5 mm while a lower hardness with Hv ≈ 60 was observed at the central 

region of the disk at r < 2.5 mm. The highest hardness of Hv ≈ 330 after HPT for 20 turns is 

significantly higher than the highest value of Hv ≈ 270 recorded after 10 turns as shown in 
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Fig. 1(c), thereby demonstrating a potential of a further enhancement in hardness when 

applying higher straining by HPT.    

 Considering the future potential of the hybrid materials processed by SPD, it is 

necessary to apply quantitative analysis and thus it is reasonable to visualize an enhancement 

in the strength-to-weight ratio of the MMNC synthesized at the disk edges of the Al-Mg 

system by comparison with the base metals of the Al and Mg alloys. Thus, the density was 

measured at the disk edges consisting of MMNCs of the processed Al-Mg hybrid materials 

after 5, 10 and 20 HPT turns and the reference materials of the Al-1050 and ZK60 alloys after 

HPT for 5 turns.  Applying the measured density and hardness values, the strength-to-weight 

ratio was estimated for each material and these measured and calculated values are shown in 

Table 1. It is apparent that the density for the Al-Mg system decreases with increasing HPT 

turns leading to the concurrent occurrence of diffusion bonding, a reduction in the Mg-rich 

phases and the introduction of intermetallic compounds.  Due to the lowered density, the Al-

Mg system after 10 and 20 HPT turns demonstrated an excellent strength-to-weight ratio of 

~350 and 455 MPacm3g-1, respectively, and these values are significantly higher than the base 

materials of the Al and Mg alloys.  

 For better visualization of the enhancement in the strength-to-weight ratio in the Al-

Mg hybrid system processed by HPT, a toughness-strength diagram reported earlier is shown 

in Fig. 6 19 where it delineates the range of fracture toughness and strength-to-weight ratio for 

many metals and materials.35 Assuming a general similarity in the trends of plasticity and 

toughness of materials36, the experimental results for the processed Al-Mg system forming 

HPT-induced aluminum MMNCs are now incorporated into the diagram without delineating 

any upper limits. The border line for the field of the Al MMNCs was applied with the 

extraordinary strength of the hybrid Al-Mg system after 10 HPT turns where Mg atoms 

diffused within the Al matrix completely by rapid diffusion. It is demonstrated from the plot 
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that the strength-to-weight ratio of the HPT-induced Al MMNCs is anticipated to be much 

higher than many steels and Ti alloys and it may even be similar to some strong engineering 

polymeric composites. This evaluation confirms the excellent potential for using HPT 

processing to fabricate materials with exceptionally high strength-to-weight ratio. 

 Finally, the HPT processing is feasible to form a gradient-type microstructure37-39 or a 

heterogeneous nanostructure40 in terms of grain size and composition17-19.41 during the 

formation of new alloy systems and synthesis of MMNCs as was seen in the radial direction 

from the centers of the HPT disks in Fig. 1(b) and Fig. 5. This type of new material 

organization is defined as a heterogeneous architecture material 42 that is a new category of 

structure in engineering materials and it is expected to lead to a significant potential for 

exhibiting excellent mechanical properties.   

5.  Summary and conclusions 

1. Conventional HPT processing was applied successfully for the synthesis of a hybrid Al-

Mg alloy system having a unique microstructural distribution within the disk through the 

diffusion bonding of separate Al and Mg alloy disks. A unique microstructure was 

observed with an Al-Mg multi-layered structure at the disk center and with different types 

of intermetallic-based MMNCs at the disk edges after processing through 5-10 turns.  

2. The exceptional hardness in the MMNC at the Al-Mg disk edge was verified as a 

consequence of Hall-Petch strengthening providing the highest contribution whereas 

strengthening by solid solution and precipitation contributed simultaneously with 

relatively minor contributions.  

3. The synthesized MMNCs in the Al-Mg hybrid system after HPT demonstrated lower 

density with increasing hardness when processing by higher numbers of HPT turns, thus 

exhibiting an excellent potential for HPT processing to fabricate new materials with 

exceptionally high strength-to-weight ratios.  
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Figure captions 

 

Fig. 1 (a) Schematic illustration of the sample set-up for HPT processing and (b) an 

overview of the microstructure and (c) color-coded hardness contour maps taken at 

the vertical cross-sections along the disk diameters after HPT for 1, 5 and 10 turns, 

respectively.17-19 

Fig. 2 TEM micrographs taken at the disk edges after HPT for 5 turns showing (a) a bright-

field image of a layered microstructure, (b) a dark-field image taken at the disk edge 

after HPT for 5 turns with the EDS scanning line marked vertically and (c) the 

scanning result shown in (b) as a plot of the relative intensities with respect to the 

scanning distance for O, Mg and Al marked in blue, green and red, respectively.17 

Fig. 3 TEM micrographs with (a) a bright-field image, (b) a dark-field image and the 

corresponding compositional maps of Al and Mg and (c) a high resolution image and 

(d) the XRD pattern in black and the simulated line profile in red for the edge of the 

Al-Mg system after HPT for 10 turns.17 

Fig. 4 Estimated Vickers microhardness values with increasing Mg content in Al solid 

solutions in the disk after HPT for 10 turns.17 

Fig. 5 An OM micrograph (upper) and a color-coded contour map of the Vickers 

microhardness (lower) for the vertical cross-sectional plane of the Al-Mg disks after 

HPT for 20 turns at room temperature under a pressure of 6.0 GPa.34 

Fig. 6 The range of fracture toughness and strength-to-weight ratio for many metals and 

materials35 where the synthesized Al–Mg system after HPT is incorporated as the 

region of HPT-induced aluminum MMNC without delineating any upper limits.19 
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Table 1. The measured density, the maximum Vickers hardness value, and the estimated 

strength-to-weight ratio for the MMNCs in the Al-Mg system after HPT for 5-20 turns and 

the reference materials of Al-1050 and ZK60 alloys after HPT for 5 turns. 

 

Materials Density 

(g/cm3) 

Maximum hardness  

(Hv) 

Strength-to-weight ratio 

(MPa cm3 g-1) 

MMNC after 5 HPT turns 2.50 130 170 

MMNC after 10 HPT turns 2.48 270 350 

MMNC after 20 HPT turns 2.34 330 455 

Al-1050 alloy after 5 turns 2.73 65 20 80 

ZK 60 alloy after 5 turns 1.84 110 21 190 
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Fig. 1 
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Fig. 2  
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 

 

 

 


