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ABSTRACT

The uncertainty region associated with short arcs is typ-
ically large, making the initialization of orbit estimators
a challenging task. In this work we propose a method to
reduce the size of the uncertainty region using automatic
domain pruning. The initial orbit and its confidence re-
gion are obtained by using a differential algebra-based
initial orbit determination algorithm and a least squares
algorithm. New measurements are used to reduce the size
of the confidence region by retaining only those portions
of the domain in which the likelihood is above a certain
threshold.

Key words: initial orbit determinaion; differential alge-
bra; uncertainty region.

1. INTRODUCTION

The estimated number of resident space objects (RSOs)
larger than 1 cm is around 700, 000 objects [25, 34].
And they all must be seen on a regular basis and very
accurately to perform orbit determination (OD). In the
OD process it is customary to distinguish between initial
orbit determination (IOD) and accurate orbit determina-
tion (AOD). The former is used for the computation of
six orbital elements from six observations with no a pri-
ori knowledge of the spacecraft orbit. IOD provides the
first estimate of the OD process and allows us to know
which portions of the sky should be monitored to ob-
tain additional observations and refine the OD process.
The AOD, on the other hand, is used to improve a pri-
ori orbital elements from a large set of tracking data [24].
Thus, identifying observations belonging to the same ob-
ject (identification problem [23]) will be one of the main
challenges of OD. One requirement to perform reliable
data association is to have realistic uncertainties for ini-
tial orbit solutions, which could also be used to initialize
Bayesian estimators for orbit refinement [27].

OD of small objects is even more difficult, as observa-
tions can be characterised by long observational gaps due
to observability constraints. It is thus important to be able
to perform accurate OD with a single passage of the ob-
ject above an observing station, when a short arc is ob-
served. When an object is detected for the first time on a
short arc, it is highly probable (depending on the obser-
vation strategy) that more than six observations are taken.
The definition of short arc depends on the type of orbit-
ing object, as well as the sensor used to observe it. For
instance, at the telescope Fabra ROA Montsec (TFRM)
facility, a short arc for optical observation of objects in
geostationary Earth orbit (GEO) consists of 5 to 8 obser-
vations separated by 2 minutes. Thus, more observations
than those required for IOD are available, but their distri-
bution along the orbit is not the typical one of AOD (i.e.
observations spread over several orbital revolutions). In-
deed, due to the short interval between each detection,
only partial information about the curvature of the orbit
can be inferred: this means that these observations lead
to large uncertainty about the orbit of the object.

One approach to deal with short arcs is based on attributa-
bles and admissible regions [22]. An attributable, is a
4-dimensional vector containing the information avail-
able from a short arc. In the case of optical observa-
tions, an optical attributable is made of two angles (e.g.
right ascension and declination) and their angular rates
that are computed exploiting the marginal observations of
the short arc, A =

(
α, δ, α̇, δ̇

)
. Independently from the

number of observations acquired for a newly detected ob-
ject, only four quantities are retained in the attributable.
As a result, the orbit is undetermined in the range ρ,
range-rate ρ̇ space. The admissible region lies in the
2D plane generated by the two degrees of freedom of
the attributable and its boundaries are defined by some
physical constraints such as the orbital energy and mini-
mum/maximum distance from the Earth. Recently, a new
feature of the admissible region has been proposed, by
endowing it with statistical properties [11, 15, 36]. This
resulted in the advantage of allowing for the inclusion of
uncertainties in observations, measurements and timing.



Once an estimate of the object orbit has been computed,
it is possible to know when to re-observe the object and
update the previous estimate when new observations are
acquired. Sequential estimators, or filters, update orbit
knowledge without re-processing previous data: they use
the statistical information from the previous processing
and combines it with new measurements. The classi-
cal estimator used in orbit determination is the extended
Kalman filter (EKF), which assumes a Gaussian distribu-
tion. In contrast, the particle filter (PF) is a completely
nonlinear Bayesian estimator that can approximate any
probability density function by using samples. The PF
proves to outperform the EKF in terms of accuracy when
the system is highly nonlinear. The price of its accuracy
is a considerable computational effort. Indeed, particle
filters suffer from the need to propagate a large number
of samples.

In this work, we focus on the OD of objects observed on
a short arc. Instead of using attributables and admissible
regions to deal with short arcs, we attempt to solve a least
squares (LS) problem, in which all the observations be-
longing to a same tracklet are used. The process is started
with an initial guess provided by an IOD solver that uses
the observations at the ends and in the middle of the ob-
servation arc. This strategy was chosen to exploit the full
length of the short arc and obtain information about the
curvature of the orbit. Then an arbitrary order LS solver
is implemented to fully take advantage of differential al-
gebra (DA) techniques [4, 7, 8]. The confidence region
computed using the above-mentioned approach can be
used to initialize a PF, which can cope with highly non-
linear systems (e.g. an orbiting body) and process se-
quential measurements yielding subsequent estimates of
the state vector. However, the confidence region for short
arcs is typically large and nonlinearities play a key role
in its accurate representation. Thus, the number of par-
ticles required to describe this region is large and using
a PF is particularly challenging. In this work we imple-
ment a technique to reduce such domains. The uncer-
tainty region is propagated forward to the next available
observation, using the automatic domain splitting (ADS)
technique to keep the error of the propagated set below a
prescribed threshold on the entire domain. As a result, a
set of boxes in the phase space are available at the time
of a new measurement. The evaluation of the likelihood
function on each of the propagated boxes is used to prune
away those boxes in which the probability of finding the
object is below a given threshold. This procedure can
be repeated until the uncertainty region is reduced to a
dimension that allows for the use of a PF without a pro-
hibitive computational cost.

Summarising, the proposed orbit estimator is made up of
the following blocks:

1. IOD algorithm with DA, used for the computation
of six orbital elements from six observations with no
a priori knowledge of the spacecraft orbit;

2. LS algorithm with DA, that exploits a larger set of
tracking data to improve the orbital elements com-

puted by the IOD algorithm;

3. ADS technique, used to keep the error of the Taylor
expansions, computed by DA techniques, below a
certain threshold;

4. Domain pruning algorithm, which reduces the size
of the confidence region computed by the LS algo-
rithm. In so doing, the computational cost of the
sequential estimator is alleviated;

5. PF, which processes one measurement at a time and
yields subsequent estimates of the orbital parameters
at the time of each measurement.

This work deals with blocks 1, 2 and 4. The remainder
of the paper is organized as follows. At first, IOD and
LS methods are described, taking advantage of DA tech-
niques. The classical computation of the confidence re-
gion is also presented. Then, the PF is introduced and
the domain pruning is used to reduce the size of the ini-
tial confidence region, according to newly-received mea-
surements. Finally, the performances of the proposed ap-
proach are assessed.

2. IOD

OD refers to the use of a set of techniques for estimat-
ing the orbits of objects and is typically divided into two
phases. When the number of observations is equal to the
number of unknowns, a nonlinear system of equations
needs to be solved. This problem is known as IOD. When
many more observations are taken over an orbit arc of ad-
equate length, AOD can be performed [1]. This section
presents an IOD algorithm that exploits DA. Before ex-
plaining the IOD algorithm, the DA framework is intro-
duced.

2.1. The DA framework

DA supplies the tools to compute the derivatives of func-
tions within a computer environment. More specifically,
by substituting the classical implementation of real alge-
bra with the implementation of a new algebra of Taylor
polynomials, any function f of n variables is expanded
into its Taylor polynomial up to an arbitrary order k with
limited computational effort. In addition to basic alge-
braic operations, operations for differentiation and inte-
gration can be easily introduced in the algebra, thus final-
izing the definition of the differential algebra structure of
DA [5, 6]. In the remainder we indicate with δx the DA
variables and with T k

f (δx) the kth order approximation of
f .



2.2. DA solution of the initial orbit determination al-
gorithm

The IOD algorithm takes as input the observation of an
object and gives as output the truncated power series of
the object state at the central time of the observation. To
do so, an initial estimate of the object position at t1, t2
and t3 is obtained through Gauss’ algorithm in double
precision [10]. The observatory state is assumed to be
known, while the direction cosines are found though the
observation angles:

ρ̂ρρi =

[
cos δi cosαi
cos δi sinαi

sin δi

]
(1)

where i = 1, 2, 3 refers to the observation instances.

At this point estimates for the position vectors rrr1, rrr2 and
rrr3 are available in double precision. Now, the velocities
have to be computed. Lambert’s algorithm takes as
input two position vectors and the ∆t between them and
gives as output the velocity vectors. This means that by
computing Lambert’s algorithm twice (from t1 to t2 and
from t2 to t3) one should be able to retrieve the three state
vectors. However, Gauss’ algorithm does not ensure that
the three estimated vectors define one unique orbit, thus
it does not ensure that the two velocity vectors found at
t2 (vvv−2 and vvv+

2 ) coincide, as can be seen in Figure 1.

Figure 1. Output of Lambert algorithm taking as input
the output from Gauss’s algorithm

To fix this problem and obtain the expansion of the state,
Lambert’s algorithm will be used twice: the first time to
find the δρρρ = (δρ1, δρ2, δρ3) necessary to ensure that
vvv−2 = vvv+

2 and the second one to expand the corrected
solution (rrr2, vvv2) with respect to the observation angle
variations δααα, δδδδ. The first step allows us to improve the
estimation of the ranges made in Gauss’ algorithm by
forcing the three estimates to be part of the same orbit,
while the last step allows us to analyze the variations in
the state vectors due to variations in the observations just
by means of function evaluations. Indeed, although the
observations are our known values, they are not free from
errors: sensor accuracy, timing accuracy and observer
state knowledge all influence the observation, hence it is
important to analyze the neighborhood of the solution.

For the first usage of Lambert’s algorithm, the val-
ues ρ1, ρ2, ρ3 are initialized as DA variables. Equation
2 shows the mathematical definition:

ρ1 = ρ1,Gauss + δρ1

ρ2 = ρ2,Gauss + δρ2

ρ3 = ρ3,Gauss + δρ3

(2)

In this way, the outputs of Lambert’s algorithm are the
velocity functions depending on variations of the slant
ranges. In particular:

vvv−2 = vvv−2 (δρ1, δρ2) (3)

vvv+
2 = vvv+

2 (δρ2, δρ3) (4)

With the goal of solving the discontinuity in t2, the ∆vvv
between the left and right velocities is calculated:

∆vvv = vvv+
2 − vvv

−
2 = ∆vvv (δρ1, δρ2, δρ3) (5)

By forcing ∆vvv = 000 one wants to find the δρρρ necessary
to obtain it. Newton’s method for DA [2] is used here.
Thus, from

∆vvv (ρ1, ρ2, ρ3; δρ1, δρ2, δρ3) = 000 (6)

one obtains: 
ρ1,L1 = ρ1,Gauss + ∆ρ1

ρ2,L1 = ρ2,Gauss + ∆ρ2

ρ3,L1 = ρ3,Gauss + ∆ρ3

(7)

such that

∆vvv (ρ1,L1, ρ2,L1, ρ3,L1; 0, 0, 0) = 000 (8)

At the end of this step, one has obtained the states of the
object that satisfy the constraint of pertaining to a unique
orbit. However, the solution is expanded with respect to
the slant ranges. Lambert’s algorithm is used again, ini-
tializing the observations as DA variables. The resulting
solution will thus be expanded with respect to the obser-
vations. The non-constant parts of the angle polynomials
are scaled by the precision of the observation σP,i, so that
by evaluating the final solution within the interval [−1, 1],
one can find the 3σ interval solution depending on the ac-
curacy. Equation 9 shows the definition:

α1 = α̂1 + σP,1 δα1

α2 = α̂2 + σP,2 δα2

α3 = α̂3 + σP,3 δα3

δ1 = δ̂1 + σP,1 δδ1
δ2 = δ̂2 + σP,2 δδ2
δ3 = δ̂3 + σP,3 δδ3

(9)

At this point ρρρ is the output of the first application of
Lambert’s algorithm in double precision: ρρρ = ρρρL1. The
mathematical grounds for this method are the first order
Newton:

∆vvv (ρρρ) = 000 ⇒ ρρρi+1 = ρρρi − J−1
∆vvv(ρρρ0)

∆vvv(ρρρi) (10)



Here, the assumption is made that the Jacobian does not
change in the loop. The iteration is carried out until i =
MaxOrder, thus until the highest order of the DA variable
is reached. This procedure delivers T k

ρ (δα, δδ), which
expresses how the slant ranges change as a function of
the uncertainty of the observations.

Once the ranges are found depending on the observations,
the position vectors are obtained with

rrri = RRRi + ρi ρ̂ρρi, where i = 1, 2, 3

while the velocities can be calculated with one last Lam-
bert’s procedure.

An important outcome of this method is that one not only
obtains the point solution (used as initial estimate of the
LS, Sec. 3.1), but one can also easily calculate its 3σ
variation by means of functions evaluations.

3. LEAST SQUARES

In this section, the basic formulation of OD as a nonlin-
ear LS problem is summarised. First, we introduce the
LS problem and classical methods employed for its solu-
tion and then we describe the uncertainty of the result as
confidence ellipsoids.

3.1. Classic Formulation

The tracking of RSOs requires the solution of the OD
problem. The goal is to determine the orbit of an object
given some noisy observations. The orbit is described in
terms of an n-dimensional state vector x at a reference
epoch t0. The state vector can be expressed in different
ways: for example, as a position-velocity vector (r,v)
in the Earth-centered inertial (ECI) reference frame, or in
modified equinoctial elements (MEE) [33].

The standard approach to the OD problem is based on the
LS method, devised by Gauss [16]. Starting from a ten-
tative value x = x(t0), the observations are calculated at
each observation epoch. Let y be an m-dimensional vec-
tor that contains the computed observations, y = h(x),
with m being the number of measurements. The nonlin-
ear function h includes

• The propagation from t0 to observation epochs;

• The conversion of the state vector into computed ob-
servations.

Due to sensor noise, the observations y differ from the
actual ones, yobs (a vector with the same dimension as
y): the differences are called residuals.

Let ξ = yobs−y be them-dimensional vector containing
the residuals. The LS solution is the state x∗ that mini-
mizes the target function

J(x) = ξT(x)ξ(x) (11)

To find the minimum, stationary points of J(x) need to
be found, i.e.

xst :
∂J

∂x
(xst) = 0. (12)

Two main difficulties arise when solving Eq. (??) [20]:

• It represents a system of nonlinear equations, gen-
erally without an explicit solution. An iterative
method is thus needed;

• xst can be a minimum, maximum, as well as a sad-
dle. Thus, to ensure that xst is a minimum, it is re-
quired that the Hessian of the target function in the
stationary point, H = ∂2J

∂x2xst, is definite positive.

A system of nonlinear equations can be solved by using
Newton’s method. The method will converge when an
appropriate choice for the initial estimate is used to start
the process. This is generally provided by the solution of
the IOD problem described in Sec 2. At a generic step
i, the solution xi is available (or the IOD solution, when
i = 1). The gradient of J(x) can be expanded to first
order around xi.

∂J

∂x
(x) ≈ ∂J

∂x
(xi) +

∂2J

∂x2
(xi)(x− xi) (13)

Then, the solution at the subsequent step is found by im-
posing (13) to be 0:

0 =
∂J

∂x
(xi) +

∂2J

∂x2
(xi)(xi+1 − xi), (14)

Let F be a m x n matrix composed of the partial deriva-
tives of the residuals with respect to the state vector com-
ponents,

F =
∂ξ

∂x
(xi); (15)

S be a three-index array of shape m x n x n, defined as

S =
∂2ξ

∂x2
(xi); (16)

and C the n x n normal matrix,

C = F TF + ξT(xi)S. (17)

From the solution xi, it is possible to compute the resid-
uals ξ(xi) and then

∂J

∂x
(xi) = 2ξT(xi)F (18)

∂2J

∂x2
(xi) = H = 2(F TF + ξT(xi)S) = 2C (19)



For methods used to correctly compute the design matrix
F see [32]. In conclusion, from Eq. (14)-(17), the solu-
tion of the iterative method is

xi+1 = xi − C−1F Tξ (20)

Due to practical problems in computing the second
derivatives in matrix S, the full Newton’s method is typi-
cally avoided for the OD problem [19]. The quantity ξTS
in Eq. (17) is often neglected, indeed when the residuals
are small, so is this term. This leads to the so called dif-
ferential correction technique [20], a variant of Newton’s
method. However, as the differential correction does not
compute the full Hessian of the cost function, it is impos-
sible to ensure that the matrix is positive definite.

In the LS formulation the residuals are often weighted to
take into account sensors with different accuracies. Let
ξ′i be the true residual and ξi the normalized one,

ξi =
ξ′i
σi
,

with σi being the standard deviation. Assuming differen-
tial correction approximation and weighted residuals, Eq.
(17) becomes

C =
1

σ2
i
F TF

Thus, a uniform weight does not matter in the solution,
although it matters when describing the confidence re-
gion of the solution (i.e. uniform weights appear in the
normal matrix that describes the uncertainty, while they
disappear in Eq. 20) [20, 32].

3.2. Confidence Region

The solution of the LS x∗ is the value of the state vector
that minimizes the cost function, J(x∗) = J∗. However,
x∗ does not represent the true orbit, which lies within a
confidence region. In order to outline this region, let us
consider the value of the target function J in a neighbour-
hood of x∗,

J(x) = J∗ + δJ(x) (21)

where δJ(x) is called the penalty. Throughout the paper
δJ will be used to indicate the functional expression of
the penalty, whereas ∆J will be used when a numerical
value is assigned to the penalty. The confidence region of
the solution, Z, is defined as the region where δJ is less
than the control value K2. Thus, in terms of the penalty
function,

Z(K) = {x ∈ Rn : δJ(x) ≤ K2}. (22)

An expression for δJ(x) can be obtained by expanding
J(x) around x∗ and neglecting terms of order ≥ 3 for
δx = x− x∗:

J(x) ≈ J∗ +
∂J

∂x
(x∗)Tδx+

1

2
δxT ∂

2J

∂x2
(x∗)δx

≈ J∗ +
∂J

∂x
(x∗)Tδx+

1

2
δxTHδx,

(23)

where H = ∂2J
∂x2 (x∗). As ∂J

∂x (x∗) = 0, it follows

J(x) ≈ J∗ +
1

2
δxTHδx. (24)

By equating Eq. (21) and (24), the confidence region def-
inition becomes

δJ(x) ≈ 1

2
δxTHδx = δxTCδx ≤ K2. (25)

Equation (25) represents the classical expression of the
confidence region, with the Taylor expansion of the func-
tion J(x) limited to 2nd order. This expression can be
further made explicit. According to the Eigen Decompo-
sition Theorem, the normal matrix can be written as

C = V CdV
−1 = V CdV

T

where V is an orthogonal square matrix whose columns
are the eigenvectors of C, and Cd is a diagonal matrix
which contains the eigenvalues of C [14]. Since V is
orthogonal, V −1 = V T. Eq. (25) becomes

δJ(x) = δxTV CdV
−1δx (26)

By applying the transformation

δx̃ = V Tδx,

the expression of the confidence region will be

δJ(x) = δx̃TCdδx̃ ≤ K2 (27)

In addition, becauseC is positive definite,Cd can be writ-
ten as

Cd =


1
γ2
1

0 . . . 0

...
. . .

...
...

. . .
...

0 . . . . . . 1
γ2
n

 ,
and Eq. (27) becomes

n∑
i=1

δx̃2
i

γ2
i
≤ K2 (28)

The covariance matrix is P = C−1, leading to

Pd = C−1
d =


γ2

1 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . γ2

n

 , (29)

where P = V PdV
−1. In conclusion, as the penalty has

a quadratic form, the confidence region is described by
an ellipsoid whose axes can be determined by the eigen
decomposition of the normal matrix (or its inverse, the
covariance matrix).



A probabilistic interpretation can be given to the LS
method. If the error of each observation is an independent
random variable with normal distribution and zero mean,
the solution of a LS problem is a random variable with
a multivariate gaussian probability density function (pdf)
px(x). In particular, x∗ is the mean of the Gaussian dis-
tribution and the covariance matrix is the inverse of the
normal matrix P = C−1 [16]. Then, the LS solution can
be statistically described by

px(x) =

√
|C|

(2π)n/2 e
− 1

2 δx
TCδx =

√
|C|

(2π)n/2 e
− 1

2 δJ(x∗).

(30)
where |C| is the determinant of C. The contour levels
of the penalty function are ellipsoids of equal probability
and the confidence level can be obtained by properly se-
lecting the value of the control value K2. According to
the F-test method [28], the value of K2 for a confidence
level of 100(1− α)% can be estimated by

δJ(x) ≤ n

m− n
J∗Fαn,m−n = K2, (31)

in which Fαn,m−n is the upper α percentage point of the
F-distribution.

3.3. Differential Algebra Least Squares

In this section we present a novel methodology to solve
LS problems by applying DA techniques, obtaining a
high order iterative procedure.

We start by describing a general algorithm to find the
solution of a system of nonlinear equations in the DA
framework. It is Newton’s method for DA introduced in
Sec. 2.1. The aim is to solve g(x) = 0. At a general step
i:

1. Given the solution xi (from the previous step, or
from the initial guess when i = 1), initialize the
components of the state vector xi as k-th order DA
variables:

xi = xi + δxi;

2. The evaluation of g in the DA framework delivers
its k-th order Taylor expansion around xi , T k

g (δxi).
Thus, g will be the sum of a constant part gi (given
by the solution of the last step, g(xi) = gi) and an
origin-preserving Taylor polynomial δg, function of
the DA variables δxi

g(x) ≈ T k
g (δxi) = g(xi)+δg(δxi) = gi+T k

δg(δxi)
(32)

The following direct map is available

δg ≈ T k
δg(δxi); (33)

3. Invert the map of Eq. (33), obtaining

δxi ≈ T k
δxi

(δg); (34)

4. Evaluate the inverse map in −gi to compute the cor-
rection ∆xi

∆xi = T k
δxi

(−gi) (35)
xi+1 = xi + ∆xi (36)

5. Iterate until a convergence criterion is met or the
maximum number of iterations is reached.

After convergence, the algorithm provides the solution
of the set of nonlinear equations as well as the Taylor
expansion of the function g(x) at high order around the
solution x∗.

The solution of the LS problem requires the stationary
point of the cost function J(x) to be found. If in the pre-
vious algorithm we set g(x) = ∂J

∂x (x), then an arbitrary
order solver of the LS problem is obtained, i.e. the dif-
ferential algebra least squares (DALS) solver. The DALS
solver has two main advantages with respect to the clas-
sical differential correction:

• As the objective function J(x) is expanded up to an
arbitrary order, we have the correct (full) expression
of the Hessian matrix H . This can be used to check
whether the stationary point is actually a minimum;

• The polynomial representation of the objective func-
tion J(x) allows us to analytically represent it in a
neighbourhood of the minimum. This feature en-
ables the nonlinear representation of the solution
confidence region [26].

As for all the iterative procedures, a convergence crite-
rion needs to be defined. In our implementation we used
two convergence criteria: the first one is based on the
size of the correction ∆x, while the second one is based
on the variation of the target function J . Thus, the itera-
tive process is terminated when one of the two following
conditions is met:

‖∆x‖∞ ≤ εx

∆J ≤ εJ
(37)

where εx and εJ are established tolerances.

Although the algorithm presented in this section works at
arbitrary order, the inclusion of terms above the second
did not improve the convergence while significantly in-
creasing the execution time. Thus, a second order DALS
solver was used in this work. In contrast, the high-
order representation of the confidence region proved to
be more accurate than the classical 2nd-order description,
as shown in [26].

4. DOMAIN PRUNING FILTER

4.1. Sequential Estimator

The IOD and LS described in the previous sections are
batch estimators, in that they obtain or improve an epoch



state estimate by processing a whole set of observa-
tions in each run. Sequential estimators, also called fil-
ters, aim to address a different problem: they process
one measurement at a time and yield subsequent esti-
mates of the state vector at the time of each measure-
ment [24]. Consider we have observations up to time tk,
Yk = {y1,y2, . . . ,yk}, then the goal is to infer the states
Xk = {x1,x2, . . . ,xk}. For this purpose, we are inter-
ested in computing the distribution p(Xk | Yk). Thus,
filtering techniques make use of pdfs over possible values
of the state vector, taking advantage of Bayes’s theorem:
previous knowledge about a phenomenon, the prior pdf,
is updated to the posterior pdf p(Xk | Yk) when new
information (i.e. new measurements) is available. The
Bayes filter is the most general application of this theo-
rem [12]. Because we are mainly interested in estimat-
ing the state vector at the time of the last measurement tk
without changing the estimates at previous time steps, we
focus on the so-called filtering distributions p(xk | Yk).
Assuming Markov chain, we have [12]:

Prediction Step (Chapman-Kolmogorov equation)

p(xk | Yk−1) =

∫
p(xk | xk−1)p(xk−1 | Yk−1)dxk−1

(38)

Updating Step

p(xk | Yk) =
p(yk | xk)p(xk | Yk−1)

p(yk | Yk−1)
(39)

The previous procedure is called the Bayes filter algo-
rithm. The initial distribution p(x0 | Y0) is necessary to
initialize the algorithm, with Y0 being the set of no mea-
surements. That is, p(x0 | Y0) = p(x0). p(x0) can be
computed by the LS technique (Eq. (30)).

Eqs. (38)-(39) only represent a conceptual solution in
that, in general, they are intractable and cannot be de-
termined analytically. This is the so-called curse of di-
mensionality, the phenomenon whereby virtually all in-
tegration methods deteriorate rapidly in performance as
the dimension of the integral rises [13]. Thus, simplified
variants are used (Fig. 2):

• Gaussian filters, which assume that both prior and
posterior pdfs are represented by multivariate nor-
mal distributions. Once this assumption has been
made, different representations are possible. The
moments representation represents the Gaussian dis-
tribution by its mean and covariance, i.e. the first
and second moment of a probability distribution. It
is worth noting that all other moments are zero for
normal distributions. An alternative representation
is the canonical representation, also called natural
representation, in which the Gaussian distribution is
represented by an information matrix and an infor-
mation vector [30];

• Non-parametric filters, which do not assume a
fixed functional expression of the pdfs. Distribu-

tions do not have an analytical form, but are approx-
imated by a discrete number of regions (histogram
filter) or samples (PF).

Long-time propagation can make OD problems strongly
nonlinear and non-Gaussian. Thus, the posterior pdf
may be multi-peaked, heavily-tailed, or skewed [9]: the
Kalman filter (KF) and all its variants may fail to provide
an accurate description of the uncertainty of the state.
This scenario is likely to occur when small objects are
tracked and thus there are long gaps between observa-
tions. In this cases, the PF is a better solution. All in-
volved pdfs are represented by particles, rather than a
fixed functional form. Thus, the PF is able to capture
all the moments of these pdfs. From particles it is also
convenient to compute statistics such as the mode and the
median, to obtain a full description of the distribution.

The goal of the PF is to obtain a set of samples (particles)
approximately distributed as the posterior pdf p(xk | Yk)
[17]. The PF is based on Monte Carlo methods, in which
a probability distribution is represented by a set of ran-
dom samples concentrated in regions of high probability
density [9]. The accuracy of the representation increases
by increasing the number of particles. When the number
of samples tends towards infinity, the discrete representa-
tion becomes equivalent to the usual functional descrip-
tion of the posterior pdf.

Perfect Monte Carlo sampling assumes that samples are
drawn directly from the posterior distribution. This is
however seldom possible and therefore one requires a
sampling technique, known as importance sampling (IS).
Samples are drawn from an importance function q(xk |
Yk), which approximates the posterior p(xk | Yk). The
samples are then weighted by the normalized importance
weights w(i), such that

w(i) ∝ p(x
(i)
k | Yk)

q(x
(i)
k | Yk)

N∑
i=1

w(i) = 1

(40)

with N being the number of samples. In order to apply
the IS technique, the following is done:

• Draw samples x̄k = {x̄(1)
k , . . . , x̄(N)

k } from q(xk |
Yk)

• Create a discrete distribution over x̄k, placing mass
w(i) on x̄(i)

k .

• Draw samples x∗ from this distribution: these
samples are approximately distributed according to
p(xk | Yk)

A formal proof can be found in [29]. The samples
drawn from the importance function and their importance
weights {x̄(i), w(i)} form the components of the IS [9].



Figure 2. Overview on the types of approximations used to implement a Bayesian filters.

For the IS technique to be accurate, the importance dis-
tribution should be as similar as possible to the posterior
distribution, so that an adequate number of samples from
q falls in high probability regions of p.

The PF uses a recursive form of the IS method, the se-
quential importance sampling (SIS) [9]. This sampling
technique assumes that the importance function is se-
quentially updated according to

q(xk | Yk) = q(xk | xk-1,Yk)q(xk-1 | Yk-1) (41)

with q(x0 | Y0) = q(x0) = p(x0) assumed available.
Consequently

w
(i)
k ∝

p(x
(i)
k | Yk)

q(x
(i)
k | Yk)

∝ p(x
(i)
k-1 | Yk-1)

q(x
(i)
k-1 | Yk-1)

p(yk | x(i)
k )p(x

(i)
k | x

(i)
k-1)

q(x
(i)
k | x

(i)
k-1,Yk)

Hence, the importance weights are evaluated using [9]

w
(i)
k ∝ w

(i)
k
p(yk | x(i)

k )p(x
(i)
k | x

(i)
k-1)

q(x
(i)
k | x

(i)
k-1,Yk)

(42)

The most basic implementation of the PF makes use of
the SIS. Because the importance function does not need
to depend on the observations [3], a convenient choice for
q(x

(i)
k | x

(i)
k-1,Yk) is the transition prior,

q(x
(i)
k | x

(i)
k-1,Yk) = p(x

(i)
k | x

(i)
k-1)

Consequently, a simplified expression of the importance
weights is obtained

w
(i)
k ∝ w

(i)
k-1p(yk | x(i)

k ) (43)

The PF implemented using Eq. (43) allows for a straight-
forward interpretation: it updates a sample from the prior
(importance distribution) to a sample from the posterior
through the likelihood function p(yk | x(i)

k ). This is
Bayes’ theorem in terms of samples.

The drawback of using the transition prior is that, when
the overlap between the prior distribution and the likeli-
hood is small (see Fig. 3), most of the samples will be

Figure 3. Failed scenario of particle filter sampling [31]

assigned negligible weights. This can happen frequently,
because the prior is generally broader than the likelihood,
due to increase in the uncertainty during the propaga-
tion compared to the accuracy of the measurements [31].
Thus, if only few samples are used in the approximation
of the posterior distribution, the PF results are inaccu-
rate. This phenomenon is known as degeneracy of the fil-
ter [3, 18]. The degeneracy problem can be counteracted
by means of different approaches, such as the sequential
importance resampling (SIR) [3] or usage of population-
based optimizers [31, 37, 38]. The bottleneck of the PF
is its computational cost, because propagation of a large
number of particles is very time-consuming. To solve this
problem, DA techniques [4] may be applied to the PF:
particle propagation is substituted by polynomial evalua-
tion, and the computational cost is considerably reduced.
Reducing the large initial uncertainty region is of key im-
portance, in order to alleviate the drawback of the PF. In
this way, samples can be generated only in a portion of
the uncertainty region, in particular where the value of
p(yk | x(i)

k ) is high. In so doing, the degeneracy problem
is less likely to occur.

4.2. Domain Pruning

An initial pdf p(x0) is necessary to initialize the PF. If
the filter runs after a batch process (IOD and LS described
in Secs. 2-3.3), p(x0) will depend on the penalty δJ



(Eq. (30)). Thus, samples from p(x0) can be obtained
by sampling the confidence region described in section
3.2.

Although the confidence region associated with the LS
solution is in general a n-dimensional region, in many
cases of practical interest this region is stretched along
one or two directions, called the weak directions. The
weak directions are defined as the predominant directions
of uncertainty in an orbit determination problem [21], i.e.
the directions along which the penalty δJ is less sensi-
tive to variations of the state vector. When the confidence
region is highly stretched in two directions, it can be ap-
proximated as a 2D set. Sampling can be performed in
the plane described by the two aforementioned directions,
thus drastically reducing the number of samples needed.
Let γ2

1 and γ2
2 be the two maximum eigenvalues of the

covariance matrix P = C−1, and v1 and v2 be the eigen-
vectors corresponding to γ2

1 and γ2
2 . Samples x̃(i)

0 can be
drawn in the plane v1 − v2 and then transformed into
samples belonging to the full-dimension space x(i)

0 ,

x(i)
0 = V x̃(i)

0 , (44)

with V being the matrix whose columns are the eigenvec-
tors of P .

The initial uncertainty can be further reduced in accor-
dance with new measurements. At time tk new measure-
ments yobs

k are acquired. Let yobs
k be an m− dimensional

vector. Each sample x(i)
0 is then propagated to tk, x(i)

k =

f(x(i)
0 ), with f being the function representing the dy-

namics. Assume independent observations yobs
k,j , with

j = 1, . . .m, and Gaussian distribution. The likelihood
of each sample p(yobs

k | x(i)
k ) is given by

p(yobs
k | x(i)

k ) =

m∏
j=1

p(yobs
k,j | x

(i)
k )

p(yobs
k,j | x

(i)
k ) =

exp

−1

2

[
yobs

k,j − ycom
k,j

σj

]2


σj
√

2π

(45)

yobs
k are actual observations, while ycom

k are computed ob-
servations, according to a particular value of the state vec-
tor, a particle x(i)

k . Then,

p(yobs
k | x(i)

k ) =

exp

(
−1

2

m∑
j=1

[
yobs

k (j)− ycom
k (j)

σj

]2
)

(
√

2π)m
m∏

j=1

∑
j

(46)
Thus, at time tk we can define a scalar function

Jk =

m∑
j=1

[
yobs

k,j (j)− ycom
k,j (j)

σj

]2

(47)

p(yobs
k | x(i)

k ) =
exp

(
− 1

2Jk
)

(
√

2π)m
m∏

j=1
σj

(48)

Particles with small values of Jk have great values of the
likelihood. Thus, these particles have significant weights
(see Eq. (43)). DA techniques [4] can be used to approx-
imately map samples x̃(i)

0 into Jk, by using a Taylor poly-
nomial up to an arbitrary order. However, the accuracy of
the approximation tends to decrease drastically when the
initial confidence region is large and/or the propagation
time is long, due to high nonlinearity of the dynamics
[35]. Thus, a single polynomial expansion may be not
sufficient to accurately represent the entire confidence re-
gion. Indeed, the validity of the expression depends on
the truncation error of the polynomial approximation: if
the truncation error in the domain of interest is above a
required threshold, the polynomial cannot fully represent
the domain. Thus, the initial region needs to be split into
subdomains over which the Taylor expansion has the de-
sired accuracy. This technique is called the ADS [35].
After applying the ADS, the resulting 2D confidence re-
gion is divided into boxes, each containing some samples
x̃(i)

0 . A threshold is used to cut away boxes where Jk is
too big. This threshold can be computed by using sta-
tistical properties. Eq. (47) shows that Jk is the sum
of the squares of m independent standard normal random
variables: it is then distributed as a Chi-squared with m
degrees of freedom. Thus, depending on the confidence
level we want, the desired threshold can be chosen. The
domain pruning procedure is beneficial to the PF for two
reasons:

• A smaller confidence region can be described by
fewer samples and the resulting computational cost
of the PF is reduced;

• Sampling in a region of the initial uncertainty where
the likelihood has high value prevents the degener-
acy of the filter, because many particles have signif-
icant weights (Eq. (43)).

Summarising, when an object is observed on a short arc
the IOD and LS algorithms find a solution to the OD
problem. Nevertheless, the uncertainty region is very
large and the computational cost of the PF may be pro-
hibitive. The domain pruning algorithm approximates the
uncertainty region as a 2D set and then reduces the region
when new observations are acquired. As a result, the size
of the uncertainty region reduces such that the PF can be
used with a limited computational cost.

5. TEST CASES

Three different orbits were used as test cases: a low earth
orbit (LEO), a GEO and a geostationary transfer orbit
(GTO). For each object optical observations (i.e. right
ascension and declination) were simulated. For objects
in GEO and GTO the observation strategy of the TFRM



was simulated, while for the object in LEO the obser-
vation strategy of the Defence Science and Technology
Laboratory (DSTL) was used. Finally, it is worth men-
tioning that Kepler’s dynamics are considered throughout
this section.

5.1. IOD and DALS Convergence Properties

Two scenarios of batch processes were simulated, with
8 or 15 observations. For each test case, 100 simula-
tions were run in which synthetic observations were gen-
erated by adding Gaussian noise with zero mean to the
ideal observations. Observations of objects in GEO (NO-
RAD Catalog number 26824) and GTO (NORAD Cata-
log number 23238) were taken every 2 minutes with stan-
dard deviation σ = 0.5 arcsec, while observations of the
object in LEO (NORAD Catalog number 04784) were
taken every 7 seconds with standard deviation σ = 5 arc-
sec. When 8 observations were used, the observational
arcs were 2.08 deg for the GTO, 2.82 deg for the LEO
and 3.51 deg for the GEO; when 15 observations were
considered, the arc lengths were 4.10 deg for the GTO,
5.65 deg for the LEO and 7.02 deg for the GEO.

The DALS solver was used to estimate the orbit at the
center of the observation window (at observation #5 for
the 8-observation scenario and #8 for the 15-observation
one) as this was found to maximize the algorithm perfor-
mances and robustness. The tolerances εx and εJ were
chosen such that convergence was reached when one the
following conditions was met

||∆x||∞ ≤

{
1 m for position

1 mm/s for velocity
∆J ≤ m

( σ

100

)2

.

The DALS solver converged for 99.72% of the tests, tak-
ing on average only 2 iterations. Note that algorithm con-
vergence does not provide any information on solution
quality, e.g. convergence to a local minimum. In Tab. 1
the median of the absolute error with respect to the refer-
ence orbit in position (km) and velocity (km/s) is reported
for the four test cases and different numbers of obser-
vations. On average the estimation errors of the DALS
solution were lower than those associated with the IOD
solution, showing that the inclusion of all the individual
observations can improve the orbit estimation even for
short arcs. In addition, the improvement in accuracy of
the LS was greater when longer observational arcs were
considered. Finally, as one may expect, the median of the
errors decreased with the number of observations, i.e. the
orbit estimation became more accurate for longer obser-
vational arcs. To analyse the solution accuracy without
resorting to the true solution, which is unknown in a real
scenario, the absolute values of the residuals scaled by
the measurements σ were analyzed. The maximum of
the median of the absolute values was found for each test
case among 100 simulations. These values are reported
in Tab. 2, which shows that the errors are compatible with
measurement statistics.
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Figure 4. Statistics of the absolute value of the dimen-
sionless residuals on α and δ, for IOD and DALS solu-
tions.



Table 1. Median of the absolute value of the error (with
respect to the true solution) in position (km) and velocity
(km/s), for IOD and DALS solutions

Number of observations
8 15

IOD DALS IOD DALS

LEO
Pos 5.8e+01 4.5e+01 1.5e+01 6.1e+00
Vel 2.6e-01 1.9e-01 7.4e-02 3.1e-02

GEO
Pos 5.8e+02 4.5e+02 1.1e+02 6.9e+01
Vel 4.4e-02 3.3e-02 8.4e-03 5.4e-03

GTO
Pos 4.8e+02 3.2e+02 9.7e+01 6.6e+01
Vel 2.7e-02 1.9e-02 5.9e-03 3.4e-03

Table 2. Maximum of the median of the absolute values
of the normalized residuals.

Number of observations
8 15

LEO
ξα [1/σ] 6.661e-01 8.085e-01
ξδ [1/σ] 6.980e-01 6.922e-01

GEO
ξα [1/σ] 6.853e-01 7.066e-01
ξδ [1/σ] 7.117e-01 7.402e-01

GTO
ξα [1/σ] 6.955e-01 7.250e-01
ξδ [1/σ] 6.790e-01 7.762e-01

Fig. 4 reports the results of the simulations when 8 ob-
servations were considered. The statistics of the abso-
lute value of the dimensionless residuals are plotted and
compared with the IOD solutions. Firstly, it is worth not-
ing that the residuals of the IOD solutions were close to
zero at the 1-st, 5-th, and 8-th observations, i.e. those
used for the IOD, because IOD solutions are determinis-
tic and exactly reproduce the available observations. On
the other hand, the residuals significantly increased at
other observation epochs. On average the residuals were
much smaller and more uniformly distributed when LS
solutions were analyzed. From this analysis it can be
concluded that the LS solution improved the orbit pro-
vided by the IOD even when only few measurements dis-
tributed on short arcs were available.

5.2. Domain pruning results

The domain pruning was tested with an object in GEO
(NORAD Catalog number 25126) and an object in GTO
(NORAD Catalog number 25542). Observations were
simulated by using Gaussian noise with zero mean and
standard deviation σ = 0.33 arcsec. The initial uncer-
tainty was obtained by applying the LS method to a batch
of 15 observations 2 minutes apart. New observations
of the object in GEO were acquired after 3, 24, 60 hours,
while new observations of the object in GTO were ac-
quired after 1.5, 19, 72 hours.

Table 3. Two objects in GEO, with similar orbital param-
eters, observed in the same observational window.

NORAD catalog number 36830 37816
Epoch JED 2457402.69 2457402.69

a km 42166.068 42166.258
e - 0.000305 0.000424
i deg 0.086 0.141
Ω deg 111.495 58.467
ω deg 185.691 214.801
M deg 238.839 262.493

The confidence region was computed to ensure a confi-
dence level of 99.9 percent. However, the two greatest
eigenvalues of the covariance matrix γ2

1 , γ
2
2 were found

to be at least 2 orders of magnitude larger than the others.
Thus, the confidence region was approximated as a 2-D
set ±Kγi

vi, with i = 1, 2, as described in Sec. 4.2. This
set was used as initial domain.

Figs. 5-6 display the sequential pruning of the initial do-
main, when new observations were acquired after a batch
process of 15 observations, for objects in GEO and GTO
respectively. A confidence level of 99.9% was chosen,
leading to a threshold of T = 13.816 for the function Jk.
When new observations were acquired, the initial domain
was propagated from t0 to tk. Then, boxes in which the
minimum value of Jk was greater than T were pruned
away. Fig. 5 illustrates that for the object in GEO 87.5%
of the domain was pruned away after 3 hours, 95.3125%
after 24 hours and 99.61% after 60 hours. In contrast,
Fig. 6 shows that for the object in GTO 75% of the do-
main was pruned away after 1.5 hours, 96.875% after 19
hours and 99.805% after 72 hours. Pruning proved to be
more effective when time separation was longer. Finally,
Fig. 5-6 illustrate that the reduced domain contained the
true solution of the OD problem.

In a real-world scenario there is no guarantee that obser-
vations are of the same object, that is, they are correlated.
In Fig. 7 the pruning algorithm is run with correlated and
uncorrelated observations of objects in GEO. The un-
certainty region of an object (NORAD Catalog number
36830) was computed by applying the LS algorithm to a
batch of 15 observations 2 minutes apart. Then, the same
object was re-observed after 3 hours and the pruning al-
gorithm was applied. At the same time also observations
of a different object (NORAD Catalog number 37816)
but with similar orbital parameters were acquired and the
pruning algorithm applied with these observations. The
orbital parameters of the two objects are shown in Tab. 3.
In the latter scenario the high value of Jk due to uncor-
related observations led to the whole initial domain be-
ing discarded. This result shows that the pruning proce-
dure has potential for establishing whether observations
are correlated and removing outlier observations.



Figure 5. Sequential pruning of the domain for an object in GEO. The 2-D domain is defined by eigenvectors v1 and v2

associated with the two largest eigenvalues of the covariance matrix γ2
1 and γ2

2 . The axes are scaled accordingly to γ2
1

and γ2
2 . The colour map shows the value of Jk in logarithmic scale.

Figure 6. Sequential pruning of the domain for an object in GTO. The 2-D domain is defined by eigenvectors v1 and v2

associated with the two largest eigenvalues of the covariance matrix γ2
1 and γ2

2 . The axes are scaled accordingly to γ2
1

and γ2
2 . The colour map shows the value of Jk in logarithmic scale.

Figure 7. Comparison between the pruning due to correlated and not correlated observations acquired after 3 hours for
an object in GEO.



6. CONCLUSIONS

In this work we focused our investigation on the OD
problem when a batch of optical observations was taken
on short arcs, i.e. less than 10 deg. IOD and DALS algo-
rithms were used to estimate the orbit and the uncertainty
region. The observational conditions led to large uncer-
tainty regions. Thus, new observations were used to re-
duce the size of the region, pruning away portions of the
domain where the likelihood was below an established
threshold.

The main findings of this work can be summarised as

• The formulation of a least squares problem and its
solution via the DALS on average improved the so-
lution made available by IOD;

• The confidence region was found to be highly
stretched in two directions and thus it can be approx-
imated as a 2-D set;

• Pruning due to new observations was more effective
when time separation was longer;

• Uncorrelated observations led to the removal of the
whole initial domain: the algorithm can be poten-
tially used to identify uncorrelated observations.

In our future work we intend to use the resulting uncer-
tainty region to initialize a PF.
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