
Directional connectivity in the EEG is able to discriminate wakefulness from NREM sleep 

 

1 
 

 

Directional connectivity in the EEG is able to discriminate 

wakefulness from NREM sleep 

G Lioi
1*

, S L Bell
1
, D C Smith

1, 2
 and DM Simpson

1 

 

1
 Institute for Sound and Vibration Research, University of Southampton, Southampton, UK 

2
 Department of Anesthesia, University Hospital Southampton NHS Foundation Trust, Southampton, UK 

 

Abstract  

A reliable measure of consciousness is of great interest for various clinical applications including sleep studies 

and the assessment of depth of anaesthesia. A number of measures of consciousness based on the EEG have 

been proposed in the literature and tested in studies of dreamless sleep, general anaesthesia and disorders of 

consciousness. However, reliability has remained a persistent challenge. Despite considerable theoretical and 

experimental effort, the neural mechanisms underlying consciousness remain unclear, but connectivity between 

brain regions is thought to be disrupted, impairing information flow. The objective of the current work was to 

assess directional connectivity between brain regions using Directed Coherence and propose and assess an index 

that robustly reflects changes associated with non-REM sleep. We tested the performance on polysomnographic 

recordings from ten healthy subjects and compared Directed Coherence (and derived features) with more 

established measures calculated from EEG spectra. We compared the performance of the different indexes to 

discriminate the level of consciousness at group and individual level. At a group level all EEG measures could 

significantly discriminate NREM sleep from waking, but there was considerable individual variation. Across all 

individuals, normalized power, the strength of long-range connections and the direction of functional links 

strongly correlate with NREM sleep stages over the experimental timeline. At an individual level, of the EEG 

measures considered, the direction of functional links constitutes the most reliable index of the level of 

consciousness, highly correlating with the individual experimental time-line of sleep in all subjects. Directed 

Coherence thus provides a promising new means of assessing level of consciousness, firmly based on current 

physiological understanding of consciousness. 
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1. Introduction 

 

Neural correlates of consciousness have attracted considerable interest in recent years (De Graaf, 

Hsieh and Sack, 2012). This has motivated a series of studies that contrast brain activity in 

wakefulness, where consciousness is typically present, with conditions where it is diminished or 

suppressed, such as in dreamless sleep (Massimini et al., 2005; Spoormaker et al., 2010; Siclari et al., 

2014) or anaesthesia (Ferrarelli et al., 2010; Gómez et al., 2013). In parallel, a series of theoretical 

advances have predicted that consciousness is critically related to functional connectivity that enables 

widespread information sharing among distant brain areas (Tononi, 2008). A series of putative 

markers of consciousness have been proposed in the literature that include event related potentials 

evoked by auditory or visual stimuli (Sergent, Baillet and Dehaene, 2005; Sitt et al., 2014), spectral 

patterns (Mhuircheartaigh et al., 2013) gamma synchrony  and measures of information sharing across 

distant brain areas (Tononi and Massimini, 2008). A recent critical review (Koch et al., 2016) has 

highlighted the importance of EEG as a fundamental clinical tool to discriminate conscious from 

unconscious subjects, however, it has suggested that only few of these measures are promising 

neurophysiology correlates of consciousness.  The low-frequency high amplitude EEG (usually 

referred to as slow-waves) that characterizes the loss of consciousness in physiological, drug-induced 

or pathological conditions, as opposite to high-frequency “Activated-EEG’’ in wakefulness, remains 

one of the oldest and most reliable markers of awareness (Koch et al., 2016). Other promising 

approaches appear to be measures of brain connectivity. These are thought to indicate the ability of 

the brain to integrate information (Tononi, 2008).   

Consciousness naturally fades during deep non-rapid eye movement (NREM) sleep, in particular in 

the early night (Tononi and Massimini, 2008), when reports after awakening refer to little or absent 

conscious experience (Stickgold et al., 2001); thus the onset of NREM sleep may represent an 

opportunity to relate changes in brain activity to changes in consciousness. During REM sleep, in 

contrast, reports of dream-like experiences are common. A nap generally includes only NREM sleep 

(N1, N2 and N3) with sleep N2 representing the largest proportion and the time spent in N3 

increasing with the nap-length for naps longer than 10 minutes (Brooks and Lack, 2006). Naps , as 

also used by Massimini and Tononi (Massimini et al., 2005), therefore represent a convenient 

condition to investigate loss of consciousness at the onset of NREM sleep, with the advantage of only 

requiring a simple experimental setup that does not entail the practical challenges of overnight sleep 

recordings.  

Changes in cortical connectivity associated with sleep have been widely investigated in functional 

magnetic resonance (fMRI) studies, but their relationship with consciousness remains unclear 

(Klimova, 2014). Results point to a general impairment of functional connectivity in the 

thalamocortical system (Spoormaker et al., 2010; Spoormaker, Gleiser and Czisch, 2012); in 

particular, long-range connectivity was shown to be affected by sleep  (Tagliazucchi et al., 2013) and 

connectivity networks in NREM sleep show increased local clustering when compared to wakefulness 

(Boly et al., 2012). Recent studies investigating early NREM sleep with combined transcranial 

magnetic stimulation (TMS) and EEG approaches (Massimini et al., 2005) show a break-down of 

large-scale connectivity in the sleeping brain.  

EEG is often preferred in studies of brain connectivity from a practical point of view (Sitt et al., 2014), 

as it can be applied relatively easily at the bed-side and at low cost, and EEG-based systems can be 

used in routine clinical work in the home or ward, as well as in intensive care units or operating 

theatres where assessment of level of consciousness (LOC) may be carried out. The strength of 

frequency-dependent relationships between EEG channels in sleep have mainly been investigated in 

previous studies with conventional Coherence (COH) estimates (Achermann and Borbély, 1998; 

Corsi-Cabrera et al., 2003) and Synchronicity (Ferri et al., 2005, 2007). COH and Synchronicity are 

symmetrical measures unable to convey directional information, therefore losing some functional 
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significance. A more advanced measure of functional connectivity, the Directed Coherence DC 

(Baccalá et al. 1998) has been proposed to overcome this limitation, by using a model-based approach 

involving causal linear filters quantifying the interactions between channels. The DC estimator is 

consistent with the framework of Granger Causality and provides information about the strength, 

direction and spectral content of linear dependencies. It therefore has potential to give the additional 

information about the direction of functional links in the brain compared to standard COH. It has been 

demonstrated that for Gaussian and quasi-Gaussian distributions (Hlaváčková-Schindler, 2011), GC is 

equivalent to transfer entropy, but has the advantage of being simpler to understand and interpret  and 

easier to apply, providing a straightforward decomposition in frequency (Barnett, Barrett and Seth, 

2009). This property is of particular relevance for EEG applications, where specific brain rhythms are 

dominant in behavioural states such as sleep stages, or when performing cognitive tasks (Klimesch, 

1999). 

The aim of the current study is therefore to describe changes in strength and direction of functional 

connectivity associated with NREM sleep using Directed Coherence and to propose and test indexes 

of brain connectivity based on DC that could distinguish between states of consciousness. 

Performance of the proposed approaches will be compared to more established spectral measures and 

assessed in discriminating between NREM sleep and wakefulness. Since the overarching aim of any 

proposed measure is to assess the LOC in individual subjects, performance is assessed against each 

subject’s own time-line through the sleep stages.  The focus on individual variability is an important 

and distinctive feature of this work, since the majority of previous studies investigating correlates of 

consciousness (where consciousness is diminished or reduced) have focussed on the analysis of the 

average values across the cohort. This work is also original in investigating directional connectivity 

(using Directed Coherence) on EEG, where previously the strength of connection, rather than the 

direction of information flow, was the focus. Our interest in individual variability is motivated by a 

potential clinical application: we hope to assess depth of anaesthesia in future work and so we are 

looking for an index that is computationally convenient and suitable for online monitoring of 

individuals and can show changes in individual subjects, not just statistical differences between 

groups.  In this sense the spontaneous EEG is also preferable to fMRI and TMS approaches as it 

represents a low cost and easily implementable method with good temporal resolution. 

 

2. Methods 

 

2.1 Subjects, Protocol and Preprocessing 

Sixteen healthy subjects participated in the sleep study. However only ten subjects (three females and 

seven males, aged between 22 and 30 years) underwent N1, N2 and N3 stages of NREM sleep and so 

were included in the analysis. The experiment was approved by the local ethics committee and 

following informed consent, and conformed to requirements of the Declaration of Helsinki. In order 

to exploit the circadian sleep drive, the experiment was performed in the afternoon after lunch. The 

subjects were asked to refrain from drinking coffee or tea on the day of the experiment. The subjects, 

lying with eyes closed on a reclining chair, were invited to sleep. After they spontaneously woke up 

again, they were asked to rest with eyes closed (REST W) and then to perform mental arithmetic with 

eyes closed (ACTIVE W). EEG was collected using a 32 channel system with active electrodes 

(Biosemi BV, Amsterdam) placed according to the international 10-20 system. Additional electrodes 

were used to record the electrooculogram (EOG) and the chin electromyogram (EMG). Sleep stages 

were scored by visual inspection of contiguous epochs of 30 s according to the standard criteria  (Iber 

et al. 2007). Data were then downsampled to 250 Hz and digitally referenced with respect to the 

average of T7 and T8 channels (linked mastoid), as recommended for functional connectivity 

estimation (Kaminski and Blinowska, 2014). The EEG time series were band pass filtered (1-45 Hz) 
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and additionally notch filtered at the mains frequency using zero phase filters. Only continuous and 

artifact-free epochs were selected and included in the following analysis. 

 

2.2 Multivariate connectivity estimation 

The DC is obtained from multivariate autoregressive (MVAR) model parameters. A MVAR process 

describes each multi-channel EEG time series x as a sum of p previous samples from the set of M-

signals (here the EEG channels), weighted by model coefficients, plus a noise component, as given in 

the following equation (1): 

N)ε())x(A()x( ,....1n,nlnln
p

1l

 


 (1) 

where )x(n  is  the M dimensional vector of the EEG channels time-series at time lag n, N is the 

number of samples in the signals, A(l) is the M x M coefficient matrix (weights) describing the linear 

interactions between channels at lag l, p is the model order, and )ε(n  is the vector of white 

innovations, with the non-singular residual covariance matrix: 

}{
2

ijεΣ . (2) 

2
ij  is the cross-covariance between innovations signals )ε(n  for channels i and j.  

The weights relate the present sample of one signal to the past of another (and itself) and capture the 

directed influence between signals that can be interpreted in the sense of the Granger Causality 

(Granger, 1969). It should further be pointed out that equation (1) explicitly excludes instantaneous 

connections (with zero time-lag). By transformation into the frequency domain, the MVAR process is 

modelled as a filter with transfer matrix H(f) and white noise E(f) as an input: 

))E(H()E())X(A()X( ffffff   (3) 

In equation (3), A(f) is the Fourier Transform of the matrix of parameters and 
1]f[f  )A(I)H(  

(where I is the identity matrix), which conveys information about the linear dependencies between 

signals and their spectral features. The DC from signal j to signal i of the M-variate dataset is defined 

as follows (Baccalá et al. 1998)  
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


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
 

 

and, because of the normalization, it quantifies the linear coupling from xj to xi as compared to all the 

other contributions the signal xi receives from other structures of the M-variate dataset. In particular it 

has been shown (Faes et al., 2013) that the squared modulus of DCi,j(f) measures the normalized 

portion of the autospectrum of xi at frequency f due to the signal xj (or transferred from xj via the 

transfer function Hi,j(f) to xi). In other words |DCi,j(f)|
2
 is a measure of the portion of the autospectrum 

of xi at frequency f due to the signal xj. Due to its relatively straightforward interpretation in term of 

spectral content, in this work we will use this squared modulus of DC to quantify functional 

connectivity. This differs from the related formulation of the Directed Transfer Function (DTF, 

Kaminiski and Blinowska 1991); as DC includes the variance of the residuals  , it brings the 

advantage of robustness against different signal scaling (Baccalà and Sameshima, 2007). When all 

residuals variances are equivalent, the DC reduces to the DTF. One may view this as DTF reflecting 

the existence of (directional) connections, while DC also quantifies how these connections are used 

and it is interpretable in terms of signal power content.  
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When estimating an MVAR model of order p from a dataset, it is important that segments of EEG 

data of adequate length are collected to ensure that the number of samples is sufficient to accurately 

fit the model. Given a M-variate dataset, a minimum of M
2
p data points is required for the model 

fitting, since there are M
2
p parameters to estimate; however in practice a much higher number is 

recommended (typically 10 times the minimum number) for an accurate estimate (Schlogl and Supp, 

2006). In order to follow this recommendation and to reduce computational cost, which is always of 

concern in multivariate connectivity estimation, a reduced number of electrodes was considered for 

connectivity analysis, as did Toppi et al. (2012) and Marinazzo et al. (2014). A subset of M=12 

electrodes that are fairly evenly distributed across the scalp (Fp1, Fp2, F3, Fz, F4, C3, Cz, C4, P3, P4, 

O1, O2) was selected and connectivity was estimated for epochs of 60 s (i.e. 15000 samples in each 

channel) that were not interrupted by artefacts or high-level noise (according to visual inspection). 

Therefore only segments with two consecutive 30 s epochs of the same sleep stage were included in 

the study while isolated epochs were excluded from the following analysis.  

When making inferences about EEG connectivity, only statistically significant estimates should be 

considered. In this study the significance of DC links was assessed using surrogate data based on a 

phase shuffling of the EEG signals, with 1000 repetitions that generated a set of surrogate data in 

which any temporal correlation between channels was removed, but autocorrelation (and thus the 

spectrum) of each signal was maintained. DC was then estimated from the surrogate dataset in order 

to obtain an empirical null distribution for each pair of signals at all frequencies. The significance of 

causal links was assessed comparing the estimated connectivity with the null distribution, setting the 

significance level at p<0.01. Correction for multiple comparisons was performed using the false 

discovery rate (FDR) approximation for dependent measurements (Benjamini and Yekutieli, 2001). 

Only links that were thus found to be statistically significant were included in the subsequent analysis 

and in the calculation of EEG indexes of connectivity. 

 A widespread practice in functional connectivity analysis is to threshold connectivity matrices to 

remove weak or spurious connections and retaining only a small percentage of the strongest 

connections (Sporns, 2013). In this study the connectivity matrices were thresholded to retain either 

10% or 30% of the strongest connections (as in Chennu et al., 2014) and then averaged in the four 

physiologically relevant frequency bands delta (δ) [1-4] Hz, theta (θ) [4-7] Hz, alpha (α) [8-13] Hz 

and beta (β) [13- 25] Hz.  

In order to specifically investigate changes in long-range connectivity, the DC links were subdivided 

with respect to the 3D Euclidian interelectrode distances, computed using default channel coordinates. 

Distance thresholds were set for differentiating between three groups of channel pairs in roughly the 

same proportions with respect to the total number of possible links: 35 % of short-range links 

(interchannel distances below 10 cm), 32% of medium range links (between 10 and 14 cm) and 33% 

of long-range links (above 14 cm). 

 

2.3 Computation of EEG indexes 

For each 60 s epoch of different sleep stages and for each subject, a series of EEG measures were then 

extracted. We organized indexes into two classes: spectral measures (as commonly used in many 

previous studies) and connectivity based measures. The power spectral density (PSD) for each epoch 

and electrode was estimated using the Welch method (Hanning window 7.5 s long, 50% overlap); the 

power in each frequency band was calculated as the integral of the PSD within each frequency band. 

The spectral analysis was focused on δ, θ and α bands since previous studies on neural correlates of 

consciousness had reported major changes in these bands (Chennu et al., 2014; Koch et al., 2016). To 

allow for differences in power between EEG channels, we estimated the normalized power in these 

three frequency bands by the total power (1-45 Hz) in each time epoch and for each electrode. The 
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normalized power is thought to be a more reliable estimator because it encompasses the individual 

variances in the absolute EEG power caused, for instance, by variations in electrodes impedances (Sitt 

et al., 2014).   

We assessed connectivity through indexes quantifying the strength of the connectivity networks and 

indexes estimating the direction of information flow. The rationale for the former is to be found in the 

large number of studies showing that long-range connectivity is significantly affected by the LOC.  

The rationale for the latter comes from published results showing a prevalence of frontal EEG 

activation in sleep as opposed to a strong posterior activation in wakefulness (Brown, Lydic and Shiff, 

2010), with indications that the direction of long-range connectivity may represent a prominent 

feature of sleep as compared to wakefulness (De Gennaro et al., 2004). To this end we assessed the 

number of significant connections from centro-posterior (O1, O2, P3, P4, C3, C4, Cz) to anterior (Fp1, 

Fp2, F3, F4, Fz) electrodes and vice versa. We thus defined an index that quantifies the dominant 

direction of information flow on the front-posterior axis (DirP-->A) as the normalized differences of the 

number of links in the two opposite directions over the rostro-caudal axis: 
















i j
PijA

i j
AijP

i j
PijA

i j
AijP

AP
)DC(num)DC(num

)DC(num)DC(num

Dir  (5) 

where the sums are taken over all pairwise connections between the posterior and anterior channels (P 

→ A) and anterior to posterior channels (A → P), respectively and num(.)=1 when that connection is 

significant, and zero otherwise. 

 In the following, we will first present results at a group (cohort) level, showing differences in 

connectivity based measures between the different sleep stages and frequency bands, with associated 

statistical analysis (Friedman tests). The average topographic distribution of spectral parameters and 

connectivity measures is then assessed and the ability of these and derived indexes to distinguish 

between sleep stages at a group-level is tested. We then also present results at an individual subject 

level, and the most promising measures are correlated with the manual scoring of sleep stages 

(hypnogram) in each individual, by Spearman correlation using the indexes from consecutive 1-

minute segments. The presentation of results from individual subjects, in addition to the statistical 

analysis across the cohort, provides insight into the potential of the method in monitoring individual 

patients.  

 

3. Results 

 

3.1 Group analysis 

According to standard criteria (Iber et al. 2007), hypnograms were generated for each subject, using 

consecutive one-minute artefact free signal segments. The hypnograms represent the sleep stages 

visually identified from off-line scoring, and their assessment was carried out blinded to the 

connectivity analysis that follows. The following percentages of time spent in the sleep and 

wakefulness stages were obtained across subjects: sleep N3 21±9 %, sleep N2 27 ±4%, sleep N1 

16±7%, REST W 19±6%, and ACTIVE W 16±4%. Since volunteers were allowed to spontaneously 

wake up from the post-prandial sleep, sleep duration was highly variable across subjects (16.2 ±5.9 

minutes of sleep were analysed per subject). 

We calculated the average strength of DC links in the different experimental stages and then averaged 

this across subjects. Figure 1 shows DC average strength (across subjects and electrodes) as a function 

of the distance threshold and the sleep stages. The strength of connectivity links exhibit different 
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trends across sleep stages depending on the distance range considered. Long-range connections are 

generally disrupted in NREM sleep where connectivity networks gain a more localized character 

(there is a prevalence of short-range links in sleep N2 and N3, in particular in the δ band) and long-

range connectivity in the α band showed the best performance in distinguishing sleep from 

wakefulness.. This is in accordance with previous works (Chennu et al., 2014; Lioi, Bell and Simpson, 

2016). In order to reduce the number of parameters investigated and for the sake of the clarity, we 

therefore only included indexes relative to the α band as markers of connectivity in the later results. 

 

Figure 1. Short and long-range connectivity (as measured by Directed Coherence) in δ, θ and α bands. Top bar row: 

short-range connections. Bottom row: long-range connections. Bars indicate average strength of 10% strongest DC 

(magnitude squared) links across subjects (N=10). The error bars represent the within group standard error. The 

asterisks specify that the two means designated by the brackets significantly differ (Friedman test with post-hoc 

analysis, *p<0.05, ** p<0.01). Short-range connectivity is dominant in NREM sleep (N2+N3) while the strength of 

long-range links is reduced as compared to wakefulness, in particular in the α band.  

Figure 2 shows the group topographic characteristics of a number of features derived from the EEG 

(band power, strength of long range functional connections and the direction of functional 

connections) as a function of sleep stages, along with mean and standard error plots for those features. 

In order to reduce dimensionality and quantify the discriminative power of the different measures, we 

summarized the topographic information by averaging across electrodes and investigated whether the 

global indexes were able to discriminate NREM sleep from wakefulness (two level analysis) and also 

specific sleep stages (multilevel analysis). For the two level analysis a Mann-Whitney test explored 

whether the different markers in the two wakefulness stage (average of ACTIVE W and REST W) 

significantly differed from NREM sleep (average of N2 and N3). To test whether the measures could 

differentiate the specific sleep or wakefulness stages, a Friedman test was conducted, with post-hoc 

analysis using Tukey's honestly significant difference (HSD) test. 

In figure 2 changes in normalized power can be seen that are consistent with those commonly 

reported in the literature: low frequency (δ and θ) power (rows 1 and 2 of figure 2) is dominant in 

NREM sleep and gradually decreases from SLEEP N3 to ACTIVE W. The two wakefulness states are 

characterized by a dominant occipital α rhythm (row 3 of figure 2). The power spectrum in all three 

bands significantly distinguished wakefulness from NREM sleep, as found when averaging the result 

of N2 and N3, and comparing these with the average of both stages of wakefulness (rest and active) (p 

< 10
-4

, Mann-Whitney test). However, the normalized δ and θ power more efficiently discriminate 

NREM stages N2 and N3 from sleep N1 and wakefulness. The two-level analysis (sleep N2 and N3 

vs. awake) follows the approach used by Massimini et al. (2010). Theoretical models of consciousness 

and experimental results obtained in sleep, anaesthesia and disorders of consciousness predict that the 
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long-range information sharing is essential to maintain consciousness. In agreement with these 

findings we observed that the average strength of long-range connections in the α band gradually 

increases in the progression from deep sleep (N3) to ACTIVE W (rows 4 and 5 of figure 2). The 

difference between sleep and wakefulness is more marked if only a small percentage (10%) of 

strongest connections is included in the analysis (row 5 of figure 2). This index is able to significantly 

discriminate SLEEP N3 from SLEEP N1 and the two wakefulness stages (p<0.01), and SLEEP N2 

from active wakefulness (p<0.01). 

 

Figure 2. Scalp topography of the different EEG measures (rows), averaged across all 10 subjects, with associated 

statistics. In the left hand box, rows 1 to 3 show the normalized power distributions (δn, θn and αn) across sleep stages. 

Rows 4 and 5 show long range connections with the Grand Average of the strength of long-range connection in the α 

band plotted for the 10% and 30% strongest connections respectively. Rows 6 and 7 indicate the average number of 

postero-anterior (black) and antero-posterior (red) connections in the α band coded by the length and thickness of the 

arrows in the bottom rows for 10% and 30% strongest connections respectively. Columns 1 to 5 indicate the 
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experimental stage (from SN3 to AW respectively). On the right hand side, the last column indicates whether the 

indexes averaged across electrodes significantly discriminate wakefulness (REST W and ACTIVE W) from NREM 

sleep (N2 and N3) as assessed with a two level Mann-Whitney test (the p value is indicated in light blue) and shows 

results of a multifactor Friedman test on indexes averages across electrodes to assess significant differences across all 

the stages. The asterisks specify that the two means designated by the brackets significantly differ (*, p<0.05; **, 

p<0.01, *** p<10-4), as revealed by Tukey's HSD test (results showed for 10% strongest connections –fourth row, last 

column- are repeated from figure 1, to aid comparison) The connectivity scalp plots were obtained using the 

eConnectome imaging software (Bin, Astolfi and Babiloni, 2011). Abbreviations: AW-ACTIVE W, RW- REST W, 

SN1, SN2 and SN3 –NREM sleep stages. 

We also assessed changes in the direction of the information flow over the rostro-caudal axis.  The 

most notable trends were observed in the α band (which also showed that greatest changes in 

connectivity strength as seen in figure 1) and plotted in the two bottom rows (6 and 7) of figure 2. The 

number of posterior to anterior links dramatically increases from NREM sleep to wakefulness and 

reaches its maximum in ACTIVE W. In contrast, the number of connection in the antero-posterior 

direction gradually shrinks in the progression from NREM to wakefulness. Thus the DirP-->A index, 

that summarizes the dominant direction of information flow, is particularly efficient in discriminating 

between stages, as revealed by the multilevel analysis. This provides evidence of a significant 

inversion of information flow in the α band from frontal to posterior vs posterior to frontal in the 

progression from sleep to wakefulness. 

 

 

Figure 3. Individual trends over the experimental timeline. Each epoch is 60 seconds in duration. For each of the 10 

subjects the amplitude (magnitude squared) of significant long-range DC links (blue dashed line, triangle marker), 

the DirP-->A index (orange dashed line, circle marker) in the α band and the power in the δ band (green dotted line, 

square marker) are plotted and can be compared to the manually scored hypnogram  (solid black line). Note that 

plots are rescaled / inverted to facilitate comparison with the hypnogram. Abbreviations: AW-ACTIVE W, RW- 

REST W, N1, N2 and N3 –NREM sleep stages. For ease of visualization, all plots were rescaled, and delta power was 

inverted. 
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3.2 Individual analysis 

A clinically useful index of consciousness needs to distinguish between sleep stages at an individual 

and not only at the group level. In order to investigate whether the changes observed were both 

consistent at the individual level and able to correlate with the experimental stage across the 

individual sleep-wake cycle, we show (figure 3) the different indexes for each subject and epoch of 

the experimental time-line. This epoch by epoch analysis allowed comparison with the individual 

hypnograms. 

Among the connectivity measures, we have plotted the indexes that in the group analysis showed best 

discriminatory performances: the average strength of the 10% strongest long-range links and the 

DirP


A computed from the 30% strongest connectivity links. Given that the shift in EEG power 

toward lower frequencies is a well-known and prominent feature of NREM sleep (sleep δ waves) and 

that the δ and θ power showed similar discriminative properties at group level, we have only plotted 

the normalized δ power from the spectral measures (the plots were inverted to facilitate the 

comparison with the hypnogram and the connectivity derived indexes). The experimental stages were 

assigned a value as a measure of LOC, ranging from 0 (SLEEP N3) to 4 (ACTIVE W), and Spearman 

correlation was computed between each parameter and the individual hypnogram. Table 1 shows the 

resulting correlation values for individual subjects. 

Table 1. Spearman correlation coefficient computed between the hypnogram and each EEG index for individual 

subjects. Values in bold correspond to a significance level of p<0.01, values in bold italic to a significance level p<0.05; 

other values are not significant. Results relative to the DirP


A, long-range DC links and δ power were highlighted in 

grey, to facilitate comparison with figure 3. The last column shows the percentage of subjects where the specific EEG 

index was able to significantly discriminate wakefulness (rest and active) from NREM sleep (N2 and N3) at individual 

level, as assessed by a Wilcoxon signed rank test (p<0.05). 

 Subject Mean±Std % subjs 

 01 02 03 04 05 06 07 08 09 10  
p<0.05     

2 level 

Norm 

Power δ 
-0.36 -0.44 -0.52 0 -0.67 -0.89 -0.79 -0.64 -0.83 -0.63 -0.58±0.26 100% 

Norm 

Power θ 
-0.54 -0.15 -0.51 -0.38 -0.50 -0.72 -0.76 -0.87 -0.55 -0.80 -0.58±0.2 90% 

Norm 

Power α 
0.34 0.2 0.13 0.02 0.1 0.41 0.45 0.22 0.58 0.51 0.29±0.18 80% 

Long DC 

α (10%) 
0.77 0.27 0.84 0.08 0.49 0.48 0.69 0.16 0.72 0.63 0.51 ±0.25 70% 

Long DC 

α (30%) 
0.83 0.21 0.75 0.51 -0.01 0.63 0.38 -0.23 0.75 0.46 0.43±0.34 70% 

DirP


A 

(10%) 

0.56 0.73 -0.34 0.87 0.86 0.67 0.78 0.77 0.85 0.89 0.66±0.37 90% 

DirP


A 

(30%) 
0.82 0.74 0.68 0.70 0.85 0.84 0.82 0.79 0.68 0.80 0.77±0.06 100% 

 

All the indexes considered exhibit dramatic changes as a function of the sleep stages at the individual 

level. As shown in figure 3, the normalized δ power follows the experimental time-line in the majority 

of subjects. However in two subjects (2 and 4) the changes in δ power do not track the hypnogram and 

do not significantly correlate with the LOC (table 1). Similar results are obtained for the θ power, with 

a significant negative correlation with the experimental time-line only in 7 of the 10 subjects. The 

average strength of long-range connections is severely reduced in NREM sleep at an individual level. 

It shows performances similar to the normalized power indexes, highly correlating with the LOC in 
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the majority of subjects, but failing to do so in three of them.  Of all the parameters considered, the 

DirP-->A showed the best performances in ‘tracking’ the individual hypnogram, with a high and 

significant correlation in each of the subjects and the highest mean correlation value.  It also is able to 

significantly discriminate between NREM sleep and wakefulness at an individual level in all the 

subjects (table 1, last column), as assessed by a Wilcoxon test across the epochs of each stage. 

 

4. Discussion 

The objective of the current work was to propose and test indexes of brain connectivity that could 

distinguish between states of consciousness. These indexes should also be computationally relatively 

simple for clinical application such as in sleep studies or depth of anaesthesia monitoring. Given the 

conceptual model that the loss of consciousness is associated with a loss in the brain’s ability to 

integrate information (Tononi, 2008), we focussed on connectivity measures, that include directional 

information. In assessing the performance of these measures, we compared them to the more 

established power spectral indexes taken from the EEG.   

To this end we collected polysomnographic recordings from a sample of 10 healthy subject 

undergoing post-prandial sleep and extracted the EEG indexes across the sleep-wake cycle at 

individual and group level. Those indexes were chosen exploiting previous theoretical and 

experimental findings on neural correlates of consciousness and included normalized power and 

connectivity based indexes. We found that the proposed amplitude of long-range connections across 

the scalp and especially the DirP


A index (that quantifies the dominant direction of information flow 

in the rostro-caudal axis) showed a monotonic change with the LOC. In the current sample, the DirP


A 

index showed the best performances in tracking the individual experimental time line, and 

consistently correlated well with the hypnogram, and significantly discriminated NREM sleep from 

wakefulness in each of the subjects in the sample. Its performance was found to be superior (Mann-

Whitney test, p=0.041) to that of the power in the δ frequency band, which has been widely used in 

the past.  

 

4.1 Methodological considerations  

In this study an advanced method (Directed Coherence) for the estimation of functional connectivity 

that is able to infer directed causal information was chosen. The direction of connectivity networks 

has not previously been well explored in finding indexes of LOC, even though it has been suggested 

that it could provide important insights into neural correlates of consciousness (Sitt et al., 2014). 

Functional connectivity estimators based on an MVAR model have been shown to be robust to noise 

(Blinowska 2011) and to perform well even in the case of some non-linear interactions (Winterhalder 

et al. 2005), and have also been widely applied for estimating functional connectivity from 

multichannel EEG in different experimental conditions other than sleep (Astolfi et al. 2008; 

Blinowska 2011). In this context the term ‘causality’ has been used to refer to Granger causality, i.e. 

indicating that one signal predicts another in the MVAR model of simultaneously observed signals.  

We disregarded more complex measures of functional connectivity such as those based on 

information theory (e.g. transfer entropy) in order to achieve the necessary computational simplicity 

and temporal resolution required for on-line monitoring (Barnett, Barrett and Seth, 2009). 

Despite DC having become well established, caution is required in the interpretation of its results as 

necessarily indicating causal links connecting underlying cortical sources. Volume conduction effects 

lead to spreading of electrical activity to a number of electrodes, which could be confused with 

functional (neurological) connectivity between these brain regions. One distinguishing feature of 

volume conduction effects is that it is virtually instantaneous, without the delay typical of neuronal 
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activity. The supposition that DC is not affected by volume conduction because it is sensitive only to 

phase differences between channels (Kaminski and Blinowska 2014), is still debated (Faes and Nollo 

2011). Our own studies (Lioi et al., in preparation), as well as those of Faes et al.(Faes and Nollo, 

2010, 2011; Faes et al., 2013), have suggested that while DC and DTF do not eliminate volume 

conduction effects, they do reduce them, when compared to conventional coherence. That being said, 

DC networks estimated during motor (Ginter et al. 2001), attention and memory tasks (Kuś et al. 2008; 

Brzezicka et al. 2011) show a remarkable agreement with evidence obtained from anatomical 

consideration and other neuroimaging techniques (Kaminski and Blinowska 2014).  In this study, 

volume conduction effects are less of an issue since the analysis was focused on long-range 

connectivity, whereas short-range connections (which are likely to be more strongly dominated by the 

spread due to electrical conduction in tissue and bone) were disregarded. Non-significant connectivity 

was also removed from the study using surrogate data analysis. Caution must also be exercised in 

interpreting DC as reflecting direct connections between cortical regions because the method cannot 

remove the confounding effect of sources (typically deep in the brain) that spread activity to pairs of 

electrodes on the scalp. From the signals recorded on the scalp it may be impossible to determine 

whether there are direct neuronal pathways between the corresponding two cortical regions or if both 

are driven by another (unmeasured) source.  

In this exploratory study of connectivity measures, it was important to test the statistical significance 

of each DC connectivity estimate, which was achieved with surrogate data analysis.  This precaution 

has not always been taken in previous work. However the results showed that the 30% strongest DC 

connections calculated from one-minute segments were almost always statistically significant (i.e. DC 

was larger than obtained with the surrogate data under the null hypothesis of no connections). This 

suggests that in future work the computationally costly surrogate data analysis may not be required, 

when using the proposed indexes. This would make real-time implementation computationally 

feasible. The surrogate data generation takes the 95% of the total computation time in estimating 

connectivity. To give an indication of computational cost, if we exclude the shuffling procedure, the 

time required to estimate connectivity for a 1 min recording with 12 electrodes and 1 min epochs, is 

roughly 20 s, when using Matlab® and a typical Windows-based PC.  

In the analysis of brain connectivity, the many relatively weak links can obscure important 

connections. Thresholds are thus usually recommended and applied (Rubinov and Sporns, 2010) to 

only select connections deemed to be important. The choice of the threshold is somewhat arbitrary 

(Sporns, 2013), but statistical significance (i.e. a threshold set at the critical value) should always be 

satisfied. In the current work either the 10% or the 30% strongest connections were analysed, 

following some preliminary investigations. The choice of threshold reflects a compromise between 

including too many connections that may only be weakly related to the LOC and discarding 

connections that might hold useful information. Further work in optimizing the threshold for specific 

tasks such as assessing depth of anaesthesia or sleep stage should be carried out on a larger sample of 

recordings.  

 

4.2 The relationship of our findings to previous studies 

To the best of our knowledge there is only one previous study investigating  EEG  networks using 

directional  measures of connectivity, but this used the closely related approach of DTF (see Methods 

section) in sleep (Kamiński, Blinowska, and Szclenberger, 1997). DC, which includes information on 

signal power flowing between different regions of the brain, as well as the transfer function of the 

linear ‘filters’ linking these regions (as used in DTF), would seem to be more appropriate than DTF 

for quantifying the functional connections between brain regions (Baccalà and Sameshima, 2007; 

Faes and Nollo, 2011).  The current paper thus goes beyond previous work in describing DC patterns 

during the change from wakefulness to NREM sleep, extending the analysis to different frequency 
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bands and refining the methods with rigorous statistical significance assessment of the estimated links. 

Furthermore, we differentiate connectivity links with respect to their inter-electrode distance and we 

provide an assessment of performance in individual subjects, as well as that at the cohort-level. Our 

findings are in line with results from the study of Kaminski and colleagues (1997) that showed more 

complex and denser connections in wakefulness than in NREM sleep and a prevalence of posterior 

sources during wakefulness. Despite the strong topological similarities, in the study of Kaminski, 

connectivity networks exhibited a notably larger number of connections, possibly as a result of not 

performing a significance test (or using a different choice of threshold criterion) for including the 

estimated DTF in the final analysis, and also because connectivity was integrated over a larger 

frequency range (0-30 Hz) than in the current study.  

The underlying conjecture of our as well as a number of other studies (Kamiński, Blinowska and 

Szclenberger, 1997; John and Prichep, 2005; Mashour, 2006; Tononi, 2008) is that changes in LOC 

are critically associated with a dynamic reorganisation of large-scale connectivity patterns. In line 

with previous results in disorders of consciousness (Chennu et al., 2014) the connectivity networks in 

the α band showed the best discriminative performance between sleep stages. Long-range 

connectivity in the α band was shown to be impaired in NREM sleep, when networks are active but 

characterized mainly by short-range links. Our results thus support previous studies using different 

methods and protocols suggesting that the disruption of wakefulness in NREM sleep may be a result 

of impaired information sharing among cortical areas. Massimini and colleagues (Massimini et al. 

2010; Massimini et al. 2005) used a pertubational approach involving Transcranical Magnetic 

Stimulation (TMS) and EEG recording to investigate how TMS triggered neural activity spread from 

the stimulation site. During wakefulness the TMS elicited complex patterns of scalp waves spreading 

to distant cortical areas. During NREM sleep, TMS evoked a stereotypical and local response, thus 

indicating a ‘breakdown of long-range effective connectivity’. The findings of Massimini et al. (2010) 

and our data suggesting that long range connections reduce during sleep also fit well into a wide range 

of evidence from a growing literature investigating fMRI brain connectivity in altered states of 

consciousness such as NREM sleep (Spoormaker et al., 2010; Spoormaker, Gleiser and Czisch, 2012), 

general anaesthesia (Boly et al. 2011; Schrouff et al. 2011) and vegetative states (Boly and Seth, 2012; 

King et al., 2013). It appears that those states share, among other major features, a suppression of 

functional connectivity.  

In SLEEP N1 all the EEG indexes showed values intermediate between deeper sleep (N2 and N3) and 

wakefulness. Often spectral and networks features elicited in SLEEP N1 were more similar to 

wakefulness than to NREM sleep. SLEEP N1 represents the transition between wakefulness and sleep 

and it is considered “unstable sleep” (Klimova, 2014). When awakened from SLEEP N1 subjects 

often report dream-like experiences or claim they were awake (Nir, Massimini and Boly, 2013). 

Experimental results suggest preserved long-range connectivity in this stage (Massimini et al., 2005).   

For this reason we have considered only sleep N2 and N3 trials to characterize stable NREM sleep in 

the two level analysis, as used in Massimini et al. (2010).  

The findings of  recent seminal works in Network Physiology (Bashan et al., 2012; Bartsch et al., 

2015; Liu et al., 2015)  broadly align with our study. Network physiology is a new research field that 

aims to characterize how the various physiological systems dynamically integrate their functions in 

different physiological (and pathological) states (Bashan et al., 2012; Ivanov, Liu and Bartsch, 2016). 

A series of studies investigating changes in networks of interactions between (Bartsch et al., 2015) 

and within (Liu et al., 2015) different physiological systems (muscular, cardiac, respiratory and 

central nervous systems) during the transition from wakefulness to sleep and across sleep stages have 

provided important progress in this emergent field, contributing to the realization of an atlas of global 

network physiology in sleep and wakefulness. In these studies network connectivity was assessed 

using an estimator based on the stability of the time delay between signals (time delay stability -TDS), 

which quantifies in fine temporal detail the undirected strength of coupling. Despite the differences in 
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approach, EEG networks estimated from six channels and in different frequency bands in Liu et al. 

2015 and Bartsch et al. 2015, showed important similarities with those shown in our study for the α 

band: they observed a significant decrease in the strength and number of links (in particular of long-

range fronto-occipital connections) in deep sleep (as compared to wakefulness and light sleep) and a 

remarkable symmetry between the two hemispheres, characterizing all physiological states. Another 

notable analogy with our results regards EEG networks elicited in sleep N1, whose features are more 

similar to wakefulness than to deeper sleep. As Liu and colleagues have observed, this is an 

interesting result, given that sleep N1 is commonly classified as belonging to the same macro state 

(NREM sleep) as sleep N2 and N3. In their analysis of brain networks Liu and colleagues have also 

reported that while local connections (frontal/frontal, central/central and occipital/occipital) are 

reduced but preserved in deep sleep, fronto-occipital and occipital-frontal networks show practically 

no connection in deep sleep: these findings agree clearly with the significant impairment of long-

range connectivity we observed in sleep N2 and N3. 

Our study provides important new contributions beyond this work (and previous studies) in the 

characterization of brain networks by assessing the direction of links and the consequent ability to 

identify a switch in the direction of information flow with sleep onset, that constitutes the most 

characteristic change in DC patterns. Group analysis reveals a significant inversion of the direction of 

posterio-frontal networks with state. The marked posterior to anterior spread of α rhythm in 

wakefulness is reversed in NREM sleep (N2 and N3) that is characterized by a dominance of frontal 

sources of activity. An inversion of information flow from frontal-posterior in sleep to posterior-

frontal in wakefulness has also been found in a previous analysis of sleep and general anaesthesia 

onset (De Gennaro et al., 2004; Nicolaou et al., 2012).  

The importance of quantifying, together with the strength, the direction of links has been highlighted 

in a recent work where the TDS estimator originally proposed in the framework of network 

physiology has been extended to the concept of delay-correlation landscape (DCL) (Lin et al., 2016). 

While the TDS is computed considering the delay corresponding to the maximum (absolute) 

correlation between signals, the DCL estimator retains information about the delay dependence of the 

cross-correlation, which carries important information about the directionality of physiologic 

interactions. The DCL approach has been specifically designed to quantify interactions between the 

outputs of different physiological systems and it was shown to efficiently grasp the directed 

correlation between EEG power in different bands and the cardiac signal (Lin et al., 2016). If, 

however, the aim of the analysis is to investigate interactions between signals of the same subsystem 

(brain-brain in this case), DC may be more efficient in capturing the direction and strength of links as 

it summarizes the different delays dependences using a simple metric (direction of links) that can be 

synthetically represented with a directed arrow. On the other hand, in the case of DCL the directional 

information is coded in a more complex and rich ‘landscape’ of different delays for positive and 

negative correlations. While conveying important information about the type of dependence (negative 

or positive) at different time lags, the DCL estimator is probably more difficult to interpret and 

present in a succinct manner. In addition, in the case of EEG signals, correlation (including DCL, as 

well as the coherence in the frequency domain) is likely to be more heavily affected by confounding 

volume conduction effects than the DC (Faes et al., 2013).  

In view of an application in the framework of Network Physiology, DC presents important features 

that are supplementary to the proposed measures based on time-delays.  In the case of EEG signals, 

the two estimators measure different aspects of the interaction between signals. While TDS quantifies 

connectivity (as stable time delay) between EEG spectral power (brain rhythms) in different 

frequency bands, the DC quantifies linear connectivity (Granger causality) between channels of the 

original EEG time series and then transform it into the frequency domain. The application of DC may 

be therefore promising for the analysis of sub-system connectivity and provide new insights related to 

the network physiology atlas in physiological and pathological states. DC is based on linear modelling, 
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and may thus outperform alternatives when this assumption is (approximately) valid, but is likely to 

underperform when the assumption is grossly violated. Further work is required to test the application 

of the MVAR approach to model interaction between signals on different time scales and from 

different physiological systems.  

Another important original contribution of this work is the investigation, and presentation, of patterns 

for individual subjects, in addition to aggregated cohort results. The majority of studies investigating 

EEG markers of LOC have only performed group analysis or found the disagreement between 

behavioural and EEG-based measures too high for a reliable individual assessment (Sitt et al., 2014). 

Our long-term aim is to identify an EEG index able to ‘track’ the consciousness level of the subjects, 

with a view to assess depth of sleep or anaesthesia. The performance of the proposed measures in 

individuals provides an indication of the potential of the proposed approach. 

Among all the markers considered in the current paper, the DirP


A index was found to be the most 

reliable in tracking the LOC during individual sleep experiments, strongly correlating with the 

hypnogram in all the subjects. It should be noted that the staging of the EEG time series was 

performed taking in account the proportion of δ waves, as recommended in standard sleep staging 

criteria, therefore high correlation between measured δ power and sleep stages is only to be expected. 

Given that EEG spectral features were used to characterize sleep (Corsi-Cabrera et al., 2003) and to 

monitor hypnotic level in anaesthesia (Myles et al., 2004), it is interesting that the DirP


A index, 

which reflects very different features of the EEG signals, showed better performance than the δ power 

in correlating with the sleep stage at an individual level. These results suggest that the inversion of 

information flow represents a promising indicator of the descent into deep sleep. We speculate that 

this may also be seen in other states of altered consciousness, such as anaesthesia. In order to arrive at 

an even more powerful index of LOC, it may be beneficial to combine power-spectral measures with 

those obtained from DC and this approach is currently being pursued.  

 

4.3 Limitations 

The current work was carried out on a relative small sample (10 subjects) recorded during a nap, not 

all-night sleep. Thus only between 13 and 31 one-minute segments were available from each subject 

in this cohort (see figure 3). While the results showed the power of the DirP→A index, this could be 

specific to this small sample. The current work should thus be considered as exploratory, in which the 

hypothesis of superior performance of DirP→A was generated, but cannot be robustly tested, on the 

same small sample. Further tests on an independent sample, that might include a wider range of 

indexes as well as their combination should be carried out to independently statistically test relative 

performance measures.  

 

Conclusions 

We have assessed the performances of different EEG indexes to predict the level of consciousness 

during a NREM sleep study. Our results show that the EEG signal includes many features able to 

discriminate NREM sleep from wakefulness at a group level, but correlation with individual 

hypnograms varied across subjects. In agreement with theoretical consideration, EEG indexes relying 

on directional connectivity assessment have proven to be particular promising. Among all of the EEG 

measures tested, a proposed index of the direction of information flow on the rostro-caudal axis that is 

based on Directed Coherence, performed well at a group level and gave the highest correlation with 

individuals’ level of consciousness.  
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