
Optimising Social Welfare in Multi-Resource
Threshold Task Games

Fatma R. Habib12, Maria Polukarov3, and Enrico H. Gerding1

1 University of Southampton, Southampton SO17 1BJ, U.K.
{fh5g11,eg}@ecs.soton.ac.uk, fhabib@kau.edu.sa
2 King Abdulaziz University, Jeddah 21589, K.S.A.

3 King’s College London, Strand, London WC2R 2LS, U.K.
maria.polukarov@kcl.ac.uk

Abstract. In this paper, we introduce a discrete model for overlapping
coalition formation called the multi-resource threshold task game (MR-
TTG), which generalises the model introduced in [6]. Furthermore, we
define the coalition structure generation (CSG) Problem for MR-TTGs.
Towards the efficient solution of CSG problems for MR-TTGs, we provide
two reductions to the well-known knapsack problems: the bounded multi-
dimensional knapsack problem and the multiple-choice multidimensional
knapsack problem. We then propose two branch and bound algorithms
to compare between these reductions. Empirical evaluation shows that
the latter reduction is more efficient in solving difficult instances of the
problem.

Keywords: Cooperative Games, Overlapping Coalitions, Coalition For-
mation

1 Introduction

The majority of research in cooperative game theory assume that an agent can
take part in only one coalition. This assumption is too restrictive and cannot
be applicable to many real-world settings. In particular, an agent can utilise
the surplus from their resources by joining another coalition, e.g., investing in
multiple businesses. This motivates the need for a more general model that
captures this behaviour of agents. In this view, Shehory and Kraus [18] [19]
introduced the concept of overlapping coalitions. Overlapping coalition formation
games (OCF-Gs) were formally introduced by Chalkiadakis et al. [6] along with
threshold task games (TTGs), a subclass of OCF-Gs where a coalition’s value
depends on the tasks it completed. These models assume that agents are endowed
with a single resource. In this work, we extend the TTG model to consider
multiple resource types. This is a natural scenario where agents could distribute
their computational resources and memory among different activities. Consider
a task defined in a wireless sensor network environment. Here, a task may require
a number of sensors and sufficient memory to log the readings from the sensors.
In particular, we consider resources divisible into integral parts. I.e., resources
cannot be divided into fractions such as sensors and bytes of memory.

Two central problems studied in cooperative games are payoff distribution
and coalition structure generation (CSG). The objective of payoff distribution
is to divide the payoff of a coalition in a stable and/or fair way. These aims
are addressed through the core [12] and the Shapley value [17] respectively. In
contrast, CSG is concerned with increasing the overall value of coalitions, which
is our focus here. Overlapping coalition formation has been effective in solving
networked multi-agent systems problems. For instance, [7] investigated the prob-
lem of widearea surveillance in multi-sensor networks. Similarly, [10] investigated
overlapping coalition formation for collaborative smartphone sensing. Moreover,
OCF-Gs had an improved performance over non-overlapping coalition structures
in the problems of cooperative interference management in small cell networks
[24] and collaborative spectrum sensing in cognitive networks [21].

1.1 Contributions

We propose a discrete model that extends TTGs to multi-resource threshold task
games (MR-TTGs) that can handle multiple resource types. In addition, we for-
mulate the CSG problem for MR-TTGs and show that it is NP-hard (Theorem
1). Furthermore, we address the CSG problem of MR-TTGs by reducing it to
two well-known knapsack problems: The bounded multi-dimensional knapsack
problem (Theorem 2) and the multiple-choice multi-dimensional knapsack prob-
lem (Theorem 3). We develop algorithms for the reduced problems, in which
the complexity is independent of the number of agents. Finally, we empirically
evaluate the proposed reductions and algorithms.

1.2 Related Work

As mentioned earlier, [18] [19] introduced the concept of overlapping coalitions
and applied it in distributed task-based environments, in particular, tasks with
precedence order. Furthermore, they presented simple, distributed approxima-
tion algorithms for task execution via overlapping coalitions. OCF-Gs were for-
mally introduced in 2010. However, most of the research in this domain has
focused on the distribution of payoff among agents in a coalition and stability,
e.g., [25, 26]. In regards to fairness of distribution, [26] extended the Shapley
value for OCF-G. In regards to stability, [26] introduced arbitrators to OCF-Gs
that allocate payoffs to deviating agents to produce stable outcomes. In addition,
[25] studied the algorithmic complexity of finding stable and socially optimal out-
comes for a discrete model of OCF-Gs. Moreover, they identify computationally
tractable subclasses of the model and provide efficient algorithms and hardness
results for games belonging to these subclasses.

Researchers have introduced interesting models of coalitional games in the
non-overlapping setting. Some of these models are similar to MR-TTGs, in par-
ticular, the ones which represent resource-based and task-based environments.
The coalitional resource games (CRG) model [22] is similar to the MR-TTG
model for which agents possess an amount of different resources. However, in
those games, agents are associated with a set of goals and supposed to achieve

one of them. The set of goals might overlap and agents are indifferent between
the goals available to them, while in the TTG setting we consider here, the avail-
able tasks and their valuations are the same for all agents. In CRGs, as in TTGs,
the ability of a coalition to achieve a set of goals depends on the collective sum
of the agents’ resources. In contrast to our work, the researchers considered the
complexity of solving CRGs in environments comprising self-oriented agents.

One of the early models of coalitional games in a task-based environment was
introduced by [8]. They approached a very general model making no assumptions
about the coalition value, or restrictions on the number of agents in a coalition.
Therefore, the problem addressed is harder than the CSG problem in character-
istic function games. The value of a coalition depends on the agents’ identities
and completed tasks. Contributions of this work include a CSG algorithm for
the model and lower bound for the problem.

Another class of coalitional games defined in a task-based environment is the
coalitional skill game introduced by [4]. Here, agents posses a set of skills and
are expected to complete some tasks that require several skills. I.e., a coalition
completes a set of tasks if the required skills can be covered by its members.
In their model, skills are not quantified. Furthermore, to determine the value of
a coalition, two games were defined. Firstly, the task count skill game, where
the value of a coalition is defined as the number of tasks it can accomplish.
Secondly, the weighted task skill game that, as in TTGs, assigns a weight to
each task and a coalition’s value is defined as the sum of the weights of the tasks
it accomplished. This work focused on questions related to stability and fairness.

The complexity of finding the optimal coalition structure in coalitional skill
games was studied by [3]. They proved hardness results for single-task skill
games. However, they give positive results when reformulating the problem as
a constraint satisfaction on a hypergraph. Moreover, they provide a polynomial
time CSG algorithm for instances with bounded tree width and number of tasks.

In coalitional skill vectors [20], an extension of coalitional skill games, an
agent’s set of skills is represented as a vector to encompass the agent’s level in
each skill. Similarly, in order to complete a task, agents are required to satisfy a
certain minimum threshold represented by the aggregate level of agents in a skill.
The vector representation of skills is similar to ours of resources. It is expressive
and concise since a coalition’s value does not depend on the agents’ identity.
Moreover, it is efficient to compute the upper bound for problems of up to 500
agents.

2 Preliminaries

For completeness, we define preliminaries of CSG in classical and overlapping
coalitional games.

2.1 Coalitional Games and Coalition Structure Generation

A cooperative or coalitional game 〈A, v〉 is defined by a set of players and a
valuation function. The valuation function, v : 2A → R, defines the worth of

each coalition; denoted as v(C). A coalition C is a set of agents such that C ⊆ A.
Cooperative settings typically focus on the social welfare, i.e., the overall value
of coalitions, as opposed to the utilities of individual agents. The CSG problem
addresses this objective by finding a coalition structure, i.e., a partition of agents,
of maximal value. In a coalition structure [2], agents are divided into disjoint
coalitions; a coalition structure CS is feasible if and only if ∪C∈CS C = |A| and
∀ C, C′ ∈ CS s.t. C 6= C′, C ∩ C′ = φ. The value of a CS is the sum of all the
values of its coalitions. Therefore, v(CS) =

∑
C∈CS v(C).

2.2 Overlapping Coalition Formation Games

In OCF-Gs [6], it is assumed that agents possess a certain amount of resources.
Furthermore, in order to fulfil their goals, agents are expected to distribute their
resources among several coalitions. In general, the overlapping setting allows
agents to join as many coalitions as they wish. In some scenarios though, the
agents’ participation in coalitions depend on the resources they possess. For
simplicity, the OCF-G model considers a single divisible resource and it is as-
sumed that agents have one unit of that resource. As agents partially contribute
to coalitions, the notion of ‘coalition’ is replaced by ‘partial coalition’ in the
non-overlapping setting. A coalition structure is a list4 (or a multiset) of par-
tial coalitions. In addition, the sum of an agent’s contribution across all partial
coalitions should not exceed 1.

Threshold task games (TTGs), introduced by [6], provide a simple, yet, ex-
pressive representation for OCF-Gs. Here, agents in a partial coalition aggregate
their resources in order to accomplish a task. A TTG is defined considering a
single-resource environment, however, as opposed to the OCF-G model described
above, every agent has a specific resource weight. A task type is defined by a
resource threshold and a value. The threshold specifies the minimum resource
amount needed to complete the task and the value is the gain obtained upon
completing a task copy of that type. It is assumed that there is an infinite num-
ber of copies of every task type and agents working on completing a certain task
can contribute any amount of the resource they possess.

Considering the above specifications of OCF-Gs and TTGs, there may be an
infinite number of feasible partial coalitions. Hence, it might not be possible to
define the CSG problem for these models. However, we could define the CSG
problem for MR-TTGs since we consider indivisible resources.

3 Model

In this work, we introduce the MR-TTG model, which is a discretised exten-
sion of the TTG model that can capture multiple resources. Furthermore, we
formulate the associated CSG problem for that model. Finally, we provide two
knapsack reductions for the CSG problem on MR-TTGs.

4 A coalition structure is defined as a list rather than a set because different partial
coalitions can have the same weights of agents’ contributions.

3.1 Multi-Resource Threshold Task Games

An MR-TTG is defined by a set of agents A = {1, . . . , n}, a set of resource
types R = {1, . . . ,m} and a set of task types T = {1, . . . , q}. For each task type
k ∈ T , its demand dk ∈ N, indicates the number of copies available of task type
k. Each agent i ∈ A is associated with a vector of resources ri = (ri1, . . . , r

i
m),

where rij ∈ N0 is the integer weight that agent i possesses of each resource j ∈ R.
Each task type k ∈ T is described by a value vk ∈ N and a vector of thresholds
τk = (τ1k, . . . , τmk), where τjk ∈ N0 denotes the weight of resource j needed to
complete a task of type k. For a copy l = 1, . . . , dk of a task type k = 1, . . . , q,
a partial coalition Ckl is given by an m vector — indicating the amount of each
resource that the agents contribute towards the task kl. Ckl = (w̄1kl, . . . , w̄mkl),
where w̄jkl = (w1

jkl, . . . , w
n
jkl); w

i
jkl is the integer weight that agent i allotted of

his resource j to Ckl. If this amount meets the requirement given by the threshold
τk, the value of the coalition is vk, and is 0 otherwise. Thus, v(Ckl) = vk if∑n
i=1 w

i
jkl ≥ τjk, ∀ j ∈ R and v(Ckl) = 0 otherwise.

3.2 Coalition Structure Generation in MR-TTGs

We now formulate the CSG problem for MR-TTGs. In addition, to utilise exist-
ing knapsack algorithms, we reduce the CSG problem to two knapsack problems.

A coalition structure CS for an MR-TTG is defined as a multiset of partial
coalitions. Let CSk ⊆ CS be a multiset that contains all the partial coalitions
working on task type k, then ∪qk=1CSk = CS and |CSk| ≤ dk, implying |CS| ≤∑q
k=1 dk. The set of feasible coalition structures is denoted by CS. For an MR-

TTG, a coalition structure CS is feasible, i.e., CS ∈ CS if and only if it satisfies
the agent’s resource constraints

∑
Ckl∈CS w

i
jkl ≤ rij ,∀ i ∈ A, j ∈ R, k ∈ T and

task demands |CSk| ≤ dk. The coalition structure generation problem for an
MR-TTG is the problem of finding the coalition structure CS∗ ∈ CS which
maximises the sum of the values of all partial coalitions Ckl ∈ CS∗. Hence,
CS∗ ∈ maxCS∈CS

∑
Ckl∈CS v(Ckl).

Having formulated the CSG problem on MR-TTGs, we now look at its com-
plexity.

Theorem 1. The CSG problem on MR-TTGs is NP-hard.
The full proof can be found in [13]. Briefly, we prove that it is NP-hard by

reduction from the bounded multidimensional knapsack problem (BMKP). The
BMKP is known to be strongly NP-hard when the number of dimensions is
greater than 1. It is defined as: there is a knapsack with m dimensions and a set
of q item types. Each item type k = 1, . . . , q is characterised by a profit pk and
a vector of weights wk to specify its dimensions, where wjk, j = 1, . . . ,m is the
weight of the of j’th dimension of item type k. Besides, there is a limited number
of copies of each item type k, denoted by bk, the bound of k. The problem is to
maximise the profit of items to be packed in the knapsack by packing at most bk
copies of item type k while adhering to the capacity constraints cj , j = 1, . . . ,m.

The remaining of this section shows two reductions of the CSG problem into
two variants of the knapsack problem.

Reduction to BMKP The following theorem shows the reduction of the CSG
problem for an MR-TTG into a BMKP.

Theorem 2. The Coalition Structure Generation problem for an MR-TTG can
be reduced in a polynomial time to a BMKP.

The formal proof can be found in [13]. Briefly, the proof works as follows. The
task types are mapped directly to item types along with their attributes: the
resource thresholds, demand and value correspond to the weight vector of an
item, its value and bound consecutively. Although, in our model, each agent
has his own possession of the various resources, the value gained by completing
a task is independent of the contributing agents. The only constraint enforced
on resource consumption is the sum of all agents’ possessions of that certain
resource. This sum is mapped to the knapsack capacity so that each resource
type corresponds to one of the dimensions. When inferring the partial coalitions
in the optimal coalition structure from the solution of the BMKP, we directly
re-map the packed items’ copies to successful tasks. However, that gives us no
information regarding the identity of the agents involved in each task. In order
to satisfy the definition of a partial coalition, we need to re-distribute the agents’
resources among completed tasks.

The BMKP reduction can be used to transform the CSG problem to a
multiple-choice multidimensional knapsack problem (MMKP).

Reduction to MMKP An MMKP is defined as follows. There is a knapsack
with m dimensions and a number of classes, each of which corresponds to a set
of items. Each item is associated with a profit and a vector of m weights to
specify the item’s dimensions. The problem is to maximise the values of items
to be packed in the knapsack by choosing exactly one item from each class while
adhering to the knapsack constraints. An MMKP can be constructed from a
given BMKP. In the context of our problem, the MMKP is constructed from the
BMKP reduction in Theorem 2.

Theorem 3. A bounded multi-dimensional knapsack problem can be reduced to
a multiple-choice multi-dimensional knapsack problem.

The proof can be found in [13]. The MMKP reduction is demonstrated in the
following example:

Example 1. Given a BMKP with two item types, where w1 = (2, 3), p1 = 2, b1 =
3 and w2 = (4, 1), p2 = 3, b2 = 2, we construct 2 different MMKPs. The multiset
C = {1, 1, 1, 2, 2} can be partitioned in different ways. We construct the MMKPs
of 2 of these partitions, where φ denotes the empty set:

First partition: C1 = {1, 1, 1} and C2 = {2, 2}. It results in the power sets
P
(
C1
)

= {{1, 1, 1} , {1, 1} , {1} , φ} and P
(
C2
)

= {{2, 2} , {2} , φ}, and MMKP:

Class 1 Class 2

w1
1 = (6, 9), p11 = 6 w2

1 = (8, 2), p21 = 6
w1

2 = (4, 6), p12 = 4 w2
2 = (4, 1), p22 = 3

w1
3 = (2, 3), p13 = 2

w1
4 = (0, 0), p14 = 0

Second partition: C1 = {1, 2} , C2 = {1, 2} and C3 = {1}. It results in the
power sets P

(
C1
)

= P
(
C2
)

= {{1, 2} , {1} , {2} , φ} and P
(
C3
)

= {{1} , φ},
and MMKP:

Class 1 Class 2 Class 3

w1
1 = (6, 4), p11 = 5 w2

1 = (6, 4), p21 = 5 w3
1 = (2, 3), p31 = 2

w1
2 = (2, 3), p12 = 2 w2

2 = (2, 3), p22 = 2 w3
2 = (0, 0), p32 = 0

w1
3 = (4, 1), p13 = 3 w2

3 = (4, 1), p23 = 3
w1

4 = (0, 0), p14 = 0 w2
4 = (0, 0), p24 = 0

4 Algorithms

In this section, we propose two branch and bound algorithms to solve the knap-
sack problems resulting from the reductions in the previous section. The purpose
of the algorithms is to analyse these reductions and determine which one is best
used depending on the problem instance.

4.1 Solving the BMKP

We propose a branch and bound algorithm based on a best first search to solve
the MR-TTG CSG problem as a BMKP.

The Search Tree A search tree is constructed to explore all the possible solu-
tions for the reduced problem. The number of levels of the tree is equal to
the number of item types q. Each developed node in the tree corresponds to
a partial solution. A node is identified by its level and xk, k = 1, . . . , q; the
number of copies packed of item k. Also, at a given level λ, a node cannot
have any items packed of the next levels. Thus, xk = 0, . . . , dk,∀ k = 1, . . . , λ
and xk = 0,∀ k = λ+ 1, . . . , q. A node is feasible if cj ≥

∑q
k=1 xk ·wjk,∀ j =

1, . . . ,m and it is infeasible otherwise. Furthermore, the value of a feasible
node is calculated as

∑q
k=1 xk · pk, and in any given set L, the best node

∈ L, is the node with the greatest value. A son of a node at a given level is a
node, in the next level, with xk equal to its father ∀ k = 1, . . . , λ, λ+ 2, . . . , q
and xk = 0, . . . , bk, k = λ+ 1.

Lower and Upper Bounds No lower bound is calculated before running the
algorithm. Since a best first search approach is adopted, the quality of the

Algorithm 1: Solving the reduced BMKP

1: node = root node
2: solution = node
3: L = node
4: while L 6= φ do
5: best = best(L)
6: repeat
7: k = level(best) + 1
8: xk = 0
9: node = son(best,k) {develop son of best with xk copies of item k}

10: if feasible(node) then
11: if value(node) > value(solution) then
12: update solution
13: if level(node) < q then
14: calculate UB(node)
15: if UB(node) > value(solution) then
16: L = L ∪ node
17: xk = xk + 1
18: until xk > bk or not feasible(node)
19: L = L \ best
20: return solution

solution rapidly improves during the early steps. Moreover, because the num-
ber of tree levels is limited a reasonable lower bound is reached once a leaf
node is developed; in

∑q
k=1 dk steps maximum. However, an upper bound

is calculated for each developed node in order to prune the search space.
The dimensions of the BMKP are aggregated into a single dimension as in
[11] and the integrality constraints are removed. The resultant problem is a
bounded knapsack problem (BKP) with the capacity

∑m
j=1 cj and each item

k = 1, . . . , q has the dimension
∑m
j=1 wjk and the bound bk.

The linear programme outcome serves as an upper bound to the BMKP and
it can be solved using Dantzig’s approach described in [9]. The approach
consists of two steps. Firstly, items are ordered descendingly with respect to
their efficiency; the efficiency of an item k is calculated by ek = pk∑m

j=1 wjk
.

Secondly, items are packed into the knapsack, in the order generated by the
first step, until the capacity

∑m
j=1 cj is reached.

In order to calculate the upper bound for any node at a given level λ, a
subproblem of the BMKP is considered with the items k = λ+ 1, . . . , q and
the corresponding bounds (bλ+1, . . . , bq). The capacity of each dimension
is calculated as cj =

∑n
i=1 r

i
j −

∑q
k=1 xk · wjk,∀ j ∈ m. Afterwards, the

subproblem is mapped to a LP BKP and solved using Dantzig’s approach
described above.

A psuedocode of the algorithm is given in Algorithm 1. Furthermore, the
algorithm is summarised in the following steps:

Initialisation The root node is developed (a node at level 0 with xk = 0,∀ k =
1, . . . , q), and the solution is set to the root node. Throughout the algorithm,
the list L is used to keep track of the nodes whose sons are to be developed;
leaf nodes are not added to the list (line 13). To start with, the root node is
added to L.

Branching The best node in L is selected and all its feasible sons are developed
in the order xk = 0, . . . , bk (lines 8, 17 & 18), where k is the level of the son
nodes in the tree. The best node is discarded (line 19) afterwards. For each
developed node, its value is calculated and the solution is updated accord-
ingly (lines 11 & 12). Furthermore, the upper bound (UB) is calculated and
only the nodes whose upper bound is greater than the incumbent solution
are added to the list (lines 13 to 16).

Termination The algorithm terminates once there are no further nodes to be
developed and the solution is returned, this is achieved when L is empty.

4.2 Solving the MMKP

We first present the EMKP, exact algorithm for the MMKP, proposed by [16]
and highlight some problems regarding it. Later on, we provide our modified
version of the EMKP algorithm to optimally solve the MMKP.

The Original EMKP Algorithm The EMKP algorithm is based on branch
and bound best first search approach as summarised in the following steps:

Initialisation The lower bound is calculated using a heuristic algorithm. The
items of each class are sorted in decreasing order of their corresponding prof-
its. The root node, consisting of the first item in the first class, is developed.

Branching The best node in the tree is selected, and a son node is developed
if the best node was feasible. Also, if exists, the brother of the best node is
developed and added to the tree. The son node is only added to the tree if
its upper bound was greater than the lower bound.

Termination If the developed son node is a leaf node and is feasible.

Two problems with the EMKP algorithm were pointed out in [5]; the inef-
fectiveness of the pruning and elimination strategies. As a result, the algorithm
might omit the subspace that contains the optimal solution from the search and
unnecessarily compute upper bound of infeasible nodes. Two additional prob-
lems, we point out here, are the order of developed nodes and the optimality
of the solution found at the proposed stopping condition. Proposition 3 in [16]
proves that the first obtained feasible solution is the optimal solution. It is based
on Lemma 1 [16] which states that the solutions obtained by the EMKP are de-
veloped in decreasing order of their profit regardless of their feasibility state.
Here, we give a counter example to falsify the proposition.

Example 2. For simplicity we give an example of a multiple-choice knapsack
problem (MCKP), which has one dimension, and assume that the weight of each
item is equal to its profit. Consider the following MCKP, with capacity 38.

Class 1 Class 2 Class 3

w1
1 = (20), p11 = 20 w2

1 = (12), p21 = 12 w3
1 = (10), p31 = 10

w1
2 = (17), p12 = 17 w2

2 = (7), p22 = 7 w3
2 = (3), p32 = 3

w1
3 = (16), p13 = 16

For clarity, we write the nodes in terms of their profits when tracing the
algorithm. Initially, the list L will include the first item of the first class, L =
{(20)}. At each step, we develop a son and a brother for the item with the
highest value. Upon the first iteration, L = {(20, 12), (17)}. Upon the second
iteration, L = {(20, 12, 10), (20, 7), (17)}. Now, we could develop a brother for,
(20,12,10),the best node in L. The brother of the best node, (20,12,3), is the
first feasible solution, we could stop now according to the claim that nodes are
developed in decreasing order of profit. We skip this node since it is not clear
from the algorithm that we could exit even if the last item in the node is not
the first item of the last class. Now, L = {(20, 7), (17)}. In the next iteration,
the node (20, 7,10) is developed. According to the algorithm, (20, 7,10) is the
optimal solution. However, it is clear that (16, 12, 10) is the optimal solution.
In fact, in this example, the optimal solution is developed lastly.

The Modified EMKP Here, we present our new version of the EMKP algo-
rithm. To reduce the execution time, we added two preprocessing steps before
running the algorithm. Furthermore, we address the problems in the EMKP
algorithm. A pseudocode of the modified algorithm is given in Algorithm 2.

Removing dominated items As a preprocessing step, dominated items are
removed from each class y = 1, . . . , υ. An item is dominated if there is
another item in the same class that yields a greater profit while having less
(or equal) weight for each dimension.

Reducing duplicate states Another preprocessing step is to reduce the num-
ber of items in each class due to the special structure of the MMKP con-
structed. Since classes are created by deriving power sets and the original set
we partition is a multiset, many of the classes in the MMKP might be iden-
tical. Due to that, identical nodes might be developed in the search process.
In addition, in each class, there is an item which corresponds to the element
φ ∈P (Cy). We refer to this item as the fictitious item. The existence of the
fictitious items adds to the number of duplicate states that can be derived.
As a result, the processing time of the algorithm would be adversely affected.
This situation can be demonstrated by the following MMKP:
Consider the second partition in Example 1, in the resulting MMKP, select-
ing {1, 2, } from P

(
C1
)

and φ from P
(
C2
)

is identical to selecting {1} from

P
(
C1
)

and {2} from P
(
C2
)
.

Storing all the developed nodes in a list and searching through the list to
determine if a developed node has a duplicate is expensive. However, we
reduce the effect of duplicates by eliminating some of the sets in classes
which has duplicates. If the multiset C was partitioned, such that there are

Algorithm 2: The Modified EMKP

1: node = item 1 in class 1
2: father UB(node) =

∑υ
y=1 p

y
g , g = 1

3: value(solution) = 0
4: L = node
5: while L 6= φ do
6: best = best(L)
7: L = L \ best
8: if last class(best) 6= υand feasible(best) and UB(best) ≥ value(solution)

then
9: son = son(best)

10: L = L ∪ son
11: if feasible(son) then
12: if value(son) > value(solution) then
13: solution=son
14: if last class(son) = υ then
15: return solution
16: if father UB(best) ≥ value(solution)andhas brother(best) then
17: brother=brother(best)
18: while notfeasible(brother) do
19: brother=brother(brother) {there will always exist a feasible brother due

to the fictitious item}
20: if feasible(brother) and value(brother) > value(solution) then
21: solution=brother
22: if not (feasible(brother)andlast class(brother) = υ) then
23: L = L ∪ brother

partitions which are identical. Then for every partition Cy
′

which is identical
to Cy, we can safely eliminate the sets with cardinality |Cy′ | from the power
set of Cy

′
. As a result, in Example 1, the MMKP formed by the set Y is

identical to: Y ′ = {{{1, 2, } , {1} , {2} , φ} , {{1, 2, } , φ} , {{1} , φ}} .
Pruning the Search Space No lower bound is calculated prior to running the

modified algorithm since the tree nodes can serve as an incumbent solution.
For feasible nodes, the upper bound is calculated as in the EMKP algorithm.
In the modified algorithm, if a node is infeasible then its upper bound is set
to its father’s upper bound.

A brother node is only developed if the upper bound of its father is greater
than the incumbent solution. When developing a brother, instead of keeping
infeasible nodes in the tree, we keep on developing brother of a brother nodes
until a feasible one is encountered. A feasible brother is added to the search
space if it does not have an item of the class υ. As in the EMKP algorithm,
a son node is developed for nodes whose upper bounds are greater than the
incumbent solution.

Termination Condition The algorithm terminates when the search space is
empty.

5 Empirical Evaluation

We evaluate the performance of Algorithm 1 and Algorithm 2 to solve different
instances of the BMKP and their corresponding MMKP reductions. For the
purpose of testing the algorithms, we considered BMKP instances, instead of
MR-TTG, since the hardness of solving BMKPs depends on some factors that
we consider in generating the data sets. The algorithms were programmed in
C++ and run on a Mac 2.9 GHz Intel Core i5 processor and 8 GB memory.

5.1 Instance Generation

Two types of BMKP data sets were generated: uncorrelated and strongly corre-
lated data sets with the latter being considered hard to solve [15]. In uncorrelated
instances, the profit of an item is independent of its dimensions, and the profits
were drawn randomly from the interval [1, 100]. On the other hand, in strongly
correlated instances, the profit of an item is a linear function of its weight [14]
and these were calculated by pk =

∑m
j=1 wjk + 10. The number of item types

was fixed throughout the experiments (q= 6), and the number of dimensions of
the knapsacks was varied twice in the BMKP and fixed in the MMKP (m=5,
m=10). For each item, the weight of each dimension was drawn randomly from
the interval [0, 10]. The bound bk of item types k = 1, . . . , 6 was randomly drawn
in the BMKP experiments and fixed in the MMKP experiments. The random
intervals and bounds are discussed in each experiment.

The generated items sets were tested for knapsacks with different capacities.
[23] introduced the term, the degree of constraint slackness. We used the formula
sj = cj/

∑q
k=1 wjk · bk, where, sj is the slackness ratio of the constraint j from

[1]. The slackness sj ,∀ j = 1, . . . ,m was drawn from the intervals [0.40, 0.60],
[0.60, 0.80], [0.80, 1] and [0.40, 1].

5.2 BMKP

Due to the relatively long running time of the algorithm, the number of instances
tested of each set is considered small. The bound bk was drawn randomly in these
experiments from the intervals [1, 20] and [1, 50]. As a result, the total number of
items was not determined earlier. Fig. 1a through Fig. 5b shows the correlation
between the run time and the total number of items, the box plots show the run
time distribution. We can observe the following from the experiments:

1. From Fig. 1a through 5a we can observe that instances with constraint slack-
ness ratios in the interval [0.80, 1] are generally easier to solve.

2. There is a sharp rise in the execution time of the algorithm, when the number
of total item copies is around 200. See Figures 2b, 4b and 5b.

3. The execution time of uncorrelated problems is greater than the execution
time of strongly correlated problems when the number of constraints is 5, as
shown in Fig. 2a and Fig. 3a.

●

●

●
●

●

[0.40, 0.60] [0.60, 0.80] [0.80, 1] [0.40, 1]

0
20

0
40

0
60

0
80

0
10

00
12

00

m
s

(a) Distribution of run times. (b) Run time vs. total number of item copies.

Fig. 1: Run time of 10 uncorrelated BMKP instances, m=5, bk = [1, 20].

●

●

●

[0.40, 0.60] [0.60, 0.80] [0.80, 1] [0.40, 1]

0
50

00
0

10
00

00
15

00
00

m
s

(a) Distribution of run times. (b) Run time vs. total number of item copies.

Fig. 2: Run time of 10 uncorrelated BMKP instances, m=5, bk =[1, 50].

4. The execution time of strongly correlated problems is greater than the exe-
cution time of uncorrelated problems when the number of constraints is 10,
as shown in Fig. 4a and Fig. 5a.

5. In correlated instances with slackness ratios drawn from the interval [0.40,
1], the increase in the number of constraints make the problem significantly
harder to solve, see Fig. 3a and Fig. 5a.

5.3 MMKP

As the execution time of solving the BMKP increases significantly when the
total number of items exceeds 200, we tested the modified EMKP algorithm
on instances with total number of items equals to 207 and the number of item
types q = 6. This was achieved by fixing the bounds bk, k = 1, . . . , 6 to the values:

[0.40, 0.60] [0.60, 0.80] [0.80, 1] [0.40, 1]

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

m
s

(a) Distribution of run times. (b) Run time vs. total number of item copies.

Fig. 3: Run time of 10 strongly correlated BMKP instances, m=5, bk =[1, 50].

●

●

●

●●●

●

●

[0.40, 0.60] [0.60, 0.80] [0.80, 1] [0.40, 1]

0
10

00
00

20
00

00
30

00
00

40
00

00

m
s

(a) Distribution of run times. (b) Run time vs. total number of item copies.

Fig. 4: Run time of 15 uncorrelated BMKP instances, m=10, bk =[1, 50].

b1 = 41, b2 = 5, b3 = 43, b4 = 16, b5 = 49 and b6 = 53. As shown in Example
1, there are multiple ways to reduce a BMKP to an MMKP. The resulting
MMKP depends on the partitioning of the multiset C. We partitioned C into 5
partitions of {1, 2, 3, 3}, 16 partitions {3, 4, 5, 5}, 18 partitions {1, 1, 6, 6} and 17
partitions {3, 5, 6}. Since the number of power sets derived from each partition
is exponential to the number of elements, we reduced the number of power sets
by repeating elements in partitions. As an example, |P {1, 2, 3, 3}| = 12 while
|P {1, 2, 3, 4}| = 16.

The results of the experiments can be grouped depending on the knapsack
slackness. Instances with constraint slackness drawn from the interval [0.80, 1]
are easier than the ones drawn from the interval [0.60, 0.80]. The run time
is given in milliseconds, it excludes the time for creating the classes and the
preprocessing.

●

●

●

●

●

●

●
●

●

●

●

[0.40, 0.60] [0.60, 0.80] [0.80, 1] [0.40, 1]

0
20

00
00

40
00

00
60

00
00

80
00

00

m
s

(a) Distribution of run times. (b) Run time vs. total number of item copies.

Fig. 5: Run time of 15 strongly correlated BMKP instances, m=10, bk =[1, 50].

1. Slackness interval [0.80, 1] The algorithm terminated in a reasonable time
for this interval. However, the average execution time for strongly correlated
instances is about 150 times faster than uncorrelated instances. In addition,
the running time and accuracy are more consistent in strongly correlated
instances. The minimum running time in strongly correlated instances is 37.2
and the max is 38.2, and the accuracy is 97.06% in all instances. Whereas,
in uncorrelated instances, the running time ranged between 435 and 20,995
ms, with average 5, 557.4. Likewise, the accuracy ranged between 86.08%
and 98.84% with average 94.45%.

2. Slackness interval [0.60, 0.80]
The running time was considerably large in most instances. As with the
slackness interval [0.80, 1], the algorithm is more consistent when ran on
strongly correlated instances. The average run time was 1, 035, 985 ms and
the accuracy ranged from 93.15% 95.83% with average of 95.56%
We ran the experiments again to measure the improvement in accuracy over
time. By stopping the algorithm at different times, we can make use of the
existence of the fictitous item in the unassigned classes. In strongly correlated
instances, we were able to get the same approximations for all instances in
0.5 ms, while in uncorrelated instances, at 1, 000 ms, the average accuracy
was 85.55%. This figure improved by 0.40% at time 20, 000 ms.

5.4 Summary

We evaluated two reductions of the CSG problem for MR-TTGs, the BMKP
and MMKP. We found that the run time of solving the BMKP depends on three
factors: the correlation of the value of task types with the resource requirements,
the total number of tasks and the slackness of the resources available in the
environment compared to the ones required by all tasks. When evaluating the
MMKP reduction, we aimed to address instances with total number of tasks

greater than 200. The algorithm’s accuracy and running time were consistent
for the strongly correlated instances, which are considered harder to solve [15].
Moreover, the run time for instances with slackness drawn from the interval
[0.80, 1] was significantly less than the running time for the slackness interval
[0.6, 0.8] and the accuracy was about 10% higher. We obtained better results
when running the modified EMKP algorithm on instances with slackness interval
drawn from [0.60, 0,80]. The strongly correlated instances needed 0.5 ms to reach
average accuracy of 95% while the uncorrelated instances needed 1, 000 ms to
reach average accuracy of 86%.

6 Conclusions and Future Work

We proposed the MR-TTG model and studied the problem of maximising the
social welfare in settings allowing overlapping coalitions. Our model is capable
of handling multiple resource types divisible into integral units. In addition, two
knapsack reductions of the problem were proposed and evaluated; the BMKP
and the MMKP. Empirical evaluation showed that the MMKP reduction is more
efficient in solving particular instances of the problem than the BMKP. However,
as shown in Section 5.3, the MMKP reduction was tested using one possible par-
tition. In our future work, we will further analyse the reduction to determine the
characteristics of partitions effective in solving specific instances of the problem.
To this end, we will run experiments to solve multiple MMKP reductions using
more advanced algorithms and ILP solvers.

References

1. Akçay, Y., Li, H., Xu, S.H.: Greedy algorithm for the general multidimensional
knapsack problem. Annals of Operations Research 150(1), 17–29 (2007)

2. Aumann, R.J., Dreze, J.H.: Cooperative games with coalition structures. Interna-
tional Journal of Game Theory 3(4), 217–237 (1974)

3. Bachrach, Y., Meir, R., Jung, K., Kohli, P.: Coalitional structure generation in
skill games. In: AAAI. vol. 10, pp. 703–708 (2010)

4. Bachrach, Y., Rosenschein, J.S.: Coalitional skill games. In: AAMAS. vol. 2, pp.
1023–1030 (2008)

5. Bing, H., Leblet, J., Simon, G.: Hard multidimensional multiple choice knapsack
problems, an empirical study. Computers & Operations Research 37(1), 172–181
(2010)

6. Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., Jennings, N.R.: Coop-
erative games with overlapping coalitions. JAIR 39(1), 179–216 (2010)

7. Dang, V.D., Dash, R.K., Rogers, A., Jennings, N.R.: Overlapping coalition forma-
tion for efficient data fusion in multi-sensor networks. AAAI pp. 635–640 (2006)

8. Dang, V.D., Jennings, N.R.: Coalition structure generation in task-based settings.
In: ECAI. pp. 210–214 (2006)

9. Dantzig, G.B.: Discrete-variable extremum problems. Operations Research 5(2),
266–288 (1957)

10. Di, B., Wang, T., Song, L., Han, Z.: Incentive mechanism for collaborative smart-
phone sensing using overlapping coalition formation games. In: GLOBECOM. pp.
1705–1710 (2013)

11. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Mathematics of Operations Research 7(4), 515–531 (1982)

12. Gillies, D.B.: Solutions to general non-zero-sum games. In: Tucker, A.W., Luce,
R.D. (eds.) Contributions to the Theory of Games, vol. 4, pp. 47–85. Princeton
University Press (1959)

13. Habib, F.R., Polukarov, M., Gerding, E.H.: Optimising social wel-
fare in multi-resource threshold task games: Appendix (2017),
https://eprints.soton.ac.uk/413650/

14. Pisinger, D.: A fast algorithm for strongly correlated knapsack problems. Discrete
Applied Mathematics 89(1-3), 197–212 (1998)

15. Pisinger, D.: Where are the hard knapsack problems? Computers & Operations
Research 32(9), 2271–2284 (2005)

16. Sbihi, A.: A best first search exact algorithm for the multiple-choice multidimen-
sional knapsack problem. Journal of Combinatorial Optimization 13(4), 337–351
(2007)

17. Shapley, L.S.: A value for n-person games. In: Tucker, A.W., Kuhn, H.W. (eds.)
Contributions to the Theory of Games, vol. 2, pp. 307–317. Princeton University
Press (1953)

18. Shehory, O., Kraus, S.: Formation of overlapping coalitions for precedence-ordered
task-execution among autonomous agents. ICMAS pp. 330–337 (1996)

19. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial Intelligence 101(1-2), 165–200 (1998)

20. Tran-Thanh, L., Nguyen, T.D., Rahwan, T., Rogers, A., Jennings, N.R.: An ef-
ficient vector-based representation for coalitional games. In: AAAI. pp. 383–389
(2013)

21. Wang, T., Song, L., Han, Z., Saad, W., Ieee: Overlapping coalitional games for
collaborative sensing in cognitive radio networks. WCNC pp. 4118–4123 (2013)

22. Wooldridge, M., Dunne, P.E.: On the computational complexity of coalitional re-
source games. Journal of Artificial Intelligence 170(10), 835–871 (2006)

23. Zanakis, S.H.: Heuristic 0-1 linear programming: An experimental comparison of
three methods. Management Science 24(1), 91–104 (1977)

24. Zhang, Z., Song, L., Han, Z., Saad, W.: Coalitional games with overlapping coali-
tions for interference management in small cell networks. Wireless Communica-
tions, IEEE Transactions on 13(5), 2659–2669 (2014)

25. Zick, Y., Chalkiadakis, G., Elkind, E.: Overlapping coalition formation games:
Charting the tractability frontier. In: AAMAS. vol. 2, pp. 787–794 (2012)

26. Zick, Y., Elkind, E.: Arbitrators in overlapping coalition formation games. In:
AAMAS. vol. 1, pp. 55–62 (2011)

