The University of Southampton
University of Southampton Institutional Repository

Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation

Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation
Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation
The paper investigates the two-dimensional irregular packing problem with multiple homogeneous bins (2DIBPP). The literature on irregular shaped packing problems is dominated by the single stock sheet strip packing problem. However, in reality manufacturers are cutting orders over multi-stock sheets. Despite its greater relevance, there are only a few papers that tackle this problem in the literature. A multi-stock sheet problem has two decision components; the allocation of pieces to stock sheets and the layout design for each stock sheet. In this paper, we propose a heuristic method that addresses both the allocation and placement problems together based on the Jostle algorithm. Jostle was first applied to strip packing. In order to apply Jostle to the bin packing problem we modify the placement heuristic. In addition we improve the search capability by introducing a diversification mechanism into the approach. Furthermore, the paper presents alternative strategies for handling rotation of pieces, which includes a restricted set of angles and unrestricted rotation. Very few authors permit unrestricted rotation of pieces, despite this being a feature of many problems where the material is homogeneous. Finally, we investigate alternative placement criteria and show that the most commonly applied bottom left criteria does not perform as well as other options. The paper evaluates performance of each algorithm using different sets of instances considering convex and non-convex shapes. Findings of this study reveal that the proposed algorithms can be applied to different variants of the problem and generate significantly better results.
Cutting and packing , bin packing, Irregular shapes, heuristics
0925-5273
12-26
Abeysooriya, Ranga, Prasad
4959e73f-5c25-40a1-9bfa-a5023d113562
Bennell, Julia
38d924bc-c870-4641-9448-1ac8dd663a30
Martinez Sykora, Antonio
2f9989e1-7860-4163-996c-b1e6f21d5bed
Abeysooriya, Ranga, Prasad, Bennell, Julia and Martinez Sykora, Antonio (2018) Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation International Journal of Production Economics, 195, pp. 12-26. (doi:10.1016/j.ijpe.2017.09.014).

Abeysooriya, Ranga, Prasad, Bennell, Julia and Martinez Sykora, Antonio (2018) Jostle heuristics for the 2D-irregular shapes bin packing problems with free rotation International Journal of Production Economics, 195, pp. 12-26. (doi:10.1016/j.ijpe.2017.09.014).

Record type: Article

Abstract

The paper investigates the two-dimensional irregular packing problem with multiple homogeneous bins (2DIBPP). The literature on irregular shaped packing problems is dominated by the single stock sheet strip packing problem. However, in reality manufacturers are cutting orders over multi-stock sheets. Despite its greater relevance, there are only a few papers that tackle this problem in the literature. A multi-stock sheet problem has two decision components; the allocation of pieces to stock sheets and the layout design for each stock sheet. In this paper, we propose a heuristic method that addresses both the allocation and placement problems together based on the Jostle algorithm. Jostle was first applied to strip packing. In order to apply Jostle to the bin packing problem we modify the placement heuristic. In addition we improve the search capability by introducing a diversification mechanism into the approach. Furthermore, the paper presents alternative strategies for handling rotation of pieces, which includes a restricted set of angles and unrestricted rotation. Very few authors permit unrestricted rotation of pieces, despite this being a feature of many problems where the material is homogeneous. Finally, we investigate alternative placement criteria and show that the most commonly applied bottom left criteria does not perform as well as other options. The paper evaluates performance of each algorithm using different sets of instances considering convex and non-convex shapes. Findings of this study reveal that the proposed algorithms can be applied to different variants of the problem and generate significantly better results.

Text Accepted_article_IJPE - Accepted Manuscript
Restricted to Repository staff only until 20 September 2019.

More information

Accepted/In Press date: 20 September 2017
e-pub ahead of print date: 22 September 2017
Published date: January 2018
Keywords: Cutting and packing , bin packing, Irregular shapes, heuristics

Identifiers

Local EPrints ID: 414392
URI: http://eprints.soton.ac.uk/id/eprint/414392
ISSN: 0925-5273
PURE UUID: ad1935b2-7607-4c53-95fd-422c2185d298

Catalogue record

Date deposited: 28 Sep 2017 16:31
Last modified: 03 Nov 2017 17:30

Export record

Altmetrics

Contributors

Author: Ranga, Prasad Abeysooriya
Author: Julia Bennell

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×