HIV-1 glycan density drives the persistence of the mannose patch within an infected individual

Karen P. Coss,1 Snezana Vasiljevic,2 Laura K. Pritchard,2 Stefanie A. Krumm,1 Molly Glaze,2 Sharon Madzorera,3,4,5 Penny L. Moore,3,4,5 Max Crispin,2* Katie J. Doores1*

1Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, UK.
2Oxford Glycobiology Institute and Department of Biochemistry, University of Oxford, UK.
3Department of Virology, University of the Witwatersrand, Johannesburg, South Africa
4National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.
5Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.

Running title: Longitudinal persistence of the HIV mannose patch

* Address Correspondence to Max Crispin and Katie Doores: max.crispin@bioch.ac.uk (M.C.) and katie.doores@kcl.ac.uk (K.J.D)

Abstract word count: 222

Manuscript word count: 6152
Abstract: The HIV envelope (Env) is extensively modified with host-derived N-linked glycans. The high density of glycosylation on the viral spike limits enzymatic processing resulting in numerous under-processed oligomannose-type glycans. This extensive glycosylation not only shields conserved regions of the protein from the immune system but also act as targets for HIV broadly neutralizing antibodies (bnAbs). In response to the host immune system, the HIV glycan shield is constantly evolving through mutations affecting both the positions and frequencies of potential N-linked glycans (PNGSs). Here, using longitudinal Env sequences from a clade C infected individual (CAP256), we measure the impact of the shifting glycan shield during HIV infection on the abundance of oligomannose-type glycans. By analyzing the intrinsic mannose patch from a panel of recombinant CAP256 gp120s displaying high protein sequence variability and changes in PNGS frequency and positioning, we show that the intrinsic mannose-patch persists throughout the course of HIV infection and correlates with the number of PNGSs. This effect of glycan density on processing state was also supported by the analysis of a cross-clade panel of recombinant gp120 glycoproteins. Together, these observations underscore the importance of glycan clustering for the generation of carbohydrate epitopes for HIV bnAbs. The persistence of the intrinsic mannose patch over the course of HIV infection further highlights this epitope as an important target for HIV vaccine strategies.
Importance:

Development of an HIV vaccine is critical for control of the HIV pandemic, and elicitation of broadly neutralizing antibodies (bnAbs), is likely to be a key component of a successful vaccine response. The HIV Envelope glycoprotein (Env) is covered in an array of host-derived N-linked glycans often referred to as the glycan shield. This glycan shield is a target for many of the recently isolated HIV bnAbs and is therefore under constant pressure from the host immune system leading to changes in both glycan site frequency and location. This study aimed to determine whether these genetic changes impacted the eventual processing of glycans on the HIV Env, and the viruses susceptibility to neutralization. We show that despite this variation in glycan site positioning and frequency over the course of HIV infection, the mannose patch is a conserved feature throughout, making it a stable target for HIV vaccine design.
Introduction:
The HIV envelope glycoprotein (Env) is coated in a dense array of host-derived N-linked glycans. These glycans not only shield conserved regions of the protein from neutralizing antibodies but also act as targets for many of the most broad and potent HIV neutralizing antibodies (1-6). Although HIV Env is glycosylated by the host-cell glycosylation machinery, Env glycosylation has been shown to diverge from that typically observed in mammalian cells (1, 7-15). The dense clustering of PNGSs sterically restricts access of glycan processing enzymes in the ER, which results in a population of under-processed oligomannose-type glycans (7-17) that is a distinctive feature of HIV Env (2) and is independent of producer cell (18). Site-specific analysis of the glycans on recombinant gp120 shows that these oligomannose-type glycans cluster together on the outer domain of gp120 (11, 13, 14, 19, 20) and this cluster is often referred to as the mannose patch and is conserved across Env expression systems (including virion-associated Env, SOSIP trimers and recombinant gp120 monomers) and different geographical clades (7, 15, 17, 18, 20, 21). During expression of both monomeric and trimeric gp120, this mannose population is termed the ‘intrinsic mannose patch’ (1, 2, 18). In the native trimer, in addition to the intrinsic mannose patch, further steric constraints on glycan processing give rise to the so-called ‘trimer-associated mannose patch’ (1, 2, 18, 21, 22).

Three main glycan-dependent sites of vulnerability on Env have been identified thus far. These include the N332 glycan/V3 loop which includes the intrinsic mannose patch (recognised by e.g. PGT128, PGT121, 10-1074, PGT135 (5, 23-25)) but also the N160 glycan/V1/V2 loops (e.g. PG9, PG16, PGT145, CAP256-VRC26.25, CH04 (5, 26-28)), and the glycans nearby the gp120/gp41 interface (e.g. PGT151, 35O22, 8ANC195 (29-31)). Protein epitopes such as the CD4 binding site and the membrane proximal external region (MPER) also show some dependence on N-linked glycosylation. For example, the glycans
situated on the rim of the CD4 binding site can modulate neutralization breadth and potency of CD4 binding site bnAbs (22, 32) and perturbation of gp41 glycosylation has been shown to influence the maximum neutralization of MPER bnAb 10E8 (33).

During infection, HIV Env is under constant pressure from the host immune system, in particular neutralizing antibodies, and as such the location and frequency of potential N-linked glycosylation sites (PNGSs) is often changing (3, 34). This observation has led to the concept of the shifting or evolving glycan shield (3). Recent studies aimed at mapping development of HIV broadly neutralizing antibodies (bnAbs) in HIV infected patients has revealed the importance of shifting PNGSs in bNAb development, and shown that immune escape from strain specific antibodies can lead to formation of bNAb epitopes (35-37). For example, Moore et al. showed in an HIV-infected individual that immune pressure against the N334 glycan in a founder virus led to a shift to the conserved N332 glycan position and subsequent development of an N332-dependent bnAb response in that donor (35). Further, removal of the N276 glycan has been shown to confer sensitivity to germline variants of CD4 binding site bnAbs, e.g. VRC01 and NIH45-46, indicating that addition of this glycan as a potential escape mechanism that is critical for development of a broadly neutralizing CD4 binding site antibody response (38).

Studies comparing Env sequences from donor/recipient pairs and large numbers of acute and chronic viruses has shown that clade C transmitted viruses, and to a lesser extent clades A and D, tend to have shorter variable loops and a lower number of PNGSs than chronic viruses (39-43). These trends are observed for both sexual transmission and mother-to-child transmission, however the significance of these differences for HIV transmission is not fully understood. Analysis of longitudinal Env sequences over years of HIV infection has shown that there is an increase in both variable loop length and PNGS
frequency, which is reversed in the later stages of infection (44, 45). It is proposed that this initial increased glycosylation shields neutralizing protein epitopes from the host immune system, which also wanes during late infection (3, 34, 46, 47). Although these studies defined changes in the position and frequency of PNGSs over the course of HIV infection, the effect of these changes on the composition of the glycans present on Env, in particular the persistence of the intrinsic mannose patch, has not yet been determined.

Here we use longitudinal Env sequences from a clade C infected donor, CAP256, to determine the change in glycan shield composition and abundance of oligomannose-type glycans in the intrinsic mannose patch over the course of HIV infection and to relate these changes to variable loop length, frequency of PNGSs and neutralization sensitivity by a panel of HIV bnAbs. The development of the bnAb response in donor CAP256 has been extensively studied and is mediated by bnAbs directed to V1/V2 region on Env (27, 48, 49). This patient was infected with a clade C virus and later became super-infected with a second, unrelated, clade C virus between weeks 13 and 15 leading to Env recombination (27, 48, 49). The viral population early in infection was predominantly made up of the super-infecting (SU) virus with only the V1/V2 and gp41 C-terminus mostly being derived from the primary-infecting (PI) virus (49) but later in infection multiple different recombinant forms existed. Escape from the bnAb response occurred through mutation in V2, in particular at residues R166 and K169 (27, 48, 49).

Here we show that although the number of PNGSs varies by up to five, the intrinsic mannose patch is conserved across all gp120 proteins. However, we observe variation in both the size and composition of the intrinsic mannose patch. We show that there is a strong correlation between frequency of outer domain PNGSs and the abundance of oligomannose-type glycans for both CAP256 gp120s and a cross-clade panel of gp120s
highlighting the importance of glycan density for their restricted access by glycan-processing enzymes. Although there are no strong correlations across the full time period in this donor, a general increase in total PNGSs is observed early in infection and this increase correlates with an increase in oligomannose-type glycans. This is followed by a decline in PNGSs due to loss of glycans at the V3 base and a subsequent decline in oligomannose-type glycans, which was associated with the development of neutralizing antibodies to the C3V4 region. These results demonstrate the persistence of the intrinsic mannose patch over the course of HIV infection and further highlight this region as a stable target for HIV vaccine design strategies.
Materials and Methods:

Cloning and Protein Production

Cloning of the full-length soluble ectodomain of HIV-1 CAP256 gp120s (corresponding to amino acid residues 1 to 507, based on alignment to HxB2 reference strain) into the pHLsec expression vector (50) has previously been described (16, 51). CAP256 Env sequences were published in References (48, 49). The CAP256 proteins were expressed in the 293F variant of HEK 293T cells (ThermoFisher Scientific) that are adapted for suspension culture in 500 mL Erlenmeyer flasks with a vent cap (Corning). Cells were incubated at 37 °C with 5% CO₂, shaking at 137 rpm as recommended by the manufacturer. Briefly, 200 mL cultures were transfected with plasmids (pHLSec) carrying the reporter gene expressing the protein using 293Fectin (ThermoFisher Scientific). Culture supernatants were harvested 5 days after transfection and His-tag proteins were purified by Ni²⁺ affinity purification using a 5 mL HisTrap FF column (GE Healthcare). The nickel-purified proteins were further purified using size exclusion chromatography on a Superdex 200 16/600 column (GE Healthcare). The monomeric fractions were collected, pooled and analysed using SDS-PAGE 4–12% Bis-Tris NuPAGE gel (Invitrogen).

Glycan Profiling: PNGase F release of N-glycans.

N-glycans were released from target glycoprotein immobilised in SDS-PAGE bands using peptide-N-glycosidase F (PNGase F; New England BioLabs) (52). Coomassie-stained gel bands were excised and washed alternately with acetonitrile and water before being dried under vacuum. Gel pieces were rehydrated in 20 mM sodium bicarbonate buffer, pH 7.0, and incubated with PNGase F (1 μL) for 16 h at 37°C. Released glycans were extracted from the gel matrix by 3 washing steps with water.

Fluorescent labelling of N-linked glycans
Released glycans were subsequently fluorescently labelled and purified as previously described (53). PNGase F released N glycans were fluorescently labelled using 2-aminobenzoic acid (2-AA). The labelling mixture comprised 2-AA (30 mg/mL) and sodium cyanoborohydride (45 mg/mL) dissolved in a solution of sodium acetate trihydrate (4% wt/vol) and boric acid (2% wt/vol), in methanol. The labelling mixture (80 μL) was added to each sample (in 30 μL of water) and incubated at 80°C for 1 h. Labelled oligosaccharides were purified using Spe-ed Amide-2 columns (Applied Separations, Allentown, PA) pre-equilibrated with acetonitrile. Before loading, 1 mL 97% acetonitrile (vol/vol) was added to each sample. Loaded samples were then washed with 2 mL 95% acetonitrile (vol/vol) and eluted with 1.5 mL water. Glycans were dried under vacuum prior to UPLC analysis or glycosidase treatment.

Digestion of free, labelled glycans
Glycan samples labelled with 2-AA were digested overnight using Endoglycosidase H (Endo H) (New England Bioscience) in a total volume of 20 μL. Samples were purified with a protein-binding membrane clean-up, using a Ludger vacuum manifold and a multiscreen filter protein-binding plate (MilliPore).

Hydrophilic Interaction Liquid Chromatography -Ultra-Performance Liquid Chromatography
Glycans were separated by hydrophilic interaction liquid chromatography (HILIC)-ultra-high-performance liquid chromatography (UHPLC) using a Waters Acquity system (Waters, USA). Labelled samples were resuspended in 15 μL water and added to a vial with 15 μL 100% acetonitrile. A 2.1 mm × 10 mm Acquity BEH Amide Column (Waters), particle size 1.7 μm, with a programmed gradient was used for separation. Data was acquired and processed with Empower 3 (Waters, USA).
Pseudovirus production and neutralization assays

To produce pseudoviruses, plasmids encoding Env were co-transfected with an Env-deficient genomic backbone plasmid (pSG3ΔEnv) in a 1:2 ratio with the transfection reagent PEI (1 mg/mL, 1:3 PEI:total DNA, Polysciences) into HEK 293T cells (obtained from the American Tissue Culture Collection) (54, 55). Pseudoviruses were harvested 72 hours post transfection for use in neutralization assays. Neutralizing activity was assessed using a single round replication pseudovirus assay with TZM-bl target cells (provided by John Kappes through the NIH AIDS Reagents Repository Program), as described previously (54, 55). Briefly, the antibody was serial diluted in a 96 well flat bottom plate and pre-incubated with virus for 1 hr at 37°C. Cells at a concentration of 20,000 cells/well were added to the virus/antibody mixture and luminescence was quantified 72 hrs following infection via lysis and addition of Bright-Glo™ Luciferase substrate (Promega). Dose-response curves were fitted using nonlinear regression (GraphPad Prism) to determine IC50 values.

Antibodies

PGT121, PGT128, PGT135, PG9, b12, PGV04, VRC01, PGT151 and CAP256-VRC26.25 were transiently expressed with the FreeStyle 293 Expression System (Thermofisher Scientific). Antibodies were purified using affinity chromatography (Protein A Sepharose Fast Flow, GE Healthcare) and the purity and integrity was checked by SDS–PAGE.

Correlations/statistics

Correlations were determined using a Pearson correlation and calculated using GraphPad Prism 6.

Preparation of chimeric viruses
Chimeric Env containing the C3V4 region were created using an overlapping PCR strategy, and cloned into the pCDNA 3.1D-TOPO vector (Invitrogen) as described previously (56). Chimeric viruses were used to generate pseudoviruses as described above, and assayed for neutralization sensitivity to longitudinal CAP256 plasma (obtained from the CAPRISA cohort). Site-directed mutagenesis was used to delete the N332 glycan within this construct to assess the role of this glycan in mediating escape from plasma nAbs.
Results:

Longitudinal analysis of PNGS and V loop length for CAP256 sequences

Env sequences from the CAP256 donor from multiple time points over the course of HIV infection have previously been reported (48, 49). Full Env single genome amplification (SGA) and next generation sequencing of the V1-V3 region (using the MiSeq platform) of viral variants from plasma samples correlated well (48, 57). Here 154 clones from multiple time points were analyzed for their PNGS position and frequency as well as their variable loop lengths. Previous studies have reported an increase in PNGSs and variable loop lengths over the course of HIV infection (44, 45). Therefore, we first determined whether these trends were observed in CAP256 (Figure 1). We first considered the changes in variable loop lengths over time. Although there is variation in both the individual and total variable loop lengths during the course of infection, there are no notable correlations. However, there was a weak negative correlation between total V loop length and weeks post infection up until week 94 ($r = -0.2496, p = 0.0039$) (Figure 1A). We next considered PNGS frequency. For all CAP256 Env sequences the frequency of gp41 PNGSs remained constant at 4 and the location of these sites did not alter during the course of infection (Figure 2). The frequency of total PNGSs for gp120 ranged from 22 to 28, with the primary infecting (PI) and super-infecting (SU) viruses having mostly 23 and 25 PNGSs respectively (Figure 1B). The majority of variation in PNGS frequency occurred within variable loops, in particular the V1/V2 loops and glycan sites positioned at the base of the V3 loop (N295, N332 and N334).

When the frequency of PNGSs was plotted against the number of weeks post infection a weak positive correlation ($r = 0.21, p = 0.01$) was observed. However, as the glycan shield is a dynamic entity that is under constant pressure from the host immune system we also looked for correlations over smaller time periods. In this donor a strong positive correlation ($r = 0.64, p < 0.0001$) was observed up until week 94, after which the number of PNGSs declined and the correlation weakened (Figure 1B). This decrease corresponds
predominantly to the loss of glycan sites at positions N295 and N332. A slight decrease in PNGSs around weeks 30 to weeks 34 was also observed which corresponded to loss of V1/V2 loop PNGSs, and the N289 or N295 glycan sites (Figure 1B). Interestingly, this is the first time point that the V1/V2-specific antibody response was detected and subsequently led to a sudden increase in viral diversification (48, 57). A similar trend was observed for PNGSs on the outer domain of gp120 up until week 94 (OD, residues 252-482), however there was no correlation over the full time period (Figure 1C). In summary, in the CAP256 donor there is a general trend towards increasing PNGSs early in infection that decreases at the latest time point (week 176), which is consistent with previous studies (44, 45). However, there is still considerable variation between single viruses at a given time point, (e.g. at week 176 the total number of PNGSs differs by 4 (Figure 1B)) enabling us to assess the prevalence of the intrinsic mannose patch.

The intrinsic mannose patch is present on gp120 throughout HIV infection in donor CAP256.

To determine changes in the composition of the HIV glycan shield and abundance of oligomannose-type glycans within the intrinsic mannose patch over the course of infection, the gp120 region of 24 CAP256 Envs from different timepoints were recombinantly expressed. The selected clones were chosen to represent major clades within a phylogenetic tree based on single genome amplification. This smaller sample of CAP256 Envs displayed a similar correlation between weeks post infection and PNGS frequency as for the 154 Env sequences (Figure 1D-F) and their PNGS position and frequency are reported in Figure 2. We were particularly interested in the abundance of oligomannose-type glycans of the intrinsic mannose patch as these glycans form part of the epitopes of a number of the most broad and potent HIV bnAbs (e.g. PGT121, PGT128 and PG9) (5, 25, 58, 59). As we have previously shown that the intrinsic mannose patch of recombinant
gp120 captures much of the steric constraints exhibited by these glycans in the context of the trimer (including SOSIP trimers) (7, 15, 17, 18, 22), monomeric gp120 was used as a useful model of this viral feature. Residues 1 to 517 were cloned into a recombinant expression vector (pHLSec) (50, 51) and expressed in HEK 293F cells for glycan profiling (we have previously shown that the mannose patch is largely independent of producer cell (17, 18)). The protein constructs included a C-terminal hexa-histidine tag so that nickel affinity purification could be used to avoid potential bias associated with other glycan-specific purification methods such as lectins. Proteins were purified first using His-tag affinity chromatography followed by size exclusion chromatography (SEC) to remove aggregates. Purified proteins were then run on a non-reducing SDS-PAGE gel and the monomeric gp120 band excised for glycan analysis. N-linked glycans were released using PNGase F, fluorescently labeled and analyzed by HILIC-UPLC. The percentage of oligomannose glycans was assessed by integration of chromatograms pre- and post-Endo H digestion generating specific percentage areas for the oligomannose glycans (Figure 3A). It was then possible to assign structures based on previous analysis (16, 18).

All gp120 samples displayed an intrinsic mannose-patch, however the population of oligomannose-type glycans varied from 29.3% to 47.6% (Table S1). The percentage change in oligomannose levels between gp120 94wks.A3, that has the highest number of PNGSs (a total of 28), and 6wks_PI, that has the fewest number of PNGSs (a total of 23), is 27% and 212% for Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$ respectively. Gp120 94wks_A3 has additional PNGSs in V1 (N135, N160), in C2 (N230), in C3 (N362) and V4 (N406, N413) whereas 6wks_PI has an additional PNGS in C4 (N442). We have previously measured the decrease in oligomannose-type glycans on BaL gp120 when one or two PNGSs were removed through Asn to Ala substitution (16). The largest effect was observed for the N295A/N386A double mutant where the percentages of Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$ decreased by
27% and 71% respectively. Therefore, compared to our previous observations, the difference in oligomannose-type glycan abundance for 94wks.A3 and 6wks.PI is relatively small considering these recombinant proteins differ by five PNGSs (16) but the difference in Man₉GlcNAc₂ structures is much higher. This observation is not unexpected given the position of two of the additional PNGSs are on the gp120 OD where PNGSs are tightly clustered (see discussion below). This therefore suggests that there are regions on gp120 where multiple glycans can be removed with little impact on glycan processing of the intrinsic mannose patch and it is the local density of PNGSs that determines the extent of glycan processing.

Abundance of oligomannose-type glycans correlates with density of PNGSs.

To determine factors that might influence the abundance of specific oligomannose-type glycans on gp120 we correlated the percentage of Man₅₋₉GlcNAc₂ glycans with the total PNGSs on gp120 (Figure 3B). A positive correlation was observed ($r = 0.486$, $p = 0.016$) and this correlation became more significant when only Man₉GlcNAc₂ glycan abundance was considered ($r = 0.695$, $p = 0.0002$). When the percentage Man₅₋₉GlcNAc₂ and Man₉GlcNAc₂ were correlated with the frequency of PNGSs present only on the outer domain (OD) of gp120 then a strong positive correlation was observed for both Man₅₋₉GlcNAc₂ and Man₉GlcNAc₂ ($r = 0.752$, $p =< 0.0001$, and $r = 0.717$, $p =< 0.0001$ respectively) (Figure 3C). The gp120 OD PNGSs include many of the sites shown to be oligomannose-type in site-specific analysis studies (8, 11, 14, 22, 60). Further, the recent crystal structures of the BG505 SOSIP.664 recombinant trimer showed the PNGSs in this region cluster tightly on the surface of Env (58, 61). Therefore an increase in PNGSs on the outer domain of gp120 will likely further restrict access of the glycan-processing enzymes leading to an increase in oligomannose-type glycans on gp120 and the size of the intrinsic mannose patch (7, 17). Interestingly, some gp120s that have the same positioning and frequency of PNGS still
showed differences in percentage of oligomannose-type glycans highlighting the role protein sequence may also play in determining the structure of the HIV glycan shield. For example, 59wks.2a and 59wks.10b have identical PNGSs yet the percentage of oligomannose-type glycans differs by 3.6%.

Longer variable loop lengths might be expected to decrease the density of PNGSs and lead to a higher degree of glycan-processing and therefore a reduction in oligomannose-type glycans. Although the CAP256 gp120 sequences differed in combined variable loop length by up to 20 amino acids, no correlation was observed between oligomannose abundance and variable loop length (Figure 3D) suggesting that positioning of specific glycan sites is most critical to oligomannose abundance.

Abundance of oligomannose-type glycans correlates with density of outer-domain PNGSs for a cross-clade panel of gp120s.

To determine whether the correlation between the number of PNGSs on the outer-domain of gp120 and the abundance of oligomannose-type glycans was a general feature for HIV Env across geographical clades, a panel of 29 gp120s were cloned, expressed and purified as described above. The panel included gp120s from clades A, B, C, AE and G, of which five were transmitted/founder viruses. All isolates tested were found to possess a significant population of oligomannose-type glycans ranging from 23.8% to 50.5% (Figure 4 and table S2). When the abundance of oligomannose-type glycans was correlated with the total number of PNGSs (ranging from 21 to 28), no significant correlation was observed (Figure 4A). However, a significant correlation was observed between the frequency of OD PNGSs (ranging from 12-17) and oligomannose abundance, similar to that seen for the CAP256 samples ($r = 0.4692$, $p = 0.010$; Figure 4B). No significant correlations were observed between total PNGSs or OD PNGSs and Man$_9$GlcNAc$_2$ (data not shown). These data further
support the notion that a high density of PNGSs on OD restricts glycan-processing enzymes leading to a higher population of under-processed oligomannose-type glycans. These data also suggest that it is local glycan density that has the largest impact on glycan processing rather than overall glycan density. Interestingly, the specific occupancy and composition of individual sites was not assessed here but this could be an informative extension in future studies.

While there are variations in the percentage of certain oligomannose structures between the clades (clades C and G having less Man$_9$GlcNAc$_2$ structures, and clade C having less Man$_8$GlcNAc$_2$ structures), the overall abundance of oligomannose glycans is fairly similar (Figure 4C and 4D). Clade C has the lowest total percentage oligomannose (35.5%), yet when compared to clade B, with one of the highest percentages and lowest SD (38.5%, SD 4.98), there is no significant difference between the two (Figure 4C), although this difference might become more significant if more gp120s were studied. Considering the correlation between outer-domain PNGSs and Man$_{5-9}$GlcNAc$_2$ it is likely that loss of specific sites between clades is responsible for the differences in specific glycan abundance. This is particularly relevant for clade C viruses that typically lack the N295 glycan site (62, 63), a PNGS we have previously shown to stabilize the mannose patch from glycan processing (16). However, while there are some differences in the structures, the total level of oligomannose-type glycans remains similar between clades, indicating the overall stability and conserved nature of the mannose patch.

Correlation of oligomannose-type glycans with time post-infection

We next examined how the size of the intrinsic mannose patch changes over the course of HIV infection. We first correlated the percentage of oligomannose-type glycans against the weeks post infection but no correlation was observed (Figure 5A). As the glycan shield is a
dynamic entity that is under constant pressure from the host immune system we also looked for correlations over smaller time periods to reflect this. We observed correlations between Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$ abundance and weeks post infection up until week 94 ($r = 0.513$, $p = 0.025$ and $r = 0.666$, $p = 0.0019$ respectively, Figure 5A) similar to that seen for changes in PNGS frequency over time. The abundance of oligomannose-type glycans then largely persists but exhibits some variation due to sensitivity to loss of PNGSs at the base of V3, in particular at positions N295 and N332/N334 (Figure 2).

To analyze the changes in Env glycan composition over time in more detail, we next determined the percentage change in total oligomannose-type glycans (Man$_{5-9}$GlcNAc$_2$) and Man$_9$GlcNAc$_2$ individually for each gp120 clone (Figure 5B). As the viral population early in infection was predominantly made up of the SU virus, with only the V1/V2 and gp41 C-terminus mostly being derived from the PI virus, changes in total Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$ composition were considered in relation to the SU virus. Although the mannose patch is present on all CAP256 proteins studied, the changes in Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$ can vary for individual clones at a given time point. Generally, a large increase in oligomannose-type glycans was due to increases in Man$_9$GlcNAc$_2$ and Man$_{5-9}$GlcNAc$_2$ early stage glycan structures (Figure 5B and Table S1) further suggesting increased density in PNGSs leads to reduced glycan processing. For example, gp120s from weeks 59 and 94, which had the highest oligomannose-type glycan abundance (44.0-47.6%), had 28.4-30.4% Man$_{8-9}$GlcNAc$_2$ structures. Interestingly, previous analysis of glycan site mutants showed that the presence of Man$_9$GlcNAc$_2$ was particularly dependent on multiple stabilizing interactions with neighbouring glycans (16).

Abundance of oligomannose-type glycans does not correlate with neutralization potency of HIV bnAbs.
We next wanted to determine whether the structure of the HIV glycan shield, in particular the abundance of oligomannose-type glycans, might influence the potency of neutralization by a panel of HIV bnAbs. We therefore determined the IC$_{50}$ values for intrinsic mannose patch binding bnAbs PGT121, PGT128 and PGT135, V1/V2 loop bnAbs PG9 and several of CAP256-VRC26 antibody lineage, cleavage-specific bnAb PGT151, and CD4 binding site bnAbs PGV04, VRC01 and llama antibody VHH J3 (Table S3). When the IC$_{50}$ values were correlated with the abundance of oligomannose-type glycans no significant correlations were observed for any bnAbs (Figure 6), although a general weak trend for increasing IC$_{50}$ values with increasing oligomannose-type glycans was observed for some bnAbs. Generally, the ability of a bnAb to neutralize a viral variant was dependent on the presence of key contact glycan sites such as N160 or N332. The majority of viruses were resistant to PGT135 neutralization and viruses lacking the N332 glycan site, and in one case the N295 glycan site, were resistant to PGT128. PGT121 was able to neutralize all but two viruses. PG9 could not neutralize viruses lacking the N160 glycan site or viruses with a glutamic acid at position 169 (Figure 2, Figure 6 and Table S3) (48) whereas CAP256-VRC26 lineage bnAbs were dependant on protein residues in V1 for neutralization (27). Interestingly, none of CAP256-VRC26 lineage bnAbs isolated over several different time points throughout infection (weeks 119, 159, 193 and 206) showed any correlation with oligomannose abundance suggesting increasing the size of the mannose-patch is not a direct mechanism of escape against the autologous antibodies in this donor. For PGT151, although all viruses contained the key glycan sites and residues thought to be required for neutralization (N611, N637 and E647) some viruses were nonetheless resistant to PGT151 neutralization. Potency for the CD4 binding-site bnAbs PGV04, VRC01 and J3, which do not contact glycans, generally did not correlate with the level of oligomannose-type glycans. As N-linked glycans are positioned around the edge of the CD4 binding site, the changes in bulk glycan structures observed may not be occurring in this region of gp120 and therefore not impact
on CD4 binding-site bnAbs but site-specific glycan analysis would be required to determine this. Interestingly, the smaller single chain llama antibody, J3, had the smallest variation in IC₅₀ values. Therefore, the abundance of oligomannose-type glycans in the intrinsic mannose patch does not impact on potency of neutralization and suggests Env sequences from any time point during infection, provided they have the key contact glycan sites, would be suitable HIV immunogens.

Anti-C3/V4 nAbs may be responsible for loss of PNGSs at week 176.

The loss of glycan sites at the base of the V3 loop at week 176 suggested that neutralizing antibodies might be exerting selection pressure against this region that is leading to loss of PNGSs and a decrease in abundance of oligomannose-type glycans. To assess whether this region was a target of nAbs, we created a chimeric Env from the 176wks.4 Env, which had already escaped the high titer V2 responses that dominate CAP256 plasma (49). Using overlapping PCR, we transferred the C3V4 region from the sensitive 15wks_SU virus into the resistant backbone and tested this chimeric Env (15wks_SU C3V4) against longitudinal plasma (Figure 7). Anti-C3V4 antibodies at titers greater than 1:100 were detected from 42 weeks post-infection persisting at least until 94 weeks at which time point an additional specificity emerges. To determine whether the anti-C3V4 antibodies were directed against the N332 glycan site in particular we next used site-directed mutagenesis to make an Asn to Ala substitution at the N332 glycan site (15wks_SU C3V4 N332A). A decrease in serum titres was observed indicating that some of the C3V4-antibody response is directed against the N332 epitope (Figure 7). The presence of anti-C3V4 nAbs suggests that nAbs against this region can elicit a selective pressure that results in loss of V3 loop glycans and a subsequent decrease in oligomannose-type glycans.
Discussion:

It is clear that the HIV glycan shield is under constant pressure from the host immune system. Here we use longitudinal Env sequences from a chronically infected HIV patient to characterize the changes in the structure of the HIV glycan shield during the course of HIV infection, in particular the persistence and composition of the intrinsic mannose-patch. We show that in the CAP256 donor the mannose patch (Figure 8A) persists throughout infection despite the variation in PNGS position and frequency (Figure 8B). In this donor there is an increase in PNGSs and oligomannose-type glycans within the intrinsic mannose patch over the course of infection up until week 94. This increase correlates with the frequency of PNGSs on the outer domain. Thereafter, there is a reduction in PNGSs at the base of the V3 and a corresponding reduction in oligomannose-type glycans by week 176, likely a consequence of viral escape from a de novo neutralizing response to the C3V4 region.

Although this study focuses on only one donor, these findings give insight into the composition and conservation of the intrinsic mannose patch under immune pressure and highlights this epitope as an important target for HIV vaccine design strategies.

Our previous studies have shown that the glycosylation of HIV Env is determined by both protein-directed effects, arising from the 3-dimensional protein structure, and cell-directed effects, arising from the cell-type the protein is expressed in (2, 17, 18). The protein-directed effects give rise to a patch of under-processed oligomannose-type glycans on the outer domain of gp120 that forms a non-self epitope targeted by HIV bnAbs. We show that despite the variation in protein sequence and positioning and frequency of PNGSs, the intrinsic mannose patch is highly conserved during the course of infection in the CAP256 donor and therefore represents a stable target for vaccine design. However, the intrinsic mannose patch varies in both overall size and distribution of glycans within the oligomannose series (Man\textsubscript{5-9}GlcNAc\textsubscript{2}) and this most strongly correlates with the density of PNGSs present on the
OD of gp120. This trend was also observed, although to a lesser extent, for a cross-clade panel of gp120 and highlights the role protein sequence might also play in determining the structure of the HIV glycan shield. These data support our previous conclusions that the high-density of PNGSs restricts glycan-processing enzymes from trimming and processing N-linked glycans within this region (7, 15, 16, 18, 64). Interestingly, it seems to be the local glycan density rather than the overall glycan density that has the biggest impact on size and composition of the mannose-patch. Although Env sequences vary by up to 5 PNGSs it is clear that it is mainly PNGSs within and around the outer domain of gp120 that affects the size and distribution of oligomannose-type glycans within the intrinsic mannose patch. The potency of neutralization by a panel of HIV bnAbs is not affected by the variation in mannose patch composition but is dependent on the presence of certain key PNGSs. This suggests that PNGSs on gp120 are sufficiently high density that the natural variation in Env occurring throughout infection has minimal impact on glycan processing such that the mannose-patch, which is intrinsic to both monomer and trimer is always present. Therefore, the density of glycans on gp120, even at the lowest density, is sufficient to maintain the steric restriction necessary to impede mannosidase processing. This is consistent with previous observations suggesting that minimal glycan-glycan interactions are required to prevent processing to complex-type glycans (16). In addition, this effect may be further compounded by the trimer-associated restriction to processing not captured by our monomeric gp120 model (1, 2, 18, 22). Although several studies have reported more compact transmitter clade C and A viruses (39, 40), with shorter V1-V4 loop length, this does not appear to impact the glycosylation of gp120s from the CAP256 donor.

The most dramatic changes to the HIV glycan shield of CAP256 gp120 occurs when glycans at the base of the V3 loop are added or deleted. This is supported by our previous studies showing that deletion of glycans within the region for gp120Bal had the largest impact on
oligomannose-type glycan abundance due to disruption of glycan microclusters within the outer domain (16). We have shown that some of the changes occurring in PNGS position and frequency of CAP256 gp120, and subsequently oligomannose abundance, at week 176 post infection are likely a result of a new wave of neutralizing antibodies targeting the C3V4 region, including the N332 glycan. These data may suggest the selective pressure of neutralizing Abs targeting the intrinsic mannose patch would have the biggest effect on shaping the glycan structures present on the HIV glycan shield. Unfortunately, full-length Envs from later time-points were not available but as the C3/V4 specific response arose after approximately 75 weeks, any additional destabilization of the intrinsic mannose patch is likely to occur within the time frame studied. It is possible that if a similar study was carried out in a donor who developed bnAbs against another epitope, such as the CD4 binding site, less variation in OD PNGS frequency would occur and thus a smaller variation in oligomannose-type glycans would be observed over the course of infection.

Desaire and colleagues have previously compared the glycosylation of recombinant gp120 from transmitted/founder (t/f) viruses and chronic viruses (60). They conclude that t/f Envs are more similar to each other than to their corresponding chronic viruses, with t/f Envs having distinct glycosylation patterns consisting of a higher degree of oligomannose and sialylated glycans, and a lower site occupancy (60). However, the study was limited as only two t/f and two chronic viruses were studied and these viruses were not derived from the same donors. Indeed, comparison of oligomannose levels on the t/f and chronic viruses in our gp120 panel showed no significant differences. By using longitudinal virus sequences we are able to show that over the course of infection in the CAP256 individual there is an increase in PNGSs and a corresponding increase in oligomannose-type glycans that is subsequently reduced by the pressure of neutralizing antibodies. Although the PI and SU gp120s have lower levels of oligomannose-type glycans (35.3% and 36.4% respectively)
than the majority of gp120s from later time points, there are viruses within the quasispecies that have lower levels of oligomannose glycans, e.g. 38wks.38 and 48wks.10 having 32.7% and 35.5% oligomannose-type glycans respectively. What would be interesting to determine is the glycosylation of Envs within the HIV infected donor who transmitted the viruses to the CAP256 donor, however these samples are not available.

Although we have only studied one HIV infected individual in detail, a number of studies have shown t/f viruses have a lower frequency of PNGSs (39-43). Whether there would be a benefit for t/f viruses to have a reduced frequency of PNGSs and subsequently display a lower proportion of oligomannose-type glycans is unclear. In relation to HIV transmission, studies have shown the importance of the interaction of DC-SIGN receptors on DCs in mucosal tissues for transfection of CD4+ T cells is strongly dependent on the presence of oligomannose structures (65-67). In relation to infectivity, reduction of complex-type glycans on HIV virions (through use of glycosidase inhibitors or a GnTI-deficient cell line) reduced the infectivity of the virus but enhanced trans-infection of peripheral blood lymphocytes (32, 68). In relation to Env immunogenicity, studies have shown that removal or occlusion of mannose residues from the surface of gp120 can enhance the immune response against HIV due to reduced interactions with immunosuppressive receptors such as the mannose-receptor (69-71). Taken together, these studies might suggest a higher abundance of oligomannose-type glycans would be more beneficial for transmitted viruses. It is therefore possible that the reduced oligomannose levels in the PI and SU viruses is only a consequence of lower PNGSs and does not give a virus competitive advantage at the point of transmission. However, there may be a trade-off between viral infectivity and host recognition. Regardless, in terms of vaccine design, Env based immunogens with a lower abundance of oligomannose-type glycans (from the CAP256 donor this would be Envs from
earlier time-points) might give a stronger immune response as suggested by the studies described above (69-71).

In summary, although in the CAP256 donor there are changes in both frequency and positioning of PNGSs due to immune pressure, the intrinsic mannose patch remains a stable feature of HIV Env and is present throughout the course of HIV infection. The density of PNGSs on the outer domain of gp120 can influence the size and composition of the intrinsic mannose patch but these differences do not affect the neutralization sensitivity of a panel of HIV bnAbs. These findings, in addition to our previous observations showing the presence of the intrinsic mannose patch to be independent of producer cell, further highlights the mannose patch as a stable target for HIV vaccine design.
Acknowledgements

We thank Jinal Bhiman for the original cloning of the CAP256 Env variants from patient samples. We thank Hajer Mohammed for help with cloning of some of the gp120 expression constructs.
Figure Legends:

Figure 1: Correlation between weeks post infection and A) total length of variable loops (V1-V5), B) total PNGSs on gp120, and C) PNGSs on gp120 outer domain (residues 252-482). 154 previously published Env sequences over multiple time-points were used in the analysis (48). Correlation between weeks post infection and D) total length of variable loops (V1-V5), E) total PNGSs on gp120, and F) PNGSs on gp120 outer domain (residues 252-482) for the 24 recombinantly expressed gp120s. The primary infecting virus (PI) and super infecting virus (SU) are at weeks 6 and 15 respectively. Correlations were assessed by Pearson analyses: p-values and r-values are indicated between weeks 6 to 94 and between weeks 6 to 176 (All). Note that some of the sequences have identical PNGS, OD PNGS and V loop lengths and these points are overlaid.

Figure 2: Summary of PNGSs for 24 representative CAP256 Env clones that were expressed recombinantly. Total PNGSs on gp160, gp120, the outer domain, V1/V2, V3/V4 or gp41 are calculated for each clone. Clones are grouped together according to the time they were isolated. A white box indicates a PNGS is absent and a blue box indicates a PNGS is present.

Figure 3: A) HILIC-UPLC spectrum of fluorescently labelled N-linked glycans released from 48wks.17 gp120 using PNGase F. This is presented as an example of the quantification methodology. The green trace is a spectrum of released glycans and the white trace is the spectrum for Endo H treated glycans. Overlaying of the spectra results in the glycans sensitive to Endo H being displayed as green. The percentage of oligomannose glycans was assessed by integration of chromatograms pre- and post-Endo H digestion generating specific percentage areas for the oligomannose glycans. The oligomannose glycans are highlighted (M5-M9, Man$_{5-9}$GlcNAc$_2$). Correlation between abundance of oligomannose-type
glycans (Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$) and B) total PNGSs on gp120, C) PNGSs on gp120 outer domain (residues 252-482) and D) total variable loop lengths. Correlations were assessed by Pearson analyses: p-values and r-values are indicated.

Figure 4: Correlation between the percentage of oligomannose-type glycans (Man$_{5-9}$GlcNAc$_2$) and A) total PNGSs on gp120 and B) PNGSs on the outer domain of gp120 (residues 252-482) for a cross-clade panel of gp120 glycoproteins. Each point is coloured depending on the HIV clade (A (n=7), B (n=8), C (n=6), AE (n=4) and G (n=4)). Correlations were assessed by Pearson analyses: p-values and r-values are indicated. Cross clade gp120 panel differences for C) Man$_{5}$-Man$_{9}$ and Man$_{9}$, and D) Total PNGSs, and OD PNGSs. Error bars represent standard deviation. Mann-Whitney test was used to show that there were no significant differences between the groups.

Figure 5: A) Correlation between weeks post infection and abundance of Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$. B) Percentage change in Man$_{5-9}$GlcNAc$_2$ and Man$_9$GlcNAc$_2$ compared to the SU virus for each CAP256 gp120 clone studied (% change = ((%CAP-%SU)/%SU)*100). Correlations were assessed by Pearson analyses: p-values and r-values are indicated.

Figure 6: Correlation between potency of neutralization (IC$_{50}$ values) and the percentage of oligomannose-type glycans for a panel of HIV bnAbs. A) N332-dependent (intrinsic mannose patch binding) bnAbs, B) CD4 binding site bnAbs, C) PGT151 and D) N160 V1/V2 loop bnAbs. Correlations were assessed by Pearson analyses. IC$_{50}$ values are reported in Table S4.

Figure 7: Kinetics of the C3V4 neutralizing antibody response in CAP256. Titres are shown using the CAP256 176wks.4 virus (black) and chimeric Envs containing only the C3V4
region of the sensitive SU virus (15wks_SU C3V4, red) and an N332A variant (15wks_SU C3V4 N332A, orange). Anti-C3V4 antibodies at titers greater than 1:100 were detected from 42 weeks post-infection persisting at least until 94 weeks. The anti-C3V4 antibodies show some N332A dependence. Titres are indicated as plasma ID₅₀ versus weeks post-infection.

Figure 8: Schematic representation of evolving HIV glycan shield. A) Structure of BG505 SOSIP.644 trimer showing the presence of the intrinsic mannose patch (IMP, green) present on one of the three gp120 monomers (22, 72). B) Cartoon representation of the longitudinal evolution of the intrinsic mannose patch on gp120. Despite the changes in position and frequency of PNGSs on gp120, the intrinsic mannose patch persists throughout infection in this individual. The hashed area represents the intrinsic mannose patch from one gp120 monomer.
References:

A V loop length

Weeks post infection

All: $r = -0.1263$, $p = 0.1249$
To wk94: $r = -0.2496$, $p = 0.0039$

B gp120 PNGSs

Weeks post infection

All: $r = 0.2106$, $p = 0.0099$
To wk94: $r = 0.6412$, $p < 0.0001$

C OD PNGSs

Weeks post infection

All: $r = 0.003$, $p = 0.97$
To wk94: $r = 0.5651$, $p < 0.0001$

D V loop length

Weeks post infection

All: $r = 0.1249$, $p = 0.5610$
To wk94: $r = -0.3475$, $p = 0.0039$

E gp120 PNGSs

Weeks post infection

All: $r = 0.3421$, $p = 0.1017$
To wk94: $r = 0.6554$, $p = 0.0023$

F OD PNGS

Weeks post infection

All: $r = -0.1400$, $p = 0.5141$
To wk94: $r = 0.6916$, $p = 0.0010$
| PNSG sites | 6wks. PI | 15wks. SU | 23wks. 14 | 23wks. 13 | 30wks. 2 | 30wks. 31 | 38wks. 16 | 38wks. 19 | 38wks. 38 | 48wks. 18 | 48wks. 8 | 59wks. 4a | 59wks. 10b | 59wks. 2a | 61wks. A3 | 176wks. C2 | 176wks. H1 | 176wks. F1 | 176wks. A4 |
|------------|---------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| N88 | | | | | | | | | | | | | | | | | | |
| N130 | | | | | | | | | | | | | | | | | | |
| N135 | | | | | | | | | | | | | | | | | | |
| N138 | | | | | | | | | | | | | | | | | | |
| N140 | | | | | | | | | | | | | | | | | | |
| N144 | | | | | | | | | | | | | | | | | | |
| N156 | | | | | | | | | | | | | | | | | | |
| N160 | | | | | | | | | | | | | | | | | | |
| N189 | | | | | | | | | | | | | | | | | | |
| N190a | | | | | | | | | | | | | | | | | | |
| N190e | | | | | | | | | | | | | | | | | | |
| N197 | | | | | | | | | | | | | | | | | | |
| N230 | | | | | | | | | | | | | | | | | | |
| N234 | | | | | | | | | | | | | | | | | | |
| N241 | | | | | | | | | | | | | | | | | | |
| N262 | | | | | | | | | | | | | | | | | | |
| N276 | | | | | | | | | | | | | | | | | | |
| N289 | | | | | | | | | | | | | | | | | | |
| N295 | | | | | | | | | | | | | | | | | | |
| N301 | | | | | | | | | | | | | | | | | | |
| N332 | | | | | | | | | | | | | | | | | | |
| N334 | | | | | | | | | | | | | | | | | | |
| N356 | | | | | | | | | | | | | | | | | | |
| N362 | | | | | | | | | | | | | | | | | | |
| N386 | | | | | | | | | | | | | | | | | | |
| N392 | | | | | | | | | | | | | | | | | | |
| N397 | | | | | | | | | | | | | | | | | | |
| N406 | | | | | | | | | | | | | | | | | | |
| N411 | | | | | | | | | | | | | | | | | | |
| N413 | | | | | | | | | | | | | | | | | | |
| N422 | | | | | | | | | | | | | | | | | | |
| N448 | | | | | | | | | | | | | | | | | | |
| N462/463 | | | | | | | | | | | | | | | | | | |
| Total PNSG | 27 | 29 | 29 | 29 | 27 | 27 | 27 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 |
| OD sites | 13 | 14 | 14 | 15 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
| V1/V2 sites| 6 | 6 | 6 | 6 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
| V3/V4 sites| 10 | 11 | 11 | 12 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 10 |
| gp41 sites | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

Legend: Present, Absent
A. Relative fluorescence vs. Retention time (min)

B. Total PNGSs

C. OD PNGSs

D. V loop length

Correlation coefficients:

- For Total PNGSs: $r = 0.4845, p = 0.016$ and $r = 0.6950, p = 0.0002$
- For OD PNGSs: $r = 0.7515, p < 0.0001$ and $r = 0.7165, p < 0.0001$
- For V loop length: $r = -0.096, p = 0.653$ and $r = -0.2762, p = 0.1915$
Up to week 94: Man_5-Man_9: $r = 0.5128$, $p = 0.0248$
Man_9: $r = 0.6657$, $p = 0.0019$