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ABSTRACT: A vital step in HIV vaccine development strate-

gies has been the observation that some infected individuals gen-

erate broadly neutralizing antibodies that target the glycans on the 

surface of HIV-1 gp120. These antibodies target glycan epitopes 

on viral envelope spikes and yet the positions and degree of occu-

pancy of glycosylation sites is diverse. Therefore, there is a need 

to understand glycosylation occupancy on recombinant immuno-

gens. The sheer number of potential glycosylation sites and de-

gree of chemical heterogeneity impedes assessing the global se-

quon occupancy of gp120 glycoforms. Here, we trap the glycan 

processing of recombinant gp120 to generate homogenous gly-

coforms, facilitating occupancy assessment by intact mass spec-

trometry. We show that gp120 monomers of the BG505 strain 

contain either fully occupied sequons or missing one and some-

times two glycans across the molecule. This biosynthetic engi-

neering approach enables the analysis of therapeutically important 

glycoproteins otherwise recalcitrant to analysis by native mass 

spectrometry.   

The human immunodeficiency virus (HIV-1) viral spikes have an 

extensive and dense coat of N-linked glycans that act to shield the 

underlying protein from antibody recognition1-7. The attachment 

glycoprotein (gp120) within these spikes is a key target for anti-

body-mediated neutralization8, 9. Over time, many infected indi-

viduals produce broadly neutralizing antibodies (bnAbs) against 

HIV viral spike epitopes. These antibodies offer broad protection 

to infection in passive transfer experiments10 and eliciting bnAbs 

by vaccination with viral spike mimics is a key goal in the control 

of the pandemic11. The epitopes targeted by the majority of bnAbs 

contain one or more glycans12, 13. Although gp120 N-glycans are 

largely restricted to high-mannose type, the number and location 

of N-glycans may change during the viral life span1, 14. Finally, 

glycan occupancy of key sites modulates the development of a 

broad antibody response against heterologous viruses15, 16. To this 

end, it is important that recombinant candidate immunogens are 

fully characterized17, invoke a suitable T-cell response18 and effi-

ciently display target bnAb epitopes to B-cells11, 19, 20.  

The extensive role of glycans in forming the epitopes of bnAbs 

and the emerging importance of viral site occupancy has necessi-

tated detailed glycosylation analysis of recombinant mimics of the 

viral spike. This is important in guiding immunogen design and 

also in evaluating biotherapeutic glycoproteins for use in the clin-

ic. Glycoproteins are known to consist of an ensemble of ‘gly-

coforms’. These arise during cellular biosynthesis and the hetero-

geneity is driven by variable occupancy of the glycan sites and the 

chemical heterogeneity that arises from the action of an array of 

glycosidases and glycosyltransferases in the Golgi apparatus21. 

Partial occupancy of N-glycan sequons can have substantial im-

pact on biological activity and is an important parameter in the 

characterization of biologics. 

Significant progress has been made in site-specific analysis of 

gp120 glycosylation22-24 but little is known about the overall oc-

cupancy of glycosylation sites. While glycopeptide analysis can 

reveal the occupancy of any particular site25, 26, measuring the 

overall distribution of partially occupied sites across the spectrum 

of glycoproteins has not been tractable by current methods. As 

such, glycan heterogeneity obscures global occupancy infor-

mation that could be derived by intact mass spectrometry (MS) 27.  

Here, we circumvent this barrier by using metabolic engineering 

with a potent α-mannosidase inhibitor, kifunensine28, to homoge-

nize the processing of N-linked glycans on recombinant gp120 

(BG505 strain) transiently expressed in human embryonic kidney 

(HEK) 293F cells (Fig. 1A and Fig. S1).  

Homogeneous gp120 glycoforms could be resolved using a 

 

Figure 1. (A) Expression strategy to produce an oligoman-

nose-type glycoform of gp120. Kifunensine inhibits endo-

plasmic reticulum (ER) and Golgi mannosidase I during 

recombinant HIV gp120 expression resulting in predomi-

nantly Man9GlcNAc2 (Man9) N-glycans. (B) ESI-MS of N-

linked glycans released by protein N-glycanase F. (C) Tan-

dem mass spectrometry of negative N-glycan ions (diagnos-

tic ions for each isomer are in orange or purple). Green cir-

cles, mannose; Blue squares, GlcNAc.  
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modified high-resolution Orbitrap mass spectrometer designed to 

evaluate high molecular weight proteins and their complexes29. 

High-resolution MS has been applied to glycoproteins with only 

one30 or two glycan sites31, 32, but not to highly glycosylated pro-

teins due to overlapping glycoforms. 

Kifunensine has previously been used to augment the crystalli-

zation of glycoproteins and is sufficiently potent to almost entire-

ly eliminate chemical heterogeneity of N-linked glycosylation33-

35. MS of released N-linked glycans from BG505 gp120 expressed 

in the presence of kifunensine shows a spectrum dominated by 

Man9GlcNAc2 (Man9) with only a trace of Man8GlcNAc2 (Man8) 

(Fig. 1B). Tandem MS reveals the known isomers of the mamma-

lian glycosylation pathway (Fig. 1C)36. This is consistent with 

efficient blockade of both endoplasmic reticulum and type-I Gol-

gi-resident α-mannosidase activity.  

Native and deconvoluted mass spectra of the resulting glycan-

engineered gp120 revealed a charge state distribution spanning 

15-19+ (Fig. 2A). Within each charge state, six species were ob-

served, with an evident mass shift between the three major peaks 

matching the mass of a single Man9 (1864 Da) demonstrating 

variability in occupied glycan sites in the intact gp120 (Fig 2A, 

inset). The gp120 structure is dominated by Man9 glycans, the 

cumulative effect of the low levels of Man8 structures gives rise 

to an evident hexose series within each major peak demonstrating 

Man8 and Man9 microheterogeneity.  

Further examination of the spectra reveals mass shifts corre-

sponding to variable modification with O-glycans (Fig 2A, pink 

circles). These observations are consistent with previous glyco-

peptide analysis where recombinant gp120 contained O-linked 

glycans24, 26. Notably, the measured mass of gp120 (101 kDa) was 

1.6 kDa greater than that corresponding to the gp120 peptide 

backbone (~54.6 kDa) with 23 or 24 Man9 N-glycans (97.5 and 

99.4 kDa, respectively) (Fig. S2). Analysis of released O-glycans 

confirmed mono- and di-sialylated core-1 structures (Fig. 2B) and 

accounts for the observed intact gp120 masses. Therefore, recom-

binant gp120 contains a single sialyl core-1 (656 Da) ± di-sialyl 

core-1 (947 Da) O-glycans. From the deconvoluted spectra (Fig. 

2C) we can conclude that the dominant species matched to both 

fully occupied and n-1 (i.e. lacking a single N-glycan) gp120 

protein moieties with variable O-glycosylation. The approximate 

relative abundance of gp120 glycoforms were 40.6 % fully occu-

pied, 41.6% (n-1), and 17.8% (n-2). 

To confirm the assigned peaks to N-glycans, we measured a 

BG505 gp120 variant mutated at a single highly conserved glyco-

sylation site (N332) that is a critical component of many bnAb 

epitopes. Expectedly, the N332A mass spectrum lacked the n = 24 

peaks, most evident from the 16+ and 17+ charge states (Fig. 3). 

The depletion of two clusters of peaks per charge state also sub-

stantiates the presence both O-glycans per gp120 monomer. Inter-

estingly, the relative occupancy was maintained with n-1 and n-2 

as the major glycoforms suggesting that N332 is largely com-

pletely occupied and that the global loss of glycan equivalents 

arises from the cumulative partial absence of glycans across other 

sites (Fig. S3).  

Native high-resolution mass spectrometry holds enormous 

promise for glycoprotein characterization, but has only been 

demonstrated on relatively simple systems and has failed for more 

 

Figure 2. Intact mass spectrum of BG505 gp120 transiently 

expressed in the presence of kifunensine. (A) Spectrum reveal-

ing six distinct ion species within each charge state (inset). A 

162 Da mass difference corresponding to Man9/Man8 micro-

heterogeneity is present within each species (inset, green cir-

cles). The major ions are separated by an 1864 Da mass shifts 

(blue, inset) equal to a single Man9. (B) Positive ion MS spec-

trum of released O-glycans identify mono- and di-sialyl core-1 

structures that correspond to the peak shifts observed in the 

intact spectrum (pink circles, top). Peaks marked with aster-

isks are non-carbohydrate contaminants. (C) Deconvoluted 

spectrum to quantify the major peaks in A identify fully occu-

pied n = 24 or n = 23 glycoforms with sialyl core-1 ± disialyl 

core-1 O-glycans. 

 

Figure 3. Intact mass spectra of N332A gp120 (black) and 

wild-type (WT) gp120 (blue) expressed in the presence of 

kifunensine. The number of N-glycosylation sites at each 

cluster of peaks is indicated (n). WT and the N332A mutant 

of BG505 gp120 have a maximum N-glycosylation site 

occupancy potential of n = 24 and 23, respectively.  
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complex targets30-32. We have chosen one of the most heavily 

glycosylated glycoproteins in nature which is currently under 

investigation for clinical use37. Our results demonstrate that the 

assessment of global occupancy of glycosylation sites is tractable 

by intact mass spectrometry with biosynthetic engineering to 

eliminate heterogeneity arising from glycan processing. The oc-

cupancy information is ostensibly preserved as the engineered 

glycan processing occurs downstream of the initial oligosacchar-

yl-transferase that initiates N-glycosylation. Intact MS can rapidly 

assess the presence and structure of variable O-glycosylation 

which may otherwise be obscured by masses arising from hetero-

geneous N-link glycosylation. Detection of O-linked glycosyla-

tion remains an active area of investigation in the assessment of 

HIV immunogens24, 38. Furthermore, this approach is widely ap-

plicable for any N-glycosylated protein and will prove valuable in 

biotherapeutic characterization. The clinical use of complex gly-

coproteins requires a detailed understanding of structure-function 

relationships and the monitoring of key critical quality attributes, 

such as glycan site occupancy39. In particular, we expect assess-

ment of global site occupancy to emerge as an important parame-

ter in HIV immunogen production systems as these are assessed 

for the manufacture of clinical grade material17.   

Glycan engineering has already accelerated developments in 

structural biology by preventing glycan heterogeneity impeding 

glycoprotein crystallization33. We suggest that glycan engineering 

could similarly solve the ‘glycosylation problem’ in native mass 

spectrometry by simplifying the spectra for any studies dealing 

with heavily glycosylated glycoproteins and their interactions. 
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