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Predicting ULX demographics from geometrical beaming
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ABSTRACT

The ultraluminous X-ray source (ULX) population is known to contain neutron stars, but the
relative number of these compared to black hole primaries is unknown. Assuming classical
super-critical accretion and resultant geometrical beaming, we show that the observed popu-
lation ratio can be predicted from the mean masses of each family of compact objects and the
relative spatial density of neutron stars to black holes. Conversely - and perhaps more impor-
tantly - given even a crude estimate for the spatial densities, an estimate of the fraction of the
population containing neutron stars will begin to constrain the mean mass of black holes in
ULXs.
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1 INTRODUCTION

To first order, super-critical disc accretion is expected to obey clas-

sical theory (Shakura & Sunyaev 1973) with a critical radius at

which the mass accretion rate equals the local Eddington limit and

the disc inflates towards an aspect ratio of unity due to radiation

pressure. The combined loss of material into a wind (see Poutanen

et al. 2007; King & Muldrew 2016) and inwards radial advection

(e.g. Abramowicz et al. 1988) can cool the flow, thereby keeping

it locally Eddington limited and yields a total radiative luminosity

of ∼ LEdd(1 + ln ṁ0) (Poutanen et al. 2007). By itself, this al-

lows even very low mass compact objects such as white dwarfs to

appear at luminosities well in excess of ∼ 1039 erg/s and appear

as ultraluminous X-ray sources (ULXs, King 2001) provided the

mass transfer rate ṁ0 (usually quoted in units of Eddington accre-

tion rate, i.e. ṁ0 ∝ ṁ/M where M is the compact object mass) is

sufficiently high. In the case of high mass binary (HMXB) systems

(with q > 1) mass transfer eventually shrinks the Roche Lobe of

the donor star below the radius of thermal equilibrium such that the

donor must expand against the contraction of the Roche Lobe (and

thereby return to equilibrium). This expansion drives a period of

intense mass transfer on the thermal timescale of the donor (King

& Ritter 1999; King & Begelman 1999; King, Taam, & Begelman

2000; Podsiadlowski & Rappaport 2000) where ṁ ≈
M∗

tKH

(Kolb

1998) (M∗ is the secondary mass and tKH is the associated Kelvin-

Helmoltz time). It is therefore very likely that most HMXB systems

will experience periods of super-critical accretion at some stage of

their lives.

The high intrinsic luminosities in super-critical systems are

further amplified as a consequence of the geometry of the flow; the

wind launched from the inflated disc is expected to be highly op-

tically thick (Poutanen et al. 2007) leading to an evacuated wind

cone from which the majority of the radiation escapes (Ohsuga

et al. 2005; Jiang et al. 2014; Sadowski et al. 2014). The re-

sult is highly anisotropic emission with the radiation scattered and

beamed towards a favourably inclined observer (King 2009) or

de-boosted at higher inclinations (Dauser et al. 2017). Naturally,

for smaller wind cone opening angles, the emission becomes in-

creasingly anisotropic and the beaming amplification factor will

increase. Geometrical beaming is often cited as an explanation for

the most extreme end of the ULX population (above ≈1×1040

erg/s) and observations charting the evolution in the X-ray spec-

tra and coupled variability appear to match predictions (Middleton

et al. 2015). There is additional evidence in favour of geometri-

cal beaming from the apparent lack of eclipses (Middleton & King

2016) and ULX X-ray luminosity functions in the Local group (e.g.

Mainieri et al. 2010), the latter arguing for beaming factors scaling

as ∼ ṁ2
0 (King 2009).

In light of the above, the discovery of neutron star primaries

in three ultraluminous pulsars (ULPs, Bachetti et al. 2014; Fuerst

et al. 2016; Israel et al. 2017a,b) is unsurprising (cf the prediction

of King et al. 2001). However, the interpretation of the brightness

of these ULPs is still contentious as the nature of the accretion flow

will depend heavily on the surface dipole magnetic field strength

(see e.g. Mushtukov et al. 2017) and whether this has been effec-

tively diluted by the high ṁ0 (which itself is not in question). For

field strengths < 1012G it is probable that most ULPs will be ge-

ometrically beamed as the discs reach the Eddington limit before

being magnetically truncated (e.g. King & Lasota 2016). Assum-

ing this is the case, then such beaming must undoubtedly aid in our

ability to detect ULXs with either black hole or neutron star pri-
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Figure 1. Main panel: observed population ratio (PNS/PBH ) in a flux-limited survey versus beaming index (β) for a range in black hole mass (10-100M⊙

from top to bottom curve) assuming a ratio of neutron star to black hole spatial density of unity, and MNS = 1.4M⊙. Whilst the spatial density almost certainly

deviates from unity, this is only a multiplicative scaling factor and the overall trend remains unchanged. This demonstrates that the observed population ratio

is a relatively steep function of black hole mass (as highlighted in the inset for β = 2 - the vertical red dashed line in the main panel); as a consequence, even a

rough estimate of the spatial density and observed population will constrain the mean black hole mass in ULXs.

maries out to significantly larger distances than if isotropic emit-

ters. Conversely, as the beaming factor must be tied to the opening

angle of the wind-cone, for an isotropic distribution of beam direc-

tions, an observer detects a smaller fraction of more tightly beamed

sources because of their smaller solid angles on the sky.

In this letter we obtain a simple analytical relationship for the

observed population demographic of neutron stars and black holes

in ULXs based on the beaming factor, and which relies on only the

mass ratio and the spatial density as free parameters. Note that we

do not assume that all neutron star ULXs show pulsing; as we shall

see, most do not.

2 ANALYTICAL ESTIMATE FROM BEAMING

We can safely assume that the area of the flux sphere not subtended

by the wind (A) is inversely related to the level of geometrical

beaming, i.e. b ∝ A (following the convention laid down in King

2009). The chance probability of detecting a source out to a dis-

tance D is therefore given simply by P ∝ nbD3 where n is the

spatial number density of sources with a given primary. Assuming

super-critical accretion (and, where the primary is a neutron star, a

low surface dipole field strength), a given source luminosity is:

L ∝
LEdd

b
(1 + ln ṁ0) (1)

We can reasonably assume that the beaming factor is related

to the mass transfer rate such that 1/b ∝ ṁβ
0 ∝ (ṁ/M)β where β

is some positive valued beaming index. This allows us to write:

L ∝ (ṁ/M)βM(1 + ln ṁ0) (2)

where L is the beamed luminosity of the source such that in a flux-

limited survey (limited to some flux, f ), D3
∝ (L/f)3/2. We then

observe that:

P ∝ n(M/ṁ)β
(

[

(ṁ/M)βM(1 + ln ṁ0)
]

f

)3/2

(3)

The ratio of PNS/PBH is the relative fraction of those ULX

primaries found in a flux-limited survey. Assuming that the abso-

lute mass transfer rate is the same for both ‘species’ of ULX, we

then find:

PNS

PBH
=

n(NS)

n(BH)

(

MNS

MBH

)(3−β)/2(
1 + ln ṁ0,NS

1 + ln ṁ0,BH

)3/2

(4)

where the trailing term is of order unity. This leaves us with:

PNS

PBH
≈

n(NS)

n(BH)

(

MNS

MBH

)(3−β)/2

(5)

Various observational findings (see King 2009) may motivate

us to expect b ∝ ṁ−2
0 such that:

PNS

PBH
≈

n(NS)

n(BH)

√

MNS

MBH
(6)

which only depends on the relative spatial densities (also a function

of the mass ratio), mean mass of the neutron stars (which covers

only a very small range) and the mean mass of the black holes in

the ULX sample (assuming Gaussian statistics).

c© 2017 RAS, MNRAS 000, 1–3



Predicting ULX demographics from geometrical beaming 3

3 DISCUSSION & CONCLUSION

We have demonstrated a simple means of predicting the relative ob-

servable population of neutron stars and black holes in ULXs from

simple beaming arguments that depend on the beaming index (β),

ratio of masses and spatial densities. Although we have reason to

believe β ≈ 2 (King 2009), in Figure 1 we also show the range

in observed population ratio (PNS/PBH ) for a range in beaming

index and a range in mean black hole mass (from 10-100M⊙) as-

suming an equal spatial density of neutron stars and black holes,

and a canonical neutron star mass (1.4M⊙).

Based on the relative numbers of HMXBs containing neutron

stars and black holes (see Casares, Jonker, & Israelian 2017 and

references therein), the true ratio of spatial densities is probably

skewed in favour of neutron stars by a factor of ≥ 2. Equation 6

then shows that there must be a substantial number of neutron star

ULXs even if we do not observe their pulsations (see also the argu-

ments in King, Lasota & Kluzniak 2017). It is also clear that, un-

less the true spatial density is heavily skewed in favour of neutron

stars, black hole ULXs still provide a significant (if not dominant)

component of the population. This reinforces the argument that the

neutron stars in ULXs probably have low to moderate dipole field

strengths such that the X-ray spectra do not deviate massively from

the remainder of the population (Kluzniak & Lasota 2015).

The ratio of spatial densities is still somewhat unclear (and

will probably require detailed population synthesis). However this

only adds a multiplicative scaling factor, so it is immediately clear

that for moderate beaming indices, the observed population ratio

must be a relatively steep function of black hole mass (see the inset

to Figure 1). This opens up the distinct possibility of using flux

limited surveys to determine the maximum (mean) mass of black

holes in ULXs quite independently of other techniques.
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