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Abstract

A prediction model of roughness noise generated by bluff body flow at high

Reynolds numbers is proposed. Howe’s roughness noise theory extended by

Liu and Dowling is used, and the boundary layer inputs to the theory have

been modified for a bluff body. The scattering due to the bluff body has been

accounted for by the boundary element method. The procedure to couple the

roughness noise sources to the tailored Green’s function is detailed for the case

where the boundary element method mesh is orthogonal and aligned with the

boundary layer outer velocity. The proposed method has been implemented and

compared to experimental results for the particular case of a circular cylinder

with large roughness. Two different estimations of the skin friction, which is

an input to the roughness noise theory, are considered. One is a zero-pressure

gradient model, and the second is based on published experimental data of the

skin friction on a rough circular cylinder, but with smaller roughness than was

used in the experiments. The zero-pressure gradient skin friction estimate leads

to a better prediction of the effect of changes in the area covered by roughness

elements. The success of the zero-pressure gradient skin friction estimate is
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encouraging as the only modifications that need to be made to the boundary

layer model to account for a bluff body are the boundary layer outer velocity

distribution and the location of separation.

Keywords: Roughness noise, boundary element method, bluff body,

aeroacoustics

1. Introduction

There is a growing global effort to reduce noise pollution due to aircraft. The

aeroacoustics of aircraft has been the subject of intense research over several

decades. New aircraft must meet certification levels for noise. Therefore, noise

prediction tools are increasingly important in the design phase.5

Most aircraft contain surface irregularities in the form of small components

laying on the surface, e.g. protrusions, joints, ridges, etc. These small compo-

nents contribute significantly to the high frequency noise. The first prediction

schemes for landing gear noise did not consider the small components, which

resulted in Equivalent Perceived Noise Level underprediction of up to 8 dB10

[1]. It was postulated that the underprediction was due to an inadequate de-

scription of high-frequency noise, as well as neglecting the small components.

Subsequent prediction models included more accurate descriptions of the high

frequency noise, such as the statistical model of Guo [2]. In this model, the far

field spectrum was derived in terms of the surface pressure spectrum assuming15

uncorrelated noise sources. A later model by the same author [3] accounted

explicitly for the small elements, but through empirical laws with limited pre-

dictive power.

A simplified view of the effect of small components or roughness elements on

noise generation is as follows. On the upstream face of a component, a bound-20

ary layer grows until separation, and the small components on the surface are

immersed in it. The noise generated through the interaction of the turbulent

field with the surface elements is described by roughness noise theory. For this

description to be valid, it is required that the bluff body surface is approxi-

2



mately flat over distances of the order of the roughness size, and that the small25

components are fully immersed in a turbulent boundary layer.

The main advantage of this approach is that roughness noise theory provides

a physical description of the noise generation mechanism. Also, the approach

should be better at higher Reynolds numbers, where transition occurs further

upstream and more small components will be immersed in a fully developed30

turbulent boundary layer. The main weakness is the simplification of real ge-

ometries to generic distributed roughness elements. It is clear that the resulting

model will be at most an approximation. However, it will potentially have

greater predictive power than a purely empirical approach.

A previous experimental study [4] showed that roughness noise was domi-35

nant over a wide frequency range for both a flat plate and a circular cylinder

with large distributed roughness (by large roughness it is meant, not only that

the turbulent boundary layer is in the fully rough regime, but also that the

roughness height is comparable to the boundary layer thickness). The discrep-

ancies between the experiments and Howe’s theory were mostly attributed to40

roughness edge effects. It was argued that two main issues need to be addressed

in order to apply roughness noise theory to bluff bodies. Firstly, the rough wall

boundary layer model must be adapted for a bluff body. Secondly, the scattering

of roughness noise by the bluff body needs to be accounted for.

For the sake of generality, the boundary element method (BEM) has been45

used to account for the scattering on the bluff body. For the two-dimensional

case as well as the three-dimensional axisymmetric case, analytical solutions

exist [5, 6]. However, the proposed prediction model is capable of dealing with

arbitrary bluff body shapes and represents a general approach. In addition, a

novel procedure to couple the BEM solution to the roughness noise sources has50

been proposed, based on combining the surface monopoles into surface dipoles

to model the roughness noise sources.

The proposed model has been implemented and compared against experi-

mental results for the case of a circular cylinder. The reason is twofold. Firstly,

it is a representative geometry of landing gear components, and secondly, there55
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is more experimental and computational data in the literature than for other

bluff bodies. The calculation of the boundary layer evolution and the deter-

mination of the roughness noise dipole sources are particularly simple in this

case, where the natural surface mesh is orthogonal and aligned with the bound-

ary layer outer velocity. However, the methodology proposed is applicable to60

arbitrary bluff body geometries.

The structure of the paper is as follows. Firstly, the literature on roughness

noise and on rough wall boundary layers subject to a favourable pressure gra-

dient are revised. Secondly, the rough wall boundary layer model for the case

of a circular cylinder is detailed. Thirdly, the validation of BEM applied to a65

three-dimensional circular cylinder is presented. The coupling of the roughness

noise model with the tailored Green’s function obtained from BEM is also pre-

sented. Lastly, the outputs from the resulting prediction model are compared

to experimental data, and a parametric study of the far field noise dependence

on roughness size and surface density is presented.70

2. Background

2.1. Roughness noise

Roughness noise constitutes an important source of sound in many engineer-

ing applications. Owing to the high Reynolds number nature of the problem,

it has mainly been studied experimentally [4, 7, 8, 9, 10, 11]. The roughness75

elements act as compact dipole sources with streamwise and spanwise compo-

nents. Several numerical studies have also been performed [12, 13], focusing on

the flow features in the vicinity of the roughness elements and their relationship

to the far field noise.

Based on experimental evidence and the theory of rough wall boundary lay-80

ers, several theoretical approaches have been developed [14, 15, 16]. Howe’s

approach [14] assumes that roughness consists of hemispherical bosses, which

scatter the quadrupole noise sources within the boundary layer. It is assumed

that quadrupole noise sources contained within the interstitial flow are negligi-
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ble compared to the ones above the roughness elements. This approximation,85

together with Townsend’s similarity hypothesis [17, 18, 19, 20], implies that a

smooth wall pressure spectrum, appropriately scaled to account for roughness,

can be used. Liu and Dowling [21] extended the theory of Howe, substitut-

ing the asymptotic approximation of the integral over wavenumber space, with

an exact numerical integration. Liu et al. [9] determined the streamwise and90

spanwise dipole strengths of a single roughness element, for given properties of

the boundary layer. Liu and Dowling’s scheme has been shown to accurately

predict the roughness noise peak level and frequency for large hemispherical

roughness [4]. The theoretical approach of Glegg and Devenport [15] uses an

asymptotic expansion of the roughness height, retaining only the first order95

term. However, the asymptotic expansion is strictly valid for low frequencies

where the hydrodynamic pressure is constant on the roughness elements, and

for roughness elements without vertical slope [22]. Despite the limitation of the

asymptotic expansion, agreement was found with experiments up to relatively

high frequencies [23]. Howe’s theory is deemed the most suitable for the par-100

ticular case under investigation in this paper. In this case there are a relatively

low number of large roughness elements with vertical sides. Liu and Dowling’s

extension of Howe’s theory is used, and is summarised in Appendix A.

2.2. Rough wall boundary layer under a favourable pressure gradient

The joint effects of a favourable pressure gradient and roughness on a turbu-105

lent boundary layer in the fully rough regime are of interest here. There are a

number of studies in the literature focusing on the effect of mild and moderate

pressure gradients on the mean and Reynolds stress profiles [24, 25, 26, 27]. Cal

et al. [24] showed that the effect of roughness on the Reynolds stresses could

be scaled with the friction velocity for a zero-pressure gradient and favourable110

pressure gradient, separately. But no scaling was successful in accounting for

roughness and the pressure gradient simultaneously. It was observed that, while

roughness increased the ratio of the displacement thickness to the boundary

layer thickness (δ∗/δ), a favourable pressure gradient caused it to decrease.
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A favourable pressure gradient significantly increased the streamwise Reynolds115

stresses and skin friction coefficient. On the other side, Coleman et al. [28] found

that the turbulent kinetic energy decreased in an accelerated rough wall bound-

ary layer, while the shear Reynolds stresses were unaffected by the favourable

pressure gradient. They also observed an increase of the roughness Reynolds

number along the accelerated rough wall boundary layer, discarding the appear-120

ance of transitional effects. Tachie and Shah [25] studied a turbulent channel

with two-dimensional roughness. They concluded that the effect of the pressure

gradient on the mean and Reynolds stress profiles was much weaker than the

effects of roughness, so that the pressure gradient could be ignored. In absence

of a pressure gradient, the effect of roughness on the mean and Reynolds stress125

outer layer profiles has been shown to be accounted for through Townsend’s

similarity hypothesis, where the equivalent sand grain roughness size with re-

spect to the boundary layer thickness is limited. Castro [19] found a maximum

roughness size to boundary layer thickness ratio of approximately 0.4, for the

mean velocity profile. Amir and Castro [20] deduced a maximum ratio of 0.2130

for the Reynolds stress profiles.

For the point pressure spectrum, several scalings have been proposed that

are able to collapse the spectra with and without roughness in the absence of a

pressure gradient [29, 30]. In the peak region, the effect of roughness is predicted

by the mixed scaling (outer velocity, skin friction and displacement thickness)135

proposed by Blake [29]. Schloemer [31] observed, for a smooth wall turbulent

boundary layer, that a mild favourable pressure gradient caused a sharp de-

crease of spectral levels at frequencies fδ∗/Uo > 0.1 (wheref is the frequency

and Uo is the outer velocity). The wavenumber-frequency spectrum of smooth

and rough walls peaks at the so-called convective ridge (2πf ≈ k1Uc, k3 ≈ 0,140

where Uc is the eddy convection velocity, and k1, k3 are the streamwise and span-

wise wavenumbers, respectively). The effect of roughness or a pressure gradient

in the vicinity of the convective ridge of the wavenumber-frequency spectrum

can be analysed through the changes in eddy convection velocity. Farabee and

Geib [8] observed that large roughness caused a decrease in Uc/Uo, which is145
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equivalent to a shift of the convective ridge to lower frequencies. Schloemer

[31] showed that Uc/Uo increased to approximately 0.7− 0.8 for a smooth wall

turbulent boundary layer in the presence of a mild favourable pressure gradi-

ent. Cipolla and Keith [32] observed a sharpening of the convective ridge for

increasing favourable pressure gradients. There are a number of models in the150

literature of pressure wavenumber-frequency spectrum in the absence of pres-

sure gradients. Liu and Dowling [21] showed that they lead to similar roughness

noise predictions, and that they are applicable for uniform hemispherical rough-

ness as large as h/δ ≈ 0.2 (h is the roughness height, equal to the equivalent

sand grain roughness height for this roughness configuration). Alomar et al.155

[4] successfully applied Howe’s theory with a scaled smooth wall wavenumber-

frequency spectrum to uniform hemispherical roughness of size h/δ ≈ 0.25 on

average, and h/δ ≈ 0.5 for the front row of roughness elements. Furthermore, a

weak impact on the roughness noise spectral levels was observed when the ratio

h/δ was reduced to less than one in the front row of roughness elements. Even160

in this extreme situation, with dominant interstitial flow in the leading rows of

roughness elements and a ratio h/δ > 0.2 over the entire rough surface, Howe’s

theory together with the scaled wavenumber-frequency spectrum of Corcos [33]

was able to accurately predict the roughness noise spectral levels.

In summary, scalings of the mean flow, Reynolds stresses or the wall pressure165

spectra that account for roughness and pressure gradients simultaneously are

currently not known. This prevents the development of turbulent boundary

layer models applicable to arbitrary roughness sizes and pressure gradients.

However, well validated models exist for turbulent boundary layers over rough

walls in the absence of pressure gradients. These models are applicable a priori170

to equivalent sand grain roughness sizes up to hs/δ ≈ 0.2. However, for the

particular case of (hemispherical) roughness noise generation, they have been

shown to be applicable to even higher roughness sizes.

Achenbach [34] studied the boundary layers on a rough circular cylinder

with roughness sizes up to h/D = 0.005 (D is the cylinder diameter). He175

measured the skin friction distribution along the cylinder surface. The state of
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the boundary layer was shown to be a function of the Reynolds number and

the roughness size. The higher both the Reynolds number and roughness size

were, the further upstream transition occurred, and the further upstream the

boundary layer reached a developed state. At a Reynolds number of 3 × 106,180

transition occurred close to the upstream stagnation line for all roughness sizes.

3. Circular cylinder boundary layer model

The present approach is aimed at high Reynolds number flows typical of

aircraft landing gears on approach to landing, i.e. Re > 106, and the turbu-

lent boundary layer is assumed to be turbulent and fully developed from the185

upstream stagnation line. The variables that characterise the boundary layer in

Howe’s theory are the displacement thickness δ∗, wall shear stress τw, freestream

velocity U∞, eddy convection velocity Uc, point wall pressure spectrum Φ(f),

and the wall pressure wavenumber-frequency spectrum Φ̂(k, f).

Due to the lack of known scalings for the case of rough wall turbulent190

boundary layers under a favourable pressure gradient, a simple extension of

zero-pressure gradient models has been used. It is based on the assumption

that the pressure gradient doesn’t affect the turbulent boundary layer struc-

ture, but only the acceleration of the outer flow. This is accomplished simply

by substituting the freestream velocity U∞ with the outer velocity Uo(θ
′) in195

the equations (the angle θ′ is defined in Fig. 1). The resulting boundary layer

adapts instantaneously to the change in outer velocity.

Figure 2 shows the outer velocity of the boundary layer along the up-

stream face of a circular cylinder, obtained in three ways; experimental measure-

ments [34] (with smaller roughness, h/D = 0.005), a three-dimensional Delayed200

Detached-Eddy Simulation (DDES) of a smooth cylinder [35], and a potential

flow solution. The trends from the measurements and the simulation are sim-

ilar up to the separation location. This demonstrates that the outer velocity

from the smooth cylinder is a good approximation for the outer velocity of a

rough cylinder. The potential flow solution overestimates the outer velocity for205
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Figure 1: Definition of the polar angles, the freestream velocity U∞ and the boundary layer

outer velocity Uo.

θ′ > 60◦. The outer velocity obtained from the simulation has been used in the

prediction model. Using the smooth bluff body solution increases the simplic-

ity of the prediction model, as only simulations of the smooth bluff body are

required.
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Figure 2: Outer velocity along the boundary layer from a CFD simulation, potential flow

solution and experimental data [34].

For a zero-pressure gradient boundary layer, the eddy convection velocity210

can be approximated as a fraction of the outer velocity, and independent of

frequency [36]. It lies within the range 0.5U∞ < Uc < 0.7U∞. In this proposed
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model Uc(θ
′) = 0.65Uo(θ

′).

The wall shear stress model of Mills and Hang [37] is used, valid in the fully

rough regime:

cf (θ′) =
τw

1/2ρUo(θ′)2
=

(
3.476 + 0.707 ln

(
θ′D

2hs

))−2.46

, (1)

where hs is the equivalent sand grain roughness height. The freestream velocity

has been substituted with the outer velocity, which varies along the cylinder

surface. The streamwise distance is measured from the upstream stagnation

line x = θ′D/2. Figure 3a shows the resulting friction coefficient (denoted

by ZPG). Krogstad’s model of the mean velocity profile [38] is then used to

determine the boundary layer thickness growth:

δ(θ′) = hs exp

(
κ

√
2

cf (θ′)
− κB − 2Πo

)
, (2)

where κ = 0.41, B = 8.5 and Πo = 0.45. In the present case, this law leads

to a boundary layer thickness lower than the roughness height for θ′ < 60◦. In215

such case the roughness noise model is invalid. Also, the noise levels are overesti-

mated. In order to have a consistent model from the upstream stagnation line, it

has been assumed that the boundary layer grows from the top of the roughness.

This is accomplished by substituting δ(θ′) (Eq. 2) for δ(θ′) + hs − δ(0). Figure

3b shows the evolution of the resulting boundary layer thickness. For smaller220

roughness or longer boundary layers the impact of the region with δ < hs with

respect to the entire rough region will be lower. Equation. 2 should then be

used unmodified. The average roughness height to boundary layer thickness

ratio in the range 50◦ < θ′ < 80◦ (the region with the highest outer velocity)

is 0.49. For zero-pressure gradient boundary layers, the displacement thickness225

can be approximated as a constant fraction of the boundary layer thickness

[39], which is also assumed here. The displacement thickness is assumed to be

δ∗(θ′) = δ(θ′)/8. For the densely distributed hemispherical roughness consid-

ered in the present study, the equivalent roughness height and the geometrical

roughness height are approximately equal.230
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In addition to this simple estimation of the wall shear stress from a zero-

pressure gradient model, the measurements of Achenbach on a rough circular

cylinder [34] have been also considered. Even for the largest Reynolds number,

where transition happens close to the upstream stagnation line, they show dif-

ferences with the predictions of Eq. (1). This difference can clearly be seen in235

Fig. 3a. While Eq. (1) predicts a peak in wall shear stress close to the sep-

aration angle, the experimental data shows a peak at approximately θ′ ≈ 55◦.

The roughness size in Achenbach’s experiments (h/D = 0.005) is smaller than

the roughness size considered in the present work (h/D = 0.035) and the ex-

perimental data for skin friction cannot easily be scaled to the roughness size240

of interest. Therefore, the two different estimations of the wall shear stress

corresponding to the rough circular cylinder experimental data (Exp. cf ) and

the zero-pressure gradient model (ZPG cf ) will be considered in the prediction

model.

The wall pressure spectra corresponding to a zero-pressure gradient bound-245

ary layer by Ahn [40] (point spectrum) and Corcos [33] (wavenumber-frequency

spectrum) are used (Eq. (A.13) and (A.14), respectively). As explained in sec-

tion 2.2, the use of these models is theoretically limited to roughness heights

h/δ < 0.2, and when the interstitial flow noise sources are negligible. However,

previous studies [4, 21] have shown that they still lead to accurate roughness250

noise predictions for larger hemispherical roughness, even when interstitial flow

is dominant in the leading rows of roughness elements.

Finally, the separation location of the boundary layers has to be fixed, as it

is assumed that no roughness noise is generated downstream of separation. De-

tachment occurs further upstream for rough circular cylinders than for smooth255

circular cylinders [41]. The separation angle (θ′sep) has been estimated indi-

rectly through the shedding Strouhal number, which is directly linked to the

wake width. The experimental results of Alomar et al. [4] showed a shedding

peak Strouhal number for a rough cylinder of 0.19. This value is close to the

value that occurs on a smooth cylinder in the sub-critical regime, where separa-260

tion occurs at approximately 80◦. An estimation of the separation angle of 80◦
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Figure 3: a) Friction coefficient from the zero-pressure gradient model and experimental data

[34], b) boundary layer thickness from the zero-pressure gradient model.

has been used in the prediction model.

In summary, the adapted boundary layer model for the rough circular cylin-

der is:

• Outer velocity Uo(θ
′) estimated from a CFD simulation of a smooth cir-265

cular cylinder.
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• Eddy convection velocity: Uc(θ
′)/Uo(θ

′) = 0.65.

• Skin friction coefficient cf (θ′) was estimated in two different ways:

- Zero-pressure gradient model, Eq. (1). Denoted by ‘ZPG cf ’.

- Achenbach’s experimental data for a rough circular cylinder. De-270

noted by ‘Exp. cf ’.

• Boundary layer thickness δ(θ′) + hs − δ(0) from zero-pressure gradient

boundary layer (δ(θ′) from Eqs. (1) and (2)).

• Displacement thickness: δ∗(θ′)/δ(θ′) = 1/8.

• Point pressure spectrum Φ(f) given by Eq. (A.13).275

• Wavenumber-frequency pressure spectrum Φ̂(k, f) given by Eq. (A.14).

• Separation angle θ′sep = 80◦.

Two far field noise predictions are calculated, corresponding to the two dif-

ferent estimates of the skin friction coefficient, i.e. the zero-pressure gradient

boundary layer model (ZPG cf ) and the experimental data of Achenbach (Exp.280

cf ) at a smaller roughness height due to the lack of experimental data.

It is important to note that the boundary layer models are applied in a

situation where they are likely to be inaccurate. It is argued that the lack of

accuracy due to the boundary layer approximations is a reasonable price to pay

in order to have a practical prediction model, without the need of prior wind285

tunnel testing or expensive and time consuming numerical simulations. If exper-

imental or numerical data of any of the boundary layer properties are available,

corresponding to the actual rough bluff body, using these data instead of the

zero-pressure gradient models should improve the accuracy of the predictions.

4. Boundary Element Method for a circular cylinder290

A boundary element method (BEM) is used to account for the scattering of

roughness noise by the bluff body. The advantages of BEM over other numerical
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techniques for scattering problems are that the Sommerfeld condition at infinity

is automatically satisfied, and that there are no dissipation and dispersion errors

[42]. In the present case, BEM is used to solve a Helmholtz equation with295

arbitrary sources, whose solution is a Green’s function tailored to the bluff

body. Roughness noise theory, adapted to the case of the bluff body, provides

the roughness noise source strength distribution. The coupling of the roughness

noise sources with the tailored Green’s function is described in detail in Section

5. The fast multipole method [42] or similar methods (ACA, etc.) used to speed300

up BEM have not been implemented since the required computational time was

deemed acceptable. The derivation of the BEM algorithm for the present case

of a circular cylinder is included in Appendix B.

In the experiments of Alomar et al. [4], used to validate the proposed predic-

tion model, the cylinder diameter was D = 0.127 m and the freestream velocity305

was U∞ = 40 m/s. Roughness noise was dominant in the frequency range 2 kHz

< f < 6 kHz, with the peak at approximately 3 kHz. The observer distance (r,

measured from the cylinder axis) has been limited to 4D to reduce the required

cylinder spanwise length (L) and keep the ratio r/L small. At that observer

distance, the far field scaling p2 ∝ 1/r2 was verified in the frequency range of310

interest. The observer is located at the midspan plane of the cylinder, thus

the problem is symmetrical with respect to that plane. Using this symmetry,

the size of the linear system was reduced by half. The endplates used in the

experiments have been ignored.

The following sections describe the setup of the BEM algorithm concerning315

the shape of the cylinder ends, mesh size and spanwise extent of the cylinder.

4.1. Cylinder ends

Due to the finite cylinder span, the edges and the spanwise extent can have

a significant effect. Several geometries of the cylinder ends were considered;

hemispherical, flat and empty (no edges). Flat edges cause the linear system to320

be ill-conditioned. The other two edge treatments provide similar results when

the observer distance is small compared with the cylinder length, r � L. The
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comparison between both cases is shown in Fig. 4 for a cylinder of spanwise

length 2 m, and a grid with 252 (spanwise)×36 (circumferential) area elements.

The differences are small, and for simplicity the geometry with empty edges has325

been chosen.
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Figure 4: Tailored Green’s function |Gt| for the cylinder with hemispherical extents and no

extents. On-surface sources are located at an angle α measured from the observer direction,

and the observer distance is 4D.

4.2. Grid size

The two-dimensional case, for which a full analytical Green’s function exists

[5], has been considered to assess the grid requirements:

G2D
t (x,y, f) =

1

4j

∞∑
m=0

εmcos(mα)
[
H1
m(ko|x|)Jm(ko|y|)−

− Jm−1(koD/2)− Jm+1(koD/2)

H1
m−1(koD/2)−H1

m+1(koD/2)
H1
m(ko|x|)H1

m(ko|y|)
]
,(3)

where ε0 = 1 and εm = 2 for m > 0, ko is the wavenumber (= 2πf/c), x is330

the observer location, y is the source location, H1
m is the mth order Haenkel

function of the first kind, and Jm is the mth order Bessel function.
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At 6 kHz, with a cylinder diameter of 0.127 m, 28 grid cells along the cir-

cumference of the cylinder gives a resolution of 4 points per wavelength. The

spanwise cell size is equal to the circumferential cell size. The grid sensitivity335

is shown in Fig. 5a, where four grid sizes are compared to the exact solution,

at 3 kHz. The medium and fine grids provide accurate results compared to the

exact solution, for all relative locations of source and observer. Figure 5b shows

the grid sensitivity for the three-dimensional cases. The grid size sensitivity

is weak for the two finer meshes. The medium grid, with 36 cells along the340

circumference, has been used in the roughness noise predictions.

4.3. Cylinder length

The Green’s functions corresponding to four different cylinder spanwise lengths

are shown in Fig. 6, for a fixed observer distance. The sensitivity to the cylinder

length is small. A cylinder of spanwise length (L) of 23.6D was used.345

5. Coupling of roughness noise with the tailored Green’s function

The next step is to couple the roughness noise model to the tailored Green’s

function obtained from BEM. In the case where the BEM surface mesh is or-

thogonal and aligned with the boundary layer outer velocity, as is the case for

the circular cylinder, the streamwise and spanwise dipole strength distributions

(Eqs. (A.11) and (A.12), respectively) can be coupled to the computed tai-

lored Green’s functions obtained from BEM in a straightforward manner. First,

the acoustic field corresponding to a dipole is directly obtained from two close

monopole sources in counterphase. The acoustic field generated by a monopole

at y1 and a monopole at y2 in counterphase is,

pdip(x, f) = p1(x, f) + p2(x, f) = a(f)
[
Gt(x,y1, f)−Gt(x,y2, f)

]
. (4)

Each roughness element generates a streamwise dipole and a spanwise dipole.

The acoustic field is then the sum of a streamwise and a spanwise pair of
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Figure 5: Tailored Green’s function |Gt| at f = 3 kHz, for on-surface sources and an observer

distance of 4D (angle α as defined in Fig. 4). (a) two-dimensional Green’s function for various

surface mesh sizes (number of azimuthal elements), and (b) three-dimensional tailored Green’s

function for various surface mesh sizes (spanwise × azimuthal).

monopoles,

pdip(x, f) = ast(f)
[
Gt(x,yst1, f)−Gt(x,yst2, f)

]
+

asp(f)
[
Gt(x,ysp1, f)−Gt(x,ysp2, f)

]
, (5)
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Figure 6: |Gt| for various cylinder lengths and an observer distance of 4D, with the grid 252

× 36 elements (angle α as defined in Fig. 4).

where yst1,yst2 are the locations of the monopoles forming the streamwise dipole350

and ysp1,ysp2 are the locations of the monopoles forming the spanwise dipole.

The power spectral density yields,

Pdip(x, f) = Λst(f) |Gt(x,yst1, f)−Gt(x,yst2, f)|2

+Λsp(f)
∣∣Gt(x,ysp1, f)−Gt(x,ysp2, f)

∣∣2 . (6)

The functions Λst(f) and Λsp(f) are the streamwise and spanwise dipole strength

spectra, respectively (obtained from Eqs. (A.11) and (A.12)). The total acoustic

field results from the contribution of all surface elements of area Si, each con-355

taining Ni = σSi/πh
2 roughness elements (σ is the roughness surface density,

equal to the area covered by roughness elements divided by the total area),

PR(x, f) =

Ne∑
i=1

NiΛst,i(f)
∣∣Gt(x,yst1,i, f)−Gt(x,yst2,i)

∣∣2
+

Ne∑
i=1

NiΛsp,i(f)
∣∣Gt(x,ysp1,i, f)−Gt(x,ysp2,i, f)

∣∣2 . (7)

The height, size and location of the roughness noise dipoles need to be fixed.

Liu et al. [9] fixed the dipole sources at a distance from the wall equal to
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the roughness height. It is known that the accuracy of the Green’s function360

decreases when the sources are at a distance from the surface of the order of

the grid size [43]. A two-dimensional case is considered to assess the effect

of monopole source height on the acoustic field. Figure 7 shows the Green’s

function for on-surface sources and off-surface sources at two wall distances,

i.e. equal to the roughness height and three times the roughness height. The365

error of the numerical solution is large when the source height is equal to the

roughness height, but is small for the on-surface source. Also the exact solution

demonstrates that the acoustic field generated by a monopole in the vicinity of

the wall approximates the field generated by a monopole at the wall. Therefore,

it is convenient to use the Green’s function corresponding to on-surface sources,370

instead of sources at a small distance from the wall, where the error is large.

The calculation of the Green’s function for off-surface sources (Eq. (B.1)) is

then not necessary.
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Figure 7: Two-dimensional tailored Green’s function |Gt| for on-surface and off-surface

sources, with 36 grid elements (angle α as defined in Fig. 4).

The dipole size ldip is not relevant as long as the dipole is acoustically com-

pact (ldip � λ). In the present configuration where the local outer velocity is375
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aligned with the surface mesh, the monopole sources at the cell centres can di-

rectly be used to form the dipoles as follows. Each cell centre is taken as a dipole

centre. Its associated pair of monopoles are fixed at the adjacent cell centres, in

the streamwise and spanwise directions. This approach is shown schematically

in Fig. 8. This approach results in a dipole size that is two times the grid380

size. With the grid corresponding to 252×36 surface elements, the dipole size

is ldip = 2πD/36 = 0.2λ, at 3 kHz. Figure 9 shows the field generated by a

surface dipole of decreasing size, corresponding to three meshes with decreasing

grid size. The difference between the two finest grids is small. A grid size of

252×36 was used in the predictions.

Figure 8: Streamwise and spanwise dipoles centred in y, composed of monopoles located at

the adjacent cell centres.

385

In sections 3, 4 and 5 the boundary layer model and the roughness noise

model have been defined for the particular case of a circular cylinder, with the

axis perpendicular to the freestream. In such a case, the natural surface mesh

is orthogonal and aligned with the boundary layer outer velocity. This mesh is

used to compute the boundary layer thickness and friction coefficient, as well as390

for the BEM. A general methodology, applicable to arbitrary bluff body shapes,

is included in Appendix C.
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Figure 9: Grid sensitivity of the dipole field |Gt1−Gt2|/ldip, for observers located at |x| = 4D,

at 3 kHz (angle α as defined in Fig. 4).

6. Roughness noise model predictions

6.1. Validation

The roughness configuration used for validation [4] consists of dense hemi-395

spherical roughness of height h/D = 0.035 and a surface density σ = 0.53 (area

covered by roughness divided by the total area). In addition to the fully covered

cylinder, a configuration with roughness elements limited to the usptream face

has been considered. Besides roughness noise, surface roughness causes an in-

crease of the broadband bluff body noise levels. This reduces the frequency range400

where roughness noise is dominant as well as the signal-to-noise ratio (rough-

ness noise levels with respect to the background noise). For this reason, the

directivity of the spectral peak level corresponding to the peak roughness noise

has been used instead of OASPL. Given there are various relevant lengthscales

for roughness noise, the results from the roughness noise model are presented405

in dimensional frequency.

The predicted spectra at four different observer angles are shown in Fig.

10 using the skin friction coefficient estimated from the zero-pressure gradient
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boundary layer model (ZPG cf ) and the experimental data of Achenbach (Exp.

cf ). The peak frequency is well predicted for all observation angles. The peak410

levels are also well predicted at observer angles of θ = 83◦ and θ = 39◦. How-

ever, at observer angles of θ = 61◦ and θ = 21◦ the levels are under-predicted

and over-predicted respectively for both methods of estimating the friction coef-

ficient. The maximum disagreement is approximately 3 dB. Overall, the spectra

obtained using both methods of estimating the friction coefficient show similar415

spectral shapes and levels.

The predicted and measured peak directivity patterns are compared in Fig.

11. The trend is captured reasonably well, although it should be noted that the

experimental data had a limited number of observers. There is a local maximum

at an observer angle of θ = 60◦, with lower levels upstream and downstream of420

this observer. The skin friction coefficient estimated from Achenbach’s experi-

mental data leads to a better agreement with the experimental trend compared

to the zero-pressure gradient skin friction model, although the differences are

again relatively small.

The predictions discussed above were made with a uniform distribution of425

surface roughness elements. To test the ability of the prediction method to

predict the roughness noise when a bluff body is only partially covered with

roughness, a configuration where the roughness is limited to three different

angle ranges on the upstream face is tested. The configuration is shown in

Fig. 12. The roughness is limited by the angle ±θ′u. The measurements for430

this configuration were performed by Alomar [35], using the same roughness

geometry, cylinder size and freestream velocity. Figures 13a and 13b show the

measured and predicted spectra at an observer θ = 61◦ for various amounts

of rough area increasing from upstream: θ′u = ±50◦,±70◦,±180◦. Figures

14a and 14b show the effect of varying the roughness area for an observer at435

θ = 39◦. For the observer at θ = 61◦ the reduction of roughness noise between

θ′u = 180◦ and θ′u = 70◦ is underpredicted for both skin friction data. The

noise reduction between θ′u = 70◦ and θ′u = 50◦ is more accurately predicted,

especially for the zero-pressure gradient skin friction model. For the observer at
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Figure 10: Predicted and measured noise power spectral density, normalised with the observer

distance. (a) θ = 97◦, (b) θ = 61◦, (c) θ = 39◦, and (d) θ = 21◦.

θ = 39◦ the zero-pressure gradient skin friction model predicts the noise levels440

accurately, while Achenbach’s experimental skin friction data leads, again, to

underprediction of the noise reduction between θ′u = 180◦ and θ′u = 70◦. For the

case where the roughness area is θ′u = ±50◦, the roughness noise doesn’t appear

in the experimental spectra as it is lower than the background and self-noise

of the cylinder. Other observer angles show similar trends. Achenbach’s skin445

friction data with smaller roughness size leads to a small difference between the
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Figure 11: Predicted and measured roughness noise peak levels, normalised with the observer

distance, as a function of observer angle.

roughness distribution cases θ′u = 180◦ and θ′u = 70◦ for all observation angles.

This can be explained by the low levels of skin friction in the region θ′ > 70◦.

The zero-pressure gradient skin friction model leads to a reasonable prediction

of the noise level changes when increasing the area covered by roughness.

Figure 12: Cylinder partially covered by roughness, with rough area increasing from the

upstream stagnation line.

450

The success of the zero-pressure gradient skin friction model is particularly

encouraging for industrial applications. For this estimate of skin friction, the

adaptation to a bluff body reduces to a simple modification to the outer velocity
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Figure 13: Predicted and measured spectra at θ = 61◦ for the partially covered cylinder with

skin friction from: (a) Achenbach’s experimental data and (b) from the zero-pressure gradient

model.
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Figure 14: Predicted and measured spectra at θ = 39◦ for the partially covered cylinder with

skin friction from: (a) Achenbach’s experimental data and (b) from the zero-pressure gradient

model.
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distribution. The latter can be estimated from a potential flow solution or a

CFD simulation of a smooth bluff body.455

A simple assessment of the sensitivity of the far field noise levels to changes

in the boundary layer properties shows further differences between the two skin

friction estimates. Using the zero-pressure gradient skin friction estimate, the

predictions show a strong sensitivity to the separation angle and the outer ve-

locity. Conversely, the circular cylinder experimental skin friction estimate has460

lower sensitivities to these two parameters. This is a consequence of the dif-

ferent distributions of skin friction along the boundary layer. Figure 15 shows

the contribution to the far field noise of a roughness noise source located at θ′,

perceived by an overhead observer. For the zero-pressure gradient skin friction

estimate, the sources located further downstream contribute more strongly than465

for the skin friction estimate from Achenbach’s experiments. In general, the ac-

curacy of the prediction model should increase the more information there is

available of the boundary layer.
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Figure 15: Surface dipole strength weighted with the tailored Green’s function at f = 3 kHz

and at an overhead observer (θ = 90◦).
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6.2. Effect of roughness surface density and roughness size

The farfield roughness noise is a function of the roughness surface density σ470

and the roughness size h. Figures 16a and 16b show the effect of varying (σ) on

the far field noise directivity and spectrum, respectively, for a given roughness

size. The prediction model, with both methods of estimating the skin friction

coefficient, shows a weak dependence of the farfield directivity on the roughness

density. For the range of roughness surface densities considered, increasing the475

roughness surface density causes a uniform roughness noise level increase for

all observers. Regarding the spectrum, the peak frequency is approximately

independent of the roughness surface density, and the offset in magnitude with

different surface densities is approximately constant over the frequency range

examined.480

The directivity plots obtained for three roughness sizes are shown in Fig. 17a,

for a given value of roughness surface density. Roughness sizes up to h/D =

0.063 have been considered, which corresponds to 13% of the cylinder radius.

This value is considered to be small enough that roughness noise generation is

not significantly affected by the wall curvature (Howe’s theory implies that the485

wall is locally flat). It is worth addressing the possible effect that an increasing

value of h/D may have on the boundary layer. As discussed previously, it is

the ratio h/δ which determines the extent to which roughness affects a fully

developed turbulent boundary layer. However, a direct effect of increasing h/D

can be identified. The attached flow on the cylinder evolves from a laminar490

boundary layer close to the stagnation line in the vicinity of θ′ = 0, to a turbulent

boundary layer downstream. It goes through transition and an evolution to a

developed state. It seems clear that it is the roughness size that determines the

rate of development and growth rate of the attached flow (given a roughness

topology and a bluff body Reynolds number). Decreasing the ratio h/D implies495

a lower number of roughness elements per unit length, and a lower rate of

development. Therefore, the boundary layer models based on fully developed

flow become less accurate. In such situations, the attached flow would need to be

described as flow over obstacles. In the present analysis, the roughness elements
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are assumed to be small enough that the attached flow can be approximately500

described by the turbulent boundary layer models.

The trend of varying roughness size is different for both methods of esti-

mating the skin friction. For the zero-pressure gradient model, an increase in

roughness height causes an increase in the roughness noise level at all observers.

If the experimental skin friction data is used the trend is more complicated.505

Observers at θ > 60◦ show a decrease in noise level for increasing roughness

size, with a small difference between the two smaller sizes. Conversely, ob-

servers at θ < 60◦ see an increase in levels from h/D = 0.016 to h/D = 0.031,

and a decrease from h/D = 0.031 to h/D = 0.063. The dependence of the

noise spectrum on the roughness height is shown in Fig. 17b, for overhead510

observers. As expected, increasing roughness sizes shifts the spectral peak to

lower frequencies. This is due to the more efficient source scattering of larger

eddies, which generate roughness noise at lower frequencies. The peak noise

level increases with roughness size for both the zero-pressure gradient friction

coefficient model and Achenbach’s experimental data, and the peak frequencies515

are similar. In spite of the differences in the directivity of the overall levels, the

effect of increasing roughness size on the spectral features is similar for both

friction coefficient versions.

7. Conclusions

A bluff body roughness noise model is proposed and compared to experi-520

mental data. The model is an extension of Howe’s roughness noise theory to

the case of bluff bodies and implicitly assumes that roughness noise generation

is analogous to the flat wall case. Conventional BEM is used to account for the

scattering of roughness noise by the bluff body, and the roughness noise dipole

sources are simulated as pairs of surface monopoles at adjacent grid points. Due525

to the lack of pressure gradient scalings for rough walls, the effect of pressure

gradients has been neglected, and the theory of rough wall turbulent boundary

layers has been used. However, it has been adapted to account for the varia-
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Figure 16: Dependence of (a) noise directivity and (b) noise spectra at overhead observers on

roughness density (σ), for h/D = 0.031 and U∞ = 40 m/s.

tion of the boundary layer outer velocity around a bluff body. The model has

been implemented and validated for the particular case of a circular cylinder,530
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Figure 17: Dependence of (a) noise directivity and (b) noise spectra at overhead observers on

roughness height (h/D) with σ = 0.42 and U∞ = 40 m/s.

and a general methodology is outlined in Appendix C, applicable to arbitrary

geometries. In addition to the simple zero-pressure gradient skin friction model,
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experimental data in the literature of the skin friction corresponding to a circu-

lar cylinder with smaller roughness has also been considered, leading to different

far field noise predictions. The experimental skin friction data corresponds to a535

significantly smaller roughness size (there is very limited data available of rough

wall boundary layers on bluff bodies, or under a favourable pressure gradient).

Therefore, it cannot be considered necessarily as correct, or even more accurate

than the zero-pressure gradient estimate.

In both approximations of the skin friction, the roughness noise peak fre-540

quency is well predicted, and the model captures the experimental trend of

the roughness noise peak directivity. The predictions using Achenbach’s ex-

perimental skin friction coefficient provide a better agreement to the measured

roughness noise peak directivity, while the zero-pressure gradient method to

estimate the skin friction coefficient leads to a more accurate prediction of the545

effect of changing the area covered by roughness elements.

A parametric study of the effect of roughness surface density and rough-

ness size has been performed. While for the zero-pressure gradient model of

the friction coefficient, the roughness peak noise increases monotonically with

roughness size, using the rough circular cylinder skin friction data, results in550

a more complicated trend at low observer angles. In the considered ranges

of roughness surface density and roughness size, the directivity shows a maxi-

mum at upstream observers, and local minimas for overhead and downstream

observers.

The success of the zero-pressure gradient skin friction model is encouraging.555

In this case the required knowledge of the boundary layer reduces to the distri-

bution of outer velocity and the separation location, and both can be estimated

from a CFD simulation of a smooth bluff body.
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Appendix A. Roughness noise

Howe’s roughness noise model [14], with the extension of Liu and Dowling

[9, 21], is summarised. For a small surface element of area S, Liu and Dowling

[21] expressed the far field noise spectrum as

PR(x, f) =
Sσµ2

H

4 |x|2
h4

δ∗4
U2
c

c2
Φ(f)Df (ψ, φ, f), (A.1)

where δ∗ is the displacement thickness, Uc is the eddy convection velocity, and

the power spectral density is such that p2 =
∫
PR(x, f)df . µH is a rough-

ness density factor introduced by Howe, equal to 1/(1 + σ/4). The function

Df (ψ, φ, f) contains the directivity information of the emitted sound.565

Df (ψ, φ, f) = Z1(f) cos2 ψ + Z2(f) sin2 ψ sin2 φ (A.2)

Z1(f) =

∫ ∞
0

∫ 2π

0

Γ cos2 ηd(|k| δ∗)dη, (A.3)

Z2(f) =

∫ ∞
0

∫ 2π

0

Γ sin2 ηd(|k| δ∗)dη, (A.4)

Γ = |γ(|k|)|2 δ∗2Φ̂(k, f)Ψ(|k|) exp(−2 |k|h)(|k| δ∗), (A.5)

γ(|k|) = (k2
o − |k|

2
)1/2, (A.6)

Ψ(|k|) =
(1− σJ1(2 |k|h)/ |k|h)3

1 + σJ1(2 |k|h)/ |k|h
. (A.7)

The radiation direction is defined in terms of the (local) observation angles

(ψ, φ) defined in Fig. A.1. J1(·) is the Bessel function of order unity. The

|k| δ∗-integral upper limit must be specified. The integral upper limit can be

taken |k| δ∗ < 25δ∗/h for practical purposes.

The radiated sound by an individual roughness element is comprised of a570

streamwise dipole and a transverse dipole, corresponding to Z1(f) and Z2(f),
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Figure A.1: Definition of the polar angles (ψ, φ).

respectively (Eq. (A.2)). The acoustic field radiated by an individual dipole,

composed of a pair of monopoles out of phase separated by a distance ldip is

pdip(x, f) = p1(x, f) + p2(x, f) =
a(f)

4π|x1|
eiko|x1| − a(f)

4π|x2|
eiko|x2|

≈ a(f)

4π|x|
eiko|x|ikoldip cosψ. (A.8)

The calculation of the power spectral density is straightforward, since the

function multiplying the source strength is deterministic,

Pdip(x, f) = Λ(f)

∣∣∣∣ ikoldip cosψ

2π|x|
eiko|x|

∣∣∣∣2 =
Λ(f)k2

ol
2
dip

4π2|x|2
cos2 ψ, (A.9)

where Λ(f) is the power spectral density of the source strength. This expression,

with the contribution from N dipoles, must equal the far field roughness noise

of Eq. (A.1), which determines the streamwise dipole strength,

NΛst(f)k2
ol

2
dip

4π2|x|2
cos2 ψ =

Sσµ2
H

4 |x|2
h4

δ∗4
U2
c

c2
Φ(f)Z1(f) cos2 ψ, (A.10)

Λst(f) =
πµ2

H

4

(
h

ldip

)2(
h

δ∗

)4(
Uc
f

)2

Φ(f)Z1(f). (A.11)
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The relation σ = Nπh2/S has been used. If the same is done for the spanwise

dipoles it yields

Λsp(f) =
πµ2

H

4

(
h

ldip

)2(
h

δ∗

)4(
Uc
f

)2

Φ(f)Z2(f). (A.12)

The wall pressure point spectrum by Ahn [40] is

Φ(f) =

(
τwδ
∗

Uo

)
16.56πSh∗0.8

1 + 4.1Sh∗1.7 + 4.4× 10−4Sh∗5.9
, (A.13)

where Sh∗ = 2πfδ∗/Uo. The wall pressure wavenumber-frequency spectrum by

Corcos [33] is

Φ̂(k, f) =
(2πf)2

U2
c

4α1α3

(α2
1 + (Ucκ1/(2πf)− 1)2)(α2

3 + U2
c κ

2
3/(2πf)2)

, (A.14)

where α1 = 0.1 and α3 = 0.77.

The inputs of the roughness noise model are the eddy convection velocity,575

the boundary layer outer velocity, the boundary layer displacement thickness

and the skin friction.

Appendix B. BEM algorithm for a circular cylinder

From Green’s identities and Helmholtz’s equation with wall boundary con-

ditions, a boundary integral equation for the Green’s function tailored to the

body surface is obtained [44],

Gt(x,y, f) = Go(x,y, f) +

∫∫
Σ

Gt(x, z, f)
∂Go(z,y, f)

∂zi
nid

2z, (B.1)

for off-surface sources located in y and on-surface sources in z. When the off-

surface sources are brought arbitrarily close to a surface mesh point zp, the

equation becomes

Gt(x, zp, f)

(
1− Ω(zp)

4π

)
= Go(x, zp, f) +

∫∫
Σ

Gt(x, z, f)
∂Go(z, zp, f)

∂zi
nid

2z.

(B.2)

Ω(zp) is the solid angle, which is equal to 2π for a (locally) smooth surface.

This is a boundary integral equation whose only unknown is Gt(x, zp, f), and

has to be solved numerically. The conventional BEM used in the present work,
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consists of solving this equation using a surface discretization of the boundary

integral equation, to convert the above equation into a linear system of equa-

tions, with as many equations as surface elements. A piece-wise representation

of the Green’s function is used on the surface, the surface integration being of

second order. The solution corresponds to the particular values taken for the

observer location x and frequency f , i.e. for every pair (x, f) the linear system

must be solved.

Gt(x, zpi, f)

(
1− Ω(zpi)

4π

)
= Go(x, zpi, f)

+

Ne∑
j=1,j 6=i

Gt(x, zj , f)
∂Go(zj , zpi, f)

∂zn
∆S(zj), for i = 1, ..., Ne,

(B.3)

where zn is the wall normal coordinate. For a circular cylinder the free field

Green’s function and its wall normal derivatives are

Go(x, zpi, f) =
eiko|x−zpi|

4π |x− zpi|
, (B.4)

∂Go(zj , zpi, f)

∂zn
=

eiko|zj−zpi|

4π |zj − zpi|3
(iko |zj − zpi| − 1) (zj − zpi) · nj . (B.5)

Note that the free-field Green’s function diverges when zj → zpi, but the

integral exists. In the numerical integration the surface element corresponding580

to zpi is excluded, eliminating the divergence. If the surface elements are small

enough the contribution to the integral of that surface element is negligible. The

matrix coefficients of the linear system are:

Aij =

 ∆S(zj)
∂Go(zj ,zpi,f)

∂zn
, if i 6= j.

−1/2, if i = j.
(B.6)

Finally, the following linear system needs to be solved:

AijGt(x, zpi, f) = Go(x, zpi, f). (B.7)
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The matrix of the resulting linear system is full and non-symmetric in gen-585

eral. The number of operations to solve the system using one of the conventional

methods (LU decomposition, Gauss elimination) is proportional to N3
e . In the

present case LU decomposition with partial pivoting has been used. The surface

mesh is parameterised using cylindrical coordinates, with uniform spacing.

Appendix C. Methodology for arbitrary bluff body shapes590

We outline in the following a general methodology for the roughness noise

prediction model, which is applicable to arbitrary bluff body shapes. It consists

of the following steps:

1. Perform a CFD simulation of the smooth bluff body. The boundary layer

outer velocity Uo obtained is directly used for the case with roughness.595

The eddy convection velocity is estimated from the zero-pressure gradient

model: Uc = 0.65Uo. If a viscous solver is used, the resulting flow field

provides an estimation of the separation angle. If a potential solver is

used, the separation angle must be estimated by other means.

2. Define a (structured) orthogonal surface mesh on the bluff body aligned600

with the boundary layer outer velocity.

3. The skin friction coefficient cf and the boundary layer thickness δ are

computed from the zero-pressure gradient models (Eqs. (1) and (2), re-

spectively), along the streamlines defined by the surface mesh. In the case

that the boundary layer thickness is lower than the roughness height in605

a significant portion of the boundary layer, the boundary layer thickness

growth can be computed from the top of the roughness. The boundary

layer displacement thickness is taken as δ∗ = δ/8. For a general bluff

body shape, the angle θ′ used for the circular cylinder case would be a

position coordinate running along a streamline defining the surface mesh.610

The point pressure spectrum Φ(f) and the wavenumber-frequency pres-

sure spectrum Φ̂(k, f) on the body surface are computed from Eqs. (A.13)
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and (A.14), respectively. If available, experimental values of any of these

variables can be used instead of the zero-pressure gradient models.

4. If possible, BEM is computed using the orthogonal surface mesh defined615

in step 2. If this is not possible, the BEM should be computed on any

other desired mesh. The result is the tailored Green’s function Gt with

the monopole sources located at the surface cell centres.

5. If the BEM surface mesh used is orthogonal and aligned with the boundary

layer outer velocity, the streamwise dipole strength spectrum Λst(f) and620

the spanwise dipole strength spectrum Λsp(f) corresponding to each cell

centre within the attached flow region are computed from Eqs. (A.11)

and (A.12), respectively (see Fig. 8). If the BEM mesh is not orthogonal

and/or not aligned with the boundary layer outer velocity, the Green’s

function corresponding to on-surface sources located on a mesh orthogonal625

and aligned with the boundary layer outer velocity is determined from

interpolation. The streamwise and spanwise dipole strengths can then be

determined from Eqs. (A.11) and (A.12), respectively.

6. The far field noise spectrum PR(x, f) is computed from Eq. (7).
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