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ABSTRACT 

FACULTY OF SCIENCE 

MATHEMATICS 

Doctor of Philosophy 

INSPECTION POLICIES FOR THE DETECTION OF SYSTEM FAILURE 

by Alan Gordon Munford 

This thesis is concerned with the problem of deciding when to inspect 

a system in order to detect a failure that would not otherwise be 

apparent. 

The first chapter includes a review of some of the inspection models 

that have appeared in the literature. A new linear cost model is then 

proposed, and the chapter ends with a discussion of optimality criteria. 

The second chapter is devoted entirely to 'optimal' inspection policies, 

i.e. those which minimise a certain cost function. The necessary theory 

is developed to deal with the new cost model proposed in Chapter 1. 

Some computational problems that arise in connection with the optimal 

policies motivate a study of suboptimal policies, and Chapter 3 is 

concerned with an investigation into the properties of periodic (regular) 

inspection policies. Chapteis 4 and 5 introduce two heuristic inspection 

policies which are constructed so that the times between inspections are 

influenced by the mean residual life function in one case, and the hazard 

rate function in the other. This latter policy (designated x^) has 

some attractive properties, and tables are given for computing the best 

Xp policy in the Weibull case. A sensitivity analysis of policies 

is carried out in Chapter 6. 

In the last chapter some tables of expected cost in the Weibull case 

are presented for the 3 suboptimal policies. A comparison with the 

optimal policy reveals that the suboptimal policies are highly efficient 

in many cases. 
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Chapter 1 

1.1 Introduction 

A system may be regarded as a collection of items working 

together as a unit to perform some defined function. A feature of 

many systems is that their ability to perform this function varies 

with time; some systems improve with age, but many do not and their 

performance worsens as they get older. This deterioration in 

performance may be caused by external factors such as accidental 

damage, or it may be due to an intrinsic ageing process. 

The performance of a system may deteriorate gradually, as 

in the case of a continuous production process running in time, where 

some output parameter such as mean length may shift gradually from its 

target value. On the other hand, the change in performance may be 

abrupt, and sometimes the system can suddenly cease to perform at all. 

We will be concerned with systems of the latter type and assume that 

originally the system is working, but at some later time it may suddenly 

fail. It will be convenient to label the working and failed states 

as EQ and respectively. In some cases (an electric light bulb, 

for example) it will be obvious when the failure has occurred. 

In other cases, however, the failure can only be detected by an 

inspection (e.g. a safety valve) and it is this type of system that we 

shall consider in this thesis. 

There is usually some loss incurred each time a system is 

inspected. This can be a cost, or it may be that the system cannot 

operate while it is being inspected, as in the case of a computer when 

a test run is made. In general there will be a cost of some kind 

associated with each inspection, so we would not wish to inspect too 

often. On the other hand infrequent inspections could lead to the 
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system remaining in the failed state for an undesirably long 

period of time. Thus we wish to achieve a balance between the cost 

of inspection and the possible consequences of an undetected failure. 
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1.2 Some models for the inspection problem 

Throughout this thesis we consider a system which is 

originally known to be in a working state, but which may suddenly fail. 

In other words at t = 0 we assume that the system is in state E^, 

but at some later time t = T the state of the system will change from 

EQ to E^. We will also assume that: 

(i) The state of the system is revealed only by inspection. 

(ii) Inspection has no harmful effect on the system. 

(iii) Inspection always reveals the true state of the system. 

(iv) The duration of each inspection is negligible so that 

the system cannot fail while it is being inspected 

(v) Once in state E^ the system remains there until it 

is repaired or replaced. 

A time to failure model 

If T, the time to failure is known in advance, no inspection 

problem exists for in this case we could merely leave the system running 

until time T, and then take the necessary corrective action of repairing 

or replacing it. We take the uncertainty about T into account by 

supposing that T is a (continuous) random variable with probability 

density function (p.d.f.) f(t), t % 0, cumulative donoity function (c.d.f.) 

F(t) = P(T 3 t) = f(u)du, and reliability function 

F(t) = P(T > t) = f(u)du . 

t 

The probability that a working system, aged t, will fail in 

the interval (t, t + dt) is 

F(t + dt) - F(t) _ f(t)dt 

1 - F(t) F(t) 
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The function 

h(t) = = _ ̂  £n F(t) 
F(t) 

is called the failure rate or hazard rate function, and its integral 

t 

H(t) = h(u)du = - &n F(t) (1.2.1) 

is called the hazard function (Saunders, 1968). Note that (1.2.1) 

implies 

F(t) = exp[- H(t)] , (1.2.2) 

differentiation gives 

f(t) = h(t) exp[- H(t)] . (1.2.3) 

Typically, inspection problems arise in connection with 

systems which are ageing in some statistical sense. Bryson and Siddiqui 

(1969) propose seven interrelated criteria for ageing systems, one of 

which is that h(t) is increasing. A somewhat weaker, but intuitively 

appealing condition is that the mean residual life of a working system 

y(t) = E(T - t|T > t) is decreasing with t. By considering the 

conditional p.d.f. of T given T > t we see that 

Uf (u)du F(u)du 

y(t) = - t = ^—2 . (1.2.4) 
F(t) F(t) 

Vi(t) is particularly useful in empirical studies since it can be 

estimated from sample data by 

1 nit) 

-l, - « 

where tj is the time to failure of the jth element in the surviving 

population of n(t) survivors at time t. 

The hazard rate function h(t) is difficult to study 

empirically, since it involves all the problems of estimating f(t) (Watson 
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and Leadbetter, 1964a, 1964b), but the hazard rate average 

H(t) ^ F(t) 
t t 

can easily be estimated by 

- I in " < " 
t n(0) 

A density for which 

f(t) 
F(t + a) - F(t) 

is increasing in t for all a > 0 is said to be a Polya frequency 

function of order ZCPFg) (Karlin, Proschan and Barlow, 1961). 

Letting a tend to infinity we see that PF^ densities have increasing 

hazard rate. An equivalent definition of a PFg density is that 

f(t - a) 
f(t) 

is increasing in t for all a > 0 . 

Typical failure laws 

The exponential distribution F(t) = exp(- t/a); t ^ 0, a > 0 

has the property that both the hazard rate and mean residual life are 

constant. In fact no other distribution has either of these properties. 

Further, for all t^ % 0 

P(T > t + tplT > tg) = P(T > t) , 

so that the exponential distribution is invariant to left truncation, 

and systems which have this failure law therefore do not 'age'. 

Epstein (1958) has been largely responsible for most of the work done 

on the exponential distribution as a failure law, and has published a 

stream of papers on the problems of estimating a and the associated 

problems of testing hypotheses. If system failure is due to 

accidental damage which is likely to occur at random in time, then the 

exponential distribution would seem to be a reasonable model, but this 

would not be the case if the system 'aged' in any sense. A result due 
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to Drenick (1960) explains why the exponential law may be used to 

describe the time between failures of a certain class of systems. 

If 

(i) a system has n statistically independent 

components 

(ii) component failure causes system failure 

(iii) each component is repaired or replaced immediately 

upon failure 

then after the system has been running for a long time, for large n 

the timesbetween system failures are exponentially distributed (subject 

to some mild conditions on the components' failure distributions). 

This result explains why the stationary distribution of time between 

failures of a piece of complex equipment such as a computer can be 

approximately described by the exponential failure law. Zelen and 

Dannemiller (1961) have shown that life testing procedures derived from 

the exponential distribution are not, in general, robust. 

Assuming a simple power law for the hazard rate function h(t) 

leads to the Weibull distribution (Weibull, 1951) 

F(t) = exp 

for which 

» J - t % 0, a, 3 > 0 

E(T) = ar(l + i) and h(t) = | 
3-1 

Thus the Weibull distribution has an increasing (decreasing) hazard rate 

if 3 > 1 (3 < 1). The Weibull distribution has found applications 

in a variety of fields, for example Kao (1956, 1958) has found that the 

time to failure of a certain type of electron tube is best described by 

a Weibull distribution with 3 = 1.7. With 3 = 3.4 the Weibull 

distribution is very nearly normal. A considerable interest has been 

shown in the Weibull distribution in recent years, and the literature 

is reviewed in Johnson and Kotz (1970) and Mann, Schafer and Singpurwalla 
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(1974). Particular attention is given to the Weibull distribution 

in this thesis because of its wide range of application and the nature 

of the failure rate function. 

The gamma family of distributions has p.d.f. 

f(t) -1 expe t/c.) t ; 0. a, g > 0 

with increasing (decreasing) hazard rate tending to ^ for g > 1 (6 < 1). 

For general g, F(t) is given by 

F(t) = where r(v, x) = y^ ^ e y dy 

X 

is the incomplete gamma function (see, for example Abramovitz and 

Stegun, 1965). However, for integral g, the distribution is of the 

special Erlangian form, and it can be shown that 

3-1 
F(t) = I 

j=0 

J exp(- t/g) 

The mean and variance are ag and a^g respectively, and the 

standardised variate 

T - gg 

a/F 

is asymptotically N(0, 1) as g However for practical purposes 

we would use the result due to Fisher (1922) that 

2 / ^ - A g - 1 

V a 

is asymptotically N(0, 1). When g = 1, both the Weibull and Gamma 

distributions reduce to the exponential distribution. 
Davis (1952) suggested that under certain conditions a normal Msh'h^ 

4vvvvej 1x1 

theory of failure seems to fit sample data fairly well. However histograms 

of failure data are often highly skewed, indicating that this is not 

always the case. With p.d.f. 

(t) = ^ expl — (t - y)^! 

o/SiT ^ 2a^ J 

< y < <», CT > 0 



we have 

P - f ) } 

which is increasing in t for a > 0 and so normal densities are PF^ 

and hence have increasing failure rate. The normal distribution is only 

meaningful as a failure law if the coefficient of variation — is 
V 

sufficiently small to ensure near zero probability of negative life. 

If £n T is normally distributed with mean y and variance 

then T is said to have a lognormal distribution (Finney, 1941) and 

f(t) = — e x p j - EL_1 t 5 0 . 

tav^ [ 2â  J 

The distribution function F(t) is given by 

F(t) . " 

where 

$(x) = 

. - H i 

du 
/2Tr 

The lognormal distribution finds applications in the biological sciences 

and manpower studies, but recent opinion is that it is not a good 

candidate for the time to failure model (Freudenthal, 1960 and Saunders, 

1968). The reason for this is that for all (y, o^), h(t) increases 

from zero to a maximum, and then decreases as t tends to infinity. 

Watson and Wells (1961) have exploited this fact and shown that the 

expected life of items governed by such a law can be increased by using 

them under normal conditions to eliminate the early failures; the 

surviving fraction will then have a greater mean residual life than the 

original batch. A detailed account of the lognormal distribution is 

given by Aitchison and Brown (1957). 
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Inspection cost models 

Having proposed a model for T, the time to failure, a 

reasonable approach is to define a cost or loss function which depends 

on the time to system failure, and the times at which inspections are 

made; for a given cost function we can then propose a criterion of 

optimality to determine when the inspections should best be scheduled. 

This criterion may or may not assume full knowledge about the random 

variable T. 

Definition. An inspection policy x = Xg, ...j is a sequence of 

times at which the system is to be inspected. Inspection ceases as 

soon as the failure (state E^) is detected. Associated with any given 

policy X is the sequence of inter inspection times 

{'̂ i = ^i " %i_i : i = 1, 2, ...| where x^ is defined to be zero. 

Clearly 6^ > 0. 

An early approach was due to Savage (1956) who proposed the 

so-called preparedness model 

n 
c = c(t; x) = ĉ  n + G(6.) + H(t - x ) 

i=l ^ * 

where t is the time to failure, n is such that x $ t < x ,, c., 
n n+1 1 

is the cost of each inspection, and G and H are increasing functions 

satisfying G(0) = H(0) = 0. The three components of this model are 

therefore the cost of performing each inspection, a cost depending on 

the times between inspections before the failure occurs, and a cost 

depending on the time elapsed between the last inspection and the failure. 

Savage proposed this model for the problem of inspecting standby 

equipment such as fire fighting apparatus, which is somewhat different 

from the problem considered in this thesis in that the 'failure' at 

time t represents some emergency (e.g. a fire) rather than the failure 

of the equipment itself. Hence in this model the 'failure' is apparent 
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as soon as it happens, and the penalty cost H(t - x^) is a function 

of the time between the 'failure' and the previous inspection, which 

was the time when the equipment was last known to be working properly. 

Savage assumed that the time to failure had an exponential distribution 

and considered the two cases G(x) = 0, H(x) = Xx and 

G(x) = H(x) = 1 - exp(- Xx). He then found the policy which minimised 

the expected total cost per failure. 

Barlow and Hunter (1960) proposed a model in which each 

inspection costs c^, and the penalty due to leaving the system in a 

failed state is c^ per unit time. This gives 

c(t; x) = c^ n + CgCx^ - t) (1.2.5) 

where now n is such that x ^ < t ( x , so that the penalty cost 
n-1 n ' 

is a function of the elapsed time between the failure and the next 

inspection (c.f. Savage). This model might be appropriate for the 

inspection of systems such as early warning systems, since the penalty 

cost •̂ 2̂ n̂ ~ takes account of the vulnerable period of time x^ - t 

during which the system would be inoperative. 

If the failure of a piece of emergency standby equipment (such 

as fire fighting apparatus) occurred at time t, and was detected at 

time x^ , then a real cost would only be incurred if an emergency 

actually happened in the interval (t, x^). If the cost incurred when 

an emergency happens and no equipment is available is c^, then the 

expected penalty cost upon failure of equipment would be 

CQ P {emergency during (t, x^)}. Assuming that emergencies occur at 

random every A time units on average, then this becomes 

^0 
exp 

(x^ - t) 

However, for effective inspection, the intervals jx^ - x^_^j would 

usually be small compared with A so that 
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and 

C 

which gives us cost model (1.2.5) with Cg = — . 

In the case of a continuous production process producing 

items at a constant rate, the penalty cost incurred would largely be 

due to the cost of scrapping or reworking the defective items produced 

in the interval (t, x^). However, in general the actual time of 

failure would not necessarily be known, so that all items produced since 

the process was last known to be working properly, that is those produced 

during the interval (^^-1' ^n^ would have to be reworked or scrapped. 

We therefore propose a new cost model 

c(t; x) = c^ n + . (1.2.6) 

In the subsequent chapters of this thesis we will consider only the 

cost models given by (1.2.5) and (1.2.6) which we shall refer to as 

model I and model II respectively. 
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1.3 Some criteria for choosing an inspection policy 

If the probability distribution of the time to system failure 

is known, then in principle we can compute such quantities as 

E{c(T; x)} and P(c(T; x) $ constant) for particular cost models. 

These quantities can then be used to define a policy which is 'best' in 

some sense, for example we may wish to choose that policy x* for 

which E{c(T; x)} is as small as possible, or for which P(c(T; x) g c) 

is as large as possible. These 'best' policies may or may not exist. 

We first consider the case when complete knowledge about the 

distribution of the time to system failure is not available. 

Derman's minimax policy 

Derman (1961) considered the case when the life of the system 

cannot exceed some finite time T say, and assuming no other knowledge 

about the p.d.f. of T, derived a minimax inspection policy for Barlow 

and Hunter's (1960) cost model I. He showed that the inspection policy 

which minimises the maximum possible expected cost over all possible 

densities f(t), is given by 

n[(n + l)p + 2] 
x^ = ip' — E + fl-

ap + 1 ZCg np + 1 
- (i + 1) X 1, ..., n 

where n is the largest integer such that 

2 + c^ p(2 - p)n + 2(c^ - p Cg %) $ 0 

and p is the probability that an inspection reveals state when 

E^ is the true state of the system. By assumption (iii) of section 1.2 

we consider only the case p = 1. 

Minimising the expected cost 

When the p.d.f. of T is known, the minimax criterion ceases 

to be meaningful, and Barlow, Hunter and Proschan (1963) defined an 
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optimal policy to be one which minimises the expected value of c(T; x). 

In many cases a renewal takes place as soon as the failure is detected. 

For example when a continuous production process is found to be out of 

control, necessary adjustments or repairs are made, production resumes, 

and inspection continues. In such cases a more suitable definition of 

an optimal policy is that which minimises the expected cost per unit 

time over an infinite time span. We now assume that upon detection of 

failure, a repair taking time r is made, at a cost c^, and that the 

system is then taken to be as good as now and inspection resumes. 

Although the model is now slightly more complicated and a new objective 

is being defined, the following result due to Brender (1963) shows that 

in principle, the problem can be formulated as one of minimising the 

expected cost per failure. 

Let 

C(x) = c^ E(N) + Cg^ECx^ - T)| + C3 

be the expected cost per cycle under policy x , and let 

T(x) = E(x^) + r 

be the expected length of each cycle under policy x. Then we wish to 

minimise the expected cost per unit time, which is 

C(X) 
R(x) = 

T(x) ' 

Define 

D(a, x) = C(x) - a T(x) = c^ E(N) + (c^ - a)E(x^ - T) + {c^ - a(r + y)} 

where y = E(T) . 

For fixed a find x(a) which minimises D(a, x), and then 

find that value of a, a* say, for which D(a*, x(a*)) = 0 . (It has 

been shown that for nontrivial values of c^, Cg, c^ and r, such an 

a* must exist.) Then x(a*) minimises R(x̂ ) and a* = min R(x) . 
X 
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The result relies on the fact that if 

min D(a*, x) = 0 
X 

then min {C (x) - a* T (x) } = 0 

K 
or min T(x){R(x) - a*} = 0 

X 

so that min R(x) = a* since T(x) > 0 . 
X 

Thus in principle the problem of minimising expected cost per unit time, 

and minimising expected cost per cycle reduces to the same computational 

problem. 
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Chapter 2 

Optimal Inspection Policies 

In this chapter we compute optimal inspection policies in 

the exponential case, and when f is a PF^ density, for both cost 

model I and the new cost model II introduced in section 1.2. 

We conclude that these optimal policies pose a real computational 

problem, especially in the case of model II. This motivates the 

search in later chapters for a class of computationally simpler, near-

optimal policies. 

Preliminary 

A component of the expected total cost for both models I and 

II is the average number of inspections needed to detect the failure, 

E(N). Since E(N) may or may not exist, we give a necessary and 

sufficient condition for existence, namely that 

I 
j=o J 

converges, and in this case 

E(N.) = I F(x.) . 
j=o j 

Proof 

= lim I j < T ( X.) 
n-x» 4=1 J J 

E(N) 

J 

n 
= lim Iaf^F(x. ) - F(x.)? 

j=l*^ J ^ J ^ 

Writing F^ for F(x^^ we have 

" - "'j-i ' 'j-i - X • 
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The first and third terms on the right hand side differ by nF and 

so 

• J, 'i-l - • 

The convergence of ^ F. is sufficient since the convergence of a 
j=0 J 

00 

series of positive decreasing terms I a implies na 0 as n + 
n=0 ^ ^ 

(see, for example Flett, 1966 page 242). To prove that the convergence 

of I F- is necessary we must show that if j=0 ^ 

I - 'j' 

exists then nF 0 as n ->- «> . If 
n 

converges then 

I 1 - F.) -^0 as n °o . 
j=n+l J 

But 

I j(F. - F.) > (n + 1) I (F. - F ) = (n + l)i > 0 . 
j=n+l ^ ^ j=n+l J ^ J II 

Hence (n + 1)F^ ->-0 so that nF^ 0. This completes the proof. 

It is interesting to note that the existence of E(N) depends 

on {x^} as much as F; that Xj -> <» as j ->• •» is not sufficient for 

existence. As an example consider the inspection policy given by 

~ c iln(n + 1). Note that x^ = 0, x^ = «>, and suppose that 

F(t) = exp(- t/a) . Then 

F(x^) = exp[- a £n(n + l)/a] = ^ ^ ^ . 
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So that 

n n 
I F(x J - ^ " as n 0° , 

j=0 J j=0 J ^ 

which means that the expected number of inspections is infinite in 

this case. 
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2.1 Optimal inspection policy in the exponential case; 

models I and II 

A consequence of the fact that systems with an exponential 

failure distribution do not age is that the optimal policy must be 

periodic, i.e. of the form = kx, k = 0, 1 for some x > 0. 

Barlow and Hunter (1960) showed that for model I when 

f(t) . 1 a 
this gives an expected total cost per cycle of 

CgX 
(2.1.1) 

Cj + CjX 

1 - e 

which is minimised when 

x/a X T 

= 1 " s j j • (2.1.2) 

If a is large so that e*^^ = 1 + — + 4 
a 2 

then 

'2ac^ 
X = / • (2.1.3) 

It is interesting to extend their analysis a little further, for if x* 

is the optimal inspection interval, then from (2.1.2) 

a " ""̂ 2 

1 a acg 

Substituting in (2.1.1) we find that after a little algebra 

min E Fc (T; x)! = c^ + CgX* 

So that the minimum expected cost is equal to the sum of the cost of a 

single inspection and the penalty cost incurred over an optimal inspection 

interval. 

For model II note that x^ - x^_^ = x for all k so that 
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and 

E[C(T)J = E(N) + Cg E(XQ - x^_^) 

CO - i £ 

= c I e + c X 
j=0 

c. 

1 - exp 

+ c^x . 

This is minimised when 

- c, exp 

1 - exp 

Y + "=2 = 0 

x * = - a & n where K = 
ACR 

( 2 I 4-) 

It is interesting that the optimal inspection interval for model II in 

the exponential case can be determined explicitly, unlike model I. 

However the subsequent sections of this chapter reveal that this 

computational simplification is not evident in the general case. 
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2.2 Optimal inspection policies for PF^ densities; model I 

In this section we present the results of Barlow, Hunter and 

Proschan (1963) who have given conditions for the existence of an 

inspection policy which minimises E{c(T; x)} for model I, and in the 

special case when f(t) is PFg have proposed an algorithm for the 

calculation of such a policy. 

Optimal inspection policies 

For model I 

X 
n 

E{c(T; x)} = ĉ  I F(x.) + c_ % 
j=0 j ^ n=l 

(x^ - t) f(t)dt (2.2.1) 

*n-l 

and Barlow, Hunter and Proschan (1963) showed that if F(t) is 

continuous with finite mean, then a policy x* which minimises 

E{c(T; x)} exists. In the case when it is known that the system will 

fail in some given interval [ o , say, they showed that a necessary 

and sufficient condition for the optimal policy to consist of a single 

inspection at time T is that 

^ c^ + CgCT - t) FOR ALL 0 ^ t ^ T . 

In the general case E{c(T; x)} is given by (2.2.1) and for a minimum 

E{c(T; x)} = 0 k = 1, 2, ... 
k 

This leads to 

V l - - -q (2-2-2) 

so that X* = {x^*} can be calculated once x^* is known. 
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Barlow, Hunter andBroschan (1963) showed that i 

a decreasing sequence if f is PFg, and in this case proposed the 

following algorithm for computing x^* . 

Algorithm 2.2.1 

As an approximation to x^* choose x^ so that 

=1 
(=1 

F(t)dt = — . 

This is that value of x^ for which the cost of undetected failure 

during ĵ O, x j is balanced against the cost of the first inspection. 

(i) Compute {x^} recursively from (2.2.2), 

(ii) if 6^ > for some k, reduce x^ and 

repeat; if 6^ < 0 for some k, increase x^ 

and repeat. 

The motivation of algorithm 2.2.1 is the following theorem due to 

Barlow, Hunter and Proschan (1963): 

Theorem 2.2.1 

Let f be PF^ with F(x)/f(x) strictly increasing and 

with f(t)> 0. Then if {x^} is the optimal policy 

(i) if x^ > x^*, 6, > 6 for some k 
i l k k-1 

(ii) if x^ < x^*, 6^ < 0 for some k . 

Optimal policy in the Weibull case 

The Weibull distribution 

3-1 
f(t) . % exp<-

is PF„ for B 5 1, and 
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F(t) = 
f(t) 

1 - exp 

i a 

ML exp 
t 

_t 
a 

V 
a 

- 1 

Using the fact that x, (e* - l)/x, and x^ are all strictly 

increasing functions, and that the composition and product of strictly-

increasing positive functions is strictly increasing, we see that 

F(t)/f(t) is strictly increasing in the Weibull case. Hence, theorem 

2.2.1 holds and algorithm 2.2.1 can be used to find the optimal policy 

when 6 ^ 1 . 

Now 

£(x^) 

So that (2.2.2) gives 

exp" 

*n+l " *n 

exp-

' 

*n-l 
• - exp-a • - exp-

a 

8-1 f X 
8-1 

X 
n n 

a 
exp-

[a 

r 3 
X 

3 
X 1 

n n-1 

• a a 

ft- -1 
e 

X 
e n 

a . « , 

- 1 

X c^ 

Putting z = — , K = this simplifies to 
n a aCg 

- 4 - l } -

^n+1 ~ ^n 
3 z 

e-1 
K 

n 

(2.2.3) 

This standardisation has the advantage that instead of having to find 

the inspection times as a function of the four parameters a, g, c^ and 

Cg, we need only two parameters, namely K and g to compute {z^} 

Using algorithm 2.2.1 and (2.2.3) to compute {z^} the optimal policy 

is then given by x^ = az^ 
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2.3 Optimal inspection policies for PF^ densities; model II 

Calculation of a policy which minimises the total expected 

cost for model I leads to an equation giving explicitly in terms 

of x^ and x^_^. For the new cost model II proposed in section 1.2 

we now show that minimising the expected total cost leads to an implicit 

equation for x^^^ in terms of x^ and x^ which adds to the already 

difficult computational problem. For this new model we give results 

which justify the use of a modified version of the model I algorithm, 

when f(t) is PF„ . 

Optimal model II policies 

For the new cost model II proposed in section 1.2 

c(t; x) = c^n + c„(x - x ,) where x . < t $ x 
— 1 2 n n-1 n-1 n 

So that 

E{c(T; x)} = c^ E(N) + c^ E(x^ - x^_^) 

= CJ E ( N ) + Cg I < I ( X,) 
n=l 

00 00 

E{c(T; x)} = c^ I F(x.) + Cg I (x - x i){F(x ) - F(x _ )} . 
j=0 J n=l 

(2.3.1) 

Bya modification of theorem 1 of Barlow, Hunter and Proschan (1963) we 

can show that an inspection policy x* which minimises (2.3.1) exists. 

For such a policy, we must have 

E{c(T; x)} = 0, k = 1, 2, ... 

Now from (2.3.1), the terms involving x^ in E{c(T; x)} are 
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so that 

•j|-E{c(T; x)} - - Cj £(Xj^) + C2{F(XJ^) - F(x^ 

+ =2 - V l ' - C2<F(%k+l) - ?(*%)) 

- Cj £(X^)(X|^^1 - x^) . 

Equating the right hand side to zero gives 

' V . - V - - v . > • ^ . 

k = 1, 2, ... (2.3.2) 

Like model I, for model II is determined by x* . However, we 

now have the added computational difficulty that cannot be written 

explicitly in terms of x^ and x^_^ as before, because of the presence 

of the term F(x^^^) in (2.3.2). For this reason the results of Barlow, 

Hunter and Proschan (1963) for model I do not carry over to model II. 

However, we now proceed to show that if x is the optimal policy, and 

* * * f 
0^ - x^ - x^_^ , then once again is decreasing. Moreover if 

* * 

x^ > x^ then 6^ > for some k; if x^ < x^ , 6^ < 0 for some 

k. We first need the following lemmas. 

Lemma 1 Let {x^} be defined by (2.3.2) with x^ = 0, and 

= Xĵ  - x^_^ 5 0 for k = 1, 2, ... Then x̂ ^ ̂  « as k -»• <=° . 

Proof Suppose to the contrary that Xj^->c<<» as k-><». 

From (2.3.2) 

k+1 k f (X]̂ ) f (x^) Cg 

so that 

F(x^) - C; 

"k+1 * 'k * f(x^) 
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But, if ^ c as k -> CO, then 6^ 0, F(x^), F(Xj^_^) -> F(c), and 

f(xĵ ) f(c) > 0 . So that eventually 

S < 
\+i * - z : ' 

contradicting the fact that 6 ) 0 for all k. 

In lemmas 2, 3, 4 and 5, f is taken to be PFg, y > x, 

A > 0 and m is the mode of f. 

Lemma 2 

F(x + A) - F(x) . , . 
is decreasing in x , 

Lemma 3 

F(x) - F(x - A) . . 
is increasing in x , 

Lemma 4 for r 5 1 and x - rA % m 

F(y) - F(y - rA) F(x) - F(x - A) 

f(y) ' f W 

Lemma 5 for r 5 1 and x 5 m 

F(y + rA) - F(y) F(x + A) - F(x) 

f(y) " f(x) ' 

Proof The proofs of Lemmas 2, 3 and 4 are given in Barlow, Hunter and 

Froschan (1963); for Lemma 5 note that since f is PF^ 

f(x + t) ^ f(y + t) £ s. , 
— f ( x ) — — f T y O — C % 0, and since x 5 m 

f(y + t) . , . , 
— — IS decreasing in t. 

rA A A 

dt s r f dt s , 

0 
f (y) 
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F(y + rA) - F(y) F(x + A) - F(x) 

f(y) ^ fOO 

Lemma 6 Let 3^ " " ^k-1' satisfy (2.3.2) with 6 > 0 for 

all k. If f is PF„ and for some k 6, > 6, , then 6, , > 6, 
^ K k-1 k+1 k 

Proof Since 

< V . - . . . - - V . . • " ' - ' I - I 

n = 1, 2, ... 

"k+i - - \-i' 

[ " ' V I ^ - ̂ K-z>] - [ " ' V -

_ - " ' V l ) " ' V l ) -

F(x^) - F ( ^ . p + \ ) - F(x^) 

. + «k) -

fCXfc) 

> - V P ' V i ) - F(%t_i - \ ) 

F(*K) 

^ F<*k-1 * _ F('^ * \ ) - F(%^) 

F ( ^ * «^) -

f(*k) 

since =- V l - \ • Therefore 

«k.l - \ ) - («k - \-l> ^ " f ( y 

— 2 6 — 



using lemma 3 and lemma 2 respectively. 

Since 5^ - > 0 by assumption, 

* V -
f(x^) 

'k+i - \ 

f(*k + \+i' - + «k' 
> 0 . 

since F is increasing, both expressions contained in square brackets 

have the same sign; since their sum is positive, each must be positive 

and hence 6, , > 6, . 
k+1 k 

Lemma 7 Let - x^_^, {x^} satisfy (2.3.2) with 6^ > 0 for 

all k. If f is PF- and for some k 6, = r 6, , where r > 1 
z k k-1 

and x^_2 ^ ® where m is the mode of f, then 

6, > r 6, 
k+1 k • 

Proof 

..... - V -

+ (r - 1) 

. ~ ^ ^k-l) F(%k_i ^k-l) 

k+1 k ^ ' S ' f V ? 

+ r 
• ( V l + + r «k) -

F(K,^ + r «^) -

£ ( V 
+ (r - 1) 
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\ + l - ' 'k > 

using lemma 4 and lemma 5 respectively. 

, * \+l> - F(*k + r 

[^k+1 ' "k 
5. - r 6, 

F(*K) > 0 . 

Since F is increasing, both expressions contained in square brackets 

have the same sign; since their sum is positive, each must be positive, 

and hence 6, . - > r 6, 
k+1 k 

Lemma 8 Let 6^ = - x^_^, {x^} satisfy (2.3.2) with 6 % 0 for 

all k. Then if f is PF„ 

d6 k+1 f(*2) d6. 

dx^ ' f ( V + dx^ 
> 0 k = 1, 2, 

Proof 

'2 - + £ ( 0 

F(x,) F(x, + 6„) - F(x,) 

f (x^) 
by (2.3.2) 

^2 

so that by the chain rule for partial differentiation 

1 + — — 
F(x^)" 

9 
F(x^ + gg) - F(x^) f(x^ + 6g) dgg 

dx^ dx^ f (Xĵ ) 3=1 f (x^) f(x^) dx^ 

hence 

d6. 

dxi 
1 + 

f (x^) 5 1 

since is increasing, and ^ f ( x ) — i s decreasing for 

A > 0. So that the lemma is certainly true for k = 1. 

Now suppose that the lemma is true for k = 1, 2, ..., n-1; 

we will show that this implies it is true for k = n, and hence for all 

k by induction. Note that 
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«„+l ' »<==„• 

where 

F(x ) - F(x - 6 ) 
+ f(.) " 

n 

"'"n + «n+l) - " ( Y 

using (2.3.2). So that by the chain rule 

dS n+1 
dx. 

1 -
9$ 

86 
n+1 

3$ ^ ^ ^ ^ 

9x dx^ 96 dxi 
n 1 n 1 

Now X = X, + 6„ + ... + 6 , so that 
n 1 2 n 

dx n d6. 

dx. 

and since 
dx, 

dx 
> 0 for k = 2, ..., n by hypothesis, > 0 

Moreover, using lemma 3 and lemma 2, > 0 . 
^n 

d6 
n+1 
dx. 

1 -
9$ 

96 
n+1 

9$ ^ 
96 dx^ 
n 1 

and by the definition of $(x^^ 6^, 6^^^) , 

d6 
n+1 
dx. 

1 + 
fU^) 

1 + 
n ^n) 

fCx*) dx. 
n 

which implies 

but 

. f(*n) * ^ 

dx^ f(x^> + 

d6^ f(x^) + fCxg) d6g 
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by hypothesis so that 

_ ( ( y + f(%i) + f(%2) ^ 

dxj £ ( V + £ ( V l ' f ' V l ' * 4*1 

d»n+l ^ f(%l) + f(%2) « 2 

- f(K^) * dxj 

dSg 
This completes the proof, since we have already seen that > 0 

dx^ 

Lemma 9 If f,(x) is continuous and lim f (x) = «= for x e Fa, bl 

then for all A there exists an m such that 

f^(x) > A for all x e [a, b] and n > m . 

Proof Let e > 0 and define k(x) such that f^^x) > X + e for 

n 5 k(x). Since f^/x) is continuous, then there exists some 6 > 0 

such that 

f^Xy) - f^Xx) < e whenever |y - x| < 6 

Therefore - e < f^Xy) - f^/x) < e 

f^Cy) > - e > X 

for all y in some neighbourhood (x - 6, x + 6) of x, say. 

Thus we can find a covering neighbourhood for every x e [a, b] 

The collection of these open intervals covers [a, b], and hence by the 

Heine-Borel theorem we can select a finite subcover 

0% , ... %% of [a, b] . 
1 m 

Define 

K = max {k(x.)} 
1 1, ### m 

then f,(x) > X for all x e [a, b] , and all k > K . 
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Theorem 2.3.1 Let satisfy (2.3.2), where j x * | IS 

the optimal inspection policy and , and let 

"k "k-1 
* * * 6, = 

6,_ - - K, , . \ - V l • «k - *k - \ - l 

Then if f is PF„, 5 > 5 _ for some n. 
z n n—1 

* d6 
n 

Proof For all n 6 > 0, and by lemma 8 -r— > 0 if 6 > 0 so 
n ax^ n 

that x^ = x^ + Gg + ••• + increases with x^ for x^ > x^ 
* _ * 

Hence x^ > x^ , and by lemma 1 lim x = »), so that lim x = <» 
n-x» n-x» ^ 

whenever x^ % x^ 

Now by lemma 8, 

d6^+^ f(x^) + ffxg) dgg dgg 

^ f(x^) + d^[ 0 • 

So that 

and in particular for all x^ e =1' *1 Using lemma 9, we can find 

an m such that whenever x^ e 
^1 

d6 
n 

X, 

dx, ~ * 
1 

for n % m . 

But, 6^ can be regarded as a function of x^, so that 

6 - 6 = 
m m 

X- =1 - =1 

* dx^ = x^ 

6 > Xi = &, , so that 6 > 6 - for some n $ m . 
m i l n n-1 
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Theorem 2.3.2 Let |\|» satisfy (2.3.2) where |x^| i 

* 
the optimal inspection policy and , and let 

\ \ - V i • 4 \ - V i ' \ • 'He - V i • 

Then if f is PF„ 6 < 0 for some n. 
I n 

* * 

Proof If 6^ > for some k then using lemma 6 and lemma 7 

* 

'̂ n ̂  " geometrically fast from some point on as n -> «> and hence, by 

a modification of Theorem 5 in Barlow, Hunter and Proschan (1963), we 

can show that this contradicts the fact that |x^| is an optimal policy. 

Hence is a decreasing sequence. 

We will show that 6^ % 0 for all k leads to a contradiction. 

By lemma 8 

d6 

dGT > 0 if *k % 0 ' 

so that x^ = x^ + Gg + increases with x^ for Xĵ  > x^ 

Hence x^ > x^ , and by lemma 1 lim x^ = «> , so that lim x, = o 
k-x» k-*«° 

whenever x^ % x^ . Now, by lemma 8 

d6 

dx 

y.+l + fCxg) (̂ "̂2 
and - — > 0 

dx. 

So that 

lim 
k-x» ""̂ 1 

J — - - for 3 . 

and in particular for all x^ e 

an m such that whenever x^ e 

*1' ^1 

*1' 

. 'i 

Using lemma 9, we can find 

for all k 5 m 
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But, 6^ can be regarded as a function of x^, so that 

X, 

6 - 6 = 
m m 

d6 

X, 

1 / 

1 , * x* 
— — dx^ = Xi = 

1 x^ - x^ 
X. 

* * 
6^ < 6^ - 6^ < 0 since is decreasing 

i.e. 6^ < 0, contradicting the fact that 6^ % 0 for all k. 

This completes the proof. 

Computing the optimal inspection policy for PF^ densities 

By virtue of theorems 2.3.1 and 2.3.2 we now propose the 

following algorithm for computing x* when f is PF^ . 

As an approximation to x^ choose x^ so that 

=1 F(*i) = 3: 

This is that value of x^ for which the cost of undetected failure 

during j^, x j is balanced against the cost of the first inspection. 

(i) Compute {x^} recursively from (2.3.2). 

(ii) If 6^ > for some k, reduce x^ and 

repeat; if 6^ < 0 for some k, increase x^ 

and repeat. 

Optimal policies in the Weibull case 

For the Weibull distribution 

f(t) . % 
B-1 

expl-

and (2.3.2) becomes 
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r • ' • 

1 *k-l 1 expj-
I a J 

—exp- a I. 
exp-

a 
-̂exp-< -

\ + i 
a 

•I 3-1 f X •» 

a exp' — 

a a exp' a 

6' 

with z, = — and K = as before, after some algebra this can be 
otc 2 

written as 

where 

and 

-z 
k+1 

(2.3.3) 

f f R 1 f R) 

\-i' • 
|exp - 2 exp 

' 'k } \ ( \ ) + - \ - l - K • 

Equation (2.3.3) is of the form g(x) = x, and can be solved by any of 

the standard numerical techniques, such as Wegsteins method. Thus, given 

the sequence {z^} can be calculated from (2.3.3% and the algorithm 

* 

used to find z, in terms of K = and g. 
1 acg 
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2•^ An approximation to the optimal policy when the inspection 

cost is low 

If the cost of a single inspection is very small so that 

^2 « CgEfT) then it is reasonable to assume that the optimal policy 

will consist of many inspections, i.e. E(N) will be large. In a 

recent paper Keller (1974) considers the case when inspections are 

' ... so frequent that they can be described by a smooth density ... 

which denotes the number of checks per unit time ...". 

If the rate of inspections at time t is 4^t) then the 

time between inspections is approximately so that Keller proposes 

that {x^} should be given by 

^1 " i W ' *n+l = ^n + ' n = 1, 2, ... (2.4.1) 

Keller approximates x - t in the interval x , < t < x 
n n-1 n 

by an 'average' value (x - x J/2, so that x - t = ^ , . 

n n-1 n 2^(t) 

Note that this is a time average and f(t) is not taken into account 

at this stage. 

Since the number of inspections made up to time t is 

approximately 
t 

*(u)du = $(t) say, (2.4.2) 

0 

then if the failure occurs at time t the total cost for model I is 

^2 

c(t; 0 = c^ $(t) + , (2.4.3) 

and the expected cost is 

E{c(T; *)} = 
0 

^2 
*(C) + 2^71)"^ . (2.4.4) 
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Using the calculus of variations Keller showed that E{c(T; (j))} is 

minimised when 

Cg h(t) 

2=1 (2.4.5) 

where h(t) is the hazard rate function, and the minimum cost is then 

/f(t) F(t) dt . (2.4.6) Cmin = /Zci^Z 

0 

If this method is applied to the new cost model II, the 

equation corresponding to (2.4.3) is 

c(t; •) - Cj «(t) , 

SO that any results for model II are found by replacing c^ by 2c2 

in the corresponding results for model I. 

Keller applied his method to the uniform distribution, and the 

exponential distribution with c^/acg « 1 and showed that in the 

latter case this leads to a periodic policy with x = . 

This is the same as (2.1.3), the approximate solution that Barlow and 

Hunter (1960) gave for large a. Using (2.4.6) we have 

^min ~ ^^ac^cg , which differs from the exact solution by only c^ 

(which is small, by assumption). 

The two distributions that Keller considered both have the 

property that h(0) > 0, so that from (2.4.1) x^ is always finite. 

However if h(0) (= f(0)) = 0, then (2.4.1) gives x^ = »; Keller did 

not consider such cases, but this difficulty can be avoided if {x^} is 

defined by 

X 
n 

(i)(t)dt = n, i.e. 0(x^) = n or x^ = $ ^(n) . (2.4.7) 
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Unfortunately this can introduce a further problem, namely that 

(f)(t) = 
/Cg h(t) 

is often difficult to integrate analytically. For example the gamma 

distribution with increasing hazard rate has 

a 
5-1 

-t/a 

h(t) = 

r(B, t/a) 

so that h(0) = 0, and neither (2.4.1) nor (2.4.7) are suitable for 

evaluating {x^}. In such cases Keller's method has no real advantage 

over the exact solution considered in the earlier sections of this 

chapter. 

Keller's method applied to the Weibull distribution 

The Weibull distribution F(t) = exp{-(t/a)^} has the 

property that the hazard rate function takes on a particularly simple 

form. 

With 

h(t) = 2 
a 

3-1 

(2.4.5) gives 

(j)(t) = 
/gCr 

2c, 

Note that Keller s method (2.4.1) for evaluating {x^} cannot be used, 

since (j)(0) = 0. However (2.4.7) can be used, and this gives (for 

model I) 
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3c 
3+1 

2 2 2 
X = n 

2c^ c® 6^1 -

X = 
n 

(3+1)^ 

1 
3+1 

23 c. ( 2 . 4 . 8 ) 

Replacing by in (2.4.8) gives 

X = 
n 

(3+1)2 QJ3 ̂ 21 

1 
3+1 

43 Cr 
for model II ( 2 . 4 . 9 ) 

The minimum cost for model I is given by (2.4.6); 

CO _ ^ e -1 

"min • f A 
0 

expi-H Ht 

1-E 

= /2 ' t 
expi-W) J a 

3-1 
dt 

2C^C2 a 
' t 

a 

1_ _ 1 
2B 2 

exp _t 
a 

c . = 
m m 

2c,c„ a 
'12 

(2.4.10) 
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2.5 General comments on optimal policies 

With the exception of the exponential case, calculating optimal 

policies in general poses a severe computational problem. Moreover, no 

theory exists for calculating optimal policies when f(t) is not PF^. 

For failure distributions for which F(t) cannot be expressed in terms 

of elementary functions (such as the gamma and truncated normal), 

calculating the optimal policy even for model I requires the use of a 

computer and is slow. Since model II requires the numerical solution 

of an equation many times during each iteration, solving the problem 

becomes expensive in terms of computer time. 

It would seem that the computational difficulties which arise 

from using the inspection times {x^} as control variables would be 

avoided if we considered only policies which depended on a single variable. 

Clearly, by considering policies which depend on only one variable, we 

are restricted to a subset of all possible policies, which in general, 

will not include the optimal policy. However the subsequent chapters 

of this thesis reveal that this restriction can sometimes be compensated 

by a considerable reduction in computational effort without paying too 

great an extra cost due to the.use of a restricted subset of policies. 
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Chapter 3 

Periodic Inspection Policies 

In this chapter we consider the most commonly used inspection 

policy, the periodic policy given by = nx for some x > 0. 

Barlow, Hunter and Proschan (1963) have shown that the optimal inspection 

policy has decreasing inspection intervals when the failure density is 

PF2, so that periodic policies cannot be optimal in this case. 

Although periodic policies are simple to use, the best periodic policy 

can sometimes given an expected cost in considerable excess of the 

optimal non periodic policy. We first derive an expression for the 

expected total costs for models I and II. 

3.1 Periodic inspection policies 

If m(x) is the mean number of inspections needed to detect 

the failure when the inspection interval is x, then 

m(x) = E(N) = I F(jx) . (3.1.1) 
j=0 

The expected time at which the failure is detected is 

E(x^) = E(Nx) = xE(N) = xm(x) 

and so the expected total cost for model I is 

E{c(T; x)} = c^ m(x) + c^ xm(x) - Cg E(T) 

= (cĵ  + Cg x) m(x) - Cg E(T) . (3.1.2) 

Since x^ - x^_^ = x for n % 1, E(x^ - x^_^) = x and so the expected 

total cost for model II is 

E{c(T; x)} = c^ m(x) + Cg x . (3.1.3) 

The best periodic policy in either case is found by minimising 

(3.1.2) or (3.1.3) with respect to x. 
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We can obtain an approximation to m(x) (and hence the expected costs) 

in terms of E(T) and f(0) using the Euler-MacLaurin summation 

formula 

I g(j) = 
j=l 

g(u)du - J g (o ) - ̂  g ' ( o ) - . . . (§7i- + 

0 

where is the nth Bernoulli number (see, for example Knopp, 1947). 

Putting g(j) = F(jx) we have, using (3.1.1) 

m(x) = F(0) + 

approximately, or 

F(ux)du - Y F(0) -

m(x) = I + I + (3.1.4) 

where y = E(T). Knopp (p. 532) points out that usually the error in 

truncating the Euler-MacLaurin series is of the same sign as, but smaller 

in absolute value than, the first term neglected. The approximation 

(3.1.4) will be at its best when x is small since the first term 

neglected is 

- 750 f"(o) ' 

Note that the expected time to detection of failure within 

an interval is given by 

E(T - x^_^) = Ti - x[m(x) - l] 

_ X x2f(0) 

2 " 12 

which is a generalisation of the result obtained by Duncan (1956) in the 

exponential case for small x. 
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3.2 Periodic policy for model I 

Using (3.1.2) and (3.1.4) the expected cost for model I is 

approximately 

C2 y 

which is minimised when 

x^f(0) 
+ 

1 ^1 
2 12 c. 

r2 - = 0 (3.2.1) 

For most life distributions f(0) — 0 (The exponential is a notable 

exception), and in this case, 

'Iv. c. 
X = (3.2.2) 

Exponential case 

In this case we have f(0) = 1/a , so that from (3.2.1) we 

get 

2 r \ 
X 

' ^ 4 4 2 - k = 0 (3.2.3) 

where k = c^/acg , and so for given k we can find x/a 

Now for the exponential case the periodic solution is in fact 

the optimal solution, and it is interesting to compare the exact solution 

and the approximate solution given by (3.2.3). We have seen from (2.1.2) 

that x/a is given exactly by 

x/a , T , 
e - x/a - 1 = k , 

and we need numerical procedures for determining x/a. Now let us 

x/a 
approximate e For x/a small, we have 

x/a 2 

which gives 

f = /2k . 
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Note that this approximation agrees with (3.2.2), the approximate 

solution with f(0) = 0 . The next term in the series for i 

3 
and if we include this we have 

3 
+ 1 X 2 

- k = 0 . 

This equation differs from (3.2.3) by the term ^ 

Table 1 gives the exact inspection interval and the 

approximations given by (3.2.3) and x/a = /2k. We see that, as 

expected (3.2.3) is the better of the two, holding over a greater range 

of k. 

Weibull case 

In the Weibull case with unit scale parameter, 

F(t) = exp(-t^) 

and the mean number of inspections, m(x), is given by 

00 

m(x) = ^ exp{- (jx)®} . (3.2.4) 
j=0 

For increasing hazard rate distributions g % 1, so that from some point 

on each term in the series for m(x) in (3.2.4) is not greater than the 

corresponding term in the series 

I exp{- jx} . 
j=0 

The error in summing (3.2.4) to n terms will therefore be less than 

I 
so we can find m(x) to an absolute error of less than e by summing 

to n terms where 
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Table 1 

Exact and approximate inspection intervals in the 

exponential case ~ model I (ot=l). x and x are given by 

X 2 _ k = 0 and x = /2k 

k Exact X X 

0.01 0.1382 0.1382 0.1414 

0.03 0.2354 0.2353 0.2449 

0.05 0.3004 0.3004 0.3162 

0.07 0.3522 0.3521 0.3742 

0.09 0.3963 0.3961 0.4243 

0.1 0.4162 0.4161 0.4472 

0.3 0.6863 0.6851 0.7746 

0.5 0.8577 0.8549 1.0000 

0.7 0.9893 0.9844 -

0.9 1.0979 1.0905 -

1.0 1.1463 1.1375 — 

3.0 1.7490 1.7034 -

5.0 2.0908 2.0000 -

7.0 2.3357 2.1975 -

9.0 2.5282 2.3423 -
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,-nx „ r -Xx 
® • n > - - e )} 

1 - e 
— < e . I.e. 
-X X 

For given x, the expected total cost can be found by 

combining (3.1.2) and (3.2,4), and using a numerical search procedure 

the optimal value of x can be found as a function of k = c^/acg and 

6 . 

When g > 1 f(0) = 0 and approximation (3.2.2) applies, 

and with E(T) = ar(l + 1/g) this gives 

2 = { 2 k r ( l + l / g ) } * . ( 3 . 2 . 5 ) 

A table of values of this approximation is given in Table 2, 

along with the exact values obtained by search by golden section. 
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Table 2 

Exact and approximate inspection intervals in the Weibull 

case - model I (a = 1). Upper entries are square root 

approximations (3.2.5), lower entries are exact values. 

g 

k 
1.25 1.5 1.75 2.0 3.0 4.0 

0.01 0.1365 

0.1352 

0.1344 

0.1339 

0.1335 

0.1333 

0.1331 

0.1331 

0.1336 

0.1336 

0.1346 

0.1346 

0.05 0.3052 

0.2972 

0.3005 

0.2969 

0.2984 

0.2973 

0.2977 

0.2977 

0.2988 

0.2991 

0.3011 

0.3011 

0.09 0.4094 

0.3939 

0.4031 

0.3956 

0.4004 

0.3977 

0.3994 

0.3994 

0.4009 

0.4020 

0.4039 

0.4044 

0.1 0.4316 

0.4141 

0.4249 

0.4162 

0.4220 

0.4189 

0.4210 

0.4210 

0.4226 

0.4239 

0.4258 

0.4226 

0.5 0.9651 

0.8580 

0.9501 

0.8760 

0.9437 

0.9036 

0.9414 

0.9405 

0.9450 

1.2595 

0.9521 

1.2703 

0.9 1.2948 

1.0927 

1.2747 

1.1142 

1.2661 

1.1542 

1.2630 

1.2144 

1.2678 

1.3394 

1.2773 

1.3088 

1.0 1.3648 

1.1389 

1.3437 

1.1600 

1.3346 

1.2003 

1.3313 

1.2584 

1.3364 

1.3435 

1.3464 

1.3164 

5.0 3.0519 

1.9694 

3.0046 

1.8946 

2.9843 

1.8319 

2.9770 

1.7706 

2.9883 

1.5688 

3.0107 

1.4431 

- 46 -



3.3 Periodic policy for model II 

Using (3.1.3) and (3.1.4) the expected cost under model II 

is approximately 

Cg X 

which is minimised when 

f(O)-) 
* ° =1 / (•=- + 

2 12 (3.3.1) 

or X - y if f(0) = 0 . (3.3.2) 

By comparing (3.2,2) with (3.3.2) we see that the approximate optimal 

intervals for models I and II differ by a factor of /2 in the case 

when f(0) = 0 . 

Exponential case 

In the exponential case f(0) = 1/a and (3.3.1) gives 

X ^ / k ~ 

a / 1 + k/12 (3.3.3) 

which is an approximation to the exact solution 

"{L + & - + K } • 

— = - £n-< 
a 

From Table 3 we see that for all tabulated values of k the square root 

approximation (3.3.3) is good, and particularly accurate when k < 1. 

Weibull case 

In the Weibull case the expected total cost is found by 

combining (3.1.3) and (3.2.4), and using a numerical search procedure 

the optimmal inspection interval can be found as a function of k = c^/aCg 

and e. An approximation to this interval is given by (3.3.2) which 
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Table 3 

Exact and approximate inspection intervals in the 

exponential case - model II (a = 1). 

The approximation is given by (3.3.3). 

k Exact Approx. 

0.01 0.1000 0.1000 

0.03 0.1730 0.1730 

0.05 0.2231 0.2231 

0.07 0.2638 0.2638 

0.09 0.2989 0.2989 

0.1 0.3149 0.3149 

0.3 0.5411 0.5410 

0.5 0.6932 0.6928 

0.7 0.8140 0.8133 

0.9 0.9163 0.9150 

1.0 0.9625 0.9608 

3.0 1.5668 1.5492 

5.0 1.9249 1.8787 

7.0 2.1847 2.1026 

9.0 2.3896 2.2678 
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gives 

X - = /kr(l + 1/g) . (3.3.4) 

A comparison of this approximation with the exact values found by 

search by golden section is given in Table 4. 
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Table 4 

Exact and approximate inspection intervals in the Weibull 

case - model II (a = 1). Upper entries are square root 

approximation (3.3.4), lower entries are exact value. 

8 
k 

1.25 1.5 1.75 2.0 3.0 4,0 

0.01 0.0965 

0.0965 

0.0950 

0.0950 

0.0944 

0.0944 

0.0941 

0.0941 

0.0945 

0.0945 

0.0952 

0.0952 

0.05 0.2158 

0.2156 

0.2125 

0.2124 

0.2110 

0.2110 

0.2105 

0.2105 

0.2113 

0.2113 

0.2129 

0.2129 

0.09 0.2895 

0.2889 

0.2850 

0.2848 

0.2831 

0.2830 

0.2824 

0.2824 

0.2835 

0.2835 

0.2856 

0.2856 

0.1 0.3052 

0.3045 

0.3005 

0.3001 

0.2984 

0.2983 

0.2977 

0.2977 

0.2988 

0.2989 

0.3011 

0.3011 

0.5 0.6824 

0.6723 

0.6718 

0.6657 

0.6673 

0.6646 

0.6657 

0.6657 

0.6682 

0.6667 

0.6732 

0.6431 

0.9 0.9156 

0.8892 

0.9014 

0.8829 

0.8953 

0.8857 

0.8931 

0.8930 

0.8965 

1.0005 

0.9032 

1.1354 

1.0 0.9651 

0.9339 

0.9501 

0.9276 

0.9437 

0.9315 

0.9414 

0.9411 

0.9450 

1.0765 

0.9521 

1.1657 

5.0 2.1580 

1.8181 

2.1246 

1.7609 

2.1102 

1.7200 

2.1050 

1.6800 

2.1130 

1.5260 

2.1289 

1.4181 
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3.4 Comments on approximations to optimal periodic policies 

The approximations (3.2.1) and (3.3.1), depending only on 

Cg, E(T) and f(0) have the advantage that they require only a 

minimum of information about the time to failure distribution, and since 

f(0) is generally zero, we require only E(T) to find an approximation 

to the optimal inspection interval. 

Tables 2 and 4 give an indication of the accuracy of these 

approximations in the Weibull case, and we see that for both models 

I and II the approximations are fair for small and moderate values of 

k, but particularly good for model II with k < 1. A natural measure 

of the loss in using these approximations in the general case is the 

percentage increase in the expected total cost due to using the 

approximate interval in place of the exact interval. Tables 5 and 6 

give this increase in the Weibull case. 

In the exponential case this loss is less than 1% for k in 

the range 0.1 < k < 10, and in the Weibull case it is less than 10% 

for 0 . 1 $ k 3 2 , 1 ( e ( 3 with model I, and less than 5% for 

0.1$ k 3 2, 1 ^ B $ 4 with model II. A feature of both tables is 

that the percentage increase in cost has turning points in the direction 

of k increasing. 

Comparing Table 5 with Table 6 we see that for all tabulated 

values of k and g, the loss under model II is less than that for 

model I. 
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Table 5 

Percentage increase in the mean total cost of the 

optimal periodic policy due to using the approximate 

inspection interval. Model I, Weibull case (a = 1) 

6 
k 

1.0 1.25 1.50 1.75 2.0 2.5 3.0 3.5 4.0 

0.1 0 0 0 0 0 0 0 0 0 

0.2 0 0 0 0 0 0 0 0 0 

0.3 0 0 0 0 0 0 1 8 17 

0.4 0 0 0 0 0 0 5 13 22 

0.5 0 0 0 0 0 1 6 13 19 

0.6 0 1 0 0 0 1 5 9 13 

0.7 0 1 1 0 0 1 3 5 6 

0.8 0 1 0 0 0 0 2 2 2 

0.9 0 1 1 0 0 0 1 0 0 

1.0 0 2 1 1 0 0 0 0 0 

1.1 0 2 1 0 0 0 0 1 1 

1.2 0 2 1 1 1 0 1 2 3 

1.3 0 2 2 1 1 1 2 3 6 

1.4 0 2 2 2 1 1 3 5 8 

1.5 0 3 2 2 2 2 4 7 10 

1.6 0 3 2 2 2 3 5 8 12 

1.7 0 3 3 3 3 4 7 10 13 

1.8 0 3 3 3 3 5 8 11 15 

1.9 0 3 3 3 4 6 9 13 16 

2.0 0 3 3 4 4 7 10 14 17 

3.0 0 5 6 7 9 14 18 21 23 

4.0 0 7 8 10 13 17 21 23 26 

5.0 0 8 10 12 15 19 22 24 26 

6.0 0 9 11 14 16 20 23 25 27 

7.0 0 9 12 15 17 20 23 25 26 

8.0 0 10 13 15 17 20 23 25 26 

9.0 0 10 13 15 17 20 23 24 26 

10.0 0 11 13 16 18 20 22 24 25 
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Table 6 

Percentage increase in the mean total cost of the 

optimal periodic policy due to using the approximate 

inspection interval. Model II, Weibull case (a = 1) . 

e 
k 

1.0 1.25 1.50 1.75 2.0 2.5 3.0 3.5 4.0 

0.1 0 0 0 0 0 0 0 0 0 

0.2 0 0 0 0 0 0 0 0 0 

0.3 0 0 0 0 0 0 0 0 0 

0.4 0 0 0 0 0 0 0 0 0 

0.5 0 0 0 0 0 0 0 0 0 

0.6 0 0 0 0 0 0 0 0 0 

0.7 0 0 0 0 0 0 0 0 0 

0.8 0 0 0 0 0 0 0 1 2 

0.9 0 0 0 0 0 0 0 1 3 

1.0 0 0 0 0 0 0 1 2 3 

1.1 0 0 0 0 0 0 1 2 3 

1.2 0 0 0 0 0 0 1 2 3 

1.3 0 0 0 0 0 0 1 1 2 

1.4 0 0 0 0 0 0 1 1 1 

1.5 0 0 0 0 0 0 0 1 1 

1.6 0 0 0 0 0 0 0 0 0 

1.7 0 0 0 0 0 0 0 0 0 

1.8 0 0 0 0 0 0 0 0 0 

1.9 0 0 0 0 0 0 0 0 0 

2.0 0 0 0 0 0 0 0 0 0 

3.0 0 0 0 0 1 1 2 3 4 

4.0 0 1 1 1 2 3 5 6 8 

5.0 0 1 1 2 3 5 7 8 10 

6.0 0 1 2 3 4 6 8 10 11 

7.0 0 2 2 4 5 7 9 10 12 

8.0 0 2 3 4 6 8 10 11 12 

9.0 0 2 3 5 6 8 10 11 12 

10.0 0 3 4 5 7 9 10 12 13 
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Chapter 4 

Mean Residual Life Inspection Policies 

4.1 Mean residual life inspection policies 

We have mentioned in section 1.2 that Bryson and Siddiqui 

(1969) proposed decreasing mean residual life as one of seven criteria 

for classifying ageing systems. They showed that decreasing mean 

residual life is a consequence of an increasing hazard rate, and gave 

a counter example to show that the converse is not necessarily true. 

The mean residual life function is defined by 

F(x) dx 

y(t) = 
F(t) 

That is, y(t) is the expected life measured from time t given 

survival until at least t. Clearly y(0) = E(T). We will consider 

densities for which y(t) is decreasing in t, so that y(t) < y(0), 

(t > 0). 

Suppose that the system was found to be working at time x , 

then y(x^) is the expected time that the system will remain in a 

working state, and this can be used as a guide to when the next inspection 

should be scheduled. It seems reasonable that the time to the next 

inspection should be an increasing function of y(x^), say G{y(x^)} 

where G(0) = 0 . A natural choice for the function G is G(x) = Xx 

where X > 0. This leads us to: 

Definition 

A mean residual life (MEL) policy for a density f is a 

sequence of inspection times {x^, x^, ...} satisfying 

^n+1 ~ ^n ^ n = 0, 1, ... for some A > 0. (4.1.1) 
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That is, each inspection is scheduled in such a way that the intervals 

are equal to a constant proportion of the mean residual life after the 

previous inspection. With = 0 we have = Xy(0) = XE(T). 

When f(t) has an increasing hazard rate ii(t) is decreasing 

and in particular 

y(x^) < p(x^ n = 1, 2, ... 

*n+l " *n < *n " *n-l » 

i.e. the inspection intervals are decreasing if h(t) is increasing. 

Similarly {x^ - x^_^} is an increasing sequence if h(t) is 

decreasing. 

Mean residual life policy for the exponential case 

We have seen in section 1.2 that constant mean residual life 

is a property of only the exponential family of densities, and with 

li(t) = a we have from (4.1.1) 

V l - %n -

SO that the inspection intervals are constant, i.e. a MRL policy is a 

periodic policy in this case. 
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4.2 Mean residual life policy illustrated in the Weibull case 

Although MRL policies are simple in conception, the amount 

of computation involved in finding the best MRL policy is comparable 

with that of finding the optimal policy. We will solve the problem 

in the Weibull case as an illustration of this computational difficulty. 

With 

F(t) = exp-l-

r f 
F(u)du = expi- — I" du 

^-u ^l/g 1 du = I r{l/6, (t/a)G} , 

where 

r(a, x) = -u a-1 J 
e u du 

X 

is the incomplete gamma function. Therefore, 

F(u) du 

y(t) = — 

F(t) 

a = exp rU/3, 

So that from (4.1.1) a MRL policy in the Weibull case is given by 

Xo. 
V l - - 6-

rx r rx 
n 

|r|i/3. 
n 

a 
|r|i/3. 

a 

and since 

11 

I (x; - %i_i) 
j=l J J ^ 

this gives 

Xa 

" S 
I exp 

j=l 
ru/e. !izi 

(4.2.1) 

n = 1, 2, (4.2.2) 
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When 3 = 1 , the failure distribution is exponential and (4.2.2) 

reduces to = nXa. For 6 > 1, (4.2.2) cannot be simplified so 

the expected cost for a MRL policy must be found numerically. 

Evaluation of the expected cost 

Ji/iif-uAcA-
Under cost model I, the^penalty cost is proportional to 

E(x^ - T) where 
X. 

E(x^ - T) = ); (x. - t) f(t) dt . 
1=1 J J 

(4.2.3) 

X 
j-1 

Now let be the sum to n terms of the above series and 

let Fj = F(Xj) so that 

X 

n 
n 

L = I X . 
n - i - 'jj 

t f(t) dt 

Rearranging the terms of the finite sum on the right hand side of the 

above equation, and integrating by parts gives 

X 

In K 
n 

- X F + 
n n 

F(t) dt 

0 

(4.2.4) 

using (4.2.1) where 

X 

Y(a, x) = 
-u a-1 J 
e u du 

0 

The error E^ in approximating E(x^ - T) by ^ is 

X . 

I 
j=n+l 

J 

=j-l 

(Xj - t) f(t) dt , 
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now X. - t < X. - X. , for x _ < t < x so that 
J J J-i J-1 J 

' i-li - "i-i' 

X. 
J 

=i-l 

f(t) dt 

and since {xj - Xj is decreasing for 3 > 1 

X. 

\ ' (*n+l - , 
J=n+1 

2* < (=n+l - =n) F(=n) ' 

f(t) dt 

we so we may use (4.2.4) to calculate E(x^ - T) as accurately as 

please, since (x - x ) F(x ) •> 0 as n -> « . 
n+i n n 

We have considered E(x^ - T) rather than E(x^) - E(T) 

since it is difficult to obtain bounds on the error of the truncated 

series of E(x^) . 

For cost model II the^penalty cost is proportional to 

""" 

= ,I ("j - "j-l'ttj-l - Fj) . (4.2.5) 
j-1 

and by summing the series in (4.2.5) to n terms the error is once 

again bounded by (x^^^ - x^) F(x^) provided g > 1. 

For either cost model the expected number of inspections is 

I F(%:) 
i = o : 

and so using (4.2.2) to generate the {x\} and (4.2.4) to calculate 

the penalty cost for model I, or (4.2.5) for model II, we can find the 

expected total cost as a function of X, and use the method of search 

by golden section to minimise this cost with respect to X for values 

of k = c^/acg and g . 
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The values of X which minimise the expected cost are 

given in Tables 7 and 8 for models I and II respectively, for a 

selection of values of k and g. When g = 1, the policy is 

periodic and the tabulated value of X is the same as the value of 

X in Tables 1 and 3. This provides a useful check on the computation. 
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Chapter 5 

Constant Hazard Inspection Policies 

In Chapter 4 we defined a family of inspection policies in 

such a way that the inspection intervals {x^ - are decreasing 

if the system is ageing in the sense that the mean residual life function 

y(t) is decreasing. We now consider a stronger criterion of ageing, 

namely that the hazard rate function h(t) = f(t)/F(t) is increasing, 

and define the constant hazard (x^) family of inspection policies 

which have the property that {x^ - x^_^} is decreasing if h(t) is 

increasing. 

Constant hazard policies are a one parameter family, i.e. for 

a given survivor function F(t), the time at which the nth inspection 

is scheduled (x^) can be written as a function of just one variable, 

p, which turns out to be the conditional probability of failure within 

any inspection interval. The mean number of inspections needed to detect 

the failure also depends on p and is quite simply 1/p. This means 

that the expected total cost depends on p, so that p is chosen to be 

that value which minimises the expected total cost. 

The best 3^ policy is easier to compute than the optimal 

policy, and is highly efficient in that it achieves an expected cost 

which exceeds that of the optimal policy by only a few percent in most 

cases. 

5.1 Definition and general properties 

A constant hazard inspection policy for a density f(t) is a 

sequence of inspection times {x^} satisfying 

H(x^) = ne , n = 1, 2, ... (5.1.1) 

for some 0 > 0 where 
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H(t) = h(u)du 

0 

is called the hazard function (Saunders, 1968). From (5.1.1) we have 

X 

h(t)dt = 6 , n = 1, 2, ... 

X 
n-1 

and we see immediately that if h(t) is increasing (decreasing), then 

the inspection intervals {x^ - x^_^} are decreasing (increasing). 

For the exponential distribution with constant hazard rate, the inspection 

intervals are constant, and the policy is periodic. 

The survivor function F is related to the hazard rate 

function by the equation 

f : 
F(t) = exp- - h(u)du 

^ 0 

and so, using (5.1.1) 

F(x^) = e -n0 

or 

where 

F(x^) = q 

q = e 

The conditional probability of failure during |̂ x̂ _̂ , x j 

(5.1.2) 

given that 

the system was working at time x _ is 
n—i 

F C V - 5 ( V l ' - F(%.) 

1 -

n-1 n 
q - q 

n-1 

= 1 - q = p say 

I.e. P(Xn-l < T < =n I ̂  ^ V l ^ = P. n = 1, 2, . 
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Thus for a given policy the conditional probability of failure during 

any inspection interval is constant, and equal to p, where p = 1 - e~® 

Each inspection time can be written in terms of p using 

(5.1.2) since 

F(x^) = 1 - F(x^) = (1 - p)'̂  

- 1 
SO that if F is the inverse function of F 

= F " ^ { 1 - (1-p)*} n = 1, 2, ... (5.1.4) 

It is more convenient to use p rather than 0 = - £n(l-p) 

to define constant hazard policies for a given distribution, and we will 

denote the sequence 

{F"^[I - ( L - p ) " " ] } 

by Xp(F), or simply Xp if there is no risk of ambiguity. 

From (5.1.4) we see that x increases with p so that the 
n ^ 

number of inspections performed up to time t decreases as p increases 

from 0 to 1. Also lim x^ = <» , and lim x^ = 0 
p->l p-H) 

Inspection cost 

Let N be the number of inspections needed to detect the 

failure. Then 

P(N = n) = P(x^_^ < T $ x^) = F(x^_^) - F(x^) = q"^^ - q^ 

P(N = n) = q" ^ p, n = 1, 2, ... (5.1.5) 

Thus, N has a geometric distribution, and in particular the mean 

number of insepctions is 

0° 1 

E(N) = I nq* p = 1/p . (5.1.6) 
n=l 

The mean inspection cost is therefore — for both cost model I and 
P 
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cost model II. 

Penalty cost 

We now derive expressions for the penalty costs for both 

models in terms of p, and show that a simple relationship exists between 

them. Now 

E ( x « ) = I X P(N = n) , 
n=l 

so that from (5.1.4) and (5.1.5) we get 

= I P F~^(q") . (5.1.7) 
n=l 

The expected time between the detection of failure and the previous 

inspection E(x^ - x^_^) is 

\ \ \ 0°"^ p - q I v i P • 
n-i n=l n=l 

Remembering that Xq = 0, the second term on the right hand side of the 

above equation is just q times the first, so that 

E ("S, - - (1-S) J "n 1 
n-1 

P 
n=l 

- ^N-l) = P • (5.1.8) 

Thus provided E(:^) can be calculated we can find the penalty costs 

for both cost models: 

Cg E(x^) - Cg E(T) for model I, 

and 

CgP E(x^) for model II 

Example; The Exponential Distribution 

We have already seen that like the optimal policy, 3^ policies 

are periodic in the exponential case, and so the best x^ policy 
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coincides with the optimal policy. 

Since the policy is periodic, = nx^ , and 

E(x^) = E(Nx^) = x^ E(N) = — 

from (5.1.6). But from (5.1.1) 

h(t)dt = 0 

^1 

0 

and since h(t) = — 
a 

0 » x^ = - a &n(l-p) 

So that 

E(x^) . - ° . 

For model I the expected total cost is 

E(c) = c^ E(N) + Cg E(x^) - Cg E(T) 

c. ac„ £n(l-p) 

= _ - - ac^ 

which is minimised when 

Equation (5.1.9) can be solved numerically to find p. For model II 

the expected total cost is 

Cl 
E(c) = ac^ £n(l-p) 
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which is minimised when 

p2 1-P 

K ^ / K* . M. 

aC2 
P - - 2 + / — + K where K = — . (5.1.10) 

Table 9 gives the values of p which minimise the expected total 

cost, and the minimum cost for models I and II. 

Mifl-c hnovt (j?' I 4 ̂  "k/xt ^^'1*2-) 

^ urC^V p- I - & 
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5.2 policy in the Weibull case 

We have already seen that for any policy the mean 

inspection cost is c^/p and that the penalty cost is C2{E(x^) - E(T)} 

for model I and c^p E(x^) for model II. We now derive an accurate 

approximation to E(x^) in the Weibull case using the incomplete gamma 

function. This enables us to compute the x^ policy for any 

K = 
ac. 

and 3 ^ 1 . Tables of optimal p and the corresponding expected cost 

are given for both cost models. Given p, the computation of the 

inspection times raises no computational problems. 

The expected time to detection of failure, E(x^^) 

From (5.1.1) 

X 

h(t)dt = - n £n(l-p) , 

0 

and the hazard rate function for the Weibull distribution is 

3 - 1 
h(t) . I 

so that 

X 
n = - n £n(l-p) 

x^ = a{- n &n(l-p)} 1/3 n = 1, 2, (5.2.1) 

(Alternatively we could have found x^ from the equation F(x^) = q ) 
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W 00 

E(^) = I ,"-1 p . I 
n=l n=l 

where 

a t(p, 3) (5.2.2) 

t(P, B ) = ^ q* ^ p (5.2.3) 
n=l 

and 

Let 

6 = - &n(l-p) 

*(p, &) = I n* q* ^ P ; (5.2.4) 
n=l 

for increasing hazard rate distributions B ^ 1 and so we are interested 

in values of £ in the range 0 < & ( 1 . From (5.2.4) we see that 

(j)(p, £) is the £th moment of the geometric distribution with parameter 

p (a fractional). 

Note that cj) is an increasing function of £ and so 

(!>(p, 0) = 1 3 *(p, a) $ *(P, 1) = 1/p , 0 $ p $ 1 . 

We can bound the error in approximating $(p, £) by a finite number of 

terms of the sum (5.2.4) as follows: 

Define E by the equation 
^0 

n^-l 

4^P, &) = I n* q* 1 p + E , 
n=l ^0 

so that E is the absolute error in approximating iJ)(pj £) by the 
0 

first n^-l terms of (5.2.4). Since <{> > 1 for 0 < £ $ 1, the 

relative error will be less than E 
^0 
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Now 

r & n-1 r n-1 
= A n q P 3 1 nq P 

0 n=nQ n=nQ n=n^ 

n 

E„ $ p 
IIQ - ' dq [l-q 

0 

"o + p (5.2.5) 

The right hand side of (5.2.5) tends to zero as n^ tends 

to infinity. Hence for any e > 0 we can calculate <j)(p, £) to an 

absolute error (and hence relative error) of at most e by summing to 

n^-l terms where i1q(p» e) is the smallest integer satisfying 

"o'P- , , q\ 
inQ(p, E) + 3 G . 

Some values of ^^(p, e) are: 

nQ(0.98, lO"^) = 5 

ngfO.TO, lO"^) = 13 

0^(0.02, 10"5) = 911 . 

For values of p much less than p = 0.7, convergence of ^ n^ ^ p 

is slow, and since the optimal p is to be found by search techniques 

the speed of computation is an important factor. However, an 

approximation to ^ n^ q^ ^ p can be found using the Euler-MacLaurin 

summation formula (Abramovitz and Stegun, 1965): 

I g(j) = g(u)du - J g(0) - I 
j=l A n—i 

As the derivatives of q^ ^ p with respect to n do not 

exist at n = 0 for £ < 1, we write $(p, £) as 
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where 

(|)(p, &) = p + p I (1+j)^ 
j=l 

= P + P I (1+j)^ e 
j=l 

6 = - £n(l-p) 

Using Leibnitz's rule for the derivatives of products, and the 

Euler-MacLaurin formula we have 

(5.2.6) 

I (l+j)* e-jS 
j=l 

(1+u)^ e du 
1 
2 

where 

oo B„ 2n-l 
y y 

NIL (2*): jio 

[x] = x(x-l) ... (x-k+1) 

2n-l 

j <-6)^ Wzn-l-j (5.2.7) 

On substituting y = (l+u)8 the integral in (5.2.7) becomes 

. 1+2 
2 ~y J 

y e •' dy 
r(l+£. 6) 

H p , ,) . E . z n M - p f '2. 

q e ' " 

(5.2.8) 

Combining (5.2.6), (5.2.7) and (5.2.8) gives 

(5.2.9) 

The contribution from the infinite series in (5.2.9) is small when 

8 < 1 i.e. - &n(l-p) < 1 

p < 1 
e 

p < 0.63 approximately. 
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By summing n from 1 to 2 in (5.2.9) we can calculate *(p, £) to 

5 significant figures for p in the range 0 < p < 0.63 , and for 

p 5 0.63, (j)(p, £) can be calculated accurately by direct summation. 

Table 10 gives *(p, I) for p = 0.01 (0.01) 1.00, i = 0.0 (0.1) 1.0 . 

Using Table 10, T ( P , G ) can be calculated from (5.2.3) and 

(5.2.4), i.e. 

T(P, B) = { - &N(L-p)}^/B (j)(p, 1 / g ) . (5.2.10) 

Optimal p for models I and II 

The expected total cost is 

E(c) = — + CGOT T(P, e) - CGU r(l + 1/3) (5.2.11) 

for model I, and 

E(c) = — + P T ( P , g) (5.2.12) 

for model II. 

By measuring the costs in units of ac^ in both cases they 

become 

and 

I + T(P, g) - r(L + 1/g) , 

I + p T(P, g) 

respectively, where 

acg 

Using the method of search by golden section we can find that 

value of p which minimises the expected cost in either case for values 

of K and g . For both cost models the inspection times are given by 

(5.2.1); 
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f>»%ioô <vcO'rirsj<>N.ir»fA(>j*-of>co occoooo oc>f-f\JKiunN.coorvmh-o 
^o^o^o^nf\/AJ^^Jro^ooaru^^i«-•«-r-*-v-•--»--«~^ooooooooooooo 

O 
II 

«- 00>^00*-OfNirsJ^rj>£)fViOOv*->t CK >C 'OOfOrSsOi/̂ iAsOrSfSif̂ wK̂ O 
""OUlKlfXiw— 

fNjf>jrvjr\j(>jr>jrsjr>j*—T-«—^«--t--'r-^«r--*--*---ooooooooooooooo 

o 
II 
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{- &n(l-p)}l/B , n = 1, 2, ... 

Tables 11 and 12 give the optimal p for values of K and 

6. The corresponding expected costs (measured in units of aCg) are 

given in Tables 13 and 14. 

-p policies in the Weibull case when c^ and Cg are not known 

We now consider the case when the values of c^ and c^ are 

not known, and an inspection policy has to be chosen by the intuitive 

balancing of the number of inspections performed, and the consequences 

of undetected failure. If the time to failure distribution is known then 

the mean number of inspections and the mean time between the failure and 

its detection (or the mean time between the detection of failure and 

the previous inspection in the case of model II) provide good quantitative 

aids. Both of these functions depend on p. The mean number of 

inspections is quite simply 1/p, and Figure 1 gives a graph of 

^ E ( X ^ - T) = T(P, 3) - r(L + 1/g) , 

which can be used for model I; for model II we would use Figure 2 which 

gives a graph of 

= P T(P. 3) . 

The behaviour of T(P, G) as p tends to zero 

From (5.2.9) and (5.2.10) we have 

1/g 
t(p, b) = | - + ^ r(i + 1/g, e) 

,1/3 V ®2n 
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ror-̂ r-nrô "—<nor-«no 
c o o c J ^ o ^ — ^ f N j c g r O r o 

-r-r-r-f~-r~"Ouajco 

O O O O O C J O O O O O O 

r̂ r-r— • « • • • • • • • # 
O O U O U O O O O v D 

c^cr'mr->of\jiAsr<NJf^ 
~o<'rsj(T*omo»in«-4»o 
r-coo^oO'-«'-ic\jrom 
oooor^r-r-r-r-.r-• • • • • • • • • • 
o o o o o o o o o o 

' - ' O O C ^ C D O O ^ - ' f O 
r - i a ^ s o m o c o r o o t n . - H 
m m o M o o c o o » c * o - ^ 

o o o o o o o o o o 

oco«—im—<vOocAf^fO 

o o o o o o o o o o 

roofsjrvjcorsj'4-.-icom 
o o m m o o m o ^ m o o 
ooc^o—I— 
L n u " \ \ 0 0 \ O s O o o o \ 0 • • • • • • • • • • 

o o o o o o o o o o 
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uiinmin\0>o^o\00\o>o^\00\Oo>ooo^ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

mooom<'^(\jO~mo<'r^o»o~o^oo\omo 
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Figure 1 

EXPECTED TIME BETWEEN FAILURE 

AND ITS DETECTION 

CWEIBULL CASE) 

O'O 

- 8 6 -



Figure 2 

EXPECTED TIME BETWEEN DETECTION OF 

FAILURE AND PREVIOUS INSPECTION 

(WEIBULL CASE) 
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2 
and since 8 = - £n(l-p) = p + ^ + ... 

e 0 and p/e 1 as p 0 . Therefore 

lim T(P, g) = r(i + 1/E, 0) = r(i + i/g) , 
p-K) 

and since 

T(P. 6) . I qO-l ^ _ 
n=l 

this gives us the interesting limit: 

lim^ {- An(l-p)}* I n^(l-p)^ ^ p = r(l+£) (5.2.13) 
p-H) n=l 

0 $ 2 $ 1 . 

Alternatively, note that 

*n - t - V l • 'n 

for 

"n-l < ' S • 

and for 6 ^ 1 h(t) is nondecreasing, which means that 6_ $ 6 

for all n. 

/. - t 3 for < t ( , 

so that 

0 $ E(x^ - T) ( 

r(l + 1/3) $ E(x^) 3 + r(l + 1/g) . 

Now from section 5.1 we saw that 

lim X, = 0 , 
p-K) 

n "1 ^1 

so that 

lim E(x^) = r(l + 1/B) , 
p-X) 

which is the same as (5.2.13). 
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5.3 An inspection rate function for x policies 
~P 

In section 2,4 we saw that when the inspection intervals are 

small it is convenient to describe them by a smooth density *(t) 

satisfying 

X 
n 

$(x^) = (J)(t)dt = n . (5.3.1) 

0 

Even if the inspection intervals are not small this equation 

is still meaningful, and when the inspection sequence {%_} constitutes 

an Xp policy we can find a function (j>(t) satisfying (5.3.1). 

From (5.1.1), x^ policies are given by 

X 
n 

h(t)dt = ne where 0 = - £n(l-p) , 

so that 

n 
h(t) 

dt = n 

and the function 

(5.3.2) 

can be regarded as an inspection rate function. Note that the 

inspection rate function is not unique, for example 

H t ) 
~ *n-l 

• V l ' t 

also satisfies (5.3.1), but 

^ 
has the attraction that *(t) is a smooth (differentiable) function of 

t provided that f(t) is. 
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policies when the inspection cost is low 

In section 2.4 we gave Keller's (1974) approximation to the 

expected total cost for model I when c^ « E(T), i.e. 

E{c(T; <j>)} = 

which is minimised when 

^1 + zTTiy } f(t)dt (5.3.3) 

=2 
= y/ h(t) . (5.3.4) 

Comparing (5.3.4) with (5.3.2) we see that *(t) is 

proportional to /h(t) in the optimal case, and to h(t) in the x 
-P 

case. However if h(t) is not a simple function of t, it can be 

•difficult to compute {x^} in the optimal case using (5.3.1). 

We now consider the loss in using an x^ policy in the case 

« Cg E(T) in place of Keller's optimal policy. 

With 

^ • I j 1" . 

I.e. 

and (5.3.3) becomes 

c^ Jin F(t) CgB F(t)-
E{c(T)} = 

r ;in F(t) CgB F(t)i 

1 e 2f(t) j f(t)dt , 

where 6 - - £n(l-p) is to be determined. 
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E{c(T)} = £n F(t) dF(t) + 
=28 

F(t)dt 

6 2 ' (5.3.5) 

where y = E(T) . 

Differentiating (5.3.5) with respect to 9 and equating to 

zero gives 

02 2 

0 = 
C2y (5.3.6) 

That means that if an Xp policy is used, the minimum expected cost 

for model I is, from (5.3.5) and (5.3.6) 

Cp = /2c^ c^y (5.3.7) 

In this case there is no difficulty in computing {x^} since from 

(5.3.6) 

'2c, * / ""-I 
e = - &n(l-p ) = / 

* -/Zc^/cgW 
p = 1 - e 

and using (5.1.2) 

F(x^) = 1 - (1-p*)* . 

By assumption 

(5.3.8) 

« 1 , 

so that (5.3.8) gives 
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p = 1 - u -
/2c, 

These results are for model I; for model II simply replace by Zc^ 

Table 15 gives some values of p* calculated from (5,3.8) in 

the Weibull case when c^/aCg = 0.01. The corresponding exact values 

(which were calculated in section 5.2) are given for comparison. 

Table 15 

Values of the approximation to p given by (5.3.8) 

in the Weibull case for c^/acg = 0.01. 

The exact values are taken from Tables 11 and 12. 

g 

Model I Model II 

g Approximate Exact Approximate Exact 

1.0 0.1319 0.1290 0.0952 0.0951 

1.5 0.1383 0.1431 0.0999 0.1002 

2.0 0.1395 0.1546 0.1008 0.1016 

2.5 0.1394 0.1653 0.1007 0.1019 

3.0 0.1390 0.1757 0.1004 0.1020 

3.5 0.1385 0.1856 0.1001 0.1019 

4.0 0.1380 0.1953 0.0997 0.1019 

4.5 0.1376 0.2047 0.0994 0.1018 

92 -



The efficiency of x policies when c, << Cr 

When T has a Weibull distribution and c^ « c^^ the minimum 

expected cost can be calculated quite easily, and from (2.4.10) this i IS 

2c c^a 1 "2 
m m 

+ 1 
2$ 2 

Now y - ar(l + 1/3) in this case so that if an x^ policy 

is used the minimum expected cost is, from (5.3.7) 

C = /2c^ ar(l + 1/6) 

A measure of the efficiency of Xp policies is 

E 1 . 

This gives 

E = 
2c^ CgOi 

2g 2] y /y^^ l ^2 1/G) 

E = 

/ gr(i + i/B) 

But r ( l + l /B) = l / g r ( l/6) so that 

(5.3.9) 

E(6) = 
2g 2 

'r 
fll 

1 

(5.3.10) 

for model I. 

Since E(g) is independent of Cg, replacing Cg by 2c2 

leaves E unchanged, thus (5.3.10) holds for both model I and model II. 
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Table 16 

Limiting efficiency of policies for 

models I and II in the Weibull case 

e E(B) 

1.0 1.0000 

1.25 0.9904 

1.5 0.9700 

1.75 0.9457 

2.0 0.9204 

2.5 0.8716 

3.0 0.8273 

3.5 0.7881 

4.0 0.7534 

Table 16 gives the limiting efficiency of policies for 

some values of B in the range 1 ( g $ 4. From the table we see that 

they are fairly efficient, but particularly so when g is near 1. 

The efficiency of x^ policies for general values of c^/acg is discussed 

in Chapter 7. 
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Chapter 6 

Robustness of policies in the Weibull case 

6.1 Robustness of policies; the approach 

Using the results of section 5.2 it is possible to find the 

optimal Xp policy in the Weibull case when the values of the parameters 

a, B, and c^ are known. However, in practical situations some, 

or all of these values will be estimated and therefore subject to error. 

To investigate the robustness of policies we will compare 

the expected total cost achieved by using an 'optimal' x policy 

calculated from estimated parameter values a , 6, c^ and with the 

minimum expected cost due to using the optimal x^ policy calculated 

from the exact parameter values, where one or more of the estimated 

values is in error. 

Model I 

Suppose that a, 3, c^ and C2 are estimated values of 

a, B, and c^ respectively. In section 5.2 we found that the value 

of p giving the optimal x policy depends on K = — ^ and g 

acr 
* * 

Let this value be p = p (K, g). From (5.2.1) the optimal x policy 

is {a (K, B)} where 

^n B) = { - n &n(l-p*)}^/^ 

and the corresponding expected cost from (5.2.11) is 

* * ^1 * 
C = C (a, B, c^, cg) = — + acg t(p , B) - ac^ r(l + 1/B) 

Using the values a, B, and Cg, with K = c^/ac2 the 

estimated optimal x^ policy is {x^} where 
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= a Z Z ( k , g) , 
n 

which from (2.2.1) gives an expected cost of 

X 
n 

C - CCA.B.C^.CG.A.G.C^.CG) = % F(x.) + I 
j=0 J ^ n=l 

(x^ - t) f(t)dt 

X 
n—1 

(6 .1 .1 ) 

• '1 J o "'"j' * '2 X 

acg r ( l + 1/g) 

where 

F(t) = expj-{-(f} • 

The difference in these costs as a proportion of c" IS 

4 = 
c - c 

(6 .1 .2 ) 

so that 

_ /\ 00 , 

^ " j o ^ J i « • " -
- T ( p * , G ) 

^ + T(p*, 6) - r ( i + i/B) 
p 

on dividing numerator and denominator by ac^ . 

Now 

F(x^) = 1 - exp-j-

so that depends on ^ , g, g, K, K . Since A depends on a 

only through the ratio ^ , A is independent of a when — 

IS given. 
so that in this case we can perform all calculations with a = 1, and 

tabulate A^ as a function of K and 3 for values of 
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• f • 'b " f • \ " f 

Model II 

The analysis for model II is similar to that of model I and 

is not given here to avoid repetition. It turns out that in this case 

with 

x 
n 

c = i f(x.) + c I 
j=0 J ^ n=l J 

(x^ - f(t)dt (6.1.3) 

*n-l 

and 

C = — + acg p t(p , B) 

P 

^ J o ^ " p*T(p*.e) 

4 i - ^ K * , * , 
— + P t(p , b) 
P 

so that again, can be regarded as a function of B, 6^, 6 , 6^ . 
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6.2 Robustness of policies: theory 

The computation of A for model I and model II is tedious 

since C must be calculated by summing the series in (6.1.1) and (6.1.3), 

and to do this accurately using a digital computer we need first to bound 

the errors incurred by summing only a finite number of terms of these 

series. However, in the special case when only K and ct are in error, 

a simpler method for calculating C is available. 

For the remainder of this section, let 

* * , 

p = p (K, e) , 

* 1 * 
q = 1 - p 
* * * * 
p = p (K, B) , 

q = 1 - p . 

Special case B = g 

l1/3 
Using (5.2.1), - ot{- n£nq} and with F(t) = exp ft 

we have 

F(x^) = exp 

a[- n £n q] 

expin 
a 

£n q}- when g = 

f<i„) - . 

y ^ p 
Writing q for q and letting p = 1 - q we have 

F(x^) = (1 - p)" , 

so that from (5.1.2) we see that {x^} is an x^ policy for F(t) with 

p = p . 
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For model I, we have from (5.2.11) that 

C = — + AC_ T(P, 3) - ac„ r(l + 1/g) , 

P 

and with 

* * 

C * + ac^ T(P , g) - ac^ r(l + 1/G) 

P 

A 

* r " ̂  + t(p, 3) - t(p*, b) 
= C - C ^ p p_ 

I * K * 
c -* + T(p , g) - r(i + i/B) 

p 

similarly for model II 

k k ~,~ , * * 
r — * + PT(P, 3) - p t(P , e) 

_ p p 

II K _ + p*T(p*, g) 

p 

Since p depends on ^ , K and g (= g in this case), both and 
u x 

depend only on K, K, g and , in accordance with the argument 

given at the end of the previous section. 

General case g =j= g 

For model I we will consider the terms in (6.1.1) separately. 

First the expected number of inspections, which is 

X 
n 

% f(;^) - % 
j=0 n=l 

n f(t)dt . (6.2.1) 

Let be the error in approximating the infinite sum on the right hand 

side of (6.2.1) by the first k terms. Then 
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n 

• I , 
n=k+l 

X 

n f(t)dt 

n-1 

Now {x^} is an x policy for the distribution 

F(t) = 1 - expj- Y } , 

^ a ' 

with p = p . Therefore, using (5.1.1) and (5.1.2) and the fact that 

H(t) is increasing, this gives 

- &n q 

for X T < t < 
n-1 n 

so that 

X 
n 

\ < I 
n=k+l 

+ (t/o) 

- q 
f(t)dt 

X 
n-1 

\ < 
- £n q 

r \ 6 
£ 
a 

a 

5-1 

exp\ - dt + f(t)dt 

X, 

\ < 
- £n q 

B » • 

' / 
r ^ g 

a 
B 

_t ' / t| ̂  1 J 
a 

exps -
J a J V 

a I * 

X, 

\ < 
- &n q 

/ g 
a 

g 

a 
z e ^ dz + F(x^) 

(%%/«) 

e 
r(l + B/g, (j^/a)^) + expj- (x^/a)^j . (6.2.2) 

- Jin q 

Where r(v, x) is the incomplete gamma function. 
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since the right hand side of (6.2.2) tends to zero as k tends to 

infinity, for any e > 0 we can calculate 

j=0 J 

to an error of at most e by summing to k terms, where k(e) is such 

that the right hand side of (6.2.2) is less than or equal to e . 

The second term in (6.1.1) can be dealt with in a similar 

manner as follows: 

X 
n 

X 
n 

I 
n=l 

(x^ - t) f(t)dt = I 

n=l 

x ^ f(t)dt - r(l + 1/B) , 

X 
h - 1 

X 
h-1 (6.2.3) 

so that if is the error in summing the series on the right hand 

side of (6.2.4) to k terms, 

X 
n 

- I 
n=k+l 

f(t)dt 

X 
h-1 

For increasing failure rate distributions {x - x ^} is 
n n—i 

decreasing, so that if § > 1, $ nx^ and 

X 
n 

n i l 

n f(t)dt 

X 
n-1 

This implies that if 

I 2^^^) 
j=0 ^ 

is determined to within E by summing the right hand side of (6.2.1) 

to k(e) terms, then 
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X 
n 

I 
n=l 

(x^ - t) f(t)dt 

*n-l 

will be determined to within x e . Using this fact we see from 

(6.1.1), (6.2.1) and (6.2.3) that by summing both series to k(e) terms, 

we incur an absolute error of at most E + Cg G = (c^ + c^ x^)e 

in C . Now since 

i f(xo > 1 , 
j=0 J 

C > c^ , so that the relative error e in C is such that 

(c^ + c^ x^)g (c^ + cg x^)e 
E < 

(=1 
(6.2.4) 

Therefore if we wish to calculate C to within e', say, we can take 

^1 
E = 

c^ + cg x^ 

since from (6.2.4) this gives e < e' . For cost model II, comparing 

(6.1.1) with (6.1.3) we see that an identical analysis follows, since 

the first term in both expressions for C is the same, and in (6.1.3) 

" xn-l ^ n = 1, 2 
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6.3 Robustness of x policies; results 
ip 

In section 6.2 it was shown that for both cost models A, 

the percentage change in the expected cost, can be written as a function 

of the five variables K, g, 5 , 5 , 5 , where 6 = a/a, 6. = g/g, 
CX p jx ot p 

<5̂  = K/K. Ideally, A should be small whenever the 6's are in the 

neighbourhood of unity i.e. small errors in the parameter values should 

cause small increases in the expected cost. 

In the sensitivity analysis presented here we will consider 

errors of ± 10 per cent in the parameters a, g and K, i.e. 6^, 6 

and 6 will be given the values 0.9, 1.0 and 1.1. The tables of 

A for the 27 combinations of these 6 values are presented in Tables 

17 to 43 for model I, and in Tables 44 to 70 for model II. 

Model I 

A surprising feature of the tables is that some A values are 

negative, indicating that an erroneous parameter value can sometimes 

reduce the expected cost by a small amount. This can only happen when 

g f g since we have seen in section 6.2 that the inspection policy 

calculated from the values a, g and K is itself an x^ policy, and 

can therefore offer no improvement over the 'best' x^ policy. 

Perturbing g however, takes us outside the class of x^ policies, so 

that a reduction in the expected cost is then possible. 

Tables 17 to 43 may briefly be summarized as follows: 

(i) none of the tabulated values exceed 20 per cent, 

indicating a fair degree of robustness. 

(ii) the smaller values of A occur when a = a, i.e. 

when there is no error in a . 

(iii) in nearly every case a positive error in g yields a 

larger A value than a negative error in g (all other 

variables fixed). 
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We may conclude from these observations that in practical situations it 

is advisable to estimate a as accurately as possible; if there is any 

doubt about the value of g it is safer to underestimate than to 

overestimate. 

Model II 

Tables 44 to 70 show that the robustness characteristics 

of model I are also evident in model II, i.e. model II is mostly 

sensitive to a and positive errors in g. In some of the cases 

considered A approaches 30 percent, in contrast to model I where no 

value exceeded 20 percent. Thus, policies are less robust in 

the model II case. 

The combination K = 0.01, a = a, g = 0.9g (Tables 53, 54 

and 55) yields some A values in the region of minus 10 per cent, which 

means that policies exist which achieve an expected cost at most 90 per 

cent of that corresponding to the 'best' x^ policy, suggesting that 

Xp policies are possibly not highly efficient for small K with 

model II. 

The sensitivity analysis presented above is only a partial 

analysis, since only errors of 10 per cent have been considered. 

For a more complete study, other failure distributions, and combinations 

of other 6 values should be examined. However, because of the amount 

of computation that this leads to, such an analysis is only practical 

in special cases. The attempt here has been to give an overall picture 

in the limited space available. 

- 1 1 0 -



Chapter 7 

Comparison of Periodic, Mean Residual Life, 

and Xp Inspection Policies 

7.1 Discussion of Efficiency 

In the previous chapters three families of suboptimal 

inspection policies have been considered and in each instance a method 

has been given for computing the best policy in the Weibull case. 

In this section a comparison is made of these three families of policies. 

The obvious yardstick by which to judge a suboptimal policy is 

the optimal policy: a natural measure of efficiency being the ratio 

of the expected costs due to each. Since in every case the method for 

finding the best suboptimal policy consists of minimising the expected 

cost numerically, calculating the best policy simultaneously determines 

the corresponding expected cost. However, the algorithms described in 

Chapter 2 for computing the optimal policy do not enable us to evaluate 

the minimum expected cost associated with it. 

Now the expected cost for models I and II can be written as 

\ H F j - l + "=2 " j I'j-l - "j - E(T) 

and 

1 F I " " J - I ' H - I - ' J ) } 

respectively, where Fj = F(Xj). Note that the terms in the above series 

are never negative, so that by computing the first n inspection times 

of the optimal policy, x^, ..., x^ , and summing the series to n terms, 

a lower bound on the minimum expected cost can be obtained. This lower 
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bound can be made as sharp as we please by taking n to be sufficiently 

large. The results presented in this Chapter were obtained by taking 

n to be the smallest integer satisfying 

F(x^) < 10-10 . 

Tablffi 71 and 72 give the expected costs incurred in the 

Weibull case by the best periodic, mean residual life and policies 

as well as the minimum expected cost for models I and II respectively. 

The efficiencies can be calculated from these tables and are given 

in Tables 73 and 74. From Tables 73 and 74 it is clear that none of 

the three families of policies could be described as inefficient in the 

Weibull case for the values of K and 3 considered. For model I 

there is little to choose between the mean residual life and x policies 
-P 

both of which are superior to the periodic policy, especially when K 

is small and g % 2. For model II however the mean residual life 

policy is clearly the best of the three, the x^ policy offering little 

improvement over the periodic policy particularly when K is small. 

The mean residual life and periodic policies are generally more efficient 

for model II than model I, whereas for the x^ policy this is not the 

case. 

It is important to remember that efficiency is not the only 

criterion to be taken into account when the choice of an inspection 

policy is made: a good policy should also be simple to compute and 

practical to use (although it is at least arguable that with the current 

availability of high speed computers, the ease of computation is not of 

great importance). 

Of the policies considered the x^ is the simplest to 

compute, since the expression for the mean number of inspections takes 

on a particularly simple form; the periodic policy also poses no real 

problems, in contrast to the mean residual life policy which (in the 
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Table 71 

Expected costs (measured in units of acg) due to 

periodic, mean residual life, and optimal inspection 

policies in the Weibull case; model I 

K 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

0.01 

0.05 

0 .1 

0.5 

1.0 

5.0 

0.1482 0.1396 0.1381 0.1382 0.1386 0.1391 0.1396 

0.1482 0.1349 0.1265 0.1199 0.1144 0.1097 0.1055 

0.1482 0.1360 0.1282 0.1216 0.1158 0.1106 0.1059 

0.1482 0.1342 0.1246 0.1169 0.1105 0.1050 0.1003 

0.3504 0.3269 0.3227 0.3227 0.3238 0.3249 0.3261 

0.3504 0.3145 0.2905 0.2716 0.2557 0.2422 0.2305 

0.3504 0.3163 0.2937 0.2754 0.2600 0.2467 0.2352 

0.3504 0,3138 0.2891 0.2699 0.2542 0.2409 0.2296 

0.5162 0.4787 0.4710 0.4707 0.4723 0.4741 0.4757 

0.5162 0.4603 0.4228 0.3939 0.3706 0.3514 0.3353 

0.5162 0.4625 0.4268 0.3987 0.3755 0.3558 0.3390 

0.5162 0.4599 0.4223 0.3934 0.3701 0.3508 0.3343 

1.3577 1.2362 1.1914 1.1628 1.1051 1.0462 0.9949 

1.3577 1.2018 1.1048 1.0355 0.9822 0.9392 0.9035 

1.3577 1.2029 1.1037 1.0308 0.9743 0.9289 0.8917 

1.3577 1.2007 1.1006 1.0278 0.9716 0.9267 0.8899 

2.1462 1.9429 1.8397 1.7455 1.6577 1.5846 1.5250 

2.1462 1.9066 1.7628 1.6623 1.5861 1.5259 1.4768 

2.1462 1.9052 1.7560 1.6507 1.5718 1.5102 1.4608 

2.1462 1.9034 1.7539 1.6489 1.5703 1.5090 1.4599 

7.0907 6.5043 6.1789 5.9640 5.8141 5.7044 5.6209 

7.0907 6.4849 6.1595 5.9524 5.8083 5.7023 5.6211 

7.0907 6.4768 6.1443 5.9347 5.7906 5.6854 5.6053 

7.0907 6.4762 6.1437 5.9343 5.7903 5.6852 5.6051 

per 

mrl 

X 
-P 
opt 

per 

mrl 

X 
-P 
opt 

per 

mrl 

X 
-P 
opt 

per 

mrl 

X 
-P 
opt 

per 

mrl 

-P 
opt 

per 

mrl 

-P 
opt 
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Table 72 

Expected costs (measured in units of acg) due to 

periodic, mean residual life, and optimal inspection 

policies in the Weibull case; model II 

K ^ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

0. 01 0.2051 0.1950 0.1933 0.1934 0.1940 0.1947 0.1954 per 

0.2051 0.1901 0.1804 0.1727 0.1661 0.1604 0.1553 mrl 

0.2051 0.1948 0.1927 0.1924 0.1927 0.1931 0.1936 
-P 

0.2051 0.1897 0.1794 0.1711 0.1640 0.1577 0.1523 tr 
opt 

0. 05 0.4731 0.4500 0.4460 0.4462 0.4476 0.4492 0.4508 per 

0.4731 0.4394 0.4183 0.4019 0.3881 0.3762 0.3657 mrl 

0.4731 0.4486 0.4423 0.4404 0.4399 0.4399 0.4401 
-P 

0.4731 0.4390 0.4176 0.4008 0.3867 0.3745 0.3637 opt 

0. 1 0.6851 0.6513 0.6454 0.6457 0.6476 0.6499 0.6521 per 

0.6851 0.6370 0.6089 0.5881 0.5712 0.5570 0.5447 mrl 

0.6851 0.6483 0.6374 0.6332 0.6313 0.6303 0.6299 X 
—T> 

0.6851 0.6366 0.6075 0.5855 0.5674 0.5518 0.5380 
Jr 

opt 

0. 5 1.6931 1.6013 1.5813 1.5804 1.5853 1.5914 1.5969 per 

1.6931 1.5784 1.5277 1.5009 1.4852 1.4753 1.4686 mrl 

1.6931 1.5870 1.5429 1.5181 1.5018 1.4903 1.4816 X 
—n 

1.6931 1.5741 1.5133 1.4740 1.4455 1.4231 1.4047 
r 

opt 

1. 0 2.5805 2.4272 2.3828 2.3711 2.3638 2.3456 2.3235 per 

2.5805 2.4020 2.3244 2.2823 2.2556 2.2365 2.2217 mrl 

2.5805 2.4041 2.3213 2.2708 2.2358 2.2099 2.1897 X 
—t) 

2.5805 2.3941 2.3016 2.2452 2.2069 2.1791 2.1579 opt 

5. 0 7.7789 7.2509 6.9774 6.7962 6.6691 6.5762 6.5057 per 

7.7789 7.2333 6.9573 6.7838 6.6633 6.5746 6.5067 mrl 

7.7789 7.2228 6.9368 6.7597 6.6390 6.5515 6.4852 
-P 

7.7789 7.2206 6.9349 6.7583 6.6381 6.5508 6.4848 opt 
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Table 73 

Efficiency of periodic, mean residual life and 

policies in the Weibull case; model I 

K B 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

0.01 100.0 96.13 90.22 84.59 79.73 75.49 71.85 per 

100.0 99.48 98.50 97.50 96.59 95.72 95.07 mrl 

100.0 98.68 97.19 96.13 95.42 94.94 94.71 X 
-P 

0.05 100.0 95.99 89.59 83.64 78.51 74.15 70.41 per 

100.0 99.78 99.52 99.37 99.41 99.46 99.61 mrl 

100.0 99.21 98.43 98.00 97.77 97.65 97.62 X 
-P 

0.1 100.0 96.07 89.66 83.58 78.36 73.99 70.28 per 

100.0 99.91 99.88 99.87 99.87 99.83 99.70 mrl 

100.0 99.44 98.95 98.67 98.56 98.59 98.61 X 
-P 

0.5 100.0 97.13 92.38 88.39 87.92 88.58 89.45 per 

100.0 99.91 99.62 99.26 98.92 98.67 98.49 mrl 

100.0 99.82 99.72 99.71 99.72 99.76 99.80 X 
-P 

1.0 100.0 97.97 95.34 94.47 94.73 95.23 95.73 per 

100.0 99.83 99.50 99.19 99.00 98.89 98.86 mrl 

100.0 99.91 99.88 99.89 99.90 99.92 99.94 X 
-P 

5.0 100.0 99.57 99.43 99.50 99.59 99.66 99.72 per 

100.0 99.87 99.74 99.70 99.69 99.70 99.72 mrl 

100.0 99.99 99.99 99.99 99.99 100.0 100.0 X 
-P 
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Table 74 

Efficiency of periodic, mean residual life and x 
-p 

policies in the Weibull case; model II 

K e 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

0.01 100.0 97.28 92.81 88.47 84.54 81.00 77.94 per 

100.0 99.79 99.45 99.07 98.74 98.32 98.07 mrl 

100.0 97.38 93.10 88.93 85.11 81.67 78.67 X 
-P 

0.05 100.0 97.56 93.63 89.83 86.39 83.37 80.68 per 

100.0 99.91 99.83 99.73 99.64 99.55 99.45 mrl 

100.0 97.86 94.42 91.01 87.91 85.13 82.64 X 
-P 

0.1 100.0 97.74 94.13 90.68 87.62 84.91 82.50 per 

100.0 99.94 99.77 99.56 99.33 99.07 98,77 mrl 

100.0 98.20 95.31 92.47 89.88 87.55 85.41 X 
-P 

0.5 100.0 98.30 95.70 93.27 91.18 89.42 87.96 per 

100.0 99.73 99.06 98.21 97.33 96.46 95.65 mrl 

100.0 99.19 98.08 97.10 96.25 95.49 94.81 X 
-P 

1.0 100.0 98.64 96.59 94.69 93.36 92.90 92.87 per 

100.0 99.67 99.02 98.37 97.84 97.43 97.13 mrl 

100.0 99.58 99.15 98.87 98.71 98.61 98.55 X 
-P 

5.0 100.0 99.58 99.39 99.44 99.54 99.61 99.68 per 

100.0 99.82 99.68 99.62 99.62 99.64 99.66 mrl 

100.0 99.97 99.97 99.98 99.99 99.99 99.99 
-P 
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Weibull case at least) is somewhat intractable. 

When it comes to implementation, no policy could be simpler 

than the periodic policy, since in practice the inspection intervals 

would be rounded off to the nearest convenient number of time units. 

In the periodic case where the inspection intervals are all the same, 

this rounding off only has to be done once. 

Taking the above considerations and the results of Chapter 6 

into account, we may conclude that policies are probably the 

most attractive of the nonperiodic policies considered, since they are 

robust, efficient, and easy to compute. 
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7.2 Further developments 

The preceding chapters of this thesis have been devoted to 

a problem which comes under the general heading of Inspection Problems. 

The results in these chapters could be extended to cover a wider class 

of problems, for example one could consider the case when the true state 

of the system is not revealed exactly by inspection. This type of 

problem is likely to arise in the medical field where tests can sometimes 

result in "false positives" or "false negatives". Put in general terms 

we might observe a random variable X whose probability distribution 

depended in some way on the state of the system, the problem we have 

considered being the special case when X reveals the true state of 

the system with probability 1. 

Yet another class of problems arises if we contemplate systems 

which can be in more than two states. As a simple case we would consider 

systems having the two states and representing normal working 

and failure respectively, and in addition a third state E^ representing 

some intermediate form of failure. In these multistate problems one 

can predict difficulties in finding a reasonable model for the times 

between transition from state to state. 

The models that have been considered in this thesis are in 

some sense crude and it would be naive to suggest that they apply 

directly to a large number of live problems. However, they have 

succeeded in showing that computing optimal inspection policies is no 

simple matter, and by considering suboptimal policies the calculations 

can be made much easier. It is likely that suboptimal policies, 

particularly the x^ policy with its attractive Markov property, will 

be valuable tools in solving inspection problems associated with more 

elaborate models. 
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