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ABSTRACT
FACULTY OF SCIENCE
MATHEMATICS

Doctor of Philosophy

INSPECTION POLICIES FOR THE DETECTION OF SYSTEM FAILURE

by Alan Gordon Munford

This thesis is concerned with the problem of deciding when to inspect
a system in order to detect a failure that would not otherwise be
apparent.

The first chapter includes a review of some of the inspection models
that have appeared in the literature. A new linear cost model is then
proposed, and the chapter ends with a discussion of optimality criteria.

The second chapter is devoted entirely to 'optimal' inspection policies,
i.e. those which minimise a certain cost function. The necessary theory
is developed to deal with the new cost model proposed in Chapter 1.

Some computational problems that arise in connection with the optimal
policies motivate a study of suboptimal policies, and Chapter 3 is
concerned with an investigation into the properties of periodic (regular)
inspection policies. Chapters 4 and 5 introduce two heuristic inspection
policies which are constructed so that the times between inspections are
influenced by the mean residual life function in one case, and the hazard
rate function in the other. This latter policy (designated §p) has
some attractive properties, and tables are given for computing the best
§p policy in the Weibull case. A sensitivity analysis of gp policies
is carried out in Chapter 6.

In the last chapter some tables of expected cost in the Weibull case
are presented for the 3 suboptimal policies. A comparison with the
optimal policy reveals that the suboptimal policies are highly efficient

in many cases.
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Chapter 1

1.1 Introduction

A system may be regarded as a collection of items working
together as a unit to perform some defined function. A feature of
many systems is that their ability to perform this function varies
with time; some systems improve with age, but many do not and their
performance worsens as they get older. This deterioration in
performance may be caused by external factors such as accidental
damage, or it may be due to an intrinsic ageing process.

The performance of a system may deteriorate gradually, as
in the case of a continuous production process running in time, where
some output parameter such as mean length may shift gradually from its
target value. On the other hand, the change in performance may be
abrupt, and sometimes the system can suddenly cease to perform at all.
We will be concerned with systems of the latter type and assume that
originally the system is working, but at some later time it may suddenly
fail. It will be convenient to label the working and failed states
as Ej and E, respectively. In some cases (an electric light bulb,
for example) it will be obvious when the failure has occurred.

In other cases, however, the failure can only be detected by an
inspection (e.g. a safety valve) and it is this type of system that we
shall consider in this thesis.

There is usually some loss incurred each time a system is
inspected. This can be a cost, or it may be that the system cannot
operate while it is being inspected, as in the case of a computer when
a test run is made. In general there will be a cost of some kind
associated with each inspection, so we would not wish to inspect too

often. On the other hand infrequent inspections could lead to the
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system remaining in the failed state E1 for an undesirably long
period of time. Thus we wish to achieve a balance between the cost

of inspection and the possible consequences of an undetected failure.



1.2 Some models for the inspection problem

Throughout this thesis we consider a system which is
originally known to be in a working state, but which may suddenly fail.
In other words at t = O we assume that the system is in state EO’
but at some later time t = T the state of the system will change from
E0 to El' We will also assume that:

(1) The state of the system is revealed only by inspection.
(ii) 1Inspection has no harmful effect on the system.
(iii) Inspection always reveals the true state of the system,

(iv) The duration of each inspection is negligible so that

the system cannot fail while it is being inspected

) Once in state E1 the system remains there until it

is repaired or replaced.

A time to failure model

If T, the time to failure is known in advance, no inspection
problem exists for in this case we could merely leave the system running
until time T, and then take the necessary corrective action of repairing
or replacing it. We take the uncertainty about T into account by

supposing that T 1is a (continuous) random variable with probability

Aichn buh

b
density function (p.d.f.) f£(t), t 2 0, cumulative éeaei&y-?unction (c.d.f.)
t
F(t) =P(T g t) = I f(u)du, and reliability function
0
F(t) = P(T > t) =

I f(u)du .
t

The probability that a working system, aged t, will fail in
the interval (t, t + dt) is

F(t + dt) — F(t) - £(t)dt
1 - F(t) f(t) *
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The function

is called the failure rate or hazard rate function, and its integral
t
H(t) = j h(u)du = - fn F(t) (1.2.1)
0

is called the hazard function (Saunders, 1968). Note that (1.2.1)
implies

F(t) = exp[- H(t)] |, (1.2.2)

differentiation gives

£(t) = h(t) exp[- H(t)] . (1.2.3)

Typically, inspection problems arise in connection with
systems which are ageing in some statistical sense. Bryson and Siddiqui
(1969) propose seven interrelated criteria for ageing systems, one of
which is that h(t) is increasing. A somewhat weaker, but intuitively
appealing condition is that the mean residual life of a working system
u(t) = E(T - t|T > t) 1is decreasing with t. By considering the

conditional p.d.f. of T given T > t we see that

fuf(u)du f F(u)du
t

p(e) = 52— b (1.2.4)
F(t) F(t)

u(t) 1is particularly useful in empirical studies since it can be

estimated from sample data by

R _1nt) _
u(t) = EZET jél (tj t)

where t. is the time to failure of the jth element in the surviving
population of n(t) survivors at time t.
The hazard rate function h(t) 1is difficult to study

empirically, since it involves all the problems of estimating f(t) (Watson
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and Leadbetter, 1964a, 1964b), but the hazard rate average

H(t) _ _ n F(t)
t t

can easily be estimated by

A density for which

f(t)
F(t + a) - F(t)

is increasing in t for all a > 0 1is said to be a Polya frequency

function of order 2(PF (Karlin, Proschan and Barlow, 1961).

2)
Letting a tend to infinity we see that PF2 densities have increasing

hazard rate. An equivalent definitionm of a PF2 density is that

Eé%;%—él is increasing in t for all a >0 .

Typical failure laws

The exponential distribution F(t) = exp(- t/a); t 320, a >0
has the property that both the hazard rate and mean residual life are
constant. In fact no other distribution has either of these properties.

Further, for all ty 2 0

P(T >t + t |T>t¢t =P(T >t) ,

olT > o)

so that the exponential distribution is invariant to left truncation,
and systems which have this failure law therefore do not ‘'age'.
Epstein‘(1958) has been largely responsible for most of the work done
on the exponential distribution as a failure law, and has published a
stream of papers on the problems of estimating o and the associated
problems of testing hypotheses. If system failure is due to
accidental damage which is likely to occur at random in time, then the
exponential distribution would seem to be a reasonable model, but this

would not be the case if the system 'aged' in any sense. A result due
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to Drenick (1960) explains why the exponential law may be used to
describe the time between failures of a certain class of systems.
If
(1) a system has n statistically independent
components
(ii) component failure causes system failure
(iii) each component is repaired or replaced immediately
upon failure
then after the system has been running for a long time, for large n
the timesbetween system failures are exponentially distributed (subject
to some mild conditions on the components' failure distributions).
This result explains why the stationary distribution of time between
failures of a piece of complex equipment such as a computer can be
approximately described by the exponential failure law. Zelen and
Dannemiller (1961) have shown that life testing procedures derived from
the exponential distribution are not, in genmeral, robust.
Assuming a simple power law for the hazard rate function h(t)

leads to the Weibull distribution (Weibull, 1951)

- &) B
F(t) eXP[‘ [E] ] H t20, a,B8>0 ,

for which

E(T)

g-1
al (1 + -é-) and h(t) = %[5] )

Thus the Weibull distribution has an increasing (decreasing) hazard rate
if B>1 (B <1). The Weibull distribution has found applications

in a variety of fields, for example Kao (1956, 1958) has found that the
time to failure of a certain type of electron tube is best described by
a Weibull distribution with B8 = 1.7. With B8 = 3.4 the Weibull
distribution is very nearly normal. A considerable interest has been
shown in the Weibull distribution in recent years, and the literature

is reviewed in Johnson and Kotz (1970) and Mann, Schafer and Singpurwalla
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(1974) . Particular attention is given to the Weibull distribution
in this thesis because of its wide range of application and the nature
of the failure rate function.

The gamma family of distributions has p.d.f.

B-1
f(t)=%[§] %ﬂﬂ t>0; a,B8>0

with increasing (decreasing) hazard rate tending to % for B>1 (B <1).
For general B, F(t) is given by

r(g, t/o)

F(£) = =55

where TI'(v, x) = J vy e dy
X
is the incomplete gamma function (see, for example Abramovitz and
Stegun, 1965). However, for integral B, the distribution is of the
special Erlangian fofm, and it can be shown that
_ B=1 ] _
F(t) = ) Eﬂ 9§£$7-£121
j=0 1
The mean and variance are of and o28 respectively, and the
standardised variate

T - oB
avB

is asymptotically N(0, 1) as B » =, However for practical purposes

we would use the result due to Fisher (1922) that
2/%-/43—1

is asymptotically N(O, 1). When B8 = 1, both the Weibull and Gamma
distributions reduce to the exponential distribution.

) Davis (1952) suggested that under certain conditions a normal dichbut
ot hames b
theery—ef failure seems to fit sample data fairly well. However histograms

of failure data are often highly skewed, indicating that this is not

always the case. With p.d.f.

f(t) =

exp{— L (t - u)z} —e<u<®, g>0

ovV2n 202
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we have

f(t - a) _ a _ . _a
~F - eXP{"'z- (t-u -2—)}

o

which is increasing in t for a > 0 and so normal densities are PF2
and hence have increasing failure rate. The normal distribution is only
meaningful as a failure law if the coefficient of variation % is
sufficiently small to ensure near zero probability of negative life.

If 4n T 1is normally distributed with mean u and variance

02 then T 1is said to have a lognormal distribution (Finney, 1941) and

- 2
tav2r 202

The distribution function F(t) is given by

_ n t -y
F(t) = @{————0 }
where
< -9
2
o (x) = J = — du .
V2n

The lognormal distribution finds applications in the biological sciences
and manpower studies, but recent opinion is that it is not a good
candidate for the time to failure model (Freudenthal, 1960 and Saunders,
1968). The reason for this is that for all (u, 02), h(t) increases
from zero to a maximum, and then decreases as t tends to infinity.
Watson and Wells (1961) have exploited this fact and shown that the
expected life of items governed by such a law can be increased by using
them under normal conditions to eliminate the early failures; the
surviving fraction will then have a greater mean residual life than the
original batch., A detailed account of the lognormal distribution is

given by Aitchison and Brown (1957).



Inspection cost models

Having proposed a model for T, the time to failure, a
reasonable approach is to define a cost or loss function which depends
on the time to system failure, and the times at which inspections are
made; for a given cost function we can then propose a criterion of
optimality to determine when the inspections should best be scheduled.
This criterion may or may not assume full knowledge about the random

variable T.

Definition. An inspection policy x = {Xl’ Xy, ...} is a sequence of
times at which the system is to be inspected. Inspection ceases as

soon as the failure (state El) is detected. Associated with any given
policy x 1is the sequence of inter inspection times

{Gi =X, "X ¢ i=1, 2, ...} where x, 1s defined to be zero.

1 1
Clearly 61 > 0.

0

An early approach was due to Savage (1956) who proposed the

so—~called preparedness model

n
1ot .Z G(Gi) + H(t - xn)

i=1

where t 1is the time to failure, n 1is such that X St <R g, ¢y

is the cost of each inspection, and G and H are increasing functions
satisfying G(0) = H(0) = 0. The three components of this model are
therefore the cost of performing each inspection, a cost depending on

the times between inspections before the failure occurs, and a cost
depending on the time elapsed between the last inspection and the failure.
Savage proposed this model for the problem of inspecting standby
equipment such as fire fighting apparatus, which is somewhat different
from the problem considered in this thesis in that the 'failure' at

time t represents some emergency (e.g. a fire) rather than the failure

of the equipment itself. Hence in this model the 'failure' is apparent
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as soon as it happens, and the penalty cost H(t - xn) is a function
of the time between the 'failure' and the previous inspection, which
was the time when the equipment was last known to be working properly.
Savage assumed that the time to failure had an exponential distribution
and considered the two cases G(x) = 0, H(x) = Ax and
G(x) = H(x) = 1 - exp(- Ax). He then found the policy which minimised
the expected total cost per failure.

Barlow and Hunter (1960) proposed a model in which each
inspection costs Cys and the penalty due to leaving the system in a

failed state is ¢, per unit time. This gives

c(t; x) = c, n+ c2(xn - t) (1.2.5)

where now n 1is such that X 4 <t g X 5 SO that the penalty cost
is a function of the elapsed time between the failure and the next
inspection (c.f. Savage). This model might be appropriate for the
inspection of systems such as early warning systems, since the penalty
cost c2(xn - t) takes account of the vulnerable period of time x -t
during which the system would be inoperative.

If the failure of a piece of emergency standby equipment (such
as fire fighting apparatus) occurred at time t, and was detected at
time X s then a real cost would only be incurred if an emergency
actually happened in the interval (t, xn). If the cost incurred when

an emergency happens and no equipment is available is ¢ then the

0’
expected penalty cost upon failure of equipment would be

o P {emergency during (t, xn)}. Assuming that emergencies occur at

random every A time units on average, then this becomes
(x, - t)

o 1 - exp|- —F .

However, for effective inspection, the intervals {xn - xn—l} would

usually be small compared with A so that



and

L - _ (xn - t) ) (xn - t)
1 e iy e A ey w

which gives us cost model (1.2.5) with c, = ;9 .
In the case of a continuous production process producing

items at a constant rate, the penalty cost incurred would largely be

due to the cost of scrapping or reworking the defective items produced

in the interval (t, xn). However, in general the actual time of

failure would not necessarily be known, so that all items produced since

the process was last known to be working properly, that is those produced

during the interval (xn-l’ xn) would have to be reworked or scrapped.

We therefore propose a new cost model

T

c(t; ) =c;mn+cy(x -x ;) . (1.2.6)

In the subsequent chapters of this thesis we will consider only the
cost models given by (1.2.5) and (1.2.6) which we shall refer to as

model I and model II respectively.

T T wlwon ¢n iyt waspuhon Gttt and CL&»\”"n~(>
s e prmaltny  eok.
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1.3 Some criteria for choosing an inspection policy

If the probability distribution of the time to system failure
is known, then in principle we can compute such quantities as
E{c(T; x)} and P(c(T; X) § constant) for particular cost models.
These quantities can then be used to define a policy which is 'best' in
some sense, for example we may wish to choose that policy x* for
which E{c(T; x)} 1is as small as possible, or for which P(c(T; X) £ ¢)
is as large as possible. These 'best' policies may or may not exist.

We first consider the case when complete knowledge about the

distribution of the time to system failure is not available.

Derman's minimax policy

Derman (1961) considered the case when the 1life of the system
cannot exceed some finite time 1T say, and assuming no other knowledge
about the p.d.f. of T, derived a minimax inspection policy for Barlow
and Hunter's (1960) cost model I. He showed that the inspection policy
which minimises the maximum possible expected cost over all possible
densities £(t), is given by

_; . +c1 nl:(n+1)p+2]
1 P np + 1 2c2 np + 1

- (i+ 1) i=1, ..., n

where n 1is the largest integer such that

2,2 - -
c; P°n® + ¢ p(2 - p)n + 2(c1 P c, ) £ 0

and p 1is the probability that an inspection reveals state E1 when

E, 1is the true state of the system. By assumption (iii) of section 1.2

1

we consider only the case p = 1.

Minimising the expected cost

When the p.d.f. of T is known, the minimax criterion ceases

to be meaningful, and Barlow, Hunter and Proschan (1963) defined an

_12_



optimal policy to be one which minimises the expected value of c(T; X).
In many cases a renewal takes place as soon as the failure is detected.
For example when a continuous production process is found to be out of
control, necessary adjustments or repairs are made, production resumes,
and inspection continues. In such cases a more suitable definition of
an optimal policy is that which minimises the expected cost per unit
time over an infinite time span. We now assume fhat upon detection of

failure, a repair taking time r is made, at a cost and that the

Cqs
system is then taken to be as good as now and inspection resumes.
Although the model is now slightly more complicated and a new objective
is being defined, the following result due to Brender (1963) shows that
in principle, the problem can be formulated as one of minimising the
expected cost per failure.

Let

C(x) = ¢y E(N) + CZ{E(XN - T)} + cq

be the expected cost per cycle under policy X , and let

T(x) =E(x) +r

be the expected length of each cycle under policy x. Then we wish to
minimise the expected cost per unit time, which is

C(x)

R(_lf_) = _T_(?)- .

Define
D(a, ®) = C(x) - o T(X) =c; EM + (c, = a)E(x = T) + {cg - a(r + w)}

where u = E(T) .

For fixed o find x(a) which minimises D(a, x), and then
find that value of a, a* say, for which D(a*, x(a*)) =0 . (It has
been shown that for nontrivial values of Cys Cps Cq and r, such an

a* mnmust exist.) Then x(o*) minimises R(x) and o* = min R(x) .
x

- 13 -



The result relies on the fact that if

min D(o*, x) = O

X
then min {cx) - a* T(x)} =0
X
or min T(E){R(E) -ao*} =0
.3
so that min R(x) = a* since T(x) >0 .
X

Thus in principle the problem of minimising expected cost per unit time,
and minimising expected cost per cycle reduces to the same computational

problem.
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ChaEter 2

Optimal Inspection Policies

In this chapter we compute optimal inspection policies in
the exponential case, and when f is a PF2 density, for both cost
model I and the new cost model II introduced in section 1.2.

We conclude that these optimal policies pose a real computational
problem, especially in the case of model II. This motivates the

search in later chapters for a class of computationally simpler, near-

optimal policies.

Preliminarz

A component of the expected total cost for both models I and
IT is the average number of inspections needed to detect the failure,
E(N). Since E(N) may or may not exist, we give a necessary and

sufficient condition for existence, namely that

converges, and in this case

E(N) = ) F(xg) .

j=0
Proof
n
EN) = lim z j P(x. <T g x.)
ne j=1 -1 J
J
nl —-— —
- rll—lrz 'ZS{F(Xj_l) - F(xj)f .
]

Writing fk for f(xk) we have

n -
1(F. .
jzl i( j-1 J



The first and third terms on the right hand side differ by nfn and

SO

[}
The convergence of 2 Fj is sufficient since the convergence of a
j=0

o]
series of positive decreasing terms z a implies na >0 as n->e
n=0
(see, for example Flett, 1966 page 242). To prove- that the convergence
[+2]
of ) Fj is necessary we must show that if
j=0

j(F. . - F.
jzl i, - FD

exists then nfn ~>0 as n-> o, If

[+

Y i(F.

- F,
je1 371 i

converges then

X j(f._ - f.) +0 as n=>w ,
j=n+l1 -1 ]
But

0 o

j(F, , -F.) > (n+1 F. . -F.)=(+1F >0 .
j=§+13(3'1 > @ )j=§+1(3'1 P = @+ DF

Hence (n + 1)fn - 0 so that nfn -+ 0. This completes the proof.

It is interesting to note that the existence of E(N) depends
on {xn} as much as F; that xj + o ag j = o is not sufficient for
existence. As an example consider the inspection policy given by
X, =a ¢n(n + 1). Note that Xy = 0, x_ =, and suppose that

F(t) = exp(~ t/a) . Then

f(xn) = exp[— o n(n + 1)/@] =

n+1

- 16 -



So that

n _ n 1
) F(x,) = ) = > ® 3as n -+ o

which means that the expected number of inspections is infinite in

this case.
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2.1 Optimal inspection policy in the exponential case;

models I and II

A consequence of the fact that systems with an exponential
failure distribution do not age is that the optimal policy must be
periodic, i.e. of the form X, = kx, k=0,1, ..., for some x > 0,

Barlow and Hunter (1960) showed that for model I when

£(t) = %-e'X/“

this gives an expected total cost per cycle of

c, + ¢, x
L 2 _ CA0 (2.1.1)
-x/a 2
1 -e
which is minimised when
c
xfo _x_ 1 (2.1.2)
o ac

If o is large so that e =1+ Xy E{EJ then
a 2la

X = . (2.1.3)

It is interesting to extend their analysis a little further, for if x*

is the optimal inspection interval, then from (2.1.2)

[od
x%
x* — L
- a— ¢ 0LC2
1 - e = c .
x*
1+ *x ., L
o ac
2

Substituting in (2.1.1) we find that after a little algebra

min E|c(T; §)] = c1 + czx* .
X

So that the minimum expected cost is equal to the sum of the cost of a
single inspection and the penalty cost incurred over an optimal inspection

interval.

For model II note that xk - Xk—l = x for all k so that

- 18 -



and

This is minimised when

- _E
¢, exp 5
+ ac, = 0

el

2 c .
Xx* = - g njl + LS + K| where K =L . (2’3‘4)
2 4 ac,

It is interesting that the optimal inspection interval for model II in
the exponential case can be determined explicitly, unlike model I.
However the subsequent sections of this chapter reveal that this

computational simplification is not evident in the general case.
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2.2 Optimal inspection policies for PF, densities; model I

In this section we present the results of Barlow, Hunter and
Proschan (1963) who have given conditions for the existence of an
inspection policy which minimises E{c(T; x)} for model I, and in the
special case when £(t) is PF2 have proposed an algorithm for the

calculation of such a policy.

Optimal inspection policies

For model I

E{e(T; )} =c; } f(xj) *ey ) J (x_ - t) £(t)dt (2.2.1)
i=0

and Barlow, Hunter and Proschan (1963) showed that if F(t) is

continuous with finite mean, then a policy x* which minimises

E{c(T; §)} exists. In the case when it is known that the system will

fail in some given interval [0, T] say, they showed that a necessary

and sufficient condition for the optimal policy to consist of a single

inspection at time 1t 1is that

©1

+ C2(T - t)

F(t) s for all 0gstgT .

¢

In the general case E{c(T; x)} is given by (2.2.1) and for a minimum

—EL-E{C(T; x)} =0 k=1, 2, ...
Bxk =

This leads to

F(x ) - F(x_ ,) c
n n-1 1
Xl ~ % T f(xn) - E; (2.2.2)

so that x* ='{xk*} can be calculated once xl* is known.

_20_



X _ ok _ _ % .
Barlow, Hunter and Proschan (1963) showed that {Gk % Xk-l} is

a decreasing sequence if f is PF2, and in this case proposed the

*

following algorithm for computing X

Algorithm 2.2.1

As an approximation to xl* choose X, so that
Xy .
J F(t)dt = —
)
0

This is that value of X for which the cost of undetected failure

during [p, xl] is balanced against the cost of the first inspection.

(1) Compute {xk} recursively from (2.2.2),
(ii) if Gk > 6k—1 for some k, reduce Xy and

repeat; if Gk < 0 for some k, increase Xy
and repeat.

The motivation of algorithm 2.2.1 is the following theorem due to

Barlow, Hunter and Proschan (1963):

Theorem 2.2.1

Let f be PF2 with F(x)/f(x) strictly increasing and
with £(t)> 0. Then if {xi} is the optimal policy

(i) if x, > x.*

1 §, > 6 for some k

1’ "k k-1

(ii) if x, < x.*

1 1 6k < 0 for some k .

Optimal policy in the Weibull case

The Weibull distribution

o4 o )

is PF2 for B =1, and

- 21 -



o ol el
£(t) %&]8—1 exp{_[g]e} B [&E]B

Using the fact that x, (e* - 1)/x, and xB are all strictly

increasing functions, and that the composition and product of strictly
increasing positive functions is strictly increasing, we see that
F(t)/f(t) 1is strictly increasing in the Weibull case. Hence, theorem
2.2.1 holds and algorithm 2.2.1 can be used to find the optimal policy
when B 2 1 .

Now

X g x )P
_ expq - n-l - exp{~ |-—=
F(xn) F(xn—l) a a
ala o

So that (2.2.2) gives

ol - )

X+l T *p T x g-1 - E; :
8l n
alo
X c
Putting z_ = = » K= —— this simplifies to
n o ac,
B _ B _
exp{zn zn—l} 1
n+l - Zn = B ZB—]_ - K . (2.2.3)

This standardisation has the advantage that instead of having to find
the inspection times as a function of the four parameters o, 8, ¢y and
Cys We need only two parameters, namely K and B8 to compute {zi} .
Using algorithm 2.2.1 and (2.2.3) to compute {zi} the optimal policy
1s then given by X, = az;
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2.3 Optimal inspection policies for PF2 densities; model II

Calculation of a policy which minimises the total expected

cost for model I leads to an equation giving X explicitly in terms

+1

of X and x For the new cost model II proposed in section 1.2

n-1°

we now show that minimising the expected total cost leads to an implicit

equation for x in terms of x and x which adds to the already

n+l n-1°

difficult computational problem. For this new model we give results
which justify the use of a modified version of the model I algorithm,

when £(t) 1is PF2 .

Optimal model IT policies

For the new cost model II proposed in section 1.2

c(t; ¥) = ¢yn + cy(x - x ;) where x ., <tsx .

n
So that
E{e(T; ®)} = ¢; BEM) + ¢, E(xg = xy_)
=c EN) + c, nzl (xn - Xn—l)P(xn—l < T g xn)
E{c(T; ®} =c¢; ] ﬁ(xj) tep ] x -x HF(x) - Fx D} .
j=0 n=1
(2.3.1)

Byamodification of theorem 1 of Barlow, Hunter and Proschan (1963) we

can show that an inspection policy E% which minimises (2.3.1) exists.
For such a policy, we must have
2 EB{c(T; ¥} =0 k=1, 2, ...
axk » £ ] ] 9
Now from (2.3.1), the terms involving X in E{c(T; x)} are
¢y F(xk) + CZ(Xk - Xk-l){F(Xk) - F(Xk-l)}
oy (xq T XIFGE ) - Fx)}
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so that
52; Ble(T; 0} = = ¢; £Gx) + ¢,{F(x) - Flx_)}
v oy B G T X)) - elF(,y) - Fln))
e e O U

Equating the right hand side to zero gives

ARGy - Fly DY - {Flx,) - Fx)} o
Gy 31 7 Oy = x ) = ) TS,

k=1, 2, ... (2.3.2)

. * . . %
Like model I, {Xk} for model II is determined by Xy . However, we

now have the added computational difficulty that X .1 cannot be written

explicitly in terms of X, and X1 as before, because of the presence
of the term F(Xk+1) in (2.3.2). For this reason the results of Barlow,
Hunter and Proschan (1963) for model I do not carry over to model II.

* . .
However, we now proceed to show that if x 1is the optimal policy, and

* % % . * . . .
Gk =X T X g then once again {Gk} is decreasing. Moreover 1if

*
for some k; if x, < x

%
%y > Xy then Gk > 8 1 1

» O, <O for some

k-1 k

k. We first need the following lemmas.

Lemma 1 Let ‘{xk} be defined by (2.3.2) with Xy = 0, and

Gk =X T X >0 for k=1, 2, ... Then X, > ® as k > o,
Proof Suppose to the contrary that X, *c < as k + o,
From (2.3.2)

a1 = S e * o) T,

so that




But, if X *c as k > », then Gk » 0, F(xk), F(Xk—l) + F(c), and

f(xk) > f(c) > 0. So that eventually

C
k+1 § 7 =
€2

8

’

contradicting the fact that Gk 2 0 for all k.

In lemmas 2, 3, 4 and 5, f is taken to be PF2, y > X,

A>0 and m is the mode of f.

Lemma 2
F(x + A) - F(x) . . .
F0x) 1s decreasing in x ,
Lemma 3

F(x) - F(x - A)
f(x)

is increasing in x ,

Lemma 4 for r>21 and x-1A > m

F(y) —F(y - rd) ,  F(x) - F(x - A)
£(y) i £(x) ’

Lemma 5 for r>1 and x

1\

m

F(y + rA) - F(y)
f(y)

F(x + A) - F(x)
f (%) *

A

Proof The proofs of Lemmas 2, 3 and 4 are given in Barlow, Hunter and

Proschan (1963); for Lemma 5 note that since f is PF2

f(i(;)t) 2 f(g(;)t) for t > 0, and since x > m

£G + ) is decreasing in t.

£(y)
rA A A
. f(y + t) f(y + t) f(x + t)
o J ‘-'%y)— dt € r J T dt ¢ r I By ) dt
0 0 0
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F(y + rA) - F(y) < F(x + A) - F(x)
£(y) N £(x)

Lemma 6 Let 8 = ¥ - X1 ‘{xk} satisfy (2.3.2) with Gk >0 for

all k. If £ 1is PF2 and for some k Gk > Gk—l then 6k+1 > Gk

Proof Since

- [F(Xn) - F(Xn—l)] - [F(xn+1) - F(xn)] o

(xn+1 - Xn) - (Xn N Xn-l) f(xn) ¢y
n=1, 2, ...
F(x,) - F( )| - |F(C ) - F(x)
- [ k k-1 ] [ 41 k.]
O i G D e

[Forep ~ Py p)] - [FOy) - Pl )]

£y
] F(xk) - F(x ) _ F(xk_l) - F(xk_z)
£(x,) £(x ;)
F(xk) - F(xk_l) F(x, + Gk) - F(xk)
£(x, ) £(x)
P e A oY
£(x,)
F(x) - F(x, - §,) F(x, ;) - F(x, 1 - §,)
£(x) £(x,_4)
. Flxp_q + 8) - Flx ;) _ F(x, + 68) - F(x)
£(x, _4) £(x)

Pl * &) ~ FOxgy)
* f(xk) ’

since x _, =X _; - Gk—l > %X g~ Gk « Therefore

(s 8

ka1 " O T (8 =8 ) > £(x)
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using lemma 3 and lemma 2 respectively.

-8

k k-1 > 0 by assumption,

Since §

F(xk + Gk) - F(xk + 6k+1)
> f(xk)

Since F is increasing, both expressions contained in square brackets

have the same sign; since their sum is positive, each must be positive

and hence 6k+1 > Gk .
Lemma 7 Let Gk =X T X g {xk} satisfy (2.3.2) with Gk >0 for
all k. If £ 1is PF2 and for some k Gk =r Gk—l where r > 1
and X _,2m where m 1is the mode of f, then
Spe1 7T S -
Proof
[Fo) - PGy ] = [Flyy) - Flx)]
Brr1 78 — ¥ = 8 ) = F(x)
. [FOq_p) - Fog )] - [FGg) - PGy ]
Y
c
+(r-1) —c—i-
FGo) = Fly - x 8 ) FOg_4) - Fly g = & _4)
Spe1 =T & £(x) £(x, )
F(xk_1 + dk) - F(Xk-l) F(xk + r Gk) - F(xk)
+r -
£(x,_4) £(x,)
F(x, +r 6 ) - F( ) c
.k k Tl | (r - 1) L



using lemma 4 and lemma 5 respectively.

F(xk + 6k+1) - F(xk +r Gk)
K [ak+1 -r ak] + ) > 0

Since F 1is increasing, both expressions contained in square brackets
have the same sign; since their sum is positive, each must be positive,

and hence 6k+1 >r 6k .

Lemma 8 Let Gk =X T X g {xk} satisfy (2.3.2) with Gk >0 for
all k. Then if £ is PF2
d6k+1 f(xl) + f(XZ) d62
ax, f(x, ) + £( y ax, > © k=1, 2, ...
1 *x *e1? 1
Proof
8y =% + iEX1; - h +fi2))_ ek . by (2.3.2)
Xy X1 ¢y
so that by the chain rule for partial differentiation
.d62 o1 d F(xl) B F(x1 + 62) - F(xl) _ f(x1 + 62) d62
dx1 dx1 f(xl) Bxl f(xl) f(xl) dx1
hence

ds £(x,)
2 2
{1 + f(xl)] > 1

F(x + A) - F(x)
£(x)

) is increasing, and is decreasing for

A > 0. So that the lemma is certainly true for k = 1.
Now suppose that the lemma is true for k=1, 2, ..., n-1;
we will show that this implies it is true for k = n, and hence for all

k by induction. Note that
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6n+1 = @(xn, én, 6n+1)
where
F(x) -F(x_ - 6§)
_ n n n
¢(xn’ 6n’ 6n+1) - Gn * f(xn)
F(xn + 6n+1) - F(xn) ) El
f(Xn) c,

using (2.3.2). So that by the chain rule

d6n+1[1 Y }= 30 ¥n g9 9%

dx1 36n+1 axn dx1 aan dx1
Now X, =%+ 62 + ... + Gn, so that
dx n dé
n k
.—=1+ z —
dx1 k=2 dx1
ds dxn
and since E;; >0 for k=2, ..., n by hypothesis, E;I >0 .
. 99
Moreover, using lemma 3 and lemma 2, w 0.
n
. d6n+1 1 - 90 L] d6n
dx1 86n+1 asn dx1
and by the definition of @(xn, Gn, 6n+1) s

d6n+l f(xn + anﬂ) f(xn - Gn) dén
dx 1+ f(x ) > 1+ f(x) dx
1 n n 1
which implies
d6n+1 g f(xn) + f(xn—l) dGn
dx1 f(xn) + f(xn+1) dx1

but

d6n f(xl) + f(xz) d62

>
dx1 f(xn—l) + f(xn) dx1
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by hypothesis so that

d6n+1 f(xn) + f(xn_l) f(xl) + f(xz) ds

2
>
dx1 f(xn) + f(xn+1) f(xn-l) + f(xn) dx

1
d6n+1 X f(xl) + f(xz) d62
dx1 f(xn) + f(xn+1) dx1
ds
This completes the proof, since we have already seen that prelie 0.
1

Lemma 9 If fk(x) is continuous and 1lim fk(x) = o for x ¢ [a, ﬁ]
koo

then for all A there exists an m such that

fn(x) > X for all x ¢ [?, ﬁ] and n>mnm .,

Proof Let & > 0 and define k(x) such that fn(x) > A+ ¢ for
n > k(x). Since fk(x) is continuous, then there exists some & > O

such that

fk(y) - fk(x) < ¢ whenever ly - x| <85

Therefore = e < fk(y) - fk(x) < e
fk(y) > fk(x) - >

for all y in some neighbourhood (x - §, x + 8) of x, Ux say.

Thus we can find a covering neighbourhood for every x ¢ [a, b].
The collection of these open intervals covers [a, b], and hence by the
Heine-Borel theorem we can select a finite subcover

U_, ... U of [a, b]

Xl Xm
Define
K= max  {k(x.)}
. i
i=1,...m

then fk(x) > A for all x ¢ [é, b], and all k > K .
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~

Theorem 2.3.1 Let {x;}, {xk},'{xk} satisfy (2.3.2), where {x;} is

~ *
the optimal inspection policy and Xp > Xy, and let

~ ~ * * %

Sy “xey s 8 e T Fp-1 0 S TR T K -
Then if £ is PF,, & > 5 for some n.

2 n n-1
* dén
Proof For all n & > O, and by lemma 8 — >0 if § > 0 so
—_— . n dx1 n
. . *

that X, =% + 62 + L., + Gn increases with Xy for Xy > X .

* *
Hence X > S S and by lemma 1 1im X =, so that 1lim X, =

n-o n-o
*
whenever x1 2 Xl .
Now by lemma 8,
d6n+1 . f(xl) + f(xz) d62 o ds o
dx1 f(xn) + f(xn+1) dx1 dx1
So that
. d6n ; > %
im — = o« or x, > X .
oo dx1 1 1

%
and in particular for all X, € [xl, 1 . Using lemma 9, we can find

|

N ?

an m such that whenever X € [% ’

ds x1
LN ~ for n2m.,
dx1 _ x*
1 1
But, Gm can be regarded as a function of Xy SO that
X X -
- 1 d6m 1 %y -
Gm -8 = J = dx1 > [ ~ o dx1 = %
* 1 x* X T x
*1 1
oo Gm > Xy = 61 , so that 6n > Gn—l for some n g m.
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~

Theorem 2.3.2 Let {x;}, {Xk},'{xk} satisfy (2.3.2) where {x;} is

~

*
the optimal inspection policy and X <Xy, and let

~ ~ ~ * * *
R T T Tl T T A e W U

Then if f 1is PF2 6n < 0 for some n.

* *
Proof If Gk > sk—l for some k then using lemma 6 and lemma 7

* . [
Gn > o geometrically fast from some point on as n + » and hence, by

a modification of Theorem 5 in Barlow, Hunter and Proschan (1963), we

. . * . . .
can show that this contradicts the fact that {xk} 1s an optimal policy.
* [ [
Hence {Sk} is a decreasing sequence.

We will show that Gk > 0 for all k 1leads to a contradiction.

By lemma 8
dé
k .
&—>0 if 6k20 ’
1
so that X, =% + 62 + ...+ Gk increases with Xy for Xy > X .
Hence X > X and by lemma 1 1im X, = ®, 80 that 1lim X =
ko koo

~

whenever Xy > X . Now, by lemma 8

d6k+1 . f(xl) + f(xz) d62 o EE_ o
dx1 z f(xk) + f(xk+1) dx1 dx1 *
So that
) ds "
i;: ] ) = o for Xy 2 Xy

- *
and in particular for all X, € [xl, xi} . Using lemma 9, we can find

~ %
an m such that whenever X, € [%1, Xl}

%
ds Xy
> for all k > m
dx1 X* - ;
1 1
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But, Gm can be regarded as a function of X5 SO that
% *
*1 45 *1 *
s -5 = | —Rax > 1 dx. = % = 6"
m ’m dx; % *x _ ~ ¥ 7% T Y
~ X, - X
; 1 1
1 S|

* * 3 * 3 .
o Gm < Gm - 61 < 0 since {Gk} is decreasing.

~ ~

i.e. 8 < 0, contradicting the fact that Gk > 0 for all k.

This completes the proof.

Computing the optimal inspection policy for PF2 densities

By virtue of theorems 2.3.1 and 2.3.2 we now propose the

%
following algorithm for computing x when £ 1is PF, .

2
*
As an approximation to Xy choose X, so that
c
1
Xl F(Xl) = (—:; .

This is that value of Xy for which the cost of undetected failure

during {?, Xl] is balanced against the cost of the first inspection.

(1) Compute '{xk} recursively from (2.3.2).

(ii) 1f Gk > ak—l for some k, reduce Xy and

repeat; if §, < O for some k, increase x

k 1

and repeat.

Optimal policies in the Weibull case

For the Weibull distribution

49" ol ]

and (2.3.2) becomes
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_a
2
. *x ! .
with 2, = o and K = o~ as before, after some algebra this can be
2
written as
_z£+1 ,
Ay F Bl 2ua) = Zae (2.3.3)
where
1-8 { BJ
z, ~ explzy
A (z) = B
and

Bk(zk’ Zk—l) = {exp[— zi_l] -2 exp{- ZE]} Ak(zk) + 2zk -z, K.

Equation (2.3.3) is of the form g(x) = x, and can be solved by any of
the standard numerical techniques, such as Wegsteins method. Thus, given
zq the sequence {zk} can be calculated from (2.3.3), and the algorithm

c

*
used to find =z in terms of K = 1 and B.
1 ac,
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2.4  An approximation to the optimal policy when the inspection

cost is low

If the cost of a single inspection is very small so that
¢y << czE(T) then it is reasonable to assume that the optimal policy
will consist of many inspections, i.e. E(N) will be large. 1In a
recent paper Keller (1974) considers the case when inspections are
"... so frequent that they can be described by a smooth density ...
which denotes the number of checks per unit time ...".

If the rate of inspections at time t is ¢(t) then the

1

time between inspections is approximately © S° that Keller proposes

¢
that {Xi} should be given by

" _ 1 _
LU0 i T TRy P T B e (2.4.1)
Keller approximates x -~ t in the interval X 1 <t<x
1
t 1 _ _ .
by an 'average' value (xn xn—l)/z’ so that x_ -t Gy -

Note that this is a time average and f(t) 1is not taken into account
at this stage.
Since the number of inspections made up to time t is

approximately

¢(u)du = ¢(t) say, (2.4.2)

Ot

then if the failure occurs at time t the total cost for model I is

c
c(ts §) = cp a(t) + 2¢%t) , (2.4.3)
and the expected cost is
p c
E{c(T; ¢)} = J {Cl o(t) + 53%27} f(t)de . (2.4.4)
0
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Using the calculus of variations Keller showed that E{c(T; ¢)} is

minimised when

1
c, h(t)]?
-~ (2.4.5)
1

b(t) =
where h(t) 1is the hazard rate function, and the minimum cost is then
min 172

c . =V2c.c J VE(t) F(t) dt . (2.4.6)
0

If this method is applied to the new cost model II, the

equation corresponding to (2.4.3) is

c(t; ¢) = ¢y o(t) + NORE

so that any results for model II are found by replacing ¢, by 2c2

in the corresponding results for model I.

Keller applied his method to the uniform distribution, and the
exponential distribution with cl/ac2 << 1 and showed that in the
latter case this leads to a periodic policy with x = /5&2;73;—.

This is the same as (2.1.3), the approximate solution that Barlow and
Hunter (1960) gave for large o. Using (2.4.6) we have

Coin = /Zaclc2 » which differs from the exact solution by only ¢

1
(which is small, by assumption).

The two distributions that Keller considered both have the
property that h(0) > 0, so that from (2.4.1) X is always finite.
However if h(0) (= £(0)) = 0, then (2.4.1) gives X = 3 Keller did

not consider such cases, but this difficulty can be avoided if {xi} is

defined by

X

f ¢(t)dt = n, i.e. @(xn) =n or x =0 (n) . (2.4.7)
0
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Unfortunately this can introduce a further problem, namely that

() h(t)

¢(t) = -—ja;;-—

is often difficult to integrate analytically, For example the gamma
distribution with increasing hazard rate has

1 t}s_l -t/a

= |= e

o o
h(t) =

P(B, t/OL)

so that h(0) = 0, and neither (2.4.1) nor (2.4.7) are suitable for
evaluating {xi}. In such cases Keller's method has no real advantage
over the exact solution considered in the earlier sections of this

chapter.

Keller's method applied to the Weibull distribution

The Weibull distribution F(t) = exp{-(t/a)s} has the

property that the hazard rate function takes on a particularly simple

form,
With
g-1
Bt
o -2 (97
(2.4.5) gives
Bey 'S‘;l
p(t) = 3 t
2c1 o

Note that Keller's method (2.4.1) for evaluating {xi} cannot be used,
since ¢(0) = 0. However (2.4.7) can be used, and this gives (for

model I)
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F2 2 T
2¢c aB B+l "n
1
1
P
(B+1)2 ¢, o n2
*n T 28 <, . (2.4.8)
Replacing ¢, by 2c2 in (2.4.8) gives
1
g 5 F*t
(B+1)2 c; o n?
x = 78 for model II . (2.4.9)
)

The minimum cost for model I is given by (2.4.6):

B-1

2¢c,c, O
_ 172 1 l
cmin = V//_—_E__—'P{EE + 2] (2.4.10)
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2.5 General comments on optimal policies

With the exception of the exponential case, calculating optimal
policies in general poses a severe computational problem. Moreover, no
theory exists for calculating optimal policies when f(t) 1is not PF2.
For failure distributions for which F(t) cannot be expressed in terms
of elementary functions (such as the gamma and truncated normal),
calculating the optimal policy even for model I requires the use of a
computer and is slow. Since model II requires the numerical solution
of an equation many times during each iteration, solving the problem
becomes expensive in terms of computer time.

It would seem that the computational difficulties which arise
from using the inspection times {xi} as control variables would be
avoided if we considered only policies which depended on a single variable.
Clearly, by considering policies which depend on only one variable, we
are restricted to a subset of all possible policies, which in general,
will not include the optimal policy, However the subsequent chapters
of this thesis reveal that this restriction can sometimes be compensated
by a considerable reduction in computational effort without paying too

great an extra cost due to the. use of a restricted subset of policies.
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ChaEter 3

Periodic Inspection Policies

In this chapter we consider the most commonly used inspection
policy, the periodic policy given by X, = nx for some x > 0,
Barlow, Hunter and Proschan (1963) have shown that the optimal inspection
policy has decreasing inspection intervals when the failure density is
PFZ’ s0 that periodic policies cannot be optimal in this case.
Although periodic policies are simple to use, the best periodic policy
can sometimes given an expected cost in considerable excess of the
optimal non periodic policy. We first derive an expression for the

expected total costs for models T and II.

3.1 Periodic inspection policies

If m(x) is the mean number of inspections needed to detect

the failure when the inspection interval is X, then

F(jx) . (3.1.1)
0

m(x) = E(N) =

I~ 8

3
The expected time at which the failure is detected is

E(XN) = E(Nx) = xE(N) = xm(x)

and so the expected total cost for model I is

E{c(T; x)}

¢y m(x) + c, xm(x) - c, E(T)

(c1 + c, x) m(x) - cy E(T) . (3.1.2)

Since x - x
n

-1 = X for n > 1, E(xN - xN—l) = x and so the expected

total cost for model II is

E{c(T; x)} = oy m(x) + cH) X . (3.1.3)

The best periodic policy in either case is found by minimising
(3.1.2) or (3.1.3) with respect to x.
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We can obtain an approximation to m(x) (and hence the expected costs)

in terms of E(T) and f£f(0) using the Euler-MacLaurin summation

formula

o] ® B _
Y g = J g(u)du - %-g(O) - %5 g' () - ... - ——7%§77— g(zn 1)(0) + ..
i=1 o :

where Bn is the nth Bernoulli number (see, for example Knopp, 1947).

Putting g(j) = F(jx) we have, using (3.1.1)

- - - Tt
m(x) = F(O) + J F(ux)du - %-F(O) - EEiégl
0
approximately, or
L1l xf (0)
m(x) = T (3.1.4)

where 1 = E(T). Knopp (p. 532) points out that usually the error in
truncating the Euler-MacLaurin series is of the same sign as, but smaller
in absolute value than, the first term neglected. The approximation
(3.1.4) will be at its best when x 1is small since the first term

neglected is

3
_ X n
730 £(0) .

Note that the expected time to detection of failure within

an interval is given by

E(T - XN—l) =y - xEm(x) - 1]

which is a generalisation of the result obtained by Duncan (1956) in the

exponential case for small x.
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3.2 Periodic policy for model I

Using (3.1.2) and (3.1.4) the expected cost for model I is

approximately

which is minimised when

3 c, £(0) T
x°f (0) 1 1 2 _ 1 _
Z izt 5o 5 X 5 o . (3.2.1)

For most life distributions £f(0) = 0 (The exponential is a notable

exception), and in this case,

2u cq
X = z . (3.2.2)
2

Exponential case

In this case we have £(0) = 1/0. , so that from (3.2.1) we

get

2
i) e

where k = cl/occ2 » and so for given k we can find x/a
Now for the exponential case the periodic solution is in fact
the optimal solution, and it is interesting to compare the exact solution
and the approximate solution given by (3.2.3). We have seen from (2.1.2)
that x/o 1is given exactly by
ex/u -x/fa-1=%k ,
and we need numerical procedures for determining x/a. Now let us

approximate ex/a . For x/a small, we have

1(x)2
eX/a=1+§+§[E] ,

which gives

X+ /o
[0 ]
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Note that this approximation agrees with (3.2.2), the approximate
solution with £(0) = 0. The next term in the series for ex/a is

3
-%[g} and if we include this we have

1{x)3 1{x)2 _
z[a] *5(&] “k=0.

2
This equation differs from (3.2.3) by the term -E—F% .

12{a
Table 1 gives the exact inspection interval and the
approximations given by (3.2.3) and x/a = v¥2k. We see that, as

expected (3.2.3) is the better of the two, holding over a greater range

of k.

Weibull case

In the Weibull case with unit scale parameter,
= - B
F(t) = exp(-t")

and the mean number of inspections, m(x), 1is given by

=]

m(x) = ) exp{- (jx)
j=0

By . (3.2.4)

For increasing hazard rate distributions B > 1, so that from some point
on each term in the series for m(x) in (3.2.4) is not greater than the

corresponding term in the series

oo

) exp{- jx} .
j=0

The error in summing (3.2.4) to n terms will therefore be less than

oo

) exp{- jx} = exp (- nx)

i=n 1 - exp(~ x)

so we can find m(x) to an absolute error of less than e by summing

to n terms where
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Table 1

Exact and approximate inspection intervals in the
exponential case - model I (o=1). =X and x are given by

53
X 1 k |~
-6— + (—-‘f‘ ]

5 Ia-xz -~-k=0 and x = /2k .

k Exact X X
0.01 0.1382 0.1382 0.1414
0.03 0.2354 0.2353 0.2449
0.05 0.3004 0.3004 0.3162
0.07 0.3522 0.3521 0.3742
0.09 0.3963 0.3961 0.4243
0.1 0.4162 0.4161 0.4472
0.3 0.6863 0.6851 0.7746
0.5 0.8577 0.8549 1.0000
0.7 0.9893 0.9844 -
0.9 1.0979 1.0905 -
1.0 1.1463 1.1375 : -
3.0 1.7490 1.7034 -
5.0 2.0908 2.0000 -
7.0 2.3357 2.1975 -
9.0 2,5282 2.3423 -
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-nx -X
LB €, 1l.e. n>- tnfe(1 e )} .
1-¢e°% x

For given x, the expected total cost can be found by
combining (3.1.2) and (3.2.4), and using a numerical search procedure
the optimal value of x can be found as a function of k = cl/ac2 and
B .

When B >1 £(0) =0 and approximation (3.2.2) applies,

and with E(T) al'(1 + 1/B8) this gives

= {2kr(1 + 1/8)}F . (3.2.5)

Qx

A table of values of this approximation is given in Table 2,

along with the exact values obtained by search by golden section.
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Table 2

Exact and approximate inspection intervals in the Weibull
case - model I (o = 1). Upper entries are square root

approximations (3.2.5), lower entries are exact values.

. 8 1.25 1.5 1.75 2.0 3.0 4.0
0.01 | 0.1365 0.1344 0.1335 0.1331 0.1336 0.1346
0.1352 0.1339 0.1333 0.1331 0.1336 0.1346
0.05 | 0.3052 0.3005 0.2984 0.2977 0.2988 0.3011
0.2972 0.2969 0.2973 0.2977 0.2991 0.3011
0.09 | 0.4094 0.4031 0.4004 0.3994 0.4009 0.4039
0.3939 0.3956 0.3977 0.3994 0.4020 0.4044
0.1 0.4316 0.4249 0.4220 0.4210 0.4226 0.4258
0.4141 0.4162 0.4189 0.4210 0.4239 0.4226
0.5 0.9651 0.9501 0.9437 0.9414 0.9450 0.9521
0.8580 0.8760 0.9036 0.9405 1.2595 1.2703
0.9 1.2948 1.2747 1.2661 1.2630 1.2678 1.2773
1.0927 1.1142 1.1542 1.2144 1.3394 1.3088
1.0 1.3648 1.3437 1.3346 1.3313 1.3364 1.3464
1.1389 1.1600 1.2003 1.2584 1.3435 1.3164
5.0 3.0519 3.0046 2.9843 2.9770 2.9883 3.0107
1.9694 1.8946 1.8319 1.7706 1.5688 1.4431
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3.3 Periodic policy formodel II

Using (3.1.3) and (3.1.4) the expected cost under model II

is approximately

1 p,x£()
Cl{z xV T2 } Tepx

which is minimised when

¢y £(0) :
X = {u g // [02 + ———TE——}} (3.3.1)
HC]_
or X = - if £(0©) =0 . (3.3.2)
2

By comparing (3.2.2) with (3.3.2) we see that the approximate optimal
intervals for models I and II differ by a factor of V2 in the case

when f£(0) =0 .

Exponential case

In the exponential case f(0) = 1/a and (3.3.1) gives

/k
= /T (3.3.3)

which is an approximation to the exact solution

2
%:—zn{1+-15-— k +k} .

QK

2 4

From Table 3 we see that for all tabulated values of k the square root

approximation (3.3.3) is good, and particularly accurate when k < 1.

Weibull case

In the Weibull case the expected total cost is found by
combining (3.1.3) and (3.2.4), and using a numerical search procedure
the optimmal inspection interval can be found as a function of k = cllac2

and B. An approximation to this interval is given by (3.3.2) which
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Table 3

Exact and approximate inspection intervals in the
exponential case - model II (a = 1).

The approximation is given by (3.3.3).

k Exact Approx,
0.01 0.1000 0.1000
0.03 0.1730 0.1730
0.05 0.2231 0.2231
0.07 0.2638 0.2638
0.09 0.2989 0.2989
0.1 0.3149 0.3149
0.3 0.5411 0.5410
0.5 0.6932 0.6928
0.7 0.8140 0.8133
0.9 0.9163 0.9150
1.0 0.9625 0.9608
3.0 1.5668 1.5492
5.0 1.9249 1.8787
7.0 2.1847 2.1026
9.0 2.3896 2.2678
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gives
§= vkr(l + 1/8) . (3.3.4)

A comparison of this approximation with the exact values found by

search by golden section is given in Table 4.
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Table 4

Exact and approximate inspection intervals in the Weibull
case - model IT (o = 1). Upper entries are square root

approximation (3.3.4), lower entries are exact value.

. 8 1.25 1.5 1.75 2.0 3.0 4.0
0.01 0.0965 0.0950 0.0944 0.0941 0.0945 0.0952
0.0965 0.0950 0.0944 0.0941 0.0945 0.0952
0.05 0.2158 0.2125 0.2110 0.2105 0.2113 0.2129
0.2156 0.2124 0.2110 0.2105 0.2113 0.2129
0.09 0.2895 0.2850 0.2831 0.2824 0.2835 0.2856
0.2889 0.2848 0.2830 0.2824 0.2835 0.2856
0.1 0.3052 0.3005 0.2984 0.2977 0.2988 0.3011
0.3045 0.3001 0.2983 0.2977 0.2989 0.3011
0.5 0.6824 0.6718 0.6673 0.6657 0.6682 0.6732
0.6723 | 0.6657 0.6646 0.6657 0.6667 0.6431
0.9 0.9156 0.9014 0.8953 0.8931 0.8965 0.9032
0.8892 0.8829 0.8857 0.8930 1.0005 1.1354
1.0 0.9651 0.9501 0.9437 0.9414 0.9450 0.9521
0.9339 0.9276 0.9315 0.9411 1.0765 1.1657
5.0 2.1580 2.1246 2.1102 2.1050 2.1130 2.1289
1.8181 1.7609 1.7200 1.6800 1.5260 1.4181
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3.4 Comments on approximations to optimal periodic policies

The approximations (3.2.1) and (3.3.1), depending only on
Cys Cos E(T) and £(0) have the advantage that they require only a
minimum of information about the time to failure distribution, and since
£(0) 1is generally zero, we require only E(T) to find an approximation
to the optimal inspection interval,

Tables 2 and 4 give an indication of the accuracy of these
approximations in the Weibull case, and we see that for both models
I and IT the approximations are fair for small and moderate values of
k, but particularly good for model II with k < 1. A natural measure
of the loss in using these approximations in the general case is the
percentage increase in the expected total cost due to using the
approximate interval in place of the exact interval. Tables 5 and 6
give this increase in the Weibull case.

In the exponential case this loss is less than 1% for k in
the range 0.1 < k < 10, and in the Weibull case it is less than 10%
for 0.1 s kg2, 1583 with model I, and less than 57 for
0.1 g kg2, 1g<B <4 with model II. A feature of both tables is
that the percentage increase in cost has turning points in the direction
of k increasing.

Comparing Table 5 with Table 6 we see that for all tabulated
values of k and B, the loss under model II is less than that for

model I.
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optimal periodic policy due to using the approximate

Table 5

Percentage increase in the mean total cost of the

inspection interval. Model I, Weibull case (o = 1)
c Pl o | 12s | 150 | 1.75 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0
0.1 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 1 17
0.4 0 0 0 0] 0] 0 5 13 22
0.5 0 0 0 0 0 1 6 13 19
0.6 0 1 0 0 0 1 5 9 13
0.7 0 1 1 0 0 1 3 5 6
0.8 0 1 0 0] 0 0 2 2 2
0.9 0 1 1 0 0 0 1 0 0
1.0 0 2 1 1 0 0 0 0 0
1.1 0 2 1 0 0 0 0 1 1
1.2 0 2 1 1 1 0 1 2 3
1.3 0 2 2 1 1 1 2 3 6
1.4 0 2 2 2 1 1 3 5 8
1.5 0 3 2 2 2 2 4 7 10
1.6 0 3 2 2 2 3 5 8 12
1.7 0] 3 3 3 3 4 7 10 13
1.8 0 3 3 3 3 5 8 11 15
1.9 0 3 3 3 4 6 9 13 16
2,0 0 3 3 4 4 7 10 14 17
3.0 0 5 6 7 9 14 18 21 23
4.0 0 7 10 13 17 21 23 26
5.0 0 8 10 12 15 19 22 24 26
6.0 0 9 11 14 16 20 23 25 27
7.0 0 9 12 15 17 20 23 25 26
8.0 0 10 13 15 17 20 23 25 26
9.0 0 10 13 15 17 20 23 24 26
10.0 0 11 13 16 18 20 22 24 25
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6

Table

Percentage increase in the mean total cost of the

optimal periodic policy due to using the approximate

(o = 1)

Model II, Weibull case

inspection interval.

4.0

10
11

12

12
12
13

3.5

10
10
11
11
12

3.0

10
10
10

2.5

2.0

1.75

1.50

1.25

1.0

0.1

0'2

0.3

0.4
0.5

0.6

0.7

0.8
0.9

1.0

1.1
1'2

1.3
1.4
1.5

1.6
1.7

1.8
1.9
2.0

3.0
4.0

5.0
6.0
7.0

8.0
9.0

10.0
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Chapter 4

Mean Residual Life Inspection Policies

4.1 Mean residual life inspection policies

We have mentioned in section 1.2 that Bryson and Siddiqui
(1969) proposed decreasing mean residual life as one of seven criteria
for classifying ageing systems. They showed that decreasing mean
residual life is a consequence of an increasing hazard rate, and gave
a counter example to show that the converse is not necessarily true.

The mean residual life function is defined by

[++]

J f(x) dx

w(e) = 52—,

F(t)

That is, wu(t) 1is the expected life measured from time ¢t given
survival until at least t. Clearly u(0) = E(T). We will consider
densities for which wu(t) 1is decreasing in t, so that u(t) < u(o),
(t >0).

Suppose that the system was found to be working at time X s
then u(xn) is the expected time that the system will remain in a
working state, and this can be used as a guide to when the next inspection
should be scheduled. It seems reasonable that the time to the next
inspection should be an increasing function of u(xn), say G{u(xn)}
where G(0) = 0. A natural choice for the function G is G(x) = Ax

where X > O. This leads us to:

Definition
A mean residual life (MRL) policy for a density f 1is a
sequence of inspection times {xl, X9, ...} satisfying

X4 "% = Au(xn) n=0,1, ... for some A > O, (4.1.1)
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That is, each inspection is scheduled in such a way that the intervals
are equal to a constant proportion of the mean residual life after the
previous inspection. With Xy = 0 we have X = A(0) = AE(T).

When £(t) has an increasing hazard rate u(t) is decreasing

and in particular

wx) < ulx ) n=1, 2, ...
- x X - X
n+1A 2.z 3 n-l using (4.1.1)
*n41 T F*n S %y T ¥y o

i.e. the inspection intervals are decreasing if h(t) is increasing.
Similarly {xn - xn—l} is an increasing sequence if h(t) is

decreasing.

Mean residual life policy for the exponential case

We have seen in section 1.2 that constant mean residual life
is a property of only the exponential family of densities, and with

u(t) = o we have from (4.1.1)

so that the inspection intervals are constant, i.e. a MRL policy is a

periodic policy in this case.
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4.2 Mean residual life policy illustrated in the Weibull case

Although MRL policies are simple in conception, the amount
of computation involved in finding the best MRL policy is comparable
with that of finding the optimal policy. We will solve the problem
in the Weibull case as an illustration of this computational difficulty.

With

F(t)

]
2
o
l
——
Qlrt
| L
Ros]
| —

J f(u)du
t

It
38
o
]
Lo
I
lora
Qe
| S
ko]
N —’
o
c

L]
™|
—_—
(0]
|
[=
[=
et
~
™
I
|

du = 5 T{1/8, (t/0)f}

where -
-u _a-l
T(a, x) = | e u du
X
is the incomplete gamma function. Therefore,
J f(u) du

B B
o) = o = g e[ frfurs. 5]}

So that from (4.1.1) a MRL policy in the Weibull case is given by

X \8 X 1B
X - X = igi'i exP{[aﬁ] }F{I/B, [EE] } (4.2.1)

and since

]
i
o~1
~
»
I
"
|
[y
~

this gives

n=1, 2, ... (4.2.2)
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When B8 = 1, the failure distribution is exponential and (4.2.2)
reduces to x = nio. For B > 1, (4.2.2) cannot be simplified so

the expected cost for a MRL policy must be found numerically.

Evaluation of the expected cost

wxpacked

Under cost model I, the, penalty cost is proportional to

E(xN - T) where

E(xN -T) =

Il o~18

i=1

3
I (xj - t) f(t) dt . ‘ (4.2.3)
Xj_

1

Now let zn be the sum to n terms of the above series and

let Fj = f(xj) so that

n - -—
L= jzl xj[Fj_l - Fj] - [ t £(t) dt .
0

Rearranging the terms of the finite sum on the right hand side of the

above equation, and integrating by parts gives

X
n

n
zn= Z Fj—l (x. - Xj—l) - X Fn il Fn + J F(t) dt s
0]

L= 22 ) 1"{1/6. [xi'l}s} -%7{1/6, [;:(3} 8} (4.2.4)

i=1

using (4.2.1) where

X
y(a, x) = I e—u ua_1 du
0

The error En in approximating E(xN - T) by zn 1s

J=

)
n+l

*j
J (xj - t) £(t) dt ,
X.

j-

1
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for X, . <t < xj so that

-1 j-1
X.
© J
E < z (x. - x 1) J f(t) dt
je=n+1 J
xj_1

and since {xj - x. .} 1is decreasing for B8 > 1

3-1

0
En < (xn+1 - xn) . E

X.
J
I f(t) 4t
j=n+l X.
j-

1

E_ < (xn+1 - xn) F(Xn) >

so we may use (4.2.4) to calculate E(xN - T) as accurately as we
please, since (xn+1 - xn) F(xn) +0 as n-> » .

We have considered E(xN - T) rather than E(xN) - E(T)
since it is difficult to obtain bounds on the error of the truncated
series of E(xN)
Oxpeked

For cost model II theApenalty cost is proportional to

E(XN - xN—l)' Now
E(XN - xN—].) = Z (xj - xj_l) (fj_l - EJ) s (4.2.5)

and by summing the series in (4.2.5) to n terms the error is once
again bounded by (xn+1 - xn) ﬁ(xn) provided g > 1.

For either cost model the expected number of inspections is

. F(Xj)

Nde

J

and so using (4.2.2) to generate the {xi} and (4.2.4) to calculate
the penalty cost for model I, or (4.2.5) for model II, we can find the
expected total cost as a function of A, and use the method of search
by golden section to minimise this cost with respect to A for values

of k = cl/occ2 and B .
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The values of ) which minimise the expected cost are
given in Tables 7 and 8 for models I and IT respectively, for a
selection of values of k and B. When B8 =1, the policy is
periodic and the tabulated value of A 1is the same as the value of

X 1in Tables 1 and 3. This provides a useful check on the computation.
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Chapter 5

Constant Hazard Inspection Policies

In Chapter 4 we defined a family of inspection policies in
such a way that the inspection intervals {Xi - Xi—l} are decreasing
if the system is ageing in the sense that the mean residual life function
u(t) 1is decreasing. We now consider a stronger criterion of ageing,
namely that the hazard rate function h(t) = £(t)/F(t) is increasing,
and define the constant hazard (EP) family of inspection policies
which have the property that {xi - xi-l} is decreasing if h(t) is
increasing,

Constant hazard policies are a one parameter family, i.e. for
a given survivor function F(t), the time at which the nth inspection
is scheduled (xn) can be written as a function of just one variable,
P» which turns out to be the conditional probability of failure within
any inspection interval. The mean number of inspections needed to detect
the failure also depends on p and is quite simply 1/p. This means
that the expected total cost depends on p, so that p is chosen to be
that value which minimises the expected total cost.

The best Ep policy is easier to compute than the optimal
policy, and is highly efficient in that it achieves an expected cost

which exceeds that of the optimal policy by only a few percent in most

cases.

5.1 Definition and general properties

A constant hazard inspection policy for a demsity f(t) is a
sequence of inspection times {xi} satisfying
H(xn) =né , n=1, 2, ... (5.1.1)

for some 6 > 0 where
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t
H(t) = J h(u)du
0

is called the hazard function (Saunders, 1968). From (5.1.1) we have

X
n

H(xn) - H(xn—l) = J h(t)dt = 9 , n=1, 2, ...

Xn—l

and we see immediately that if h(t) is increasing (decreasing), then
the inspection intervals {xi - Xi—l} are decreasing (increasing).

For the exponential distribution with constant hazard rate, the inspection
intervals are constant, and the policy is periodic.

The survivor function F is related to the hazard rate

function by the equation

t
ﬁ(t) = exp{- J h(u)du
0]

and so, using (5.1.1)

= _ -nb
F(xn) = e
or
= _n
F(x ) =4
where
q = e 8 . (5.1.2)

The conditional probability of failure during [Xn—l’ xn] given that

the system was working at time X, 1 is

F(x)) - F(x__;) f(xn_l) - F(x)

1-F(x__,) =
n-1 F(Xn_l)
n-1 n

_9 -gq
n-1
q

=1-q=p say

i.e P(x -1 <T g X I T > xn—l) = p, n=1, 2, ... (5.1.3)



Thus for a given policy the conditional probability of failure during
any inspection interval is constant, and equal to p, where p =1 - e_e .

Each inspection time can be written in terms of p using

(5.1.2) since
F(x)=1-F(x)=(1-p"
% n P
so that if F_1 is the inverse function of F
x =F {l-@p"  n=1,2, ... (5.1.4)

It is more convenient to use p rather than 6 = - &n(l-p)
to define constant hazard policies for a given distribution, and we will

denote the sequence
w1 - amt

by §p(F), or simply Ep if there is no risk of ambiguity.
From (5.1.4) we see that X increases with p so that the
number of inspections performed up to time t decreases as p increases

from O to 1. Also 1im X =, and 1lim X, = o .

p>l >0

Inspection cost

Let N be the number of inspections needed to detect the

failure. Then

POV =m) = B(x,_; <Tsx)=Fx_) - Fx)=q"" -
PN =1) = ¢" ! p, n=1, 2, ... (5.1.5)
Thus, N has a geometric distribution, and in particular the mean
number of insepctions is
E(N) = 02_0 n®tp=1/p . (5.1.6)

n=1

c
The mean inspection cost is therefore El- for both cost model I and
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cost model TII.

Penalty cost

We now derive expressions for the penalty costs for both
models in terms of p, and show that a simple relationship exists between
them. Now

E(XN) = z X PN =n) ,
n=1

so that from (5.1.4) and (5.1.5) we get

n

E(xy) = zl S R (5.1.7)
oo

The expected time between the detection of failure and the previous

inspection E(xN - XN—l) is

«© o« o
_ _ n-1 _ n-2
L Go-x PO =m) = ] x q" p-q ] x_ " "p .
n=1 n=1 n=1
Remembering that Xy = 0, the second term on the right hand side of the
above equation is just q times the first, so that
s n-1
E(xg - %) = (1-9) ] x g »p
n=1
E(xN - xN—l) =p E(xN) . (5.1.8)

Thus provided E(xN) can be calculated we can find the penalty costs
for both cost models:

<, E(XN) - cy E(T) for model I,

and

c,yP E(xN) for model IT .

Example: The Expopential Distribution

We have already seen that like the optimal policy, EP policies

are periodic in the exponential case, and so the best EP policy
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coincides with the optimal policy.

Since the policy is periodic, X, = 0¥, and

X
E(x) = E(Nx) = x EQY) = 5—1
from (5.1.6). But from (5.1.1)
X
J h(t)dt = 8
0
. 1
and since h(t) = 3
%1
—= = o, X = -a ¢n(l-p) .
So that
a 4n(l-p)
E = - =——=PF
(xN) >

For model I the expected total cost is

E(e) = ¢y E(N) + c, E(XN) =< E(T)

B ¢y ac, 2n(1l-p)
= —_— - —_— - oc
P 2 2
which is minimised when
p ‘1
e + 4n(l-p) = =, (5.1.9)

Equation (5.1.9) can be solved numerically to find p. For model II

the expected total cost is

E(c) = - ac, 2n(1l-p)

"Ull_ln
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which is minimised when

Cc ac
p2 p

_ K. /&2 !
P = > + T + K where K = OL—CZ- . (5.1.10)

Table 9 gives the values of p which minimise the expected total

cost, and the minimum cost for models I and II.
Nsle  Huok Q;.‘.q) ath (%'I'lo) Ave Hu Sanme & @“‘2—)
~A/a
a~d (21 &) Weapeckivels Lt p= 1-&,
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5.2 X, policy in the Weibull case

We have already seen that for any §P policy the mean
inspection cost is cl/p and that the penalty cost is c2{E(xN) - E(T)}
for model I and c,Pp E(xN) for model II. We now derive an accurate

approximation to E(XN) in the Weibull case using the incomplete gamma

function. This enables us to compute the §p policy for any
c
K:L
acy

and B 2 1. Tables of optimal p and the corresponding expected cost
are given for both cost models. Given p, the computation of the

inspection times raises no computational problems.

The expected time to detection of failure, E(xN)

From (5.1.1)

X
n

J h(t)dt = - n n(l-p) ,
0

and the hazard rate function for the Weibull distribution is

g-1
h(t) =§ (‘3] s

so that

X = a{-n Rn(l—p)}l/B , n=1, 2, ... (5.2.1)

(Alternatively we could have found X from the equation ﬁ(xn) = qn).
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- _1
e E(x) = z X qn p =
XN n=1 n=1
= o 1(p, B)
where
w(p, B) = 61/8 ) nl/B qn_1 P
n=1
and
6 = - an(1l-p)
Let
¢(p, 2) = ot "y
n=1

for increasing hazard rate distributions

in values of & in the range

0<2 g1l

_ ael/B 2 nl/B qn-l .

(5.2.2)

(5.2.3)

(5.2.4)

and so we are interested

From (5.2.4) we see that

¢(p, &) 1is the 2th moment of the geometric distribution with parameter

p (& fractional).

Note that ¢ 1is an increasing function of &

¢(P: 0) =1c¢ ¢(P: L) g ¢(P, 1) = 1/P s

We can bound the error in approximating ¢(p, &) by a finite number of

terms of the sum (5.2.4) as follows:

Define En by the equation

0

n -1
o

2 n-1

o(p, 2) = n’ q

n=1

so that En is the absolute error in approximating ¢(p, &)

0

first n. -1 terms of (5.2.4). Since ¢ > 1 for O < ¢

0

+
p Eno

relative error will be less than En

0
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[eo]
2 n-1 n-1 d n
E =} q $ ) ng p=p ¥y Y} 4
0 n—n0 n—no n=nO
n
0
d Jgq
E, $Pg3g {—:-}
0, dq |1-q
no—l q
En < q [no + 5} . (5.2.5)
(0]
The right hand side of (5.2.5) tends to zero as n, tends
to infinity. Hence for any € > O we can calculate ¢(p, &) to an

absolute error (and hence relative error) of at most € by summing to
no-l terms where no(p, €) 1is the smallest integer satisfying

no(p, 6)'1{

q
q no(p, g) + p} ge .

Some values of no(p, €) are:

n,(0.98, 1072) = 5
_5 _

ny(0.70, 10°) = 13
-5, _

n0(0.02, 10 7)) =911 .,

For values of p much less than p = 0.7, convergence of Z n2 qn”1

is slow, and since the optimal p 1is to be found by search techniques
the speed of computation is an important factor. However, an
n~1

approximation to Z nz q P can be found using the Euler-MacLaurin

summation formula (Abramovitz and Stegun, 1965):

o0 - B
g(d) = J g(u)du - %-g(o) - nzl (;2)! g(2n 1)(0)
0

It~ 8

j=1

. . 2 n-1 .
As the derivatives of n" ¢ p with respect to n do not

exist at n =0 for & <1, we write ¢(p, &) as
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¢(ps 2) =p +p ] a+H* ¢

j=1

p+p J (et I8 (5.2.6)
j=1

where

6 = - (l-p) .

Using Leibnitz's rule for the derivatives of products, and the

Euler-MacLaurin formula we have

(2]
I+t % - J (1+uw)® e qu - %
j=1
0

-] (2n) !

B 2n~1 {2n-1
2n
n=1

_ } -0 [8), . . (5.2.7)
j J
where

[@]k = x(x~1) ... (x=k+1)
On substituting y = (1+u)® the integral in (5.2.7) becomes

e o]
e J St gy = T(1+2, 6)
0

FT) T+0 . (5.2.8)

0 q 9

Combining (5.2.6), (5.2.7) and (5.2.8) gives

© B n-1 .
r(1l+%, 6) 2n ]
o(p, 2) =B B B0 7 SR Y (—g)d 1]
2 q e1+2, n=1 (2n)! 120

2n~1-j
(5.2.9)

The contribution from the infinite series in (5.2.9) is small when

8 <1 i,e. = n(l-p) <1
1
p<l-=

P < 0.63 approximately.

_72_.



By summing n from 1 to 2 in (5.2.9) we can calculate o(p, &) to
5 significant figures for p in the range 0 < p < 0.63 , and for
p 2 0.63, ¢(p, &) can be calculated accurately by direct summation.

Table 10 gives ¢(p, &) for p = 0,01 (0.01) 1.00, % = 0.0 (0.1) 1.0 .

Using Table 10, <t(p, B) can be calculated from (5.2.3) and

(5.2.4), i.e.

t(p, 8) = {- 2a(l-p}B 4o, 1/8) . (5.2.10)

Optimal p for models I and II

The expected total cost is

Cc

E(c) = —P-l- + cy0 T(p, B) - cy0 T(1 + 1/8) (5.2.11)
for model I, and
!
E(e) = . + p cya (p, B) (5.2.12)

for model II.

By measuring the costs in units of ac, in both cases they

become

K

> + 1(p, B) - I'(L +1/R) ,
and

K
;"’ P T(P’ B)
respectively, where

K =

el
ac, ’

Using the method of search by golden section we can find that
value of p which minimises the expected cost in either case for values
of K and B . For both cost models the inspection times are given by

(5.2.1):
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x = anl/s {- SZ,n(l-p)}llB R n=1, 2, ...

Tables 11 and 12 give the optimal p for values of K and
B. The corresponding expected costs (measured in units of acz) are

given in Tables 13 and 14.

§p policies in the Weibull case when ¢ and ¢, are not known

We now consider the case when the values of ¢ and ¢, are
not known, and an inspection policy has to be chosen by the intuitive
balancing of the number of inspections performed, and the consequences

of undetected failure. If the time to failure distribution is known then
the mean number of inspections and the mean time between the failure and
its detection (or the mean time between the detection of failure and

the previous inspection in the case of model II) provide good quantitative

aids. Both of these functions depend on P. The mean number of

inspections is quite simply 1/p, and Figure 1 gives a graph of
SEG - T) = t(p, ) - I(1 + 1/8)
o )LN H H

which can be used for model I; for model IT we would use Figure 2 which

gives a graph of

E(xN - Xg.p) =p e, B) .

The behaviour of +t(p, B) as p tends to zero

From (5.2.9) and (5.2.10) we have

1/8
e, B =2+ Zort 4 1/8, 0)
© B 2n-1 .
1/8 2n ]
- pb — (-9) [1/8_] s
nzl (2n)! jZO 2n-1-j

- 77 -



€eL80
£698°0
1698°0
L098°0
6658°0
8068°0
H6%8°0
L6£8°0
9ee8°0
£928°0
8618°0
¢Z18°0
6£08°0
6%6L°0
2s¢8.L°0
Y9LL°0
L23L°0
86%L°0
9selL"0
L6TL®0
610L°0
8189°0
6869°0
00¢9°C
2209°0

8696°0
8%%5*0
91¢5°0
LS6%"0
¥99%*0
82¢e%*0
qe6e0
79%€°0
698¢2°0
L%02°0

96°%

L9358°0
$%268°0
6L%8°0
1€%8°0
08€8°0
92¢8°0
6928°0
102870
180
2L08°0
866L°0
L16L°0
0¢e8L°0
LELL®O
%€9L°0
92SL°0
€0%L*0
1L2L°0
G21L"0
£969°0
£8L9°0
0869°0
00€9°0
1609°0
98L6°0

LZns°*0
22Zs*o
9664%°0
€evLy0
6S%%°0
#e1%*0
L5LE°0
%0€€°0
LelL2*0
£561°0

00°%

£9€8°0
L1€8°0
89¢8°0
L128°0
£918°0
5018°0
%%08°0
6L6L°D
C16L°0
LeQL*O
BSLL®D
9L9L°0
¥85L°0
98%L*D
18€L°0
l92L°0
€71L%0
800L°0
0989°0
9699°0
#169°0
00£9°0
9809°0
9286°0
L256°0

9L15°0
LLeY*D
LGLY*0
eisy*0
0%Z%°0
826¢°0
L9se*0
Lele*Dd
86620
9681°0

06°¢

8018°2 &8LL*D
6508°0  €€Ll°D
L0080 LLFL*D
2s6L°0 619L°D
¥5BL°) 6S5L°0
€E€8L°0 55%L°*D
69LL°0 8Z%L°*0
10LL*) LSELl*D
829L°*0 182L°0
16610 202L°0
0L%»L*) B1TL"D
£8EL*D 5203L°0
882L°0 ££69°0
581L"0 1€89%°0
180L°0 22L9°0
5963°0 6099°0
6€£89°0 6L%9°0
23L9°3 00€9°0
09¢9°0 L613°*0
68€9°0 6€09°0
1129°0 84860
0109°0 199s°0
¥8LG°0 E%%5°0
0€56°0 L615°0
6£26°0 816%°0
006%°0 S65%°0
82L%°0 21%%°D
Lev%*0 €1Z%°0
%92%°0 £66€°D
€30%°0 8bvLE"D
B3LE*0 1iv%€"0
9%¢e°d 151e°0
0962°0 ELLZ°D
€G%2°0 10€2°0
LSLT1°0 €5991°0
00°¢ 06°¢
NOILNgIyiLsSIa

L9el*0
21el*0
$52L°0
S6TL*0
ZET1L*D
930L°0
L669°0
6269°0
6¥B83°0
59L.3°0
£899°0
£5595°0
86%3°0
L5€3°0
1623°0
SL19°0
250320
B16G6°0
L1660
B195°0
8wHhG* D
09326°0
2506°0
028%°0
LGG%*0

662%°0
G80%°0
0%6€°0
959¢°0
0L¥%e*0
71280
1262°0
€ELs2°0
1%12°0
9%51°0

20°¢

I1IN8I3M

0T1L°0
#60L°0
L669°0
9¢69°0
0889°0
8089°0
6€L9°0
9999°0
0659°0
1169°0
92%9°0
LEEDF*O
S%29°0
S%19°0
8e09°0
6265°0
%086°0
vL95°0
€ess°0
Z3es6°0
91260
Ge06°0
YeE8%°0
119%°0
65e%°0

€90%°0
Lo6e°0
1ele*0
9eG6e 0
12ec*0
8L0E"O
86LZ°0
BovZ*0
L5020
06%1°0

SL°1

£189°0
LGl9°C
6599°0
6€£99°0
9L48G°0
1169°0
€E9%3°0
1L€3°0
86¢29°0
£129°0
LETS"0
6509°0
156570
0986°0
96L6°0
9%95°0
626570
#0%5°0
8925°0
221670
€96%°0
68L%°0
B6SY*0
c8e#%°0
SH1%°0

148€°0
LT1Le*0
065€°0
99¢€°0
291¢e*0
£e62°0
6992°0
Lsec*0
8961°0
1e%1°0

06°1

¥04 d TVWIL1dO

1

£9%9°0
80%#9°0
16€9°0
%629°0
2£2é9°0
8919°0
Z019°0
Ze09*o
6565°0
£€886°0
£086°0
81.6°0
0e9s°*0
9€86°0
LeEYG* O
2€es*o
02es*0
0016°0
1,.6%°0
eesy%*0
289%°0
L1S8%°0
LEEY*O
9¢ciy*0
116€°0

£59€°0
606€°0
€6eet0
181¢°0
0662°0
9LL20
6292°0
Le2Z2°0
ZL81°0
L9e1*0

621

1330W

£%09°0
Ce65°0
9¢6G6°0
61L85°0
0286*0
86L6"0
66960
829%°0
6665°0
G8%<°0
Ci%s°0
1£es°C
L%26°0
8G16°C
$906°0
Ge6%°0
098%*0
8%L%°Q
L2G%°0
8649470
8Ge%°0
#0Z%*0
LeCH"0
1¢8¢°0
£59¢°0

so%e"0
2LZe"0
L21¢€°0
6962°0
£€61L2°0
666c°0
L9el*0
LE0C*O
6GLT°0
0621°0

0o°1

1T @19®L

09°0
86°0
95°0
%60
250
0¢°0
8%°0
9%°0
7%°0
%0
0%°0
ee°0
CANY
€0
Ze*0
0e*o
82°0
9270
%2°0
Zeto
020
81°0
91°0
71°%0
210

01°0
60°0
80°0
L0°0
90°0
s0°0
¥0°0
€00
<00
10°0

- 78 -



0%66°0
ZE66°0
2266°0
6066°0
2686°0

L986°0
0686°0
6286°0
1086°0
£9L6°0
0T1L6°0
6296°0
%6%6°0

L2260
11260
%616°0
LL16°0
0916°0
12160
1216°0
1016°0
0806°0
8506°0
se06*0
1106°0
9868°0
6568°0
26870
2068°0
ZL88°0
0%88°0
%088°0
1,180

0s°¥

L266°0
8166°0
L0650
1686°0
1.86°0

1%86°0
1286°0
G6L6°0
£9L56°0
61L6°0
L596°0
%966°0
80%6°0

6016°0
1606°0
2L06°0
£6506°0
£€206°0
€106°0
i668°0
6968°0
5%68°0
2268°0
Le88°0
0L88°0
Z%88°0
£188°0
€8.8°0
16L8°0
g1.8°0
€898°0
L%98°*0
8098°0

00*%

(Q3NNTLINOD)

0166°0
6686°0
5886°0
3986°0
1%86°0

s086°0
18L6°0
1¢L6°0
21160
6G696°0
9866°0
9L%6°0
L626°D

L5680
L€68°0
L168°0
L688°0
€488°0
0588°0
1288°0
20889
9LL8°D
6%L8°0
22lL8o
Z698°0
2998°0
0€98°0
L5658°0
£€568°0
L268°0
88%8°0
64%%8°0
L0%8°0

06*¢

»B8B5°D
0L85*2D
2586°)
6¢86°0
L6L6°D

£5L6°D
€2L5°D
9895°0
BZ96°0
%LG65°0D
G8%5°0
56E6°0
S%16°2

66L8°0
LELB®D
%1.8°0
0698°0
§998°0
0%98°0
$198°0
9863°2
8568°0
8268°0
L5%8°0
59%8°0
2e%2°0
B6£8°0
2%¢8°0
%2¢8°0
$828°%0
¥%28°0
1228°0
9618°0

20°¢

£%86°0
?286°0
22856°D
NLLS*D
62L6°%0D

cL96°0
YE95°D
LBGS*D
92656°D
LY%5°2
BEEE*O
18150
?e68°0

©64%8°0
684%8°0
5%4%8°0
L1%8°0
06€8°0
19¢8°0
ceEB8°*0
2J¢8°0
0L28°0
gegZ8*0
%028°*2
0L18°0
vel1g*0
9608°0
LS0B*0
9108°0
20l6L°D
2€6L°0
»88L°0

. 9€8L°0

0¢°¢

0LLS5°0
YYL6°0
T1L5%0
6995°0
£196°0

Legs5°0
33%5°0
YZH%5°D
L7es°0
I%Z5° D
0115°0
8168°0
9298°0

8218°0
0018°D
ZLos*o
£%08°0
s108°0
Z236L°0
066L°0
L16L°D
£38L°0
8%8L*0
ci8L°0
LLL®D
SeLL*d
G59L°0
?59L°0
019L°0
§96L°0
61S6L°0
Lyl
02%L*0

d0°¢

NOTLINGIYLISIA T1IN8I3M

11L6°0
6L96°0
6€96°0
6856°0
£266°0

2ev6°0
hle6°0
c0e6°0
£1¢6°0
6606°0
L%68°0
SELB8*0
81%8°0

168L°0
<98L°0
€e8L°0
£08L°0
LLL™O
6ell*0
90LL*0
2L9L"0
LEFL*O
L09L"0
%36L°0
926L°0
68%.L°0
Y9%L°0
Z0%L*0
86¢el*0
T1eL°0
%92L°0
S12L°0
¥91L°0

GL°1

€296°0
%8G66°0
Ges6°0
YL96°0
76€6°0

1L826°0
5126°0
Sel6°0
£e06*0
£068°0
ceL8*o
66%8°0
2618°0

L0FL°0
GLGL"0
9%6L*0
S16L°0
€e8%L*0
06%7L°0
91%L°0
18€L°0
SHel*0
80€L°0
0L2L°0
1€2L°0
161L°0
651L°0
90T1L*0
190L°0
S10L°0
L969°0
L163°0
9989°0C

06°1

¥04 d TVYWILdO

1

88%5°0
8eEV6°0
Lie6°0
c0e6°0
5026°0

8L06°0
L668°0
00&8°0
£€8L8°0
Fe98°0
6%%8°*0
Z618°0
8Z8L°0

Ls2L*0
622L°0
961L°0
991L"0
CeETL*D
660L°0
%90L°0
620L°0
£669°0
9669°0
8169°0
0889°0
8£89°0
LELITD
€6L9°0
60L9°0
£999°0
5199°0
99590
91690

6z 1

1330W

$9¢26°0
2026°0
9216°0
2e06°0
$168°0

%918°0
0L98°0
8558°0
$Z438*0
0923°0
€508°0
082L°0
10%L°0

1289°0
164370
09L9°0
62.9°0
L6990
%999°0
0€99°*0
G659°0
09¢9°0
€269°0
98%G°0
Ly%3*0
LO%9°0
99¢%°0
%2€9°0
CCES* O
Le29°0
1619°0
£€719°0
%6090

00°1

TT ®19=l

00°01
00°6
00°8
00°L
00°9

00°¢9
0s°%.

00°%

0s°¢
co*¢t
06°2
00°¢
06°1

00°1
860
8670
760
¢6°0
060
288°0
28°0
780
¢g*o
08°0
8L°0
9L°0
%L*0
<L
0L°0
89°0
99°0
79°0
Z9°0

_79_



LL39°0
1659°0
€069°0
Z1%9°0
00€9°0
12290
12190
L109°0
6065°0
L6LS*0
2896°0
19¢¢°0
IR AR
L0€ES"°0
14160
6206°0
188%°0
9cLH%*0
296%°0
06e%° 0
L02%°0
£E10%°0
%08¢€°0
6Ll5¢€°0
beee0

290€°0
8162°0
13.2°0
£662°0
11%2*0
c1e2eto
6861°0
€eLl*0
SZ%1°0
8101°0

06°%y

»6569°0
1169°0
SZv9°0
8€e3°0
S%29°0
1619°0
2609°0
16660
9%86°0
Lels*0
%296°0
L048G6°0
9BES*O
8626°0
G216°0
L86%°0
Z%8%°0
069%°0
625%°0
09¢€%°0
081%°0
686€°0
£EBLE"D
196€°0
02ee*0

€50£°0
8062°0
€6L2°0
9852°0
90%2°0
8022°0
9861°0
TELT°0
$Z%1°0
6101°0

004

96%9°0
S1%9°0
1e€9°0
9%29°0
8619°0
7309°0
1L66°0
2L8G6°0
1LL8°D
6596°0
§695°0
T9%6°0
£2es o
661¢°0
0L06°0
Ge6%°0
€6L%°0
54%9%*0
88%%°0
22e%°0
S%1%*0
8S6€°0
LGsLE*D
6eseQ
10€€°0

8e0g°0
§58<2°0
A RAN
Lis20
66€2°0
20220
2861°0
0ELT*D
SZ%1°0
6101°0

06°¢

SLET"D
8629°0
81¢9°0
9¢19°0
0609°0
€60
0L8s*d
9LLSD
LL9G*D
9L56°D
0L%SG*D
03¢5°0
R XA
6215°D
0206°2
0L8%°D
AW A
835%*D
EAR A ]
SLZH*D
€210
026€°D
£2LE"D
016e°D
L1z2e?d

512¢°0
8L8Z°0
Lzre+?
59462°0
58¢2°0
§512°0
LL6T*D
Q2L
%210
0221°0D

00°¢t

92¢29°0
25190
SL09°0
9566°0
§166°0
7e85°0
EvLS*D
£595°0
6665°0
29%¢*0
09¢s°0
6626°0
G%16°0
1€06°0
T16%»°0
68L%°0
£S9%°0
B14%°*0
L9ev*0
212yt o
3%0%°0
598¢°D
LL3E"D
0L%e*0
£Ev2e0

1662°0
£58¢2°0
§0LZ2°0
9v52°0
eLeeZ*o
¢812°0
8961°0
02L1°D
02%1°0
5101°0

as*¢

6209°0
6665°0
L3860
€185°0
LELS®D
L695°0
SL56°0
06%6°0
10%6°0
60€6°0
?1¢6*0
y116°

0105°0
2d36%°0
88L%°0
639%°0
YHGah 0
TT%%*0
1L2%°0
£E21%°0
¥26e°0
76Le°0
119€°0
clve0
E51E°0

6v62°0
5182°0
1L92°0
L152°0
8€2°0
13212°0
1561°0
BJILT*D
¢1%1°0
9101°0

00°¢

NOITINGIYLISIO 17NgI3M

5066°0
LE£8G6°0
g9LG*0
L695°0
£Z96°0
9%5G6°0
LIvG*0
68€G6°0
00€s°0
11250
6116°0
€206°0
226%°0
L18%°0
80L%"0
265%°0
1L%%°0
£EPe%°0
Loe%*0
£€90%°0
606€°0
€vLE*D
§96¢°0
0LEEL* O
9¢1e°0

L162°0
98L2°0
9992°0
H6%2°0
8ZeZ*0
%H12°0
LEBT®O
9691°0
YCH1°0
1101°0

sL°1

%GLG°0
0695°0
£296°0
§566°0
Y8550
11%6°0
Gees*o
9626°0
YL16°0
680G6°0
1005°0
606%°0
€18%°0
21L%°0
909%°0
S6hH°0
8LEY"D
§6Z%°0
¥Z1%°0
¢86E°0
9¢8€°0
9L9€°0
£06€°0
Y1€€*0
901€°0

%1l82°0
S%L2°0
€092°0
09%2°0
8622°0
8112°0
S161°0
8L91"0
06€T1°0
c001°0

06°1

Y04 d IVWILAD

Z

#956°0

. £045°0

0¥%G*0
€LES"O
LOES* O
8e26°0
3G616°0
1606°0
£105°0
2€6%°0
8¥84%°*0
09L%*0
699%°0
£LSY° 0
SLlyy 0
39¢€%°0
§6Z%*0
LETY* O
110%°*0
8.8¢€°0
9elE*0
286€°0
91%€°0
Y€2€°0
Y£0€°*0

6082°0
$892°0
£66¢2°0
80%2°0
16220
9.02°0
8.81°0
L%91°0
90e1*0
9860°0

521

1330

LDEG*O
6%26°0
06156°0
6216°0
3906°0
00050
28640
2e8%°0
68LY*0
€TL%*0
£EE9y*0
1¢6%°0
29440
vlev*0
6L2%°0
6L1%°*0Q
2L0%°0
296¢°0
98¢0
81.¢€°0
£B86E*0
LEYT®O
6L2¢°0
L01¢€*0
9162°0

<0L2°0
%86<°0
LS%2°0
61€2°0
891¢2°0
00020
0181°0
685T°0
81e1°0
1$560°0

00°1

¢l ®19B1L

09°0
86°0
96°0
%50
250
0g*0
8%"0
9%°0
7%°0
Z%t0
0%°0
8¢°0
9¢°0
KA
ce"0d
0e*0
8Z°0
92°0
%2°0
2¢*to
0Z-°0
81°0
31°0
¥1°0
210

01°0
60°0
80"0
L0"0
90°0
s0°0
%0°0
£0°0
20°0
10°0

...80...



6¢66°0
8166°0
%066°0
G886°0
8686°0

9186°0
GBLED
79L6°0
1896°0
1096°0
99%6°0
9¢6°0
3088°0

%56L°0
9064°0
1lsS8L°0
908L°0
€G4LL°0
00LL"0
&%9L*0
L8S8L°0
6CsL°0
69%L°0
LO0%L°0
€7el*0
LLZ2L°0
01¢2L°0
0%1i°0
690L°0
$669°0
6169°0
1%89°0
09L9°0

0s°#%

2165°0
2066°0
€886°0
2586°0
0e856°0

08L6°0
Y9L6°0
96956°0
6296°0
2es6°0
Z8¢6°0
£el6°0
3898°0

6e8L°0
164L°0
€EvLL*0
£69L°0
ZHL*0
066L°0
9€ESL"0
0g%L*0
£EZHL"0
¥9¢l°0
¥0€L*0
¢heL*o
BLIL"®O
¢11L*o
790L°0
GL69°0
£06%°0
6289°0
£619°0
$L99°0

004

(Q3INNILINOD)

€685°0
8L86°D
L686°D
0tg8s°D
G6L6°D

0el6°D
8896°0
1€96°D
£666°0
ZHYH6°0
%L26°0
60056°0
£%68°0

€0LL*D
LG3L°D
609.L°0
196.L°D
1164°0
09vL°*0
80%L*0
HG8¢L*0
862L°0
1v2L°0
281L°0
221L*0
190L°0
1669°)
1€69°0
%989°0
G6L%°D
€2.9°0
0699°0
»L69°D

0g°¢e

£986°0
cv856°0
L186°0
Z8Ll5°D
£ELS "D

0995°0
8095°0D
o0vss5°d
6E7%6°0
1¢¢€6°0
€eele*td
€%¥88°0
83¢8°0

5e6L*0
S5%L°0
6%%L°D
20%L*D
RGEL®D
20EL°D
#G2L*D
232L*D
87T1L°D
£€50L°0
LEDL®D
6L69°0
6169°*D
BSB89 "D
S6.9°D
0eL9*Dd
£399°0
#669°D
£€263°0
0S%3°0

00°¢

£E186°0
98L5"0
£EGL6°D
80L6°2
$%956°0

£5G96°D
68%6°0
LO%5°D
5625°0
Z616°0
€EY68°0
££98°0
g718°0

BEEL*D
G62L*D
162L°*D
90ZL 0
551L°0
Z11L0
€90L°0
£10L°D
¢969°0
0169°0
9583°0
0089°D
EH#L9°D
§899°0
§299°0
£969°0
56%9°0
vERI*D
93€9°0
L6239°0

062

92.L5°0
6895°0
£v96°0
£€855°0
1265°0

£3€5°0
¥3€5°0
%025°0
9L05°0
L268°0
LL33°0
06€3°0
Z98L°0

6L0L°0
BEOL®D
L569°0
¥563°0
J163°0
§989°0
6189°0
SLL3°]
£E2L9°0
2199°0
£293°0
0L69°0
L199°0
193%9°0
S0%3°0
9%€3°*0
L823°0
9229°0
Z313°0
9509°0

d0°¢

NOILINGIYISIAQ 17ING13M

9696°0
2196°0
8686°0
L8%56°0
Z6£6°0

8626°0
0L16°0
1906°0
226870
ZvL8°0
2068°0
691870
Z89L°0

8169°0
0889°0
BEBS*O
L6L9°0
YSLI°0
1149°0
2993°0
1299°0
7L89°0
92590
LiHaco
290
GLES®O
12€9°0
L9290
1129°0
?519°0
%609°0
€€09°0
0L6G5°0

SL°1

%566°0
¢096°0
lev6°0
£€5E6°0
€260

Z606°0
%668°0
%188%0
62L8"0
€eES8*0
98280
646L°0
89%L°0

92L9°0
8899°0
6%99°0
6099°0
8959 ° 0
L269°0
¥8%9°0
0%%9°0
56€£9°0
6%£9°0
00£9°0
76290
5029°0
%619°0
1019°0
L%09°0
2665°0
€e6s 0
LLBS*0
9185°0

0s*°1

04 d TvWILd0

Z

10%6°0
8ee6°0
6526°0
19160
7060

7988°0
95.8°0
9298°0
LG%8°0
69¢8°0
61680
G.L9.L°0
€0ZL°0

06%9°0
£e%9°0
91%9°0
8L¢9°0
6€£9°0
6629°0
6629°0
L1Z9°0
2L19°0
0ET9°0
$809°0
6£09°0
2665°0
%%6%°0
%6860
€489°0
06.46°0
9€LG°0
08950
£295°0

Gg°1

1300w

1916°0
€806°0
c668°0
$L88°0
ggLe*o

1%58°0
€Zv8°o
%828°0
L118°0
€16L°0
ce9L°0
0ceL*0
1989°0

081%9°0
9%19°0
1119°0
sL02°0
8<09°0
0009°0
296¢°0
2Z65°0
2886°0
0%86°0
86L6°0
6%LS5°0
0TLs°0
%996°0
L1850
£966°0
02¢6*0
69%5°0
91%6°0
¢%€S*0

00°1

¢T 919®BL

0001
00°6
oo°8
00°L

00"

00°¢
0s*¥
00°*%
0s°¢
00°*¢
0g*¢
00°2¢
0¢°1

00°1
86°0
960
¥6°0
26°0
06°0
£8°0
98°0
#8°0
28°0
08°0
8L°0
9L°0
L0
ZL°0
0L°0
89°0
390
%90
29°0

...81_.



$9L6°0
9e56°0
c0E6°0
€L06°0
0%88°0
9098°0
CLES"O
€el18°0
268L°0
€69L°0
01%L°*0
S9TL*0
81690
L999°0
%14%9°0
8519°0
868G°0
£€E9s°0
¥9€6°0
6806°0
808%°0
616%°0
T2Z%°0
016€°0
985¢€°0

¥4%2¢€°0
¥90c°0
L182"0
08%Z°0
ZL%2°0
0s2Z2°0
8002°0
BELT®O
€cH”1°0
LT01"°0

0s*%

0010°1
9986°0
1€96°0
a6€6°0
LST16°0
L168°0
9.98°0
»E%8°0
6318°0
Zv6L*0
£E69L°0
ZHHL*0
881L°0
1€69°0
1L99°0
LO%G9°0
6€19°0
L38G6°0
6855°0
s0€es°0
?106°0
STLY*0
G0%%°0
€80%°0
L7l€°0

06tc°0
202¢e°0
L00€°0
108¢°0
#78G62°0
26€2°0
860¢2°0
s181°0
G8%1°0
6601°0

00°%

€060°1
€920°1
2200°1
08L5°0
gEG66°0
6826°0
Z2%056°0
26180
0%68°D
98¢28°0
0e08°0
1L4L°0
60GL°D
€Y2L*D
%169°0
10L9°0
%2%9°0
i719°0
€586°0
85660
§525°0
%6490
0Z29%°0
#8Z2%°*0
2e6¢°D

865¢€°0
19¢€°0
961¢°0
0%6¢°0
21Le*0
L9%2°0
002<¢°0
2061°0
%461°0
3011°0

06°¢

L560°1
6%L0°1
0060°1
062d°1
LE66*D
£EYL5°0
LBY5*D
82Z5°0D
1363°0
%0L8°0
LE%8°*D
8918°0
G958L°0
619L°D
6eeEL®D
®50L°D
Y9L9°0
69%9°0
L9T19°D
8686°0
0%86°0
€125°0
#L8%°D
0264y 0
6%1%°0

Gale*d
9HSE*D
62€€°0
101€°0
6682°0
0092°0
LT1EZ°D
100270
2€91°0
8611°0

20°¢

g191°1
6GET*1
6601°1
8e80°1
7L50°1
80e0°1
0%00°1
0LLS*0
L5%6°0
12Z25°0
1%#68°0
8698°0
ZLEB"®D
1808°0
98LL°0
98%L°0
181L°0
8989°0
6%69°0
2229°0
9886°0
6£56°0
8L15°0
£08%°0
Lo%%*0

L86E°D
S9LE*D
€e6e°0
582¢€°0
1¢0€°0
%GLC°0
26%2°0
s112°0
12L1°0
9121°2

06°¢

ZZHe*1
0st1e*1
SL81°1
B6G1*1
61e1°1
Le01°1
£GL0°1
993%0°1
GL10°1
2885°0
%365°0
£825°0
8L68°0
L398°0
15¢€8°0
1£08°0
coLL*D
69¢€L°0
I A
9L99°0
S1e9°0
1%65°0
£665°0
B%16°0
2Lyt 0

832%°0D
6¢0%*0
8LLED
s1se*0
9ele*0
leee*o
1192°0
LH22°0
£281°0
23210

00°¢

L262°1
7%92°1
69¢€C°1
2L02°1
€8LT"1
16%1°1
S6TT1°1
L680°1
66590°1
0620°1
1866°0
1396°0
6%¢6°0
9206°0
8698°0
€9£8°0
2208°0
YL3L°0
L1el*0
1669°0
€L89°0
£€819°0
BLLG®O
$6es°0
606%*0

veEHvH°0
¥81%°0
226€£°0
L73¢€°0
SeeEE°0
£e70€°0
Z0LZ*o
€2el*0
1881°0
61¢1°0

SL°1

NOILNGI¥LISIQ 1IN813M ¥04 1S0D

62se°1
gece°1
Leed* 1
8e9¢Z°1
seel°l
6202°1
T2L1°1
gO%T1°1
Z60T1°T
€LL0°1
6%%0°1
1210°1
88L6°0
6%%6°0
s016°0
?6L8°*0
96¢8°0
ceog*o0
959L°0
1L2L°0
%189°0
%9430
8€09°0
£666°0
%215°0

SZo9%%°0
Z9eg%°0
980%°0
Le6le*0
T6%€°0
£91€°0
§08Z2°0
80%#2°0
L%61°0
09€1°0

0s°*1

03123dX3

9LZH*1
996¢€°1
259¢e°1
Feee* T
910¢e°1
76921
89ec*°1
ge0Z°1
SOLT"1
Lol 1
62011
LL90*1
S2e0*1
LG66°0
20960
1€2¢6°0
2688°0
79%8°0
L5080
669L°0
6elL°0
£089°0
25€9°0
0886°0
£€8¢s°0

968%*0
9L5%*0
#82%°0
8L6E*0
#69¢°0
80€€*0
1€62°0
1162°0
§¢02°0
0T»1°0

621

T 71330W

1L26°1
8e6%° 1
€0%%°1
79g%° 1
226e° 1
LLse1
geZe*1
#182°1
L16¢°1
6s1e1
88L1°1
glvi°l
LE0T*1
£€690°1
1920°1
Z986°0
6G6%6°0
6£06°0
Z198°0
7L18°0
ZalLl o
6GZL*0
0LLG*0
£929°0
0£L6°0

29160
£98+%°0
0cs%*0
22e2%°0
Gl8e°0
%08€°0
101e°0
£69¢°0
Ge12°0
Z8%1°0

00°1

€1 °19elL

09°0
86°0
96°0
S0
2s*0
0s°0
8v*Q
94%°0
%50
Z%°0
0%*0
8e°0
3¢£*0
VAZY]
VAR
0g°0
22°0
9¢2°0
%2°0
22°0
cZ°o0
81°0
91°0
%10
Z1°0

01°0
60°0
80°0
L0*0
G0°0
G0°0
%00
£0°0
Z0°*0
i0*0

- 82 -



$986°01
108s°6
LeLrs*s
€¥9s°L
£€%65°9

Zensts
06e0*¢
6626 %
SL1I0*%
%906°¢
ce66°2
19L%°2
5e66°1

202%°*1
G86e°T1
8oLle"1
0gge"1
ceELE"1
71te°1
c682°1
Gl9¢"1
SevZ°1
sgce°1
210¢°1
26L1°1
0LeT"1
irel*1
€211l
6680°1
1501
8%%0°1
1220°1
%566°0

06y

§869°0T ZTSL°01 0SL8°0T1 88%0° 11 E0TETT 2L6%°11
8065°6 91%L°6 9298°5 (0Z€D*01 %$8Z°*0T1 8694%°01
61%9°8 L0E€L°*8 98%8°8 62106 4L62°6 GOE%*6
81e€9°L TIBIL*L %HZ€B8°L 0165°L §622°8 G06£°8
BET19°9 CEOL®9 HEIB*9 Y%¥G6956°9 #E88T1°L T4vhe*L

EG09°G %689°G  906L°G L%ES*S E£4%1°9 €£682°9
L960°G 6%L1°6 1LL¢°G L91%*S 9B19°*'S 9/GL°G
0L8G°% 6299°% 619L°Y G968°% 6580°G 2222°6S
BGLOY Z6%1°% Guv2°%  hHElE*hy ZLG5°H  2289°%
§296°¢ 0EE9°€E  1%2L°€ H9%8°*E G510°*% E£9€1°*%
99%0°¢ SGET1°€ G661°€ ZHIE*E 6Y%LY%°"€ £286°¢
§9¢26°¢ 168&°Z 0699°2 GHlL'Z 9026°2 1L10°¢€
B666°1T 8950°Z 0521°2 1€22°2 €1G€°*2 6%ER"2

B09%"1 Z016°T 8ILS"T L0G9°1 096L°T1 +£z8°1
88EY°T 8.8%°T 68%5°T 2L29°'1 &Ie€L*1 086.°1
BIIY 1 HG69%°T 0926°1 GEQF*1 [90L°T1 G2LL°1
LP6€°T 0g%H*1 0€06°T B86LG°T B8I83°1 69%L°1
92LETT 502%°T 008%°1 096G6°1 £969°T ¢€12lL°1
YOSE T 6L6E°T 89GH"T 1Z€6°*'1T 61€9°1 6669°1
¢8ZE°T  €6Le°T Lee%"1 2806°1 8%909°1 9699°1
6S0E°T 926€°T #21%*1 14%8%*1 9185°T 9GEH9°1
9€82°T 86Z€°T TLBE"T 009%°1 €956°1T HL19°1
C19Z°1T 0LO0E'T1 LE9E"T LGEY"T 60EG°T 2165°1
B8eZ°T T1%82°T 2Z0%€E°1 4HIT%°1 €605°1 8%96°1
E9TZ°T TT19Z°1 991€°1T 0L8€°T Lsl%*1 €8€6°1
LEGTT TBEZ T 6262°1 S2%6°*1T 6EG6%°1 L116°1
OTLT"T1 061Z°T 2592°1 8LEEL T 6L2Z%°1 6%8%°1
E8%1°T L161°1 €5%2°T DQJEI€*T 610%°1 6LGH°T
$GZTI°T ¥B89T1°1 €1¢2°1 2882°1 (LGLE°1 80¢v°1
9201°1 SHYT°T  2L61°T 1€92°1 €5%E°1 9¢0%°1
96L0°T ST21°T 0€L1°1 08g2°1 822€°1 19.¢°1
§960°T 6L60°T 1BYI°T LZ1Z2°1 1962°1 &84%e*1
EEEO T Z%L0°T €%21°1 €L81°1 €592°1 102¢°1

00°*% 06*¢ 00°¢ 96°2 00°*¢ SL°1

(G3NNTIND3D) NOILN8IY¥LISIQ 1INGI3M ¥04 1S0D

29%L°11
060L°01
0659°6
6909°8
1L%6°L

89L%*9
$9¢6" S
L16€°%
Y1%8°*%
0%82°*%
LTl ¢
glel e
8Les"2

2606°1
88L8°1
%268°1
86Z8°1
266L°1
YZLL*1
SS%L°1
?8TL"T
£169°1
0%99°1
s9e9°1
6809°1
2186°1
£es6* 1
£€626°1
0L6%°1
989%°1
00v¥v*1
Z11%°*1
2e8e"1

06°1

J3123dX3

9¢60°21
69t0°11
0%L6*6
7£06*8
62¢8°L

v62L°9
coL1*3
SL1G"S
22%60°¢
ZBLY Y
Tee8 ¢
6Z62¢
16992

0800°¢
#086°1
L2s6*1
65261
69682° 1
8898°1
S0%38°1
1218°1
9e8L"1
6%GL"1
192L°1
1,691
0899°1
98€9°1
1609°1
Y6161
S6%6°1
7616°1
cegy* 1
G86%*1

6Z°1

T 1300W

6019°21
082611
89EY°01
96EE"S
512¢°8

LO60" L
L1t g
89L6° G
Z8%E°* S
ce%lL"%
€9el%
2606°¢
Yiv8°2

294712
89112
€180
9L60°¢
8ic0°¢
65L66°1
BL96° 1
SLe6" T
2L06" 1
99L8°1
85%8°1
6%18°1
BE8LT
SRAY R
012L°1
£€689°1
€169 1
16291
L2661
ce9s1

00°1

€T °I9BL

00°01
00°6
co*s
00°L
00°9

00°¢s
0s°Yy
00°*%
0s*t
0o*¢
0g°2
00"2
0s°1

00°1
86°0
96°0
760
26°0C
06°0
€8°0
98°0
#8°0
Zs8*0
og°o
8L°0
9L°0
%L°0
aLeo
oL*0
89°0
9%°0
%3°0
Z9°0

_83_



8629°1
966¢°1
1696°1
18e€a°1
L306°1
8%L%°1
Yehve1
Y60%°1
6sLE"T
Live*1
890e°1
€1Lect
ehel*1
LL6T*T
G661°1
€021°1
66L0°1
€8¢c0°1
2966°0
5066°0
0v06°0
76568°0
Z%08°0
00sL*0
2269°0

L629°0
¢965°0
0195°0
Leds o
LEBY*D
SO0%%*0
826€°0
16ee°0
86120
0%61°0

0s°%

s8e9°1
080%°1
0LLG°1
L6%6°1
6e16"1
918%°1
88%%°1
5611
918¢c°1
Tive*1
8l1e°1
6642°1
Z6eet1
9102°1
TEGT T
Se21°1
8280°1
60%0°1
§L66°0
6ZG66°0
2506°0
L9SB8°*0
2508°0
806L°0
9269°0

6629°0
£966°0
01950
Se2s°0
segyv°0
10%%*0
§26e°0
LBEE*O
£SLC°0
9e61°0

00°%

S6%9°1
&819°1
1186°1
£666°1
0ees 1
20691
1L6%°1
gely 1
688¢°1
O%se"1
€837€°1
e182°1
8%%2°1
8902°1
8L9T"1
8L21°1
L980°1
evH0°1
c000°1
1666°0
6106°0
$868°0
L908°0
616L°D
$£69°0

€0€9°D
§966°0
1195°0
6e26°0
YEB8H 0
66ev 0
126€°0
2g8ee*d
6%L2°0
1c61°0

0s6°¢

6EFI T 6€89°1
€2e9°T  6169°1
€009°1 8819°1
08396°1 Lg8¢6°1
T4€S°T  1266°1
B10¢*T 1815°1
08G9%°1 gggv*1
LEEYTT vBuvh°T
Bgee*1 LZ1%°*1
CEQE*T H3Le°1
0L2e°1T gseeE"T
1062°1T B10€°*1
€262°1 gg9z*1
BeEl2*1T 0%22°1
€E¥LT°T BEBI 1
BEET*T gevi*1
1260°1 1001°1
2s%0°1 g960°1
6%00°1T ST10°1
6865°*3 8%96°0
cl15°D %9160
£E198°0 6598°0
05080 62180
LESL®D 69SL°0
8¥59°03 &€L69°0

€1€9°0 2€€9%9°*0
€L65°) 0665°0
L19%°*0 0€£9G6°0
6€CS°0 6%25°0
SEB8%°03 E£%8%°0
66€%°0  HO%%°0
516c°*0 2Z6t°0
6LE£€°0 08¢€e*Q
SHLZ°0 €%L2°0
L2610 %Z61°0

20°¢ 06°2

BETL T
§389°1
8I%3°1
9219°1
08LG 1
6Z%5°1
€L05°1
TTLr 1
eyl
1lee°1
0s65€°1
£22¢e°1
go8e¢°1
G0HZ°1
¢s561°1
6361°1
Sell°1
8890°1
L2zo*1
16450
9525°0
1v.8°0
10¢28°90
1e9L°D
920L*0

2LE9°0
L2090
£996°0
BLCG*D
938%°0
£CH9*0
LESE"D
05¢e°0
06L2°0
L2610

20°¢

66eL°1
810L°1
€L99°1
%2€9°1
1,.66°1
€196°1
062s°1
188%°1
L06%"1
921%°1
6ele*l
Shee*l
e%62°1
2eseg- 1
111
2891°1
o%21°*1
98.0°1
61€0°1
9¢85°0
EEE6°0
1188°0
£92€8°0
L89L°0
%L0L*0

S1%9°0
S909°0
3695°0
L0eS*0
€68%°0
ShHyv*0
§56¢°0
q0%c*0
09120
7e61°0

SL*1

NOILNGIY¥LSIC IINgI3IM ¥04 1S0D

199L°1
11el°1
8669°1
0099°1
8ez9*1
0486°1
864%6°1
021s°1
Leiv*l
Lg%t 1
T66g°1
Lyse"1
9ele* 1
91L2° 1
1822°1
L7811
96£1°1
£e60°1
954%0°1
29650
16%6°0
6168°0
19¢€8°0
SLLL"O
ZsiLt0o

€8%9°0
L219°0
?6LS*0
65€5°0
€e6%°*0
98%%°0
066£°0
Yevec0
£€8L2°0
8%61°0

061

J2123dX3

ARE AN
0cLl*1
s8eL°l
S10L°1
Cv29°1
1929°1
9L86°1
98%G6°1
1606°1
889%7°1
6LZ%° 1
£98¢°1
beve*l
F00¢€°* 1
#962°1
1T12°1
Ly3T1°1
TLT1T°1
0850°1
€L10°1
LY%36°0
10160
6268°0
8Z6L°0
06cL"0

50990
1%29°0
0986°0
LS%S°0
L20s°0
G9s%°0
650%°0
Z6%¢°0
628¢°0
0861°0

GZ°1

¢ 13304

T488°1
26%8°1
60138°1
12LLt1
6celL 1
1€69°1
6259°1
0219°1
90Ls°1
§826°1
Lsg%° 1
12%%°1
2L6€° 1
s2se* 1
€901
0662°1
s012°1
L0911
S601°1
9950°1
8100°1
8%%6°0
£€688°0
12280
€96L°0

1682°0
ZL%%°0
9L09°0
LG96°* 0
11260
1¢l%°0
L0Z%"0
819¢€°0
1€62°0
1502°0

00°1

YT °19elL

09°0
8BS0
9¢°0
%60
26°0
050
8%°0
9%°0
7%°0
A
0%*0
Be°0
9€°0
ve°0
Ze°0
0g*0
8Z2°0
92°0
%20
2e¢*0
0c*0
81°0
91°0
#1°0
Z1°0

01°0
60°0
80°0
L0°0
90°0
¢0°0
#0°0
£0°0
¢o*o
10°0

- 84 -



L68%°T1T ZESS*TT BSEO T €L%L°T1 6505°1T 8L%1°Z1 L2ZZ€°21 8.66°21 8688°21 oveerel 0c°o1

028%°01 6€%5°01T 2vZ9°0T1 #ZEL*OT1 6S88°01 LLIT°TT 8%82°11 %80G°11 9228°T1 8L62°C1 00°6
TELY"6 CEE€S°6 6019°6 1G1L°6 0298°6 €€80°0T 91%Z2°01 S265°01 PLYL0T 16111 co°8
G29%°8 v026°8 0S6S°8 L%¥59°8 HYE8°8 2E¥0°6 9161°6 £88E°6 61996 12.0°01 - 00°L
Ley¥*L 6%06°L 8GLS°L 00L9°L 1108°L 6G65°L S2€1°8 1€lc°8 0£9%°8 %9¢6°8 009
EEEH"9  268%°9 GIG5°9 06€9°9 L5GL°9 BIEL®9 9090°L 8227°L 1S%%*L 68LL°L 00°s
€EC6°S  TELS6*S 99€0°9 T10Z21°9 9%€Z°9 RI0%*9 1815°9 00.9°9 LB[B*S 9681°. 06°%
ZlI¥°S  88SY°S  1616°G 6.6G°G SS0L*S 9198°S L596°G GOIT1°9 SE0:°9 21669 00*%
9968%%  HIVS°HY  6166°% HIL0°S TTL1°G LY1E°S LE1%°G 24G°G  9812°G ?186°¢ 0c*¢
EBLE Y L6T%°y LIL%"% BBEG*Y H6Z9°% 63GL°% 6.Y8°% €£96°% H121°G 185¢°*s 00°¢
1768°€ €168°€ LLE6'E €L66°E TLLI®% 9061°v £892°% Z69E°H 9L0G°h 191L% 06°¢
002e*e BISE et €I6E€°E 9Tv%°f [BOS°E 6EOI°E 1699°€ 6EGL°¢E 60.l8°¢ Q06%0°% 00*¢
11942 026L°2 122872 8198°2 0v16°2 2885°2 Hw6E0°E %H901°¢ 6661t 64%EtE 0s°1
YELT®C L6B1°Z 6602°2 8¢€2°Z 80LZ°2 E12£°2 B89Gc°Z 140%°2 61L%*2 6085°2 00°*1
€8%1°¢ 1%91°2 8€81°C 2602°2Z %E€H2*Z O0E62°Z B8LZE°Z €hic°Z 0l%%*2 08%s°2 860
82212 €8€1°2 9LS1°Z %Z81°C 5S12°2 S%92°C 186272 E€4%%E°Z 6604°2 %616°2 360
€L60°C v211°Z €l€l1°Z <€9G61°Z €891°2 B8GEZ'Z €692°2 zvlg*z 98l¢c°¢ 628%°¢ 76°0
91.0°¢ €980°2 ([%01°2Z %B821°Z %091°Z 0L02°*2 86£2Z°Z 8€82°Z ZL%EC G6%%°2 Z6°0
L6%0°¢ 1090°2 08L0°2 T1101°*2 %2€l°Z 6LL1°2 1012°2 €€52°2 cele~2 €91%v°*2 06°0
9610°¢ 9€€0°2 1160°2 9€L0°2 2%01°2 l84%1°2 2081°Z 6z72°2 9¢8Z°¢ 8Za¢*2 88°0
¥£66°1 0L00°2 0%C0°Z 09%0°2Z 8S.10°Z €511°2 1061°Z 9161°Z 91gz°2 et 98°0
6996°1T 2086°1 L966°1 1810°2 1.L%0°2 9%80°Z 8611°7 »091°2 €612°2 1R S %8°0
C0%6°T 1€56°T 25696°T 00255°T €810°2 8650°Z €680°C 0621°2 8981°¢ <¢c18¢°¢ Zg*o
EET6°T 8GZ6°T GI¥6°1 L196°T 26856°1 15210%°Z G8G0°2Z H.60°7 0%s1*2 89%7°2 08°0
¢988°1 £868°T GEI6°T 2Z€€6°T 0095°1 %565°1 G120°2 6690°2 11212 cetee 8L*0
686871 9018°1 €GBB°T 4£%056°T 4%0€56°1 8895°1 2966°1 bHeg0*2 8Ll80°¢C ¢€LL1°2 SL*D
Z1eB°T 924%8°1 89SB°T €681 9005°1 08€6°1 1%96°1 1100°2 £E%¥G0°2 12Z%1°2 7Ll*0
?€£08°1T  €%18°1 18Z8°1 09%3°1 90LB°*1 6906°1 62¢6°1 %896°1 6020°27 L9012 gL o
¢GLL"T BS8L'T T166L°T S918°T 20%8°1 SG18°1 6006°1 GGE6°1 +926°1 60L0°2 0L°0
B9YL*T OLSL°T 869L°T 998L°1 9608°1 8E%¥3°1 G898°1 €206°1 0236°1 B%€0°¢ 89°0
0B1L°T 6L2L°1 €0%L°1 #9SL°1 [8LL°1 6T18°1 66€8°1 1898°1 €LT16°T 4866°1 9%9°0
0689°T %869°T €0TL°T 6S2L°1 HI%L°1 95LL°1 6208°1 6%€8°1 €£288°1 L196°1 %9°0
9659°T 9899°1 1089°1 1669°1 BSIL*T 63%L°T1 669L°1 L008°1 69%8°1T 9%26°1 290
0s*% 00°*% 06°¢ 00°¢ 0s°2 00°¢ SL*1 06°*1 621 001 g A

(G3NNTINOD) NOILNGI¥ISIQ 1INGI3M ¥0J 1S0D 33123dX3 2 1300w %1 21qel

_.85_



Figure 1
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AND ITS DETECTION
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2
and since 6 = - n(l-p) = p + %— + ...
>0 and p/0>+1 as p->0 . Therefore

lim t(p, B) = T(1L + 1/8, 0) = T(1 + 1/B) ,
0

and since

t(p, B) = o/B ) al/8 &l

n=1

this gives us the interesting limit:

lim {- (-p)}* § 2*-p)®7L p = r(140) (5.2.13)
p>0 n=1
0g2 g1l

X - tgx -x = §
n n n-1 n
for
¥p-p U S *q 2
and for B > 1 h(t) is nondecreasing, which means that dn < 61 = x;

for all n.

. X - tgx for x <t £x
1

so that

OSE(XN‘T)SX]_

T(L+1/8) 5 E(x)) s %, + (L + 1/8)

Now from section 5.1 we saw that

lim x, =0
+ 71 ’
p*0
so that

oo N

which is the same as (5.2.13).
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5.3 An inspection rate function for Ep policies

In section 2.4 we saw that when the inspection intervals are
small it is convenient to describe them by a smooth density ¢(t)
satisfying

X
n

@(xn) = J o(t)dt = n . (5.3.1)
0

Even if the inspection intervals are not small this equation
is still meaningful, and when the inspection sequence {Xi} constitutes
an §p policy we can find a function ¢(t) satisfying (5.3.1).

From (5.1.1), §p policies are given by

X

n

f h(t)dt = n6 where 0 = - in(l-p) ,
0

so that

and the function

- h(t) .
¢P(t) == (5.3.2)

can be regarded as an inspection rate function. Note that the

inspection rate function is not unique, for example

also satisfies (5.3.1), but

h(t

Nt

¢p(t) =

a)l

has the attraction that ¢(t) is a smooth (differentiable) function of

t provided that f£(t) 1is.
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xp policies when the inspection cost is low

In section 2.4 we gave Keller's (1974) approximation to the

expected total cost for model I when c., << c, E(T), 1i.e.

1

. - ( c2
E{C(T, ¢)} = J {Cl o(t) + W} f(t)dt . (5.3.3)
0
which is minimised when
2
¢(t) = 7 b(e) . (5.3.4)

1

Comparing (5.3.4) with (5.3.2) we see that o(t) is
proportional to vh(t) in the optimal case, and to h(t) in the §p
case. However if h(t) is not a simple function of t, it can be
difficult to compute {xi} in the optimal case using (5.3.1).

We now consider the loss in using an §P policy in the case

¢y << ¢, E(T) in place of Keller's optimal policy.

With
t
_ h(v) _1 £ (u)
¢p(t) == @p(t) =3 ! TorE e
0
il.e
_ _4in f(t)
q)p(t) = 9 ’

and (5.3.3) becomes

P c; in F(t) c,8 F(t)
E{c(T)} = J {— 5 + 2500 } f(t)de ,
0

where 6 = - 2n(l-p) is to be determined.
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c1 P _ _ c26 P _
E{c(T)} = e J 2n F(t) dF(t) + - J F(t)dt
0 0
c c,.6
- El + g S (5.3.5)

where u = E(T) .
Differentiating (5.3.5) with respect to 6 and equating to

zero gives

c c.u
—— _1+ __2 = O
02 2
Cc
*
e = —]:' . (5.3-6)
c,u

That means that if an Ep policy is used, the minimum expected cost

for model I is, from (5.3.5) and (5.3.6)
¢ = /2 (5.3.7
p = L 3.7)

In this case there is no difficulty in computing {Xi} since from

(5-3-6)
2c,
% k. 1
@ =-24n(l-p) = CZU s
-Y2¢. /cou
%
p=l-e Y2 (5.3.8)

and using (5.1.2)
*
F(x) =1- (1-p)" .

By assumption

so that (5.3.8) gives
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p = E;;
These results are for model I; for model II simply replace sy by 2c

*
Table 15 gives some values of P calculated from (5.3.8) in
the Weibull case when cllac2 = 0,01, The corresponding exact values

(which were calculated in section 5.2) are given for comparison.

Table 15
*
Values of the approximation to p given by (5.3.8)
in the Weibull case for cl/ac2 = 0.01.

The exact values are taken from Tables 11 and 12.

Model I Model II

B Approximate Exact Approximate Exact
1.0 0.1319 0.1290 0.0952 0.0951
1.5 0.1383 0.1431 0.0999 0.1002
2.0 0.1395 0.1546 0.1008 0.1016
2.5 0.1394 0.1653 0.1007 0.1019
3.0 0.1390 0.1757 0.1004 0.1020
3.5 0.1385 0.1856 0.1001 0.1019
4.0 0.1380 0.1953 0.0997 0.1019
4,5 0.1376 0.2047 0.0994 0.1018
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<< ¢

21-1

The efficiency of §p policies when ¢y

When T has a Weibull distribution and €y << cyu the minimum

expected cost can be calculated quite easily, and from (2.4.10) this is

~ 1 %% (11
C- = _—_—I‘[_ZE"'? L]

Now u = ol'(l + 1/8) in this case so that if an gp policy

is used the minimum expected cost is, from (5.3.7)

*
c, = /zc1 c, ol (1 + 1/8)

A measure of the efficiency of Ep policies 1is

C .
min
*
c
p

This gives

=
n

2¢, c,0
1 72 1 1
—-—-B—— P["Z'E'i' E] //2(:1 Cz al (1 + 1/8)

1 1
{35+ 3
E = . (5.3.9)
Y BT(1 + 1/B)

But T'(1 + 1/8) = 1/ I'(1/8) so that

E(B) = ————— (5.3.10)

for model I.
Since E(B) 1is independent of Cys replacing ¢y by 2c2

leaves E unchanged, thus (5.3.10) holds for both model I and model II.
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Table 16

Limiting efficiency of X policies for

p
models T and II in the Weibull case

B E(B)
1.0 1.0000
1.25 0.9904
1.5 0.9700
1.75 0.9457
2.0 0.9204
2.5 0.8716
3.0 0.8273
3.5 0.7881
4.0 0.7534

Table 16 gives the limiting efficiency of §p policies for
some values of B in the range 1 < B g 4, From the table we see that
they are fairly efficient, but particularly so when 8 1is near 1.
The efficiency of §P policies for general values of cl/ac2 is discussed

in Chapter 7.
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Chapter 6

Robustness of EP policies in the Weibull case

6.1 Robustness of gp policies: the approach

Using the results of section 5.2 it is possible to find the
optimal gp policy in the Weibull case when the values of the parameters
a, B, ¢y and c, are known. However, in practical situations some,
or all of these values will be estimated and therefore subject to error.

To investigate the robustness of gp policies we will compare
the expected total cost achieved by using an 'optimal' gp policy
calculated from estimated parameter values &, é, ¢ and ¢

1 2

minimum expected cost due to using the optimal §P policy calculated

with the

from the exact parameter values, where one or more of the estimated

values is in error.

Model I
Suppose that &, é, 61 and 62 are estimated values of
O, B, 1 and ¢y respectively. In section 5.2 we found that the value
c

of p giving the optimal §P policy depends on K = a%— and B .
2

* * . .
Let this value be p = p (K, B). From (5.2.1) the optimal X policy

is {a z: (K, B)} where
z: X, B) ={-n ‘Q‘n(l_P*)}l/e ’

and the corresponding expected cost from (5.2.11) is

* * ¢ *
cC =¢ (o, B, Cys cz) = —% + ac, w(p , B) - ac, T(l + 1/B).

el

Using the values a, B, El and 32, with K = 81/&82 the

estimated optimal % policy is {Qn} where
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~ % A ~
o zn(K, B

which from (2.2.1) gives an expected cost of

X
o] o] n
C = é(a,s,cl,cz,&,é,él,éz) =c; ] F(ﬁj) te, ] f (x, - t) £(t)dt
3=0 n=1
Xn—l
(6.1.1)
=c; FG) +c, | x {F(x ) - F(x 1)}
3=0 n=1

= ac, 'l + 1/B)

where
- £)8
F(t) = exp{— {a] } .

. . . *
The difference in these costs as a proportion of C

is
¢-c”
AI = * s (6.1.2)
C
so that
® - A & @ * A ~ ~ ~ K *
) Fx) + 3 ! oz (X, B) {F(xn) - F(xn_l)} - - tp, B)
A = 3= n=1 P
I K *
S5+t , B) - T(L + 1/p)
%
on dividing numerator and denominator by ac, .
Now
F(x ) = 1 & * 2 p)
(xn) = exp 3 Zn (K, B)
so that AI depends on % s B, é, K, K . Since AI depends on «
only through the ratio g- AI is independent of o when %- is given,
so that in this case we can perform all calculations with q = 1, and

tabulate AI

as a function of K and B8 for values of
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Model II

The analysis for model II is similar to that of model I and

is not given here to avoid repetition. It turns out that in this case

with
X
[+¢] o« n
C=c 'Z F(x;) + ¢, Z J (x, - x ;) £(t)de (6.1.3)
j=0 n=1
*p-1
and
x ¢ %* *
C =—+ ac, p t(p , B)
P
® - A & ® K A A * A A ~ ~ K * %
K ) F(xj)+ 3 ) {zn(K,B) - zn_l(K,B)}{F(xn)-F(xn_l)}- = — P t(p ,8B)
A - j=0 n=1 )
IT K * *
—~t+tp t(p, B)
P
so that again, AII can be regarded as a function of K, B, Sa’ 66’ 6K .

- 97 -



6.2 Robustness of Ep policies: theory

The computation of A for model I and model II is tedious
since € must be calculated by summing the series in (6.1.1) and (6.1.3),
and to do this accurately using a digital computer we need first to bound
the errors incurred by summing only a finite number of terms of these
series. However, in the special case when only K and o are in error,
a simpler method for calculating C is available.

For the remainder of this section, let

* *

P =P(K, 8) ’
* %

q =1-p ’
~ * A A

p =p K, B) ,
q =1- ﬁ .

Special case B =8

A ~ 1/R . ak
Using (5.2.1), X, = af{~ n2nq} and with F(t) = exp{— &i

we have

i[- o 1n g]18)°

o

F(xn) = expi-

a} when é =B

i}

]

el

el

=}
———
Qle>
| S

-

=}

G RE
By = a7}

~ B
q(a/a) 1 - q we have

Lol
]

Writing a for and letting
-~ A ~n
FG) = -,

so that from (5.1.2) we see that {Qn} is an X, policy for F(t) with

P=p .
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For model I, we have from (5.2.11) that

C
C=—1+°‘C2 T(IB, B) - ac, rar +1/8)

e

and with

x 9 *
C =—+ ac, (p , B) - ac, (¥t + 1/B)

el

~ *
~ 'I§_K_*+T(P:B)‘T(P,5)
A = C-C _p p
=¥ -
C -+ w(p , B) = T'(1 + 1/B)

=)

Similarly for model II

K K ~ o~ * *
—-—xtpt(p, B) - p1lp, R
A =P P
I1 K * * '
_*"'PT(P,B)
P
Since p depends on %-, R and § (=8 in this case), both AI and
AII depend only on K, ﬁ, B and %-, in accordance with the argument

given at the end of the previous sectionm.

General case B + B

For model I we will consider the terms in (6.1.1) separately.

First the expected number of inspections, which is

X
n
) F(x.) = J J n £(t)dt . (6.2.1)
j=0 3 na1
*a-1

Let E, be the error in approximating the infinite sum on the right hand

k
side of (6.2.1) by the first k terms. Then
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Now {§n} is an §P policy for the distribution

IR

with p = ﬁ + Therefore, using (5.1.1) and (5.1.2) and the fact that

ct

f(t) =1 - exp{— {

Q>

H(t) 1is increasing, this gives

so that

n=k+l - f%n q
*n-1
y 8 B-1 B y
o] [ B ol [ o]
~ - al \o
- inq o a
*k X
B 8 B B _
el A IR CIRELC
- 4i4n q (o .
*x
1 o é 1 é/S -z dz + f “ )
B, < ~ |= z e z (xk
- %n q lo . 8
(%, /)
1 (o)f 1+ B/8, & /0% + exp{- (% /a)® (6.2.2)
Ek < - |=| T( B/B, (xk o) exp x /a . 2.
- 2n q {o

Where T(v, x) 1is the incomplete gamma function.
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Since the right hand side of (6.2.2) tends to zero as k tends to

infinity, for any € > O we can calculate

F(xj)

i=0
to an error of at most € by summing to k terms, where k(e) is such
that the right hand side of (6.2.2) is less than or equal to € .

The second term in (6.1.1) can be dealt with in a similar

manner as follows:

X

n

1 AJ
X
n

so that if Ei is the error in summing the series on the right hand

n

X

f X f(t)dt - T(L + 1/8) ,
1 n

X

n

Il t~18
Il &~18

n s}

(%n - t) f(t)dt =
1

-1 (6.2.3)

side of (6.2.4) to k terms,

X
n
=]
' - >
Ep ) J x £(t)dt .
n=k+l
*n-1
For increasing failure rate distributions {xn - Xn—l} is

decreasing, so that if B > 1, =x_ g nx, and

n
X
- n
Ef €% ) J n £(t)dt
n=k+1l
xn—l
This implies that if
] Fx.)
=0

is determined to within ¢ by summing the right hand side of (6.2.1)

to k(e) terms, then
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ht~18

X
n
J (§n - t) f(t)dt
n=1 .
-1

n-

will be determined to within §1 € . Using this fact we see from
(6.1.1), (6.2.1) and (6.2.3) that by summing both series to k(e) terms,
we incur an absolute error of at most ¢, € + ¢, §1 £ = (c1 + ¢y %1)5

in C . Now since

~

¢ > ¢y » SO that the relative error ¢ in C 1is such that

. (eq + e, xDe (cq + e, xy)e
€ < 1 A2 1 < 1 21 (6.2.4)
c ‘1

Therefore if we wish to calculate € to within e', say, we can take

c, €
€ = - .
ey *+ ¢y X
since from (6.2.4) this gives ¢ <e' . TFor cost model IT, comparing

(6.1.1) with (6.1.3) we see that an identical analysis follows, since
the first term in both expressions for C 1is the same, and in (6.1.3)

X - X < x for n=1, 2, ... .
n n-1 = “n > =2
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6.3 Robustness of Ep policies: results

In section 6.2 it was shown that for both cost models A,
the percentage change in the expected cost, can be written as a function

of the five variables K, B8, 6&’ 63, 8 where 6u = &/u, GB = é/B,

K’
6K = R/K. Ideally, A should be small whenever the &'s are in the
neighbourhood of unity i.e. small errors in the parameter values should
cause small increases in the expected cost.

In the sensitivity analysis presented here we will consider

errors of + 10 per cent in the parameters a, B and K, i.e. Sa, $

B8
and GK will be given the values 0.9, 1.0 and 1.1. The tables of

A for the 27 combinations of these & values are presented in Tables

17 to 43 for model I, and in Tables 44 to 70 for model II.

Model T
A surprising feature of the tables is that some A values are
negative, indicating that an erroneous parameter value can sometimes
reduce the expected cost by a small amount. This can only happen when
B + B since we have seen in section 6.2 that the inspection policy
calculated from the values &, B and K is itself an §p policy, and
can therefore offer no improvement over the 'best' x5 policy.
Perturbing B however, takes us outside the class of Ep policies, so
that a reduction in the expected cost is then possible.
Tables 17 to 43 may briefly be summarized as follows:
(1) none of the tabulated values exceed 20 per cent,
indicating a fair degree of robustness.
(ii) the smaller values of A occur when a = o, 1l.e.
when there is no error in o .
(iii) in nearly every case a positive error in B yields a
larger A value than a negative error in B (all other

variables fixed).
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We may conclude from these observations that in practical situations it
is advisable to estimate o as accurately as possible; if there is any
doubt about the value of B it is safer to underestimate than to

overestimate,

Model II

Tables 44 to 70 show that the robustness characteristics
of model T are also evident in model II, i.e. model II is mostly
sensitive to o and positive errors in B. In some of the cases
considered A approaches 30 percent, in contrast to model I where no
value exceeded 20 percent. Thus, §p policies are less robust in
the model II case.

The combination K = 0.01, a = o, B = 0.98 (Tables 53, 54
and 55) yields some A values in the region of minus 10 per cent, which
means that policies exist which achieve an expected cost at most 90 per
cent of that corresponding to the 'best' §p policy, suggesting that
§p policies are possibly not highly efficient for small K with
model TII.

The sensitivity analysis presented above is only a partial
analysis, since only errors of 10 per cent have been considered.

For a more complete study, other failure distributions, and combinations
of other § wvalues should be examined. However, because of the amount
of computation that this leads to, such an analysis is only practical

in special cases. The attempt here has been to give an overall picture

in the limited space available.
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Chapter 7

Comparison of Periodic, Mean Residual Life,

and Xp Inspection Policies

7.1 Discussion of Efficiency

In the previous chapters three families of suboptimal
inspection policies have been considered and in each instance a method
has been given for computing the best policy in the Weibull case.

In this section a comparison is made of these three families of policies.

The obvious yardstick by which to judge a suboptimal policy is
the optimal policy: a natural measure of efficiency being the ratio
of the expected costs due to each. Since in every case the method for
finding the best suboptimal policy consists of miniﬁising the expected
cost numerically, calculating the best policy simultaneously determines
the corresponding expected cost. However, the algorithms described in
Chapter 2 for computing the optimal policy do not enable us to evaluate
the minimum expected cost associated with it.

Now the expected cost for models I and II can be written as

Y {cl Fj—l tc, xj[fj—l - Fj]} - ¢, E(T)

i=1
and
2 c, F. + c (x. - x. ) F. - F, ,
. 1 7j-1 277 =171 j-1 j
3=1
respectively, where Ej = f(xj). Note that the terms in the above series

are never negative, so that by computing the first n inspection times
. . * * . .
of the optimal policy, is coes X and summing the series to n terms,

a lower bound on the minimum expected cost can be obtained. This lower
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bound can be made as sharp as we please by taking n to be sufficiently
large. The results presented in this Chapter were obtained by taking

n to be the smallest integer satisfying

- -10
F(Xn) < 10

Tables 71 and 72 give the expected costs incurred in the
Weibull case by the best periodic, mean residual life and Ep policies
as well as the minimum expected cost for models I and II respectively.
The efficiencies can be calculated from these tables and are given
in Tables 73 and 74. From Tables 73 and 74 it is clear that none of
the three families of policies could be described as inefficient in the
Weibull case for the values of K and B considered. For model I
there is little to choose between the mean residual life and EP policies
both of which are superior to the periodic policy, especially when K
is small and B8 2 2. For model II however the mean residual life
policy is clearly the best of the three, the Ep policy offering little
improvement over the periodic policy particularly when K is small.

The mean residual life and periodic policies are generally more efficient
for model II than model I, whereas for the Ep policy this is not the
case.

It is important to remember that efficiency is not the only
criterion to be taken into account when the choice of an inspection
policy is made: a good policy should also be simple to compute and
practical to use (although it is at least arguable that with the current
availability of high speed computers, the ease of computation is not of
great importance).

Of the policies considered the Ep is the simplest to
compute, since the expression for the mean number of inspections takes
on a particularly simple form; the periodic policy also poses no real
problems, in contrast to the mean residual life policy which (in the
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Table 71
Expected costs (measured in units of ucz) due to
periodic, mean residual life, gp and optimal inspection

policies in the Weibull case; model I

k Bl 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.01 | 0.1482 0.1396 0.1381 0.1382 0.1386 0.1391 0.1396 | per
0.1482 0.1349 0.1265 0.1199 0.1144 0.1097 0.1055 | mrl
0.1482 0.1360 0.1282 0.1216 0.1158 0.1106 0.1059 | x_
0.1482 0.1342 0.1246 0.1169 0.1105 0.1050 0.1003 | opt
0.05 | 0.3504 0.3269 0.3227 0.3227 0.3238 0.3249 0.3261 | per
0.3504 0.3145 0.2905 0.2716 0.2557 0.2422 0.2305 | mrl
0.3504 0.3163 0.2937 0.2754 0.2600 0.2467 0.2352 | x_
0.3504 0.3138 0.2891 0.2699 0.2542 0.2409 0.2296 | opt
0.1 | 0.5162 0.4787 0.4710 0.4707 0.4723 0.4741 0.4757 | per
0.5162 0.4603 0.4228 0.3939 0.3706 0.3514 0.3353 | mrl
0.5162 0.4625 0.4268 0.3987 0.3755 0.3558 0.3390 | x_
0.5162 0.4599 0.4223 0.3934 0.3701 0.3508 0.3343 | opt
0.5 | 1.3577 1.2362 1.1914 1.1628 1.1051 1.0462 0.9949 | per
1.3577 1.2018 1.1048 1.0355 0.9822 0.9392 0.9035 | mrl
1.3577 1.2029 1.1037 1.0308 0.9743 0.9289 0.8917 | x_
1.3577 1.2007 1.1006 1.0278 0.9716 0.9267 0.8899 | opt
1.0 | 2.1462 1.9429 1.8397 1.7455 1.6577 1.5846 1.5250 | per
2.1462 1.9066 1.7628 1.6623 1.5861 1.5259 1.4768 | mrl
2.1462 1.9052 1.7560 1.6507 1.5718 1.5102 1.4608 | x_
2.1462 1.9034 1.7539 1.6489 1.5703 1.5090 1.4599 | opt
5.0 | 7.0907 6.5043 6.1789 5.9640 5.8141 5.7044 5.6209 | per
7.0907 6.4849 6.1595 5.9524 5.8083 5.7023 5.6211 | mrl
7.0907 6.4768 6.1443 5.9347 5.7906 5.6854 5.6053 | x_
7.0907 6.4762 6.1437 5.9343 5.7903 5.6852 5.6051 | opt
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Table 72

Expected costs (measured in units of acz) due to

periodic, mean residual life,

X
-Pp

and optimal inspection

policies in the Weibull case; model II

k 8| 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.01 | 0.2051 0.1950 0.1933 0.1934 0.1940 0.1947 0.1954 | per
0.2051 0.1901 0.1804 0.1727 0.1661 0.1604 0.1553 | mrl
0.2051 0.1948 0.1927 0.1924 0.1927 0.1931 0.1936 | x
0.2051 0.1897 0.1794 0.1711 0.1640 0.1577 0.1523 | opt
0.05 | 0.4731 0.4500 0.4460 0.4462 0.4476 0.4492 0.4508 | per
0.4731 0.4394 0.4183 0.4019 0.3881 0.3762 0.3657 | mril
0.4731 0.4486 0.4423 0.4404 0.4399 0.4399 0.4401 | x_
0.4731 0.4390 0.4176 0.4008 0.3867 0.3745 0.3637 | opt
0.1 | 0.6851 0.6513 0.6454 0.6457 0.6476 0.6499 0.6521 | per
0.6851 0.6370 0.6089 0.5881 0.5712 0.5570 0.5447 | mrl
0.6851 0.6483 0.6374 0.6332 0.6313 0.6303 0.6299 | x
0.6851 0.6366 0.6075 0.5855 0.5674 0.5518 0.5380 | opt
0.5 | 1.6931 1.6013 1.5813 1.5804 1.5853 1.5914 1.5969 | per
1.6931 1.5784 1.5277 1.5009 1.4852 1.4753 1.4686 | mrl
1.6931 1.5870 1.5429 1.5181 1.5018 1.4903 1.4816 | x_
1.6931 1.5741 1.5133 1.4740 1.4455 1.4231 1.4047 | opt
1.0 | 2.5805 2.4272 2.3828 2.3711 2.3638 2.3456 2.3235 | per
2.5805 2.4020 2.3244 2.2823 2.2556 2.2365 2.2217 | mrl
2.5805 2.4041 2.3213 2.2708 2.2358 2.2099 2.1897 | x_
2.5805 2.3941 2.3016 2.2452 2.2069 2.1791 2.1579 | opt
5.0 | 7.7789 7.2509 6.9774 6.7962 6.6691 6.5762 6.5057 | per
7.7789 7.2333 6.9573 6.7838 6.6633 6.5746 6.5067 | mrl
7.7789 7.2228 6.9368 6.7597 6.6390 6.5515 6.4852 | x_
7.7789 7.2206 6.9349 6.7583 6.6381 6.5508 6.4848 | opt
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Table 73

Efficiency of periodic, mean residual life and x

policies in the Weibull case; model I

1.0 1.5 2.0 2.5 3.0 3.5 4.0
.01 | 100.0 96.13 90.22 84,59 79.73 75.49 71.85 | per
100.0 99.48 98.50 97.50 96.59 95.72 95.07 | mrl
100.0 98.68 97.19 96.13 95.42 94.94 94,71 §p
.05 | 100.0 95.99 89.59 83.64 78.51 74,15 70.41 | per
100.0 99.78 99.52 99.37 99.41 99.46 99.61 { mrl
100.0 99.21 98.43 98.00 97.77 97.65 97.62 §p
.1 100.0 96.07 89.66 83.58 78.36 73.99 70.28 | per
100.0 99.91 99.88 99.87 99.87 99.83 99.70 | mrl
100.0 99.44 98.95 98.67 98.56 98.59 98.61 §p
.5 100.0 97.13 92.38 88.39 87.92 88.58 89.45 | per
100.0 99.91 99.62 99.26 98.92 98.67 98.49 | mrl
100.0 99.82 99.72 99.71 99.72 99.76 99.80 §p
.0 100.0 97.97 95.34 94.47 94.73 95.23 95.73 | per
100.0 99.83 99.50 99.19 99.00 98.89 98.86 | mrl
100.0 99.91 99.88 99.89 99.90 99.92 99.94 §p
.0 100.0 99.57 99.43 99.50 99.59 99.66 99.72 | per
100.0 99.87 99.74 99.70 99.69 99.70 99.72 | mwrl
100.0 99.99 99.99 99.99 99.99 100.0 100.0 §p
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Table 74

Efficiency of periodic, mean residual life and §p

policies in the Weibull case; model II

Bl 1.0 1.5 2.0 2.5 3.0 3.5 4.0

.01 | 100.0 97.28 92.81 88.47 84.54 81.00 77.94 | per
100.0 99.79 99.45 99.07 98.74 98.32 98.07 | mrl
100.0 97.38 93.10 88.93 85.11 81.67 78.67 | x_

.05 | 100.0 97.56 93.63 89.83 86.39 83.37 80.68 | per
100.0 99.91 99.83 99.73 99.64 99.55 99.45 | mrl
100.0 97.86 94.42 91.01 B87.91 85.13 82.64 | x_

.1 | 100.0 97.74 94.13 90.68 87.62 84.91 82.50 | per
100.0 99.94 99.77 99.56 99.33 99.07 98.77 | mrl
100.0 98.20 95.31 92.47 89.88 87.55 85.41 | x_

.5 | 100.0 98.30 95.70 93.27 91.18 89.42 87.96 | per
100.0 99.73 99.06 98.21 97.33 96.46 95.65 | mrl
100.0 99.19 98.08 97.10 96.25 95.49 94.81 | x,

.0 | 100.0 98.64 96.59 94.69 93.36 92.90 92.87 | per
100.0 99.67 99.02 98.37 97.84 97.43 97.13 | mrl
100.0 99.58 99.15 98.87 98.71 98.61 98.55 | x_

.0 | 100.0 99.58 99.39 99.44 99.54 99.61 99.68 | per
100.0 99.82 99.68 99.62 99.62 99.64 99.66 | mrl
100.0 99.97 99.97 99.98 99.99 99.99 99.99 | x_
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Weibull case at least) is somewhat intractable.

When it comes to implementation, no policy could be simpler
than the periodic policy, since in practice the inspection intervals
would be rounded off to the nearest convenient number of time units.
In the periodic case where the inspection intervals are all the same,
this rounding off only has to be done once.

Taking the above considerations and the results of Chapter 6
into account, we may conclude that gp policies are probably the
most attractive of the nonperiodic policies considered, since they are

robust, efficient, and easy to compute.
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7.2  Further developments

The preceding chapters of this thesis have been devoted to
a problem which comes under the general heading of Inspection Problems.
The results in these chapters could be extended to cover a wider class
of problems, for example one could consider the case when the true state
of the system is not revealed exactly by inspection. This type of
problem is likely to arise in the medical field where tests can sometimes
result in "false positives" or "false negatives'", Put in general terms
we might observe a random variable X whose probability distribution
depended in some way on the state of the system, the problem we have
considered being the special case when X reveals the true state of
the system with probability 1.

Yet another class of problems arises if we contemplate systems
which can be in more than two states. As a simple case we would consider
systems having the two states Eo and E1 representing normal working
and failure respectively, and in addition a third state E2 representing
some intermediate form of failure. In these multistate problems omne
can predict difficulties in finding a reasonable model for the times
between transition from state to state.

The models that have been considered in this thesis are in
some sense crude and it would be naive to suggest that they apply
directly to a large number of live problems. However, they have
succeeded in showing that computing optimal inspection policies is no
simple matter, and by considering suboptimal policies the calculations
can be made much easier. It is likely that suboptimal policies,
particularly the §p policy with its attractive Markov property, will
be valuable tools in solving inspection problems associated with more

elaborate models.
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