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Abstract

The performance of four synthetic turbulence generators that represent the majority of capabili-

ties of i. digital-filter-based (DFM) and ii. forward-stepwise-based (FSM) generator categories is

evaluated prior to transferring generator outputs into computational fluid dynamics simulations.

In addition, a cheap-to-run and easy-to-code piecewise closed-form function that transforms one-

spatial-point skewness-kurtosis of a synthetic time-series to a target value is derived and presented.

The two main purposes of the study are to support model users in their decision process for choosing

the most convenient type and their understanding of the models through a systematic exploration

of model variables and modelling stages, and to extend the Gaussian nature of these models at a

spatial point into non-Gaussianity for the first time. The evaluation test-bed contains three bench-

marks, each of which focuses on an isolated aspect of turbulent flows: i. decaying homogeneous

isotropic turbulence, ii. homogeneous shear turbulence and iii. plane channel flow with smooth

walls. Results obtained reveal that: (i) the original DFM provides the highest level of reconstruc-

tion for input one-spatial-point second-order correlation tensors and two-spatial/temporal-point

correlation functions; (ii) FSM yields the best trade-off between the computational cost and the

level of reconstruction; (iii) the use of exponential-form correlation functions as a model approxi-

mation is more advisable than that of Gaussian-form, as the former removes the premature, sharp,

flow-type-independent drop in power spectra observed for the latter; (iv) the proposed non-Gaussian

functionality reconstructs the target one-spatial-point skewness-kurtosis pairs of the test-bed flows

virtually without altering their already-embedded statistics; (v) the Lund transformation changes

existing statistics only in statistically inhomogeneous lateral directions of a flow when anisotropic
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Reynolds stresses are present; and (vi) a spatial variation of correlation functions on turbulence

generation plane improves the overall reconstruction fidelity in terms of correlation functions and

power spectra.

Keywords: inflow turbulence, synthetic turbulence, inlet conditions, random flow generation,

synthetic wind, non-Gaussian turbulence, non-Gaussian wind

1. Background to inflow turbulence generation

Turbulent flow regimes are the norm in nature; thus, significant to consider in engineering appli-

cations with reasonable fidelity. At many levels of industry and academia, the contemporary trend

in turbulence modelling is away from semi-/empiricism towards first principles with minimal cost

increase. This trend, however, poses substantial ongoing challenges, particularly for inflow bound-5

ary conditions of convective flows. In theoretical and numerical means, spatiotemporal delineation

of these conditions, stochastically and statistically, is proved to be challenging mainly due to the

chaotic dynamics of turbulence and various requirements on the fidelity.

For computational fluid dynamics (CFD), most of the inflow turbulence generation approaches

aim to satisfy all or a part of the prescribed conditions, i.e. up to 2nd order statistics, integral10

length scales and Gaussian distribution of turbulent fluctuations. Some of them are also able to

produce reasonable autocorrelation and spectrum. Only a very few synthetic turbulence generation

approaches spend efforts on the 3rd order (skewness) and 4th order (kurtosis) statistics [1, 2]. Lack

of high order statistics modelling for turbulence generation may significantly impact the modelling

accuracy for some applications, such as wind loading [3, 4]. A rigorous assessment of the abilities15

of current synthetic turbulence generation approaches, and a simple and efficient model to generate

non-Gaussian turbulence are of great interest.

Most of the inflow turbulence generation methods were classified into four main categories by [5]:

i. library-based, ii. recycling-based, iii. transition inducement-based, and iv. synthetic methods.1

The last category may further be divided into six subcategories on the basis of their method-20

ology: i. linearised turbulence model-based [8], ii. Fourier-based [9, 10], iii. proper orthogonal

decomposition-based [11], iv. synthetic-eddy-based [12], v. digital filter-based [13], and vi. forward

stepwise-based [14]. In this study, the scope is limited to the last two subcategories (hereafter,

1 [6, p. 553] and [7], however, regarded the first two as a single category.
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DFM and FSM, respectively) whilst the two arguably demand the simplest code implementation,

yet provide high model fidelity with relatively low computational costs. The reader is, therefore,25

referred to [6, 5, 7] for the other categories.

Fig. 1 shows that DFM or FSM transforms a given random number set to a spatiotemporally new

set involving a group of target statistical measures.2 A chain of arithmetic operations is performed

for the transformation. Within the chain, the target statistics arrange the properties and order of

the operations, so that the the realized statistics of the new sets could match the target.30

Although Borgman [15] earlier elaborated on a method in which synthetic ocean wave processes

are generated through digital filtering of a group of statistics and white-noise time-series3, the con-

temporary DFM was introduced by [13], based on preliminaries from [16]. The authors developed

a three-consecutive-stage framework: (i.) random number set generation, (ii.) embedment of ar-

bitrary two-spatial-point autocorrelation functions through digital filters, and (iii.) incorporation35

of one-spatial-point second-order correlation tensor by a tensor transformation [17] (hereafter, the

Lund transformation). In addition, the authors simplified the second-stage by restricting autocor-

relation functions to Gaussian-form, so that filter coefficients can be explicitly evaluated, whose

evaluation requires a root-finding algorithm otherwise. The function-form choice was justified with

the same form observed in the viscous-dissipation stage of homogeneous isotropic turbulence.40

In this initial DFM, five principal limitations exist, which subsequent studies attempted to

alleviate: output (i.) contains no physical information beyond input statistics, (ii.) can only be

generated on Cartesian grids4, (iii.) is not divergence-free, (iv.) is statistically stationary, and (v.)

obeys Gaussian probability density function (PDF) at a spatial point.

For the first limitation, di Mare et al. [18] investigated the possibility and practical viability of in-45

serting arbitrary-form autocorrelation functions into the second model-stage. They proposed a new

algorithm in which standard linear algebra tools are used to numerically solve a designed ‘bilinear

difference equation’ to obtain digital-filter coefficients corresponding to the given autocorrelation

function. The authors held the view that [13, p. 658]’s simplification is decent for free-shear flows

whereas their more-information-carrying algorithm appears advisable for wall-bounded flows [18,50

2 Measures predominantly consist of i. one-spatial-point second-order correlation tensor (i.e. Reynolds stress tensor)
and ii. two-spatial/temporal-point autocorrelation functions.

3 White-noise refers to a uniform power distribution across a frequency spectrum. By contrast, herein, the Gaus-
sianity of a time-series will only refer to the probability distribution of amplitude

4 A Cartesian grid herein refers to a grid wherein cells are unit squares/cubes.
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p. 10]. Afterwards, di Mare and Jones [19, p. 687] put forward another algorithm, which was pre-

sented as computationally cheaper, more competent and robust in comparison to their previous

algorithm. Further, Fathali et al. [20, p. 96] claimed that the third model-stage distorts the re-

sultant statistics from the second model-stage for highly anisotropic flow fields. On this basis, the

authors put forth a two-stage-unified framework, which aimed to remove distortions and embed two-55

spatial-point cross-correlations. Subsequently, Xie and Castro [14] argued that the exponential-form

functions are more appropriate simplification than [13]’s Gaussian-form, specifically for turbulent

shear flows. Furthermore, the authors derived FSM which was quantified equivalent-in-effect to, and

yet cheaper-to-compute than more complex digital filters. Then, the second model-stage of DFM

in the streamwise direction was substituted with FSM; thus, resulting in a hybrid DFM-FSM.60

The second limitation was, on the other hand, not shared by FSM, with which synthetic time-

series generation on non-uniform grids is possible. For DFM, however, Kempf et al. [21] replaced the

second model-stage with a diffusion process deemed equivalent to digital filtering, so that synthetic

time-series can be seamlessly generated on non-uniformly spaced grids or on arbitrary boundary

geometries. In addition, Fru et al. [22, p. 328] purported that a hybrid of the methods from [13]65

and [21] was developed, which is allegedly immune to this limitation. The authors, however, failed

to clearly describe what the new method is. Lastly, Dhamankar et al. [23] enabled DFM to be

used in curvilinear structured grids without interpolations through generating time-series on a

Cartesian grid which is inherently a one-to-one-mapped corresponding curvilinear grid. Although

the approach worked round interpolation errors, new drawbacks of their own arose [23, p. 11].70

The third limitation reportedly causes erroneous pressure fluctuations [24, p. 1089], which was

quantified by [25, Fig. 11] for incompressible plane channel flows wherein several orders of mag-

nitude over-predicted pressure fluctuations persistent across the computational domain were ob-

served. In contrast, negligible alterations due to non-divergence were expected and reported for

velocity fluctuations [21, p. 76], [25, Fig. 11]. In general, therefore, it seems that non-divergence can75

be anticipated influential solely on computations where pressure is the principal field of interest.

Considering these implications, divergence-freeness was first imposed into DFM for homogeneous

isotropic turbulence by [26, p. 5] through devising solenoidal digital filters. For non-homogeneous

anisotropic turbulence, on the other hand, [26, p. 7] was contented with a suggestion to use [27,

p. 3-5]’s transformation method. Similarly, Kelein et al. [13, p. 659] and Kempf et al. [21, p. 76]80

suggested a projection method from [10] in order to divergence-free transition synthetic time-series.
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None of the two suggestions were, however, tested to date. From another viewpoint, Kim et al. [25]

rendered the hybrid DFM-FSM divergence-free by directly embedding synthetic time-series into

the momentum predictor equation in a pressure-velocity coupling algorithm, in which case any

non-solenoidal velocity field could be transformed without additional costs.85

Regarding the fifth limitation, which was not studied in the DFM/FSM literature to date,

evidence suggests that the frequency of occurrence of various turbulence characteristics tends to

follow non-Gaussian distributions at a single spatial point. For instance, Jimenez [28] reviewed the

literature that the one-spatial-point Pearsonian coefficient of kurtosis is approximately 2.85 (rather

than 3.00) for velocity fluctuations in homogeneous isotropic turbulence. Even more pronouncedly,90

Moser et al. [29] reported for Re=395 plane channel flow that the one-spatial-point Pearsonian

coefficient of skewness and kurtosis of velocity fluctuations vary across from -0.8 to 0.4, and from

2.1 to 38.0, respectively.5

Apart from the above, eight more studies offered major changes in various topics. For instance,

Touber and Sandham [30, p. 104-105] systematically extended the hybrid DFM-FSM to compress-95

ible flows by generating thermodynamic fluctuations with synthetic velocity fluctuations via ‘the

strong Reynolds analogy’. Furthermore, Breuer and Schmidt [31, p. 677] expanded DFM to be

utilised on interfaces of a hybrid LES-URANS methodology by formulating a modelled kinetic en-

ergy equation as a function of synthetic velocity fluctuations. Moreover, Anupindi and Sandberg [32,

p. 703] seamlessly coupled, stricter than the aforementioned, the hybrid DFM-FSM into another100

LES-RANS methodology, wherein flow quantities at RANS-side of an interface are time-accurately

sampled to create synthetic time-series at LES-side. Additionally, Okaze and Mochida [33, p. 25]

modified the Lund transformation of the hybrid DFM-FSM to include scalar fluctuations and their

complete correlations with flow variables although previously [34, p. 1313] utilised DFM to prescribe

spatiotemporally-variant scalars by omitting their flow-cross-correlations. The hybrid DFM-FSM105

of [14] was extended by [35] with replacing DFM in all directions; hence, leading to ‘pure’ FSM.

Last but not least, Schmidt and Breuer [36] designated an approach where synthetic time-series are

introduced into a computational domain via source terms in the momentum equation in order to

freely determine the boundary location.

5 Skewness and kurtosis quantify the extent of PDF asymmetry and tail shape deviating from the normal distribu-
tion, respectively. Qualitatively, the former shows the dominant sign of the deviations from the mean turbulence
quantities, and the latter the frequency of occurrence of extreme events in turbulence.
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In DFM/FSM theory, arguably, no fundamental development was followed. Nevertheless, trans-110

ferable performance improvements were put forth for the two DFM/FSM steps which are the

costliest: (i.) digital filtering, and (ii.) generation of Gaussian random number sets. For the former,

Veloudis et al. [37, p. 9] advanced filtering in frequency domain, which may reduce floating-point

operations per time-step (FLOPT) from O(ni){n∈N; i∈{1,2,3}} to O(n logi n). Additionally, Veloudis

et al. [37, p. 10] assessed the potentiality of time-step reductions of synthetic time-series generation115

within a more restrictive environment (e.g. LES) without deteriorating temporal accuracy. Alterna-

tively, Kempf et al. [38] propounded filtering via the ‘separable convolution summation method’ [39,

p. 404] where convolution summations are consecutively performed on number sets along each coor-

dinate. As a result, a speed-up of FLOPT from O(ni){i=3} to iO(n){i=3} may be observed. Further-

more, the authors devised a parallelization procedure with zero-inter-communication by seeding120

pseudo-random number generators with constant pairs of integers and corresponding grid node

indices. For the latter cost source, Xie and Castro [14] manipulated O(10) uniformly-distributed

random number sets into normal samples through the central limit theorem. By contrast, Touber

and Sandham [30, p. 104-105] asserted that the Box-Muller’s theorem can reduce the number of

these sets to two.125

Besides the known limitations, previous studies failed to fill knowledge gaps in three main

areas. First, although a number of independent and consecutive model stages form DFM/FSM, no

investigation was made on to which extent each stage performs its task in isolation and interacts with

the others. Second, all the research to date quantified DFM/FSM as a whole with CFD whereas

the both are separate entities, and the latter causes metamorphosis of time-series produced by130

the former. Therefore, the performance of DFM/FSM itself, without the impact of CFD, remains

unquantified. Third, most existing accounts either did not consider ‘building-block’ flows to evaluate

DFM/FSM (e.g. no homogeneous isotropic/shear turbulence study was performed with [14].) or

did not contain the complete set of fundamental assessment measures (e.g. [13] did not provide any

results of power spectral density function.).135

The lack of structured knowledge in the three areas, however, hinders any attempts for the-

oretical capability-oriented improvements in DFM/FSM, for conveying their benefits to a wider

audience, as well as for decision-making of the most appropriate variant to the problem at hand.

The aims of this study are therefore i. to advance our understanding of the aforementioned knowl-

edge gaps with the help of systematic explorations of model parameters and stages, and ii. to140
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improve DFM/FSM capability portfolio through implementing a non-parametric one-spatial-point

skewness-kurtosis transformation functionality.

To this end, a brief description of four synthetic turbulence generators including DFM and FSM

is presented in §2, and the new one-spatial-point non-Gaussian functionality is described in §3. §4
presents three benchmark flows for tests and the statistical measures used. The obtained results145

including the assessment of the four synthetic turbulence generators and the new functionality are

illustrated in §5. Clear-cut conclusions alongside a discussion on remaining challenges are listed

in §6.

2. A brief description of four synthetic turbulence generators

2.1. Digital-filter-based and forward-stepwise-based synthetic turbulence generators150

DFM and FSM construct spatiotemporal-variant Reynolds-decomposed fluctuation velocity (or

scalar) fields, {u′i (x, t) ∈ Q}{i∈N : i∈ [1,3]; t>0}. Both generators may be abstracted into four con-

secutive and independent model stages as shown in Fig. 2 for a one-dimensional field of discrete

points.

The first stage is the generation of a set of random numbers, {r}{|r|=R; k, j∈N : 1≤k+j≤R}, obeying155

the PDF of zero-mean (R-1∑R
k=1 rk=0), unit-variance (R-1∑R

k=1 r2
k=1), independent (R-1∑R

k=1 rkrj=0 for

k 6= j) Gaussian white-noise.

In the second stage, a set of numbers ‘calibrated’ to two-spatial/temporal-point correlation

functions, {b}, is generated. With DFM, the set is computed by Klein et al.’s [13, p. 657] relation

between {b} and an autocorrelation function, ρ:

ρ (q,p) =
u′pu

′
p+q

u′pu
′
p

︸ ︷︷ ︸
known

=

N∑
j=−N+q

bjbj−q

N∑
j=−N

b2
j︸ ︷︷ ︸

unknown

(1)

where q{q∈N : q≥0} is the lag number, p the maximum lag number, {b}{|b|=2N+1 : b∈Q} a set of filter

coefficients, and {N}{|N|∈N : N>0} the support of a filter. The diversity in DFM mainly arises from

the different expressions proposed to invert Eq. 1. In contrast, in FSM, {b} is redefined by a group160

of integral length-scales weighted with empirical constants and limits of integration.
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In the third stage, {b} is embed into {r} via a mathematical operation, so that a new set,

{s}, is constructed with a new spatiotemporal stochastic pattern and yet consisting of correlation

function statistics. While FSM simply uses element-wise multiplication, DFM utilises convolution

summation as follows:

sk ≡ FN (k) =

N∑
j=−N

bjrk+j (2)

where {s}{|s|=M : s∈Q} is a set of digital-filtered numbers, and FN a linear, non-recursive, discrete filter

operator performing a convolution summation on two finite sequences. In FN, the two sets must

completely overlap; thus, producing only a subset of the conventional full convolution summation.

Accordingly, the size of the sets is related as: R-(2N+1)+1=M.165

In the last stage, the one-spatial-point correlation tensor is incorporated into {s} through the

Lund transformation [17, p. 255]: u′i (x, t) = aij(x) si(x, t) where aij , a spatial-variant amplitude

tensor of second-order, is shown below:

aij =


(R11)0.5 0 0

R21/a11 (R22 − a2
21)0.5 0

R31/a11 (R32 − a21a31)/a22 (R33 − a2
31 − a2

32)0.5

 (3)

where Rij is the (known) one-spatial-point correlation tensor in units of variance. It should be noted

that aij is conventionally spatial-variant and temporal-invariant whereas there is no theoretical

objection to its temporal variation.

2.1.1. Klein et al.’s method - DFM

Klein et al. [13, p. 657-658] approximated the right-hand side of Eq. 1 as a Gaussian-form

function of integral length-scales, so that {b} can be explicitly evaluated. The proposition was

justified with the fact that autocorrelation functions of late-stage homogeneous turbulence have

Gaussian-form. For a computational grid of cubic cells with {∆i}{i∈[1,3]}, constant grid size in a

specific direction, the approximation to Eq. 1 in its discrete-form is shown below:

ρ ≈ exp

(
-
π

4

(mi ∆i)
2

(ni ∆i)2

)
= exp

(
-
π

4

m2
i

n2
i

)
(4)
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where m is the rectilinear distance of the node in question to the zero-lag correlation node, and

n the length-scale size. Both are in grid spacing units. Correspondingly, Klein et al. [13, p.658]

derived a closed-form expression for {b}:

{b}i ≈ {̃b}i
/ N∑

j=−N

b̃2
j

0.5

as {̃b}i = exp

(
-
π

2

m2
i

n2
i

)
(5)

The validity of the approximation was shown to have two constraints: i. the length-scale size is170

limited to the range 2 ≤ ni ≤ 100, and ii. the support of the filter must at least be two times the

scale size, Ni ≥ 2ni.

2.1.2. A customized method in spirit of di Mare et al.’s method - DFM

The possibility of the direct inversion of Eq. 1 was investigated by [18] through an iterative

root-finder algorithm of Newton’s method, so that arbitrary-form of correlation functions could

be used in DFM. The main disadvantage of this method is arguably deemed to be its difficult

code implementation. In this study, for this reason, a new approach with the spirit of [18] was

invented as follows. First, a given arbitrary-form correlation dataset is curve fit to a chosen-form of

a continuous function. Then, the direct inversion of Eq. 1 is conducted on this curve-fit function.

Accordingly, for the study’s set of benchmarks, the following expression was devised as the most

proper form of the function:

{b} = R [ρ] = R [C {a exp(-b x) + c exp(-d x)}] (6)

where R denotes the chosen root-finder algorithm, C the curve-fit algorithm, and {a, b, c, d}{∀∈Q}
are the curve-fit parameters. Herein, filter supports are sized to the point where correlation functions175

drop below few percent of their zero-lag value.

2.1.3. Xie and Castro’s method - Hybrid DFM-FSM

In contrast to [13], Xie and Castro [14, p. 454] modelled the right-hand side of Eq. 1 as an

exponential-form function, which was deemed more valid for turbulent shear flows:

ρ ≈ exp

(
-c
π

2

|mi|
ni

)
resulting in {̃b}i ≈ exp

(
-c π
|mi|
ni

)
(7)
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where c=1 is a constant. Furthermore, to reduce computational costs, the streamwise convolution

summation in DFM was replaced by a simpler and a quantitatively justified equivalent procedure,

named FSM [14, p. 456]. Therein, streamwise integral length-scales are input through temporal-

correlation of two planes of {si}, which are generated at successive time-steps:

siΨ (y, z, t+∆t) = siΨ (y, z, t) exp

(
-c
π

2

∆t

T

)
+ siψ(y, z, t+∆t)

{
1- exp

(
-c π

∆t

T

)}0.5

(8)

where {siΨ} is a temporal slice of {si} including transverse length-scales {Lα}{α∈{y,z}} at time

t, {siψ} an auxiliary temporal slice generated with a new set of random numbers in the same

way with {siΨ}, T streamwise Lagrangian time-scale computed with Taylor’s frozen turbulence180

hypothesis [40].6

In their discussion of the default value of c=1, Kim et al. [25, p. 57] put forth c=0.5 is more

apt to use for their plane channel flow CFD simulations. In view of this statement, herein, three

values of c={1, 0.5, 0.25} were tested via the three benchmark flows without CFD (§4.1). For the

majority of the scenarios, c=0.5 yielded the highest level of similarity to the benchmarks in terms185

of correlation functions and power spectra (not reported). Therefore, Kim et al. [25]’s preference

was used throughout the study as the default model constant instead of the original value of c. It

should be stressed that c=0.5 is not universal, yet a solution of model calibration to the flows in

question. One may thereby seek other values of c for other types of flows.

2.1.4. Kim et al.’s method - FSM190

Xie and Castro’s [14] one-direction of FSM was extended to all directions by [35, p. 135]; hence,

leading to abolishing the use of convolution summations of DFM. FSM is subsequently applied to

6 According to the hypothesis: Lx=Ux T, where Lx is a streamwise integral length-scale, Ux, mean flow speed in
the same direction, and T streamwise Lagrangian time-scale.
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each direction in an arbitrary order to yield {si} as follows:

siy (t, j+1, k) = siy (t, j, k) exp

(
-
cy
ny

)
+ r (t, j, k)

{
1- exp

(
-

2cy
ny

)}0.5

(9a)

siyz (t, j, k+1) = siyz (t, j, k) exp

(
-
cz
nz

)
+ siy (t, j, k)

{
1- exp

(
-

2cz
nz

)}0.5

(9b)

siyzx (t+1, j, k) = siyzx (t, j, k) exp

(
-
cx
nx

)
+ siyz (t, j, k)

{
1- exp

(
-

2cx
nx

)}0.5

(9c)

where {ci(x)}{i∈{x,y,z}} is a set of constants to scale {ni}, and {r} a planar set of random numbers.

3. Development of the one-spatial-point non-Gaussian functionality

Transformation of skewness-kurtosis pairs of DFM/FSM at a spatial point was studied by means

of three new approaches: i. non-Gaussian random number set input-based approach, ii. determinis-

tic deconvolution-based approach, and iii. PDF transformation-based approach. The tests showed195

that the first two proposed approaches were proved to be ineffective, and the third approach to be

promising, which is accordingly introduced in the following. It is however still deemed to present

what the first two sound methods are for the reader’s examination; thus, presented in §A.1-2.

3.1. PDF transformation-based approach

The approach is based on a transformation function. It is introduced as a new model stage200

between the 3rd and 4th stages illustrated in Fig. 2. The function is a piecewise closed-form func-

tion shown in Eq. 11, which was derived by means of two concepts: i. the memoryless nonlinear

transformation method (MNT; also known as the zero-memory non-linear transformation) [41, 42],

and ii. the Johnson system of PDFs [43].

MNT is the core concept of the current family of non-Gaussian process generation methodologies.

Its main formulation was proposed by [42, p. 611] as:

ю′i(x, t) = gi{u′i(x, t)} = F -1
ю′

i

{
φu′

i
{u′i(x, t)}

}
(10)

where u′i is a process (known input) obeying a source PDF, ю′i corresponding transformed pro-205

cess (unknown output) obeying a target PDF, φu′
i
the source cumulative distribution function

(CDF), and F -1
ю′

i
the target inverse CDF. The condition of the existence of the relation is satisfied if
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gi{·}=F -1
ю′

i
{φui{·}} is a monotonic function. Through the concept, a given u′i, obeying a Gaussian

CDF φu′
i
, could be transformed into a new process, ю′i, obeying a target non-Gaussian CDF Fю′

i
.

The first potential drawback associated with the use of sole MNT is that Eq. 10 may modify210

spectral contents of u′i towards ю′i [44, p. 19] due to the non-linearity of the function [45, p. 1196].

Whereas, as a rare counter-argument,Smallwood [46, p. 3] claimed that no substantial change should

be expected in the spectral content of u′i, because this is mostly determined by zero-crossings,

which are not significantly altered by Eq. 10. The second drawback is the high computational cost

of interpolations to execute Eq. 10 for each spatial-temporal point of random processes obeying215

arbitrary-form PDFs.

For a process, arbitrary-form non-Gaussianity implies infinite combinations of infinite-order

non-standard moments; hence, has a broad meaning. In the context of turbulence, however, non-

Gaussianity may be restricted to non-standard skewness and kurtosis only due to the fading physical

interpretation of the ever-increasing level of abstraction in higher moments and their diminishing220

distinguishable impact on the physicality of turbulent flow developments.

With this constraint, identification of a unique and closely-approximated non-Gaussian distri-

bution that can be customized to any valid combination of the first four central moments may be

achieved through the Johnson system of distributions [43]. This system includes all valid skewness-

kurtosis pairs (illustrated in [47, Fig. 1]) through its three members: i. SU unbounded, ii. SL225

log-normal (a transition line from i to iii) and iii. SB bounded families [43, p. 156]. The readers

are referred to [47] for the basic characteristics of the system.

More importantly, the substitution of the Johnson system into Eq. 10 yields a piecewise closed-

form expression for ю′i, which is easy-to-code and cheap-to-execute, as follows (for derivation details,

refer to §A.3.1):

ю′i(x, t) =



1

σU

sinh

u′i(x, t)− γ
δ

 -µU

 , for SU - Unbounded

exp {u′i(x, t)} , for SL - Log-Normal

1

σB


1 + exp

γ − u′i(x, t)
δ


-1

-µB

 , for SB - Bounded

(11)

where γ(β1, β2) and δ(β1, β2){δ>0} are the shape parameters of the Johnson system, µU/B(γ, δ)-
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σU/B(γ, δ) the first two theoretical normalized moments of the corresponding families, β0.5
1 =µ3/σ

3

and β2=µ4/σ
4 the Pearson’s moment coefficient of skewness and kurtosis, µ3 and µ4 the third230

and fourth central moments, and σ the standard deviation. The expression leads to two further

questions: for a (β1, β2)-pair, i. how to choose the appropriate family, and ii. how to compute γ-δ.

The criteria to choose one of the families rely on the relative position of the target skewness-

kurtosis pair values with respect to the Cullen and Frey graph’s log-normal curve [47, Fig. 1].

The curve was obtained by a parametric system of equations in [43, Eq. 14]. The set of equations,235

however, does not lend itself to a direct relation between skewness and kurtosis; thus, resulting in

difficulties in the selection. Such functional relation, g(β2) ∼ β1, was then derived by [48], and

summarized in Eq.s (A.46) to (A.50). Accordingly, the following conditionals determine the family

member: SU , if g(β2)>β1; SL, if g(β2)=β1 and SB , if g(β2)<β1. In addition, the region wherein pairs

cannot exist was defined as: β2-β1-1<0 [43, Fig. 2].240

After finding the family that the pair belongs to, γ-δ can be computed through a moment-

matching technique, where the family’s theoretical expressions of skewness-kurtosis are solved for

γ-δ with the help of root-finding algorithms. Parameterizations which considerably reduced the

complexity of the root-finding problem were proposed by [48, p. 310] for SU , and [49, p. 746-748]

for SB . Herein, these set of equations were manipulated in compliance with the requirements of245

the study and reported in Eq.s (A.12) to (A.17) for SU and Eq.s (A.18) to (A.45) for SB .

Table 2 compares the typical number of computational operations performed by Eq. 10 and 11.

As shown, the new method eliminated all algorithms and reduced the number of elementary function

operations. Moreover, the data preprocessing demand is less for the new method. For instance,

the pairing between γ-δ and β1-β2 is a bijection; therefore, for each β1-β2 pair, γ-δ is computed250

only once and for all whereas, for the same β1-β2 pair, Eq. 10 needs to store an interpolation table

of F -1
ю′

i
values that also need to be computed by numerical integrations. Spatial-variation of β1-β2

across inflow plane, on the other hand, exponentially amplifies this contrast.

4. Methodology

4.1. Benchmarks and numerical settings255

The four methods and the non-Gaussian approach were implemented into OpenFOAMv1612+ [50],

and tested through a test-bed of three benchmark flows. The methods sorted by descending theo-

retical FLOPT are labelled as: i. Custom [18], ii. Klein et al. [13], iii. Xie-Castro [14], and iv. Kim
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et al. [35]. The chosen methods represent the majority of DFM/FSM capabilities and varieties. The

test-bed involves three ‘building-block’ flows: i. decaying homogeneous isotropic turbulence (HIT;260

the case of M=0.0508) [51], ii. homogeneous shear turbulence (HST; the case of h=0.305) [52], and

iii. plane channel flow with smooth walls (PCF; the case of Reτ=395) [29], each of which focuses

on an isolated aspect of turbulent flows. In this study, the finite-volume method and Navier-Stokes

equation models were turned off in order to prevent any hard-to-measure distortions in output

statistics of the methods. The details of the benchmarks and numerical set-ups are given in the265

following.

4.1.1. Common numerical settings

Each benchmark reports measurements for several test sections. For each benchmark, one of

these sections was chosen, and corresponding time-variant planar flow field was approximately

reconstructed by the methods. Then, the level of reconstruction was evaluated through a set of270

statistical measures shown in Table 1.

The dimensions of the planar physical sections were replicated in the numerical models. A

Cartesian coordinate system in an inertial frame of reference, I =(O, ex, ey, ez), was defined by

(x, y, z)I ≡ (1, 2, 3)I wherein x is the longitudinal (mean flow direction), y the vertical, z the

transversal axis (statistically homogeneous direction for HST and PCF), and O the origin at the275

left-bottom corner of the planar numerical domain.

Three grids with the refinement ratio of 2.0 were generated for each benchmark. The planar

domains were uniformly discretized into squares whose centroids store synthetic turbulence fields.

Estimations for the upper- and lower-limits of the spatial resolutions were made in accordance with

large eddy simulation (LES) requirements. An upper limit may be deemed as the minimum spatial280

resolution required for a conservative direct numerical simulation: ∆ / 2(ν3LU-3
c )0.25 where ∆ is

the isotropic grid spacing, ν the kinematic viscosity of flow, L isotropic integral length-scale, and

Uc the characteristic flow speed.7 A lower limit, as proposed by [54, p. 62], may be set ∆ ≈ 0.1Lε,

where Lε is an integral dissipation scale, and order of L [54, p. 53]. The spatial-compatible temporal

resolution, ∆t, was then computed considering the constraint of the theoretical pressure-velocity285

7 For the smallest resolved structure of size ∆, the maximum grid spacing could be 0.5∆ due to the Nyquist
theorem [53, p. 10]. Assuming ∆ ∼ η, where η = (ν3/ε)0.25 is the Kolmogorov length-scale and ε ∼ U3

c/L, then
the maximum spacing roughly becomes 2(ν3LU-3

c )0.25.
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coupling algorithm of PISO [55]: ∆t<U-1
c ∆.

In order to make plausible inferences about the statistical population of interest, the minimum

sample size required at a 98% confidence level, nmin, was estimated as 13000 elements via the

following expression [56, §7.2.2.2.]: nmin=(z1-α/2+z1-β)2σ2
est/CI2 where z is the standard score in a

normal distribution, α-β the type I-II error rates, σest=1 the forecasted standard deviation of the290

sample, and CI the confidence interval. Moreover, statistical convergence was qualitatively assessed

through the time-series of the first four sample moments whereas no constraint, such an iterative

linear solver requires, exists on the convergence.

4.1.2. Decaying homogeneous isotropic turbulence - HIT

HIT may be considered as the initial step in any turbulence model benchmarking whilst, in295

particular, any cross-correlation in its statistics is ideally zero. Through HIT, therefore, the isolated

role of each model stage on the final output is expected to be revealed without cross interactions.

As a benchmark, from [51], the stationary-grid experiment of approximately isotropic decaying

turbulent flow was used. The utilized experimental scenario belongs to the measurements at 42M

downstream the turbulence generation grid, where M=0.0508[m] is the grid mesh size. At 42M, the300

mean longitudinal flow speed is Uc=12.7[ms-1], and Reynolds number based upon Taylor micro-scale,

λ, is Reλ=71.6. For the non-Gaussianities in HIT, Jimenez et al. [57, p. 71] numerically and [28,

p. 146] theoretically demonstrated that β̂2 ≈ 2.85, which is independent of Re [57, p. 70].8 The set of

input statistics is comprised of one-spatial-point normal-anisotropic correlations, and longitudinal

and transverse integral length-scales, which respectively are: {(u′ii)2}{i∈(1,2,3)}=0.049284[m2s-2],305

{(u′ij)2}{i 6=j}=0.00, Llong=0.024[m] and Ltrans=0.0127 [51, p. 299].

The dimensions of the planar numerical domain were specified as (y=10M, z=10M ≈ 20Llong)

in order to resemble [59, p. 119]’s 10M preference for their HIT tests. The spatial and tem-

poral resolutions of the domains respectively were {64, 128, 256}HIT node per domain edge, and

{(0.1, 0.05, 0.025)[t?]}HIT, where t?=UcM-1∆t. The duration of the tests was 10.32[s] ≈ 20 pass-through310

in which each sample contained more than 15000 elements.

8 For HIT, β̂1 was assumed zero as a consequence of a lack of thoroughly examined data (despite some reports such
as β̂1 = 0.051 in [58, p. 310]).
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4.1.3. Homogeneous shear turbulence - HST

Towards real-world turbulence, HST could be considered as a transition step wherein large-scale

anisotropy is partially incorporated into HIT; nonetheless, the statistical uniformity in space and

homogeneity in spanwise direction reduces the sophistication of the flow. By means of HST, isolated315

effects of a single one-spatial-point anisotropic stress and cross-integral length-scale were sought.

The benchmark was the experiment of virtually transverse homogeneous and uniform shear

turbulent flow from [60]. The chosen scenario was based on the experimental flow field at a

downstream plane of x1/h=11.0, where h=0.305[m] is the height of the shear-turbulence genera-

tor at the experiment inlet, and x1 the horizontal distance to the generator. At the plane, the320

mean shear is dU1/dx2=46.8[s-1] and the mean longitudinal flow speed at the plane centreline

equals to Uc=12.4[s-1]. Furthermore, Tavoularis and Corrsin [60, p. 321] experimentally found

that β̂1x=-0.222, β̂1y=0.162, β̂1z=0.00, β̂2x=0.10, β̂2y=0.20 and β̂2z=0.30. The random error ranges

were β̂1 ± 0.032 and β̂2 ± 0.05. The input set of stresses and scales contains: (u′1)2=0.475[m2s-2],

(u′2)2=0.165, (u′3)2=0.248 and u′1 u
′
2=-0.126; L11,1=0.057[m], L22,1=0.01311, L33,1=0.01938, L11,2=325

0.01881, L11,3=0.01425, L22,2=L22,3=0.006555 and L33,2=L33,3=0.00969.9 [60, p. 320, 329, 334]. The

values of the last four scales were derived by employing the isotropy assumption, e.g. 0.5L22,1=L22,2.

The dimensions of the domains replicated those of the experiment as (y=h, z=h ≈ 7L11,1).

The spatial resolution of the three grids were: {64, 128, 256}HST node per domain edge, and the

corresponding temporal resolutions: {(15.6248, 7.8124, 3.9062)[t?]}HST, where t?HST=1000Uch
-1∆t.330

The test duration was 7.6864[s], and the samples included at least 40000 elements.

4.1.4. Plane channel flow with smooth walls - PCF

The majority of real-world turbulent flows is bounded by at least one solid surface. Therefore,

a fundamental wall-bounded flow, PCF, was utilised to evaluate the capability of the methods in

relation to wall effects on flow statistics. In addition, the reconstruction of spatial-variant integral335

length-scales across flow plane was examined with the aid of PCF.

The benchmark was hinged upon [29]’s direct numerical simulation of statistically stationary,

pressure-gradient driven, fully developed plane channel flow with smooth walls, wherein the friction

velocity, uτ , and channel half-width, δ, based Reynolds number is Reτ=uτδ/ν=395 [29, p. 943]. The

9 For Lij,k, ij denote the directions of two velocity components of interest, and k the measurement direction.
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input set, including β̂1 and β̂2, is large to show in full herein; for this reason, it can be fetched from340

the web page of [61] as text files.

The dimensions of the domains were: (y=2δ, z=πδ). The spatial and temporal resolutions of the

grids were in turn: {(64, 100), (128, 201), (256, 402)}PCF and {(8, 4, 2)[t?]}PCF, where t?PCF=100Ucδ
-1∆t

with the test duration of 25[s] containing at least 200000 elements.

4.2. Statistical measures345

The tests were conceptualized into two main branches: i. precision tests, wherein the model

stages were investigated whether they perform their assigned tasks when they are in isolation,

and when they interact each other; and ii. accuracy tests, wherein the CFD-free performance

of the models in terms of the level of flow reconstruction fidelity was quantified and compared

to the test-bed. In §2.1, the model stages were elaborated. For the following plots, the stages350

were labelled as follows: the incorporation of two-spatial/temporal-point correlation functions:

3rd stage, incorporation of one-spatial-point correlations: 4th stage, and PDF transformation-

based skewness-kurtosis transformation approach: NG stage.

The flow reconstructions were explored mainly via six statistical measures: i. statistical weak

stationarity, ii. statistical weak ergodicity, iii. first four standardized central moments, iv. one-355

spatial-point correlation tensor of second-order10, v. two-spatial/temporal-point correlation func-

tions, and vi. one-dimensional one-sided power spectral density functions. The exact expressions

of the measures are summarized in Table 1. In a simulation, each numerical domain node ac-

commodates a time-series of velocity vector. After computing sample statistical measures for the

time-series, the measure averages were performed in statistically homogeneous directions. More-360

over, whenever suitable, statistics obtained from the test-bed flows and method outcomes were

quantitatively compared each other with the help of discrete Fréchet distance [62, 63, 64], which is

a metric that quantifies the level of similarity between two arbitrary curves. A code from [65, 66, 67]

was utilised to compute the metric, which is briefly explained in § Appendix A.4.

4.3. Code practices365

In terms of computational cost of DFM/FSM, two model units are the most expensive: i.

Gaussian random number generation, and ii. convolution summation.

10 The term can also be expressed as Reynolds stress tensor when scaled by the density.
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The former ideally demands i. high computational speed, and samples that are ii. statistically

independent, and iii. fast-convergent to the normal distribution. To that end, in literature, [14]

used the central limit theorem wherein O(10) of uniformly-distributed random number sets are first370

generated, and then manipulated into Gaussian samples. Later, Touber and Sandham [30, p. 104-

105] pointed out that two uniformly-distributed sets are adequate for this purpose if the Box-Muller’s

theorem is used instead. However, Thomas et al. [68] quantified that the both approaches (and

a number of other Gaussian random number generators) could not fulfil the three aforementioned

properties satisfactorily and proportionately. The Ziggurat algorithm [69], on the other hand, came375

to the forefront in their comparisons as the optimum generator [68, p. 5]. Accordingly, in this

study, Eddelbuettel [70]’s C++ implementation of a modified Ziggurat algorithm [71] was utilised

to generate Gaussian random number sets.

The conventional convolution summation requires FLOPT ofO{
[
(Πi

m=1Rm)(Πi
m=1Nm)

]
{i∈(2,3)}}.11

In order to decrease this cost, Veloudis et al. [37, p. 9] reminded first that convolution in the fre-

quency domain is only an element-wise multiplication, thereby the computational time complex-

ity may be reduced by O{Πi
m=1Nm/ log{Πi

m=1Rm}}. The following was then proposed for Eq. 2:

{s}=F -1 {F{b}F{r}} where F is a discrete fast Fourier transform operator and F -1 its inverse.

Note that {b} is Fourier-transformed only once per simulation. Apart from this proposition, the

separable convolution summation method [39, p. 404] was suggested by [38] to evaluate Eq. 2:

{s} =

Np∑
k=-Np

Nq∑
j=-Nq

Nl∑
i=-Nl

bijk rm+i, n+j, o+k =

Np∑
k=-Np

Nq∑
j=-Nq

Nl∑
i=-Nl

liqjpk rm+i, n+j, o+k

=

Np∑
k=-Np

pk


Nq∑

j=-Nq

qj

[
Nl∑
i=-Nl

li rm+i, n+j, o+k

]
(12)

In virtue of this method, the theoretical speed-up becomes in the order of O{Πi
m=1Nm/Σ

i
m=1Nm}.12

The complexity ratio between the Fourier and separable convolutions then turns out to beO{Σim=1Nm/380

log{Πi
m=1Rm}}. Considering R � N in DFM, the Fourier convolution is theoretically expected

to be O(1)-O(10) faster than the separable convolution. Yet the tests in this study have sug-

11 For instance, R2 denotes the size of random set in the 2nd-direction, and N3 that of the filter coefficient set in the
3rd-direction.

12 Another method, which has not been utilised in DFM, is the helix transformed [72] convolution, where multi-
dimensions are regressed to one-dimension. In tests, however, its cost reduction was observed to be inconsiderable.
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gested that the two may deliver considerable and comparable performance gains, likely due to the

implementation-algorithm dependent effects.

5. Results & Discussion385

In order to avoid duplications, the computation results from all test-bed scenarios were grouped

in terms of their common and distinct characteristics. The premises supporting the same argument

were presented through representative evidences from one of the benchmarks, and were denoted

with a phrase ‘representative-to-all’ to make clear when the concluding remarks are valid for all

scenarios. Furthermore, the spatio-temporally grid independent results were reported, which belong390

to the following numerical domains: {64}HIT, {64}HST and {64, 100}PCF node per domain edge.

5.1. The first four one-spatial-point statistical moments

The 4th model stage requires that the sets of the 3rd stage output, {s} of Eq. 2, has zero-mean

and unit-variance [13, p. 656]. The majority of the literature presumes that the requirement is

automatically fulfilled. Veloudis et al. [37, p. 8-9], however, held an opposite view that the 3rd stage395

generally alters the zero-mean unit-variance of the random number sets. Therefore, they proposed

a renormalization of {s} to ensure the requirement is fulfilled.13 The authors nevertheless did not

present any quantification to support this objection.

To assess the view, the sample mean and sample standard deviation of each node-time-series

were computed at each stage of the models. Further, the arithmetic average and variance of all400

these sample pairs were calculated. Table 3 presents a representative-to-all HIT results for this

quantification. Data in the table shows that the order of magnitude of changes in zero-mean and

unit-variance due to the 3rd stage is around 0.001 with a variance of around 0.0001. The effect

of the non-Gaussian stage is, on the other hand, several decades lower than that of the 3rd stage.

Moreover, the observation is consistent across DFM/FSM methods. Contrary to [37]’s argument,405

the study did not find a significant effect of the 3rd (as well as the non-Gaussian) stage on the

zero-mean and unit-variance. In addition, the low variance indicated the level of effect is almost the

same across stochastically and statistically different node-time-series. The renormalization requires

operations of an addition, a summation, an exponentiation and a square-root per grid-node at each

13 As an example, [38, p. 59] used the renormalization.
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time-step. More importantly, the time-series throughout the duration of a computation needs to410

be known a priori, because time averages should be performed for the normalization. This may

demand large data storage and complicate on-the-fly computations. It is thus suggested that the

renormalization is redundant in terms of its effects, and its omission is advisable to avoid extra cost

and complications.

Following the first two moments, the skewness-kurtosis pairs of the benchmarks were recon-415

structed through the new PDF transformation-based approach, Eq. 11. Fig. 3 and 4 illustrate

representative-to-all PCF skewness and kurtosis results, respectively.

In the both figures, the 3rd stage’s skewness-kurtosis pairs closely follow the values of (0-3). This

confirms that the pairs produced by the original DFM/FSM is Gaussian. This also corroborates

the presumption that the input set of statistics as it stands does not automatically develop higher-420

order moments during the flow reconstruction. By contrast, as shown in the figures, the new

non-Gaussian stage helped DFM/FSM to closely reconstruct the skewness-kurtosis pairs of the

benchmark in terms of magnitude and patterns despite their spatial variation across a considerable

range of pair combinations. Additionally, in the non-Gaussian stage, no appreciable differences

were observed among DFM/FSM methods. This finding implies that the different 3rd stages of the425

methods do not affect the subsequent non-Gaussian stage outcomes.

The 4th stage needs a closer look, because [20, p. 96] put forward the idea without quantification

that this stage, Eq. 3, alters the statistics constructed in the previous stages. The reasons and extent

of the alterations were however not examined therein as well as in the literature. Fig. 3 and 4 may

provide some insights into the argument.430

In fact, the v-component skewness-kurtosis pairs were observed distorted by the 4th stage. The

maximum change due to the 4th stage in skewness was around 10% and in kurtosis 5%.14 The level

of distortion was gradually increased with the distance to the Gaussian values; nevertheless, the

overall benchmark pattern was preserved in the numerical results. What’s more, the asymmetry

of the distortion for the same v-skewness magnitudes at different channel heights implied that435

the magnitude of skewness-kurtosis pairs and Reynolds stress tensor components determine the

distortion level in a nonlinear interrelation.

14 Percentage difference=(xr-xn)/xr · 100%, where xr is the magnitude of the relevant parameter for the reference,
and xn that for the numerical study.
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On the contrary, no 4th stage effect was found on the skewness-kurtosis of u-,w-components.

This discrepancy stems from Eq. 3. In the 4th stage, the amplitude of {su}-sets is solely multi-

plied element-wise by time-invariant a11 whereas the operation adopted for {sv}-sets includes a440

multiplication and an addition: i.e. v=su a21+sv a22. In the former, the sole multiplication causes

the same scaling at two separate points of {su}-sets in space and time, thereby the two-point

correlation functions as well as one-point moments of the sets remain unchanged. In the latter,

however, the addition of a stochastic {su}-set distorts the amplitude proportionality between any

two-spatial/temporal points within a {sv}-set; hence, distortion in embedded statistics. This dis-445

ruption should also be detected for w-component while its 4th stage consists of three multiplication

and two additions: i.e. w=su a31+sva32+sw a33. The disruption was however absent for PCF because

the additions vanish due to the statistical homogeneity in the w-direction: a31=a32=0.

Furthermore, the same patterns were observed for HST as can be seen from Table 5 wherein

only v-component skewness-kurtosis differed in nearly (18-2)% compared to the previous stage.450

Considering this explanation, the 4th stage should have no effect on the pre-embedded statistics

for HIT, because the absence of any one-point cross-correlation component should eliminate all the

addition operations. Indeed, Table 4 confirms this expectation as all the skewness-kurtosis pairs

remained the same at the end of the 4th stage.

These findings suggest that the 4th stage, namely the Lund transformation, to some extent455

distorts the pre-existing statistics only in the statistically inhomogeneous lateral directions. On the

other hand, the same findings indicate that the streamwise and statistically homogeneous lateral

direction statistics are not prone to such distortion.

5.2. One-spatial-point second-order correlation tensor

The reconstruction of the one-spatial-point second-order correlation tensor of fluctuations (here-460

after, the tensor) is fundamental to the synthetic turbulence generation, because the evolution of

turbulence mostly depends upon energy transfer processes shaped by the tensor. The gradients

of the mean velocity components work done on the deviatoric part of the tensor. This part then

energizes the isotropic part of the tensor (whose half trace is the turbulent kinetic energy) which

redistributes and dissipates the energy. As a result, the mean velocity field loses its convective465

momentum to the fluctuating velocity field. A realistic turbulence development therefore demands

successful reconstruction of the tensor.
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Fig. 5 presents the representative-to-all PCF results for the six tensor components15 recon-

structed by the 4th model stage. Due to the antisymmetry of the deviatoric tensor around the

channel half-height, the results across the entire section were shown. As a consequence of inade-470

quate spatial resolution adjacent to the walls, numerical results for a few benchmark points were

not available in the figure.

The results demonstrate that spatial-variant fields of the reconstructed tensor components were

virtually the same with the benchmark. For instance, the maximum deviation among all scenarios

was observed 3.8% away from the benchmark, which belongs to Kim et al.’s construction of w′ w′
+

475

near the top wall. In comparison to the rest of the results, however, this deviation could be

considered an outlier whilst the majority of all deviations was found to be below 1%. Furthermore,

apart from minor differences because of the stochastic nature of model outcomes, no significant

difference among models, including non-Gaussian counterparts, was identified. The most likely

reason of this is that each model used the same Lund transformation for the 4th stage, and this480

stage was followed by no other model stage. Another implication of this indifference is that the

previous model stages do not have any appreciable effect on the 4th stage output. Lastly, u′ w′
+
and

v′ w′
+
subplots in Fig. 5 illustrate an evidence for the presumption that the level of reconstruction of

DFM/FSM is restricted by the input statistics while no input was provided for the both components

due to the statistical homogeneity in the spanwise direction of the flow, and indeed, the both485

correlations remained random.

5.3. Two-spatial/temporal-point correlation functions

In this section, representative-to-all results of the variance-normalized two-spatial/temporal-

point sample autocorrelation functions (hereafter, autocorrelation) are presented with three figures

in order to examine primarily patterns and similarities. First, Fig. 6 and 7 show the results obtained490

from HIT and HST computations. The two includes two longitudinal, ρ̂xu and ρ̂yv, and one

lateral autocorrelation, ρ̂xv, in order to additionally discuss the DFM/FSM model stage effects

on the autocorrelation. Second, Fig. 8 exemplifies a complete autocorrelation tensor from HST

computations to fill the gap that the majority of studies in the literature contended with in reporting

longitudinal autocorrelations only, e.g. ρ̂xx or ρ̂yy.495

15 The tensor is symmetric.
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To begin with, no noticeable alterations due to the non-Gaussian stage were found. The remark

is exemplified in Fig. 6 and 7 where the non-Gaussian stage outcome bears a marked resemblance

to the previous 3rd stage. This is also valid for PCF computations wherein the skewness-kurtosis

pairs are highly varying, and is supported by §5.2 observations. Secondly, as can be deduced from

Fig. 6, no change due to the 4th stage took place in HIT whereas Fig. 7 reveals that the Lund500

transformation caused a rise nearly 10% of the zero-lag in the most ρ̂xv and ρ̂yv of HST. On the

other hand, ρ̂xu of HST was found to be unaltered. These results are in agreement with those

obtained in §5.1, which further support the aforementioned three remarks: i. in the absence of

anisotropic Reynolds stresses, the 4th stage does not adversely affect the previous stage statistics,

ii. in the presence of anisotropic Reynolds stresses, the 4th stage remains neutral to the pre-existing505

statistics in the streamwise and statistically homogeneous lateral directions; however, iii. the 4th

stage amplifies those statistics in the statistically inhomogeneous lateral direction, which almost

certainly leads to an uninvited increase of output turbulence scales in this direction.

On the question of similarities, the following observations were made. According to the Fréchet

distance in the horizontal bar charts of the figures, the closest and farthest overall proximity to510

the reference autocorrelation tensor components were yielded by the Custom and Klein et al.’s

methods, respectively, with no counter-examples. In addition, Kim et al.’s method nearly always

produced the second best approximations, which also closely followed the Custom’s high fidelity re-

productions. Xie-Castro’s method mostly ranked number three; nevertheless, occasionally reached

Kim et al.’s fidelity. With respect to the patterns in the output autocorrelations, five patterns were515

observed. i. One finding is that Klein et al.’s method produced Gaussian-shaped autocorrelations

although the rest of the models as well as the benchmarks yielded exponential forms. This confirms

the anticipation that the filter kernel casts whatever its shape onto the output autocorrelations.

Another implication of the finding is that the Gaussian-form is not an appropriate choice for the

benchmark flows considered, and very probably also, not for the other turbulent flows which share520

similarities with these three benchmarks. The remaining four patterns are maximal generalizations

about the performance of the models, because they were observed consistently across different flow

scenarios: ii. Klein et al.’s method overpredicted the references by ∼20-25± 5% up to ∼20-25% of

the zero-lag, and then underpredicted them by ∼10%. iii. By contrast, the Custom method gen-

erally reconstructed the references with less than ∼1% difference. Yet its 4th stage resulted in525

O(1)% increase in autocorrelations of the statistically inhomogeneous lateral direction, e.g. ρ̂xv
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of HST. iv. Similarly, Kim et al.’s method reproduced the references in close resemblance up to

∼20% of the zero-lag, and then slightly underpredicted them with few exceptions, e.g. ρ̂zu of HST.

v. Lastly, Xie-Castro’s method usually resulted in ∼5-10% overpredictions along the most part of

the benchmark autocorrelations. In some of the cases, however, the method made a higher overpre-530

diction around ∼20-25% till ∼15-20% of the zero-lag, which was followed by an underprediction, as

can be seen in ρ̂zw of HST. Considering these results, the overprediction tendency could conceivably

be hypothesised that DFM/FSM as is often greatens input scales to some extent.

Another subtle finding was about the streamwise autocorrelations of PCF, which do not level

off zero, yet a positive constant value. It was observed that DFM/FSM could not construct such535

tail behaviour, because their theoretical equations decay certainly and asymptotically to zero at a

certain decorrelation distance.

5.4. Power spectral density functions

This section presents representative-to-all results of the sample one-dimensional one-sided power

spectral density functions as a function of spatial wavenumbers (hereafter, power spectrum) in order540

to investigate the model stage effects and performance of the models within inertial and energy

containing ranges of the spectrum. Representative evidence of the following remarks are illustrated

in Fig. 9 and 10 respectively for HIT and HST.

What stands out in the both figures is a premature and flow-type-independent drop with a non-

linear slope in the power spectra created by Klein et al.’s method towards the outset of inertial range

wavenumbers. Klein et al. [13] did not report any result for power spectra; however, [59, p. 122]

identified a similar drop for this method in HIT. The most likely cause of the drop is the method’s

Gaussian-form of the filter function. Consider the Fourier transform of the Gaussian autocorrelation

function, Eq. 4, whose derivation and parametrization are given in Appendix A.5.1 [73]:

Fx

{
exp

[
-
π

4

x2

L2

]}
(κ) = 2 L exp

[
-4πL2κ2

]
(13)

which is also another Gaussian function, where Fx is the Fourier transform operator on the spatial

variable {x}{x>0}, L [m(2π)-1] an integral length-scale, and κ [(2π)m-1] the spatial wavenumber.545

Eq. 13 in Fig. 9 and 10 illustrates that Klein et al.’s method theoretically produces the drop.

Herewith the model, towards the inertial range, the power spectrum declines considerably more
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rapidly than κ-5/3. Consequently the net spectral energy flux in the inertial range also steeply

decreases; thus, leading to a spurious preservation of the energy in large scales along time.

In contrast, two different observations were noted in Fig. 9 and 10 for all the other methods’550

inertial range reconstructions: first, the aforementioned drop disappeared and the inertial range

slope was more closely followed; and second, an upward transient spike occurred at the high-

wavenumber tail. As regards the power spike, temporal aliasing can be attributed as the main

contributor to this excess power, which typically results from the sampling process rather than the

models. Therefore, no further explanation was sought for the second observation.555

One of the major differences between Klein et al.’s method and the rest is that the autocorrela-

tion function of the latter has an exponential-form. The Gaussian-exponential distinction might be

the key factor in the power drop formation. In order to examine this postulation, a Fourier analysis

likewise above was performed for the exponential function. In addition, Klein et al.’s Gaussian-form

was converted into an exponential one, and several tests were carried out. The Fourier transform

of the exponential autocorrelation function, Eq. 7, can be shown as follows (Appendix A.5.2 [74]):

Fx

{
exp

[
-
π

4

x

L

]}
(κ) =

8Lπ-1

(8Lκ)2 + 1
(14)

which is a Lorentzian function that theoretically possesses a linear decay slope of κ-2 after a corner

wavenumber, κc. Accordingly, Eq. 14 was also plotted in Fig. 9 and 10.

Inspection of the two figures reveals a number of characteristics. First, the Fréchet distances of

the 4th stage and qualitative examination indicate that the Custom, Kim et al. and Xie-Castro’s

methods performed alike in overall spectra estimation unlike the both Klein et al.’s methods. Yet the560

energy-containing range patterns were adequately estimated by all the methods, both Gaussian- and

exponential-form; thus, no superiority of one form on the other in this respect. Another observation

comparing the 3rd and 4th stages is that the overall shape of the power spectra is established by the

3rd stage only whilst the 4th stage seems responsible in rescaling the power level to the target. In

addition to this, the non-Gaussian stages shown in Fig. 9 and 10 assert that the skewness-kurtosis565

transformation did not modify the power spectra previously constructed in the 3rd stage.

A closer look into the inertial subrange of the both figures’ 3rd stages discloses that the inertial

subrange slopes created by the exponential-form methods (except the exponential Klein et al.’s

method) and the corresponding Lorentzian functions are virtually the same. The power amplitude of
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these methods are, however, generally ∼ O(1) order of magnitude higher than that of the Lorentzian570

functions.

The implications of these findings are threefold. First of all, the exponential-form methods seem

to yield the inertial subrange slope of κ-2=κ-6/3 rather than κ-5/3. The former’s slope is still steeper

than that of the latter albeit to a significantly lesser extent than by Eq. 13. Because of this, the

above-mentioned decrease of the net spectral energy flux generated by the Gaussian-form methods575

continues its existence, yet with a significantly reduced dissimilarity to what κ-5/3 may produce.

Further quantifications may however be needed whether this level of difference between κ-2 and

κ-5/3 is negligible from the perspective of turbulence development. Second, the use of Eq. 14 as

well as 13, which were parametrized for DFM/FSM herein for the first time, could be useful in

order for predicting power spectra of a prospective simulation before actually completing the entire580

simulation.

Thirdly, the exponentiality incorporated into Klein et al.’s method eliminated the Gaussian

power drop to a large extent ; however, a slight decline persisted in the order of ∼ O(1)-O(10) with

respect to the other exponential-form methods. Furthermore, the method’s slope was found con-

siderably flatter than those of Gaussian-form methods, yet mildly steeper than κ-2. This outcome585

is somewhat counterintuitive, because the implementation of the exponential-form was expected to

transform Klein et al.’s method into an exponential-form method in all aspects. Accordingly, the

results imply that the omission of Gaussian-form correlation function, per se, is the key to avoid the

aforestated spurious power drop whereas another unnamed mechanism within Klein et al.’s method

also seems to contribute the drop.590

It should be highlighted that similar observations were also deduced for PCF and different

spectra, e.g. Êvv. In summary, these deductions support the notion that exponential-form of

correlations is more apt than Gaussian-form for the synthetic turbulence generation.

5.5. Miscellaneous

5.5.1. Statistical weak stationarity and ergodicity595

The initial presumption of the model development for DFM/FSM is the statistical weak sta-

tionarity of time-series generated by each model stage. The augmented Dickey-Fuller unit-root

test [75], which searches stochastic trends in a time-series, was used to quantify the stationarity. As

a result, all velocity-component time-series from each stage of each benchmark, including skewness-
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kurtosis computations, were found to be statistically weak stationary at a 1% statistical significance600

level.

The second presumption is the statistical weak ergodicity of the time-series. The Walf-Wolfowitz

test [76] was utilised to assess the ergodicity. The test requires two samples of the same size from the

same method, e.g. containing n×m elements. The first sample is generated with a single random

seed which initializes the pseudorandom number generator. The second sample is then generated605

as a combination of n subsamples containing m elements, where each subsample is created with

a new random seed. For a given moment of order k, the test conducts comparisons for whether

the invariance of the kth moment’s statistics is preserved in spite of the stochastic differences in

the samples. Grazzini [76, p. 7] suggests n=100 and m=1000 for a decent estimation. With this

suggestion, the test was performed for all the 36 benchmark/model scenarios up to the first four610

central moments of each velocity component. At a 5% statistical significance level, 9 out of 144 cases

were estimated non-ergodic. No clear pattern was observed among the non-ergodic cases; however,

4 of them belonged to kurtosis. Owing to the high portion of the ergodic cases, it can be concluded

that DFM/FSM is almost always weakly ergodic up to the fourth moment. In consequence, a

stationary sample from DFM/FSM almost certainly includes the true moments of the population.615

5.5.2. The use of different correlation functions at inlet spatial zones

In the literature, DFM/FSM has almost always been utilised by using a single set of integral

length- or time-scales as an input for an entire synthetic turbulence generation plane. Two deficien-

cies may arise from this practice. First, in reality, length- and time-scales may spatiotemporally

vary across a typical cross-section of a flow. Second, the usage of a single set of time-scales inher-620

ently causes a spatial variation in particularly streamwise length-scales due to the Taylor’s frozen

turbulence hypothesis [40] unless cross-sectional mean flow speed is uniform. For example, two

pockets of fluctuation generated with the same time-scale and at two different spatial positions

will convect downstream proportional to the convective mean longitudinal flow speed at these two

points. If these flow speeds differ from those considered in the time-scale computation, the corre-625

sponding length-scales will be different to each other. Moreover, the literature preference for the

single set usage seems due to the lack of not only available data but also quantifications regarding

the merits and costs of using more-than-one sets as an input.

In this part, therefore, effects of the spatial variation in turbulence scales are investigated.
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To this end, PCF was reconstructed by using a single and then twelve sets of integral length-630

scales (tagged by 1L and 12L in the figures, respectively). Comparisons for correlations and power

spectra were made, and representative-to-all results were presented. For the 12L case, the synthetic

turbulence generation plane was geometrically divided into twelve zones in the wall-normal direction.

The zonal dimensions and associated correlation functions were provided by the benchmark. The

integral length-scales were computed through the integration of these correlation functions, where635

the upper bound of the integration was set to 10% of the zero-lag.16 Each input set of each zone

contained nine integral length-scales belonging to each velocity component-direction pair, (u, v, w)-

(x, y, z). For the 1L case, the length-scales reported for the channel half-height, y+=392, were input

uniformly across the generation plane.

Fig. 11 and 12 shows the representative-to-all results of the variance-normalized sample auto-640

correlation function, ρ̂xu, as a function of spatial lag for 1L and 12L, in turn. Each figure includes

twelve subplots related to a zone whose centre is at a vertical distance of y+ from the wall.

In Fig. 11, the first observation is that the use of 1L produced a variation in streamwise length-

scales across the channel cross-section, increasing from the wall to the channel centreline. This is

due to the fact that the 1L length-scales was converted to Lagrangian time-scales based upon the645

mean flow speed at the height of y+=392 through the Taylor’s hypothesis. In a constant time-step

computation, however, inputting the same Lagrangian time-scales across the channel cross-section

automatically caused variations of length-scales because of the spatial varying mean flow speed

across the same section. Consequently, this gave rise to uncontrolled generation of different scales.

In addition, the following patterns were deduced from Fig. 11. Underpredictions occurred in all y+650

zones and for all methods after a certain percentage of the zero-lag. In y+=10 zone, the common

underprediction started at ∼ 90% zero-lag. Towards higher y+ zones, this starting point then

reduced till ∼ 40-70% zero-lag with gradually decreasing slope. Typically, Klein et al.’s method

yielded maximum ∼ 20-30% underpredicted correlations whereas this ratio remained around ∼
5-15% for the other methods. On the other hand, in y+=392 zone where the input 1L belongs to,655

16 The integral length-scale, L, is defined here as follows: L=L∞0 (ρ̂(∆)) ≈ L a
0 (ρ̂(∆)), where L a

b (·) is an operator
applying a numerical integration method over the interval [a, b]. Despite its precise definition, the upper bound of
the integral, i.e. b, is open to debate. Arguably, the main reason of the doubt is the different interpretations of the
tail of the correlation functions on whether their tails mean something physical or spurious. Nicolaides et al. [77,
p. 3] implied based upon several tests that selecting the upper bound when the first zero-crossing happens is the
most convenient option. This was, however, found inappropriate for the PCF while particularly the streamwise
correlations do not level off zero.
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the method performance findings in §5.3 were reobserved.

In Fig. 12, the observations similar to in §5.3 spread out the other y+ zones by virtue of the

spatial variation. On the whole, as maxima, Klein et al.’s method made ∼ 20-40% overpredictions

until ∼ 20% zero-lag and afterwards ∼ 20% underpredictions. Xie-Castro’s method overpredicted

the benchmark in the level of ∼ 5-20% without exception. Custom and Kim et al.’s methods660

followed the benchmark in high proximity except in the y+=251 zone17, yet the latter deviated for

∼ 5-10% underpredictions after ∼ 20% zero-lag.

Fig. 13 and 14 compared the power spectra for the 1L and 12L cases. As Fig. 13 shows, Klein

et al.’s method yielded the aforementioned power drop except for the y+=10 zone where the model

outcome seems comparable to the benchmark. The rest of the methods performed in a common665

trend wherein the level of similarity to the benchmark was improved till y+=61, then stayed roughly

the same until y+=151, and fell off. In detail, these methods had ∼O(103-104) higher power with

respect to the spectrum tail at the y+=10 zone. The difference steadily reduced to ∼O(102) by the

y+=61 zone and remained almost unchanged until y+=151. Subsequently, it rose back to ∼O(103)

towards the channel centreline.670

As illustrated in Fig. 14, the performance trend of the models in Fig. 13 was repeated yet with

a reduced degree of differences to the benchmark overall. Unlike the y+=10 zone resemblance of

Klein et al.’s method in the 1L case, the likeness disappeared in the 12L case with the refined

length-scale input therein. That resemblance therefore may seem now to be a mere coincidence.

The degree of the power difference, with respect to the spectra tails, overpredicted by the rest of675

the models was ∼O(102-103), ∼O(101-102) and ∼O(102-103) for the sectors between y+=10-61,

y+=61-151 and y+=151-392, respectively.

Taken together, the results of this section indicate that the spatial variation of scales often

improves the overall statistical fidelity till the natural boundaries of fidelity that a model provides.

In a single set of scales case, in contrast, somewhat arbitrary and hard-to-control statistics form in680

terms of magnitude and patterns for the majority of regions of a flow.

The spatial variation of scales brings along some theoretical and practical shortcomings, nev-

ertheless, which are distinct for DFM and FSM. Klein et al. [13, p. 658] discouraged the use of

17 It should be mentioned that the main reason why the discrepancy from the Custom method at the y+=251 zone
occurred could not be spotted and explained.
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the spatial variation of length-scales in DFM. The authors foresaw that such practice almost surely

causes two issues: i. the Gaussian-form of Eq. 4 is distorted, and ii. an essential building-block as-685

sumption for the derivation of Eq. 1 is violated. Klein et al. [13], however, saw the spatial variation

from another angle. The authors expected the acquisition of the variation occurs through calibrating

filter coefficients within a single filter in accordance to given spatial-variant length-scales, namely

via a spatially varying filter, and filtering an undivided synthetic turbulence generation plane with

this filter. This, in fact, violates the essential model assumption wherein the filter coefficients were690

assumed spatially constant.

In the current DFM approach, however, the generation plane is separated into zones, and dif-

ferent spatially-invariant filters are put to use at different zones. Accordingly, each zone indepen-

dently possesses associated scales without breaching the two above-mentioned issues. Although the

zone-separation discards these two theoretical issues, this approach suffers from two new practical695

weaknesses. Firstly, statistical discontinuities emerge between zone boundaries. In particular, the

statistics in the zone-separation direction are more prone to such discontinuities. As an example,

the size of a zonal scale may far exceed the dimension of its zone. While non-CFD applications

might not be adversely affected as zones remain independent of each other, CFD applications could

be profoundly influenced by unforeseen impacts on turbulence evolution due to the nonlinear mixing700

of discontinuities downstream.

In the limit of infinite grid nodes and zones, prospective discontinuities may disappear. The

second weakness, however, arose as a limiting factor is the extra computational cost. Veloudis et

al. [37, p. 9] stated without an explanation or quantification that a modest increase in the number

of zones results in a ‘substantial’ cost increase for the same number of nodes. The reason why705

the cost increases is two-fold: i. new ∼k(x-1)(N-1) random numbers required to be generated per

time-step, where k is the number of scales input into a zone, x the number of zones, and N the

filter support for a scale (Appendix A.6), and ii. these new numbers increase the size of sets which

need to be convolved each time-step. Taking into these account, the additional computational cost

is estimated by O(1) times the current cost.710

The above remarks are pertinent to only DFM. FSM is immune to such cost impact. The

zone-separation is not demanded by FSM, and the spatial variation is achieved through solely a

spatial-variant arrangement of the input scale set. In this regard, a possible problem for FSM may

be that the derivation of Eq. 8 for the spatial variation of scales was not engaged with by the
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literature, to date.715

Notwithstanding these concerns, the results obtained in practice arguably weigh the merits of

the spatial variation of scales more against additional costs. As an outcome, such implementa-

tion is advisable for non-CFD applications, particularly for FSM because of the fact that it poses

considerably less trouble to beneficiaries.

6. Conclusions720

The main aim of this study was to provide beneficiaries quantitative insights regarding the

working mechanisms and performance of digital-filter-based (DFM) and forward-stepwise-based

(FSM) synthetic turbulence generation methods. Another aim of the study was to add them a

capability wherein one-spatial-point skewness and kurtosis values can be changed to target values.

To this end, four synthetic turbulence generation methods that belong to Kim et al. [35] (FSM),725

Xie-Castro [14] (Hybrid DFM-FSM), Klein et al. [13] (DFM), and a new method (DFM) were

implemented into OpenFOAMv1612+. The novel applications within the methods were twofold:

First, the new method, named Custom, was developed as a more efficient version of di Mare et al.’s

concept [18]. Second, Kim et al.’s method was formalized and put through its first major tests.

In addition to these, a new, cheap-to-run and easy-to-code piecewise closed-form function that730

transforms one-spatial-point Gaussian skewness-kurtosis of a given time-series to a non-Gaussian

pair was derived from a combination of the memoryless nonlinear transformation method and

the Johnson system of probability distribution functions. All the methods were abstracted into

four modelling stages. Prior to transfer the model outputs into CFD simulations, the methods

were explored in isolation via a test-bed containing decaying homogeneous isotropic turbulence,735

homogeneous shear turbulence and smooth-wall plane channel flow by means of various statistical

measures and aspects.

In conclusion, apart from minor findings stated within the text, the study provided six pri-

mary insights: (i). the new non-Gaussian functionality successfully embeds target one-spatial-point

skewness-kurtosis pairs into synthetic turbulence time-series, and does not alter the other types of740

existing statistics within the series. (ii). Moreover, the Lund transformation does not alter previous

model stage statistics when anisotropic Reynolds stresses are absent. However, on the condition

that anisotropic stresses are present, the Lund transformation amplifies the existing statistics only

in statistically inhomogeneous lateral directions. The amplification generally manifests itself as a
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maximum ∼10% increase in autocorrelation functions. Statistics in the streamwise and statisti-745

cally homogeneous lateral directions are, on the other hand, not affected by the transformation in

contrast to the presumption in the literature. (iii). The level of reconstruction fidelity in terms

of autocorrelation functions and power spectra was obtained by the methods of, which are sorted

from the highest to the lowest level: Custom, Kim et al., Xie-Castro and Klein et al.. (iv). Kim

et al.’s method provides the best trade-off between the reconstruction fidelity and computational750

cost. (v). Correlation functions determine overall shape of their power spectra. In detail, all meth-

ods reconstruct energy-containing region of the spectra in high fidelity. Yet Klein et al.’s method

theoretically and numerically produces a premature and flow-type-independent Gaussian drop in

power spectra towards wavenumbers higher than those of energy-containing region, predominantly

due to its Gaussian-form of correlation functions. In contrast, the rest of the methods, which uses755

exponential-form correlation functions, yields ∼κ-2-slope drop by theoretical and numerical means.

(vi). The spatial variation of correlation functions at a turbulence generation plane through zones

was found to increase the overall fidelity of autocorrelation functions and power spectra. Its merits

weigh more than its accompanied costs, particularly for FSM.

Last but not least, further research is required to determine whether the findings of the study760

differ within CFD simulations. For this purpose, the transfer and evolution of DFM/FSM output

inside CFD simulations need to be quantified systematically.
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8. Figures and tables

Table 1: List of statistical measures used in the study.

Measure Tool for quantifications

i. Statistical weak stationarity Augmented Dickey-Fuller unit-root test [75].

ii. Statistical weak ergodicity Wald-Wolfowitz test [76].

iii.a. Unbiased estimation of mean µ̂1 = x = n-1
n∑
i=1

xi.

iii.b. Unbiased estimation of variance µ̂2 = (n− 1)-1
n∑
i=1

(xi − µ̂1)2.

iii.c. Pearsonian coefficient of sample skewness
√
β̂1 =

µ̂2
3

µ̂3
2

=
n-1

n∑
i=1

(xi−µ̂1)3

µ̂3
2

.

iii.d. Pearsonian coefficient of sample kurtosis β̂2 = µ̂4

µ̂2
2

=
n-1

n∑
i=1

(xi−µ̂1)4

µ̂2
2

.

iv. One-point correlation tensor Rxy = z-1
z∑
k=1

{
T-1

n∆t∑
i=∆t

(xki − µ̂1xk
)(yki − µ̂1yk

)

}
.

v. Unbiased estimation of correlation functions ρ̂XY = R̂XY

µ̂2X
µ̂2Y

; R̂XY = (N− a)-1
(N−a)∆t∑
i=∆t

xi yi+a∆t
.

vi. One-sided power spectral density function Welch’s method [78], window: Hanning, overlap: 50%.
n denotes the size of a discrete sample x, ·̂ the estimation operator, z the number of nodes along the statistically
homogeneous direction, T the sample duration, ∆t the time-step size, a the lag (time-offset) number, and N the maximum
lag number.

DFM/FSM
Random Number Set

Turbulence Statistics

New Set
Involving Statistics

Figure 1: A diagram showing synthetic turbulence generation with DFM/FSM.18

18 A color-blind proof and print-standard-friendly color scheme produced by [79] was used in this study.
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Figure 2: A general view of DFM/FSM model stages for a one-dimensional field of discrete points.
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Figure 3: The Pearson’s moment coefficient of sample skewness results, β̂1, from DFM/FSM computations of the
plane channel flow with smooth walls (PCF) [29]. From left to right, the 3rd, non-Gaussian (NG) and 4th model
stages and from top to bottom, velocity components, (u, v, w), are depicted. Of a subplot, the vertical axis denotes
the normalized channel half-height, h̃=h/δ where h and δ are the half-height of the computational and benchmark
domains, respectively. PCF is statistically symmetric along the channel centreline; hence, only the results belong to
the half-height are shown. The horizontal axis stands for skewness, which was computed for each node-time-series
and arithmetic averaged in the statistically homogeneous direction of the flow.
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Figure 4: The Pearson’s moment coefficient of sample kurtosis results, β̂2, from DFM/FSM computations of the
smooth-wall plane channel flow (PCF). The figure descriptions are as in Fig. 3.
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Figure 5: The results from DFM/FSM computations of the plane channel flow with smooth walls (PCF) [29] for
one-spatial-point second-order correlation tensor of discrete fluctuating velocities, {u′i(n∆,m∆t)u′j(n∆,m∆t) ∈
Q}{i,j,n,m∈N; i,j∈[1,3];n,m,∆t>0}. The vertical axis of a subplot stands for the normalized channel full-height,
h̃=h/(2δ) where h and δ are the full-height of the computational domain and the half-height of the benchmark
domain, respectively. The dependencies of the tensor components on space and time were reduced by arithmetic
average in time and the statistically homogeneous direction of the flow; hence, u′i u

′
j

+
. {·} denotes combined time

and spanwise space average, and {·}+={·}/u2
τ a normalization operator, where uτ is the estimated friction velocity.

The corresponding expression used in the computations is shown in Table 1.
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Figure 6: The two-spatial/temporal-point sample autocorrelation function results, ρ̂mn, from the decaying homo-
geneous isotropic turbulence computations (HIT) [51]. In ρ̂mn, ‘m’ stands for the measurement direction, and ‘n’
for the measured velocity component. ρ̂mns were computed for each node-time-series, and their arithmetic average
was performed in the statistically homogeneous directions. From left to right, the 3rd, non-Gaussian (NG) and 4th

model stages are shown. From top to bottom, two longitudinal, ρ̂xu and ρ̂yv , and one lateral, ρ̂xv , autocorrelation
functions are demonstrated. The horizontal axes denote the spatial lag, r̃, normalized by the characteristic length
M=0.0508 [m]. The horizontal bar chart illustrates the Fréchet distance of each model curve to the benchmark. Each
bar is normalized by the most-similar-to-the-benchmark model curve. The maximum height of a bar is the unity,
and ‘h.s.’ with the arrow means the direction of higher similarity.
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Figure 7: The two-spatial/temporal-point sample autocorrelation function results from the homogeneous shear tur-
bulence computations (HST) [52]. The figure descriptions are the same with Fig. 6.
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Figure 8: The two-spatial/temporal-point sample autocorrelation function results from the homogeneous shear tur-
bulence computations (HST) [52]. Herein, all nine components of the correlation tensor are demonstrated. The figure
descriptions are the same with Fig. 6.
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Figure 9: The sample one-dimensional power spectral density function results, Êxu [m3 s-2], as a function of spatial
wavenumber, κ [m-1], from the decaying homogeneous isotropic turbulence computations (HIT) [51]. In Êxu, ‘x’
stands for the measurement direction, and ‘u’ for the measured velocity component in this direction. ‘Exp. Klein
et al.’ denotes Klein et al.’s method using the exponential-form filter function. Êxus were computed for time-series
of each node, and their arithmetic average was performed in the statistically homogeneous directions. From left to
right, the 3rd, non-Gaussian (NG) and 4th model stages are shown. The horizontal bar chart illustrates the Fréchet
distance of each model curve to the benchmark. Each bar is normalized by the model curve which is the most similar
to the benchmark. The maximum height of a bar is the unity, and ‘h.s.’ with the arrow means the direction of higher
similarity.
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Figure 10: The sample one-dimensional power spectral density function results, Êxu [m3 s-2], as a function of spatial
wavenumber, κ [m-1], from the homogeneous shear turbulence computations (HST) [52]. The figure descriptions are
as in Fig. 9.
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Figure 11: The two-spatial/temporal-point sample autocorrelation function results, ρ̂xu, from the smooth-wall plane
channel flow computations (PCF) [29] wherein a single set of correlation tensor, L, was input. y+=uτ y/ν is the
dimensionless wall distance, uτ the friction velocity, ν the kinematic viscosity of the fluid, x the measurement
direction, u the measured velocity component, and r̃, the spatial lag normalized by the channel half-height, δ=1.0 [m].
The channel cross-section was segmented into 12 sections in the wall-normal direction, where the centre of a section
is at the specified y+. The same input correlation tensor was used for all sections. Only the channel half-height
from the top wall is shown due to the statistical symmetry along the half-height. ρ̂xus were computed for each
node-time-series, and their arithmetic average was performed in the statistically homogeneous spanwise direction
and each section height.

50



0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y+ 10

PCF
12L

Benchmark
Custom

Klein et al.
Xie-Castro

Kim et al.
Custom-NG

Klein et al.-NG
Xie-Castro-NG

Kim et al.-NG

0 1 2 3

y+ 20

0 1 2 3

y+ 30

0 1 2 3

y+ 40

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

xu

y+ 61

0 1 2 3

y+ 80

0 1 2 3

y+ 98

0 1 2 3

y+ 151

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
y+ 199

0 1 2 3

y+ 251

0 1 2 3

y+ 302

0 1 2 3

y+ 392

r

Figure 12: The two-spatial/temporal-point sample autocorrelation function results, ρ̂xu, from the smooth-wall plane
channel flow computations (PCF) [29] wherein twelve correlation tensors, 12L, were input. The figure descriptions
are the same with Fig. 11.
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Figure 13: The sample one-dimensional one-sided power spectral density function results, Êxu [m3 s-2], as a function
of spatial wavenumber, κ [m-1], from the smooth-wall plane channel flow computations (PCF) [29]wherein a single
set of correlation tensor, L, was input. y+=uτ y/ν is the dimensionless wall distance, uτ the friction velocity, ν the
kinematic viscosity of the fluid, x the measurement direction, u the measured velocity component, and r̃, the spatial
lag normalized by the channel half-height, δ=1.0 [m]. The channel cross-section was segmented into 12 sections in
the wall-normal direction, where the centre of a section is at the specified y+. The same input correlation tensor was
used for all sections. Only the channel half-height from the top wall is shown due to the statistical symmetry along
the half-height. ρ̂xus were computed for each node-time-series, and their arithmetic average was performed in the
statistically homogeneous spanwise direction and each section height.
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Figure 14: The sample one-dimensional one-sided power spectral density function results, Êxu [m3 s-2], as a function
of spatial wavenumber, κ [m-1], from the smooth-wall plane channel flow computations (PCF) [29] wherein twelve
correlation tensors, 12L, were input. The figure descriptions are as in Fig. 13.

53



Table 2: Approximate number of calls for the computational operations that are required by Eq. 10 and 11 during
the transformation of a standard normal skewness-kurtosis pair to a target one. For brevity, operations needed for
a single velocity component per time-step are shown.

Operations SU SL SB
Eq. 10

with arbitrary F -1
ю′

i

Eq. 10
with Gaussian F -1

ю′
i

Arithmetic
Functions

Addition - - 1 2 1
Subtraction 3 - 2 3 2
Multiplication - - - 3 5
Division 3 - 3 1 1

Elementary
Functions exp(·) 2 1 1 - -

Non-elementary
Functions/Algorithms - - - 1 erf(·)

1 Search algorithm
1 erf(·)
1 erf-1(·)

Table 3: The arithmetic average, (·), and variance, V ar(·), of the sample pairs from all nodes. A pair contains the
sample mean, µ̂1, and sample standard deviation,

√
µ̂2, of a node-time-series. S-3, S-NG, and S-4 denote the 3rd,

non-Gaussian, and 4th model stages, respectively. Each cell, (·|·), represents values of ((·)|V ar(·)) rounded to two
decimal places in the scientific notation.

Custom Klein et al.
S-3 S-NG S-4 S-3 S-NG S-4

µ̂1 (10-3|10-4) -1.19|3.88 -1.19|3.88 -0.26|0.18 0.16|3.53 0.16|3.53 0.04|0.161× 10-2√
µ̂2 (1|10-4) 1.00|0.94 1.00|0.86 0.22|0.04 1.00|1.25 1.00|1.14 0.22|0.06

Xie-Castro Kim et al.
S-3 S-NG S-4 S-3 S-NG S-4

µ̂1 (10-3|10-4) -0.61|4.58 -0.62|4.58 -0.14|0.22 0.95|5.43 0.95|5.43 0.21|0.26√
µ̂2 (1|10-4) 1.00|1.14 1.00|1.06 0.22|0.05 1.00|1.37 1.00|1.28 0.22|0.06

Table 4: The Pearson’s moment coefficient of sample skewness, β̂1, and sample kurtosis, β̂2, obtained from Klein
et a.’s method [13] computations of the decaying homogeneous isotropic turbulence (HIT) [51]. The other three
methods produced results which were entirely in line with the table content. The benchmark skewness-kurtosis is
(β̂1-β̂2)=(0.00-2.85) §4.1.2. S-3, S-NG, and S-4 denote the 3rd, non-Gaussian, and 4th model stages, respectively.
Each cell value was computed as follows: first, sample skewness-kurtosis of each node-time-series were found, second
the median of all values was calculated and then results were rounded to two decimal places.

S-3 S-NG S-4 S-3 S-NG S-4

HIT β̂1 (10-3)

u 0.16 4.11 4.11
β̂2

u 2.99 2.85 2.85
v -1.40 3.04 3.04 v 3.00 2.85 2.85
w 0.49 4.85 4.85 w 3.00 2.85 2.85
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Table 5: The Pearson’s moment coefficient of sample skewness, β̂1, and sample kurtosis, β̂2, obtained from Klein et
a.’s method [13] computations of the homogeneous shear turbulence (HST) [52]. The other three methods produced
results which were entirely in line with the table content. The benchmark values can be found in §4.1.3. S-3, S-NG,
and S-4 denote the 3rd, non-Gaussian, and 4th model stages, respectively. Each cell value was computed as follows:
first, sample skewness-kurtosis of each node-time-series were found, second the median of all values was calculated
and then results were rounded to two decimal places.

S-3 S-NG S-4 S-3 S-NG S-4

HST β̂1 (10-3)

u -4.75 -0.21×103 -0.21×10-3

β̂2

u 2.98 3.07 3.07
v 1.34 0.16×103 0.13×103 v 2.99 3.19 3.12
w 0.77 1.37 1.37 w 3.00 3.29 3.29

Appendix A. Appendix

Appendix A.1. Non-Gaussian random number set input-based approach

The method is a heuristic approach rather than a rigorous model. Withinside, the probability

mass function (pmf ) of generated random number sets is changed from the standard normal dis-990

tribution to a prescribed non-Gaussian one. The basic assumption of the approach is that the pmf

of the random number sets proportionately yields a similar pmf for the digital-filtered sets at the

end of the filtering. Thus, such adjustment may suffice to designate the pmf of the outcome.

Appendix A.2. Deterministic deconvolution-based approach

In contrast to the first approach, the fundamental presumption of this approach is that the pmf995

of the first-stage random number sets is not similar to that of the last-stage digital-filtered sets;

however, the former with a particular pmf may determine the desired pmf of the latter.

Recall that the basic mathematical operation in DFM is convolution (Eq. 2), which may be

recast into a simplified form as: s = b ? r, where ? is the convolution operator. Herein, b and r are

known sets; and, s is unknown.1000

Let b and s are known, and r is unknown in the same convolution relation. In principle, ? may

be reversed in order to obtain r. This process is called deconvolution, which can be expressed as:

s ∗ b = r∗ ≈ r (A.1)

where ∗ is the deconvolution operator, and r = r∗ + ε with ε an element-wise error field.

The second basic assumption is that the particular pmf of r may be found through the deconvo-

lution: Consider a desired pmf hs′ , and let n random sets {s′m}{m∈[1,n] & s′m 6= s′q ifm 6=q} are generated
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according to hs′ . Then, r∗m ≈ rm may be computed through the deconvolution for known and con-

stant b. Denoting each pmf of {rm} as hi, a generic pmf for r might be approximated by the1005

arithmetic average of hi: i.e. n−1
∑n
i=1 hi = hr when n � 1. Finally, a new random number set

r obeying the pmf of hr could be convolved with b to yield a digital-filtered random set s′ which

follows the desired hs′ .

In practice, arguably, no standard form of deconvolution exists, and its form depends upon

various characteristics of its operands. Whilst b is always precisely known, the optimal choice for

this study is the deterministic deconvolution ([80]), which may be defined as an arithmetic division

of Fourier transformed operands in the frequency domain:

r ≈ r∗ = F -1
{

F{s}
F{b}

}
(A.2)

where F{·} the discrete fast Fourier transform operation, and F−1{·} its inverse.
Two challenges, however, exist in respect to the formulation. The first is that Eq. A.2 does not

guarantee a definition of a solution due to the possibility of the presence of zero in the denominator

term. The second challenge is the arithmetic division by a small number, which may cause spurious

spikes in the output. [81, p. 86], therefore, proposed the following modification to Eq A.2 in order

to alleviate the aforementioned challenges:

r ≈ r∗ = F -1
{

F{s}F{b}∗
F{b}F{b}∗ + ε2

}
(A.3)

where F{b}∗ is the complex conjugate of F{b}, and ε a small real number proportional to the1010

arithmetic average of F{b}F{b}∗ such ε = λ{F{b}F{b}∗}2 with a constant λ. For an illustrative

example, [81, p. 87] set λ = 0.03; however, no range of values was particularly suggested.

Appendix A.3. PDF transformation-based approach

Appendix A.3.1. Derivations

The standard Gaussian CDF is:1015

φN(x) =
1

2
+

1

2
erf

(
x√
2

)
(A.4)
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The standard Gaussian quantile function is:

φ-1N (x) =
√

2 erf-1(2x− 1) (A.5)

SU Unbounded family

The quantile function of Johnson SU family:

F -1
SU(q; a, b) = sinh

[
φ-1(q)− a

b

]
(A.6)

The substitution of Eq. A.5 into Eq. A.6 yields the following:

F -1
SU(q; a, b) = sinh

[√
2 erf-1(2q − 1)− a

b

]

= sinh


√

2 erf-1
[
2

(
1

2
+

1

2
erf

(
x√
2

))
− 1

]
− a

b

 q = φN(x) ⇒

= sinh


√

2 erf-1
[
erf

(
x√
2

)]
− a

b

 erf-1(erf(x/
√

2)) = x/
√

2 ⇒

= sinh

[
x− a
b

]

(A.7)

SL Log-Normal family

The quantile function of Johnson SL family:

F -1
SL(q;σ) = exp

[
σφ-1(q)

]
(A.8)

The substitution of Eq. A.5 into Eq. A.8 yields the following:1020

F -1
SL(q;σ) = exp [σx] (A.9)

SB Bounded family
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The quantile function of Johnson SB family:

F -1
SB(q; a, b) =

1

1 + exp

[
-1

b
{φ-1N (q)− a}

] (A.10)

The substitution of Eq. A.5 into Eq. A.10 yields the following:

F -1
SB(q; a, b) =

1

1 + exp

[
-1

b
{φ-1N (q)− a}

]
=

1

1 + exp

[
-1

b

{√
2 erf-1(2q − 1)− a

}] q = φN(x) ⇒

=
1

1 + exp

[
-1

b

{√
2 erf-1

(
2

[
1

2
+

1

2
erf

(
x√
2

)]
− 1

)
− a
}]

=
1

1 + exp

[
-1

b

{√
2 erf-1

(
erf

(
x√
2

))
− a
}] erf-1(erf(x/

√
2)) = x/

√
2 ⇒

=
1

1 + exp

[
a− x
b

]

(A.11)

Appendix A.3.2. SU Unbounded family [48]

β1=

(
ω+1-

√
4+2

[
ω2-

β2+3

ω2+2ω+3

])(
ω+1+

1

2

√
4+2

[
ω2-

β2+3

ω2+2ω+3

])2

(A.12)

m=-2+

√
4+2

[
ω2-

β2+3

ω2+2ω+3

]
(A.13)

µU=sign(β2
1)

√
ω+1

2

(
ω-1

m
-1

)
(A.14)

σU= (ω-1)

√
ω+1

2m
(A.15)
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δ=
1√

log(ω)
(A.16)

γ=

-sign(β2
1) sinh-1

(√
ω+1

2ω

(
ω-1

m
-1

))
√

lnω
(A.17)

Appendix A.3.3. SB Bounded family

β2
1=
(

2µ3-3µµ2+µ3

σ3

)2

(A.18)

β2=
-3µ4+6µ2µ2-4µµ3+µ4

σ4
(A.19)

µ=
A-B

CD
(A.20)

µ2 = µ(1− δγ) +
δ

CD
(Aγ − Bγ − µCγD) (A.21)

µ3 = µ+ 1.5δµγ + 0.5δ2µγ2 (A.22)

µ4 = µ+
11

6
δµγ + δ2µγ2 +

1

6
δ3µγ3 (A.23)

A =
1

2δ
+

1

δ

∞∑
n=1

{
exp

(
-n2

2δ2

)
cosh

(
n(1− 2δγ)

2δ2

)
sech

( n

2δ2

)}
(A.24)

Aγ = -
1

δ2

∞∑
n=1

{
n exp

(
-n2

2δ2

)
sinh

(
n(1− 2δγ)

2δ2

)
sech

( n

2δ2

)}
(A.25)

Aγ2 =
1

δ3

∞∑
n=1

{
n2 exp

(
-n2

2δ2

)
cosh

(
n(1− 2δγ)

2δ2

)
sech

( n

2δ2

)}
(A.26)
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Aγ3 = -
1

δ4

∞∑
n=1

{
n3 exp

(
-n2

2δ2

)
sinh

(
n(1− 2δγ)

2δ2

)
sech

( n

2δ2

)}
(A.27)

B = 2πδ

∞∑
n=1

{
exp

(
-

1

2
(2n− 1)2π2δ2

)
sin ((2n− 1)πδγ) cosech

(
(2n− 1)π2δ2

)}
(A.28)

Bγ = 2(πδ)2
∞∑
n=1

{
(2n-1) exp

(
-

1

2
(2n-1)2π2δ2

)
cos ((2n-1)πδγ) cosech

(
(2n-1)π2δ2

)}
(A.29)

Bγ2 = -2(πδ)3
∞∑
n=1

{
-(2n-1)2 exp

(
-

1

2
(2n-1)2π2δ2

)
sin ((2n-1)πδγ) cosech

(
(2n-1)π2δ2

)}
(A.30)

Bγ3 = -2(πδ)4
∞∑
n=1

{
-(2n-1)3 exp

(
-

1

2
(2n-1)2π2δ2

)
cos ((2n-1)πδγ) cosech

(
(2n-1)π2δ2

)}
(A.31)

C = 1 + 2

∞∑
n=1

{
exp

(
-2n2π2δ2

)
cos (2nπδγ)

}
(A.32)

Cγ = -4πδ

∞∑
n=1

{
n exp

(
-2n2π2δ2

)
sin (2nπδγ)

}
(A.33)

Cγ2 = -8(πδ)2
∞∑
n=1

{
n2 exp

(
-2n2π2δ2

)
cos (2nπδγ)

}
(A.34)

Cγ3 = 16(πδ)3
∞∑
n=1

{
n3 exp

(
-2n2π2δ2

)
sin (2nπδγ)

}
(A.35)

D =
√

2π exp

(
γ2

2

)
(A.36)
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Dγ = γD (A.37)

Dγ2 = (γ2 + 1)D (A.38)

Dγ3 = (γ3 + 3γ)D (A.39)

µγ=
Aγ

CD
-

ADCγ
(CD)2

-
ACDγ

(CD)2
-
(

Bγ
CD

-
BDCγ
(CD)2

-
BCDγ

(CD)2

)
(A.40)

µγ2 =
Aγ

CD
− AγCγ

C2D
− AγDγ

CD2

−AγCγ
C2D

− -2AC2
γ

C3D
− -ACγDγ

C2D2
− ACγ2

C2D

−AγDγ

CD2
− -ACγDγ

C2D2
− -2AD2

γ

CD3
− ADγ2

CD2

− Bγ
CD

+
BγCγ
C2D

+
BγDγ

CD2

+
BγCγ
C2D

+
-2BC2

γ

C3D
+

-BCγDγ

C2D2
+

BCγ2

C2D

+
BγDγ

CD2
+

-BCγDγ

C2D2
+

-2BD2
γ

CD3
+

BDγ2

CD2

(A.41)
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µγ3(x) =
-xγ2Cγ

C2D
+

-xγ2Dγ

CD2
+

xγ3

CD

−-2xγ(Cγ)2

C3D
− -xγCγDγ

C2D2
− xγ2Cγ

C2D
− xγCγ2

C2D

−-xγCγDγ

C2D2
− -2xγ(Dγ)2

CD3
− (xγ)2D

CD2
− x(Dγ)2

CD2

−-2xγ(Cγ)2

C3D
− -xγCγDγ

C2D2
− xγ2Cγ

C2D
− xγCγ2

C2D

−-2xγ(Cγ)2

C3D
− 2(Cγ)2Dγ

D2C3
− 6x(Cγ)3

C4D
− -4xCγCγ2

C3D

−-xγCγDγ

C2D2
− 2(Cγ)2Dγ

C3D2
− 2Cγ(Dγ)2

C2D3
− -xDγ2Cγ

C2D2
− -xCγ2Dγ

C2D2

−xγCγ2

C2D
− -2xCγCγ2

C3D
− -xCγ2Dγ

C2D2
− xCγ3

C2D

−-xγCγDγ

C2D2
− -2xγ(Dγ)2

CD3
− xγ2Dγ

CD2
− xγDγ2

CD2

−-xγCγDγ

C2D2
− 2x(Dγ)2Cγ

C2D3
− -xCγDγ2

C2D2
− 2x(Cγ)2Dγ

C3D2
− -xCγ2Dγ

C2D2

−-2xγ(Dγ)2

CD3
− 2xCγ(Dγ)2

C2D3
− -4xDγDγ2

CD3
− 6x(Dγ)3

CD4

−xγDγ2

CD2
− -xCγDγ2

C2D2
− -2xDγDγ2

CD3
− xDγ3

CD2

(A.42)

µγ3 = µγ3(A) + µγ3(B) (A.43)

µB = µ (A.44)

σB = sign(β1)
√
µ2 − µ2 (A.45)

Appendix A.3.4. Criterion1025

g(β2) = (ω1 − 1)(ω2 + 2)2 ∼ β1 (A.46)

ω1 =
1

2

(
-1 +

√
d+

√
4√
d
− d− 3

)
(A.47)
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ω2 =

√
-1 +

√
2(β2 − 1) (A.48)

d = -1 +
3

√
7 + 2β2 + 2

√
D − 3

√
2
√
D − 7− 2β2 (A.49)

D =
(3 + β2)(16β2

2 + 87β2 + 171)

27
(A.50)

Appendix A.4. Discrete Fréchet distance metric [63, p. 2]

Let {P∆t}{0≤∆t≤T; 1≤t≤p; t∈Z+}={P∆1 , . . . , P∆p}, and similarly {Q∆t}={Q∆1 , . . . , Q∆q}, be two

the-same-size discrete time-series, where ∆t is an arbitrary instant, and t an index of a set member.

Let further consider a set {L} that contains of all possible member pairs between {P∆t
} and {Q∆t

}
such that {L}={(Pa1 , Qb1), . . . , (Pam , Qbm)}{{∆1≤ai≤∆p}; {∆1≤bi≤∆q}; {1≤i≤m-1}}. Then, the discrete

Fréchet distance, δdF , whose value depends on the values (position) and order of the set members,

is defined as follows:

δdF (P∆t
,Q∆t

) = min
L

(
max

i=1,...,m
|Pai −Qbi |

)
(A.51)

For identical sets δdF =0 whilst a rise in δdF indicates an increase in dissimilarities. In addition, it

should be noted that the discrete Fréchet distance is an approximation to the Fréchet distance to

allow easier code implementation and lower computational costs.
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Appendix A.5. Fourier transformation of some filter kernels1030

Appendix A.5.1. Gaussian-form autocorrelation function

The Fourier transform of a Gaussian function can be derived as follows [73]:

Fx

{
exp

[
-
π

c

x2

L2

]}
(κ) =Fx

{
exp

[
-ax2

]}
(κ) a↔ πc-1L-2 (A.52a)

=

∞∫
-∞

exp
[
-ax2

]
exp [-2πiκx] dx (A.52b)

=

∞∫
-∞

exp
[
-ax2

]
[cos(2πκx)− i sin(2πκx)] dx (A.52c)

=

∞∫
-∞

exp
[
-ax2

]
cos(2πκx) dx − i

∞∫
-∞

exp
[
-ax2

]
sin(2πκx) dx (A.52d)

=
√
π a-1 exp

[
-
π2κ2

a

]
(A.52e)

=
√
cL exp

[
-cπL2κ2

]
a↔ πc-1L-2 (A.52f)

where Fx is the Fourier transform operator on the variable x, L [m(2π)-1] the integral length-scale,

κ [(2π)m-1] the spatial wavenumber, and c a model constant, for instance in Eq. 4 c=4. The first

term of Eq. A.52d reduces to Eq. A.52e [73], and its second term goes to zero due to the symmetrical

integration of the odd function [73].1035
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Appendix A.5.2. Exponential-form autocorrelation function

The Fourier transform of an exponential function is derived as follows [74]:

Fx

{
exp

[
-
π

c

x

L

]}
(κ) = Fx {exp [-ax]} (κ) a↔ πc-1L (A.53a)

=

∞∫
-∞

exp [-ax] exp [-2πiκx] dx (A.53b)

=

0∫
-∞

exp [-2πiκx] exp [2πax] dx+

∞∫
0

exp [-2πiκx] exp [-2πax] dx

(A.53c)

=

0∫
-∞

[cos(2πκx)-i sin(2πκx)] exp [2πax] dx+

∞∫
0

[cos(2πκx)-i sin(2πκx)] exp [-2πax] dx

(A.53d)

(-x↔ u; -dx↔ du) =

∞∫
0

[cos(2πκu)+i sin(2πκu)] exp [-2πau] du+

∞∫
0

[cos(2πκu)-i sin(2πκu)] exp [-2πau] du

(A.53e)

=2

∞∫
0

cos(2πκu) exp [-2πau] du →
∞∫

0

cos(κu) exp [-bu] du =
b

b2+κ2

(A.53f)

= · · · (A.53g)

=
2cLπ-1

(2cLκ)2 + 1
a↔ πc-1L (A.53h)

where Fx is the Fourier transform operator on the variable {x}{x>0}, L [m(2π)-1] the integral

length-scale, κ [(2π)m-1] the spatial wavenumber, and c a model constant, for instance in Eq. 7 c=2.

Appendix A.6. Size of extra random numbers due to the spatial variation of scales

Consider a planar synthetic turbulence generation grid that has n nodes. Let the grid is divided1040

into x zones which are assumed having the same number of nodes, n/x. Also assume that a scale

set, which contains k number of scales, is input for each zone. The following relations then can be

presented among the size of random number set required for “valid ” type of convolution summations

65



on an undivided grid, M1, and on a zone, M2, and the filter support of the scale N1:

n = M1 −N1 + 1

M2 −N1 + 1 =
M1 −N1 + 1

x
for a zone

xM2 − xN1 + x = M1 −N1 + 1

xM2 −M1 =(x− 1)(N1 − 1)

(A.54)

where xM2 −M1 is the size of new random sets that needs to be generated for the whole grid for a1045

single scale per time-step.
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