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Abstract—Heterogeneous multi-core platforms that contain different types of cores, organized as clusters, are emerging, e.g. ARM’s
big.LITTLE architecture. These platforms often need to deal with multiple applications, having different performance requirements,
executing concurrently. This leads to generation of varying and mixed workloads (e.g. compute and memory intensive) due to resource
sharing. Run-time management is required for adapting to such performance requirements and workload variabilities and to achieve
energy efficiency. Moreover, the management becomes challenging when the applications are multi-threaded and the heterogeneity
needs to be exploited. The existing run-time management approaches do not efficiently exploit cores situated in different clusters
simultaneously (referred to as inter-cluster exploitation) and DVFS potential of cores, which is the aim of this paper. Such exploitation
might help to satisfy the performance requirement while achieving energy savings at the same time. Therefore, in this paper, we
propose a run-time management approach that first selects thread-to-core mapping based on the performance requirements and
resource availability. Then, it applies online adaptation by adjusting the voltage-frequency (V-f) levels to achieve energy optimization,
without trading-off application performance. For thread-to-core mapping, offline profiled results are used, which contain performance
and energy characteristics of applications when executed on the heterogeneous platform by using different types of cores in various
possible combinations. For an application, thread-to-core mapping process defines the number of used cores and their type, which are
situated in different clusters. The online adaptation process classifies the inherent workload characteristics of concurrently executing
applications, incurring a lower overhead than existing learning-based approaches as demonstrated in this paper. The classification of
workload is performed using the metric Memory Reads Per Instruction (MRPI). The adaptation process pro-actively selects an
appropriate V-f pair for a predicted workload. Subsequently, it monitors the workload prediction error and performance loss, quantified
by instructions per second (IPS), and adjusts the chosen V-f to compensate. We validate the proposed run-time management
approach on a hardware platform, the Odroid-XU3, with various combinations of multi-threaded applications from PARSEC and
SPLASH benchmarks. Results show an average improvement in energy efficiency up to 33% compared to existing approaches while
meeting the performance requirements.

Index Terms—Heterogeneous multi-cores, Multi-threaded applications, Run-time management, Performance, Energy consumption.
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1 INTRODUCTION AND MOTIVATION

1 H ETEROGENEOUS multi-core architectures are comput-2

ing alternatives for several application domains such3

as embedded [1] and cloud [2]. These architectures integrate4

several types of processing cores within a single chip. For5

example, ARM’s big.LITTLE architecture contains two types6

of cores; big and LITTLE, where big cores are grouped into7

one cluster and LITTLE cores into another [3]. The big clus-8

ter has both higher cache capacity and computational power9

than the LITTLE one. In such architectures, distinct features10

of different types of cores can be exploited to meet end user11

requirements. These architectures are also equipped with12

dynamic voltage and frequency scaling (DVFS) capabilities13

that enable on-the-fly linear reduction of frequency (f ) and14

voltage (V), yielding a cubic reduction in dynamic power15

consumption (∝ V 2f ). This facilitates to save energy if16

the power consumption is reduced enough to cover the17

extra time it takes to run the workload at a lower voltage-18

frequency (V-f ).19
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Modern systems equipped with heterogeneous multi- 20

core chips need to deal with multiple applications running 21

concurrently (at the same time) while achieving the desired 22

levels of performance for each of them. Moreover, modern 23

applications are multi-threaded (to exploit multi-core chips), 24

which can be mapped onto different cores for parallel exe- 25

cution, and thus reducing the overall completion time. 26

Efficient run-time management of multi-threaded ap- 27

plications on heterogeneous multi-cores is of paramount 28

importance to achieve energy efficiency and high perfor- 29

mance requirements, that have been a key research focus for 30

mobile and embedded systems [4]–[6]. In general, for each 31

application, the management process first finds a thread-to- 32

core mapping defining the number of used cores and their 33

type, and then operating voltage-frequency levels of cores 34

by looking the workload while satisfying the performance 35

requirement. As part of these, the following experimental 36

observations have been made, which form the motivation 37

behind the proposed approach. 38

Observation 1: Fig. 1 shows the motivation to map an 39

application on a heterogeneous multi-core architecture con- 40

taining two types of cores, big (B) and LITTLE (L), where 41

4B and 4L cores are present. The horizontal axis shows 42

various possible resource combinations. The vertical pri- 43

mary (left-hand side) and secondary (right-hand side) axes 44
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Fig. 1. Execution time (seconds) and energy consumption (J) values
by executing the Blackscholes application (from PARSEC benchmark
[9]) with various core combinations, including inter-cluster, on ARM’s
big.LITTLE architecture containing 4 big (B) and 4 LITTLE (L) cores.
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Fig. 2. Variation in MRPI for individual (left) and concurrent (right)
execution of multiple applications.

show execution time and energy consumption, respectively,45

when executing at the various resource combinations. The46

application execution time scales well with number of cores47

and further it benefits from mapping onto big and LITTLE48

clusters at the same time (referred to as inter-cluster thread-49

to-core mapping). It can be seen that executing on 4L and50

4B cores is beneficial in terms of execution time and energy51

consumption, and thus thread-to-core mapping should uti-52

lize the 4B and 4L cores.53

Observation 2: Fig. 2 demonstrates the variations in work-54

load when multiple applications are run in two different55

configurations: individually (left) and concurrently (right)56

on the A15 cluster of Odroid-XU3 platform [7]. Here, we57

consider three applications having different workloads from58

SPLASH: fmm (fm), radix (rd) and raytrace (ra), and their59

respective combinations fm-rd, fm-ra, rd-ra and fm-rd-ra.60

The metric considered to classify the workload is Memory61

Reads Per Instruction (MRPI= L2 cache read refills
instructions retired ) as opposed62

to the more commonly used CPU cycles [8] for classifying63

the application workloads. Selection of MRPI is influenced64

by its relatively low overhead (two performance counters65

only) and high correlation with the memory intensiveness of66

an application. Furthermore, we experimentally verified its67

frequency agnostic behaviour as compared to other metrics,68

such as Memory Reads Per Cycle (MRPC), having maximal69

variations with respect to frequency. MRPI classifies the70

workload based on the degree of memory intensiveness.71

It can be observed from Fig. 2 that the different workload72

classes of the applications fm, rd and ra can clearly be clas-73

sified as compute intensive, memory intensive, and mixed74

(compute and memory intensive), respectively, when run75

individually. However, it is completely different in the case76

of concurrent execution having greater workload variability77

due to applications’ interference. Such classification can help78

to apply appropriate voltage-frequency levels to optimize79

energy while satisfying performance constraint.80

There are existing approaches for run-time management81

of concurrently executing applications [6], [10]–[14]. How-82

ever, the approaches of [10], [11] consider homogeneous83
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Fig. 3. Key steps in runtime management of concurrent execution of
multi-threaded applications on a heterogeneous multi-core architecture.

multi-core architectures and thus cannot be applied to het- 84

erogeneous ones. Approaches proposed in [6], [13] do not 85

exploit the inter-cluster thread-to-core mapping (observation 86

1) and run-time workload classification (observation 2) for 87

performance-constrained applications, missing the oppor- 88

tunity for energy savings. In [12], application threads are 89

mapped to more than one type of cores, but the approach 90

heavily depends on off-line regression analysis of perfor- 91

mance and energy for all possible thread-to-core mappings 92

and V-f levels, which is non-scalable. Moreover, the V-f 93

level is not adjusted during execution, i.e. observation 2 is 94

not exploited, which is beneficial for adapting to workload 95

variations. In contrast, our approach exploits observation 1 96

for thread-to-core mapping and observation 2 for DVFS to 97

achieve energy savings. 98

The key steps in runtime management of concurrent ex- 99

ecution of multiple applications on a heterogeneous multi- 100

core system are summarized in Fig. 3. Considering the 101

above two observations made on inter-cluster exploitation 102

and workload classification, following four main challenges 103

are associated with the run-time management (described 104

subsequently): 105

(i) Efficient inter-cluster thread-to-core mapping for mul- 106

tiple applications (left-most part of Fig. 3). 107

(ii) Workload classification for concurrently executing ap- 108

plications based on the identified thread-to-core map- 109

ping (middle part of Fig. 3). 110

(iii) Identification of appropriate V-f level of cores for the 111

associated workloads (right most part of Fig. 3). 112

(iv) Analysing concurrent applications’ interference and 113

taking appropriate measures to meet performance re- 114

quirements. 115

(i) Inter-cluster thread-to-core mapping step needs to identify 116

the number of used cores and their type for each application 117

while meeting the performance requirement. In case of mul- 118

tiple applications, the mapping process has the challenge 119

of allocating the right number and type of cores to each 120

application from the available cores (4 LITTLE and 4 big 121

cores for ARM’s big.LITTLE architecture presented in the 122

Odroid-XU3 [7]), such that their performance requirements 123

are satisfied and energy consumption is minimized. The 124

left-most part of Fig. 3 shows an example thread-to-core 125

mapping for each application, where threads are allocated 126

onto different types of cores (highlighted in various grey- 127

scales). 128

(ii) Workload classification step needs to classify the workload 129

within each cluster for the concurrently executing appli- 130

cations (shown under Execution in the left-most part of 131
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Fig. 3) by taking the workload of each core into account. The132

classification could be into various classes such as compute133

intensive, memory intensive and mixed [15], which results134

from the varying ways in which they exercise the hardware.135

From a performance perspective, it is desirable to run a136

compute intensive application at a higher clock frequency137

as compared to memory intensive one such that high per-138

formance can be achieved. However, an appropriate metric139

needs to be identified in order to classify the workloads,140

using MRPI in our case. A high workload on the processing141

core means a low MRPI and vice versa. Classification at a142

given time interval plays a pivotal role for achieving the143

desired energy-performance trade-off, which is discussed in144

detail further in Section 4.145

(iii) Appropriate V-f identification is required for the associated146

workloads such that the desired energy-performance trade-147

off can be achieved. Since multiple applications are executed148

concurrently, the V-f level needs to be identified by taking149

the performance requirements of all of them into account.150

Further, as different set of V-f levels are available for the151

cores situated into different clusters, e.g. big and LITTLE152

clusters in ARM’s big.LITTLE architecture, it becomes chal-153

lenging to identify the most suitable V-f levels for dif-154

ferent clusters while respecting applications’ performance155

constraints. The right most part of Fig. 3 shows an example156

demonstration of V-f assignment.157

(iv) Applications’ interference due to concurrent execution of158

applications may degrade their performance. In order to159

meet the performance requirements, the interference level160

should be analysed and then it should be used to take161

appropriate measures. The interference level can be mea-162

sured as the joint performance degradation of applications163

when executing concurrently in comparison to individual164

executions. Clustered heterogeneous architectures such as165

ARM’s big.LITTLE represent different amounts of interfer-166

ence on big and LITTLE cluster for the same workload due167

to different amounts of available memory for them and thus168

they need to be analysed separately. Thereafter, they need to169

be exploited to meet the performance requirements.170

A close observation of the existing run-time management171

approaches indicates that they cannot address all the afore-172

mentioned challenges for executing multi-threaded applica-173

tions on heterogeneous multi-core platforms (described in174

the Section 2). In order to overcome the limitations of the ex-175

isting approaches towards addressing the above mentioned176

challenges, this paper makes the following contributions:177

1) Offline analysis of individual applications for perfor-178

mance and energy consumption when mapped to var-179

ious possible resource combinations on a given hetero-180

geneous multi-core platform to obtain profiled data.181

2) For concurrently executing applications, an online map-182

ping strategy facilitated by sorted profile data, to com-183

pute the minimum energy consumption point, while184

satisfying the performance and resource constraints.185

For each application, the computed point defines186

thread-to-core mapping, and the platform is configured187

following the mapping to start the application execu-188

tion.189

3) For the chosen thread-to-core mappings of concurrently190

executing applications, an online energy optimization191

technique that first classifies their inherent workload 192

characteristics and then pro-actively selects an appro- 193

priate voltage-frequency (V-f ) pair according to pre- 194

dicted workload in order to minimize the switching 195

transitions and energy. 196

4) Implementation and validation of both the offline and 197

online steps on a real hardware platform, specifically 198

Odroid-XU3 platform [7]. 199

The offline analysis is performed by taking re- 200

source/core combinations from the 4 A15 (big) and 4 A7 201

(LITTLE) cores present on Odroid-XU3 platform [7]. The 202

online mapping strategy chooses thread-to-core mappings 203

such that total number of used cores does not exceed the 204

available cores (4 A15 cores and 4 A7 cores). For online 205

energy optimization, appropriate V-f for various workload 206

classes is determined by performing offline design space 207

exploration (DSE) that uses a custom program to generate 208

a varying number of memory accesses. Subsequently, it 209

monitors the workload prediction error and performance 210

loss, quantified by instructions per second (IPS) at run- 211

time and adjusts the chosen V-f to compensate. The pro- 212

posed approach shifts heavy computations to offline and 213

thus helps in reducing the runtime overheads compared to 214

learning-based approaches [8], [16]. The proposed approach 215

is validated on the Odroid-XU3 platform with the various 216

combinations of applications from PARSEC and SPLASH 217

benchmarks. 218

To the best of our knowledge, this is the first study 219

on run-time management of concurrent multi-threaded ap- 220

plications on heterogeneous multi-core architecture where 221

more types of cores are used by an application at the same 222

time and V-f is adjusted at various time intervals during 223

execution through workload selection, classification and 224

prediction. 225

The rest of the paper is organized as follows. Section 226

2 presents related works. Section 3 introduces the system 227

model describing the application, architecture and problem 228

definition in more details. Section 4 describes various stages 229

of the proposed methodology. Section 5 presents the exper- 230

imental results and their analysis with chosen benchmark 231

applications and hardware platform. Finally, Section 6 con- 232

cludes the paper. 233

2 RELATED WORK 234

There have been several works on offline optimization to 235

achieve performance-energy trade-off points for multi-core 236

systems by employing DVFS and/or task mapping [17]– 237

[21]. However, these works have several drawbacks, such as 238

they consider a single application at a time and thus cannot 239

handle concurrent applications [17]–[20], cannot be applied 240

for online optimization as they perform heavy time consum- 241

ing computations, and most of them are not evaluated on 242

real hardware platform [18], [20], [21]. Online optimization 243

has also been considered to cater for dynamic workload 244

scenarios in order to optimize energy consumption while 245

respecting the timing constraint. For online optimization, 246

either all the processing is performed at run-time or else the 247

optimization is supported by offline analysed results. 248

For performing all the processing at run-time, several 249

works have been reported [8], [15], [16], [22]–[24]. In [22], the 250

online algorithm utilizes hardware performance monitoring 251
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counters (PMCs) to achieve energy savings without recom-252

piling the applications. The authors of [23] present an accu-253

rate run-time prediction of execution time and a correspond-254

ing DVFS technique based on memory resource utilization.255

A similar approach, which is a hardware-specific imple-256

mentation of the stall-based model, is proposed in [15]. In257

[24], an adaptive DVFS approach for FPGA-based video mo-258

tion compensation engines using run-time measurements259

of the underlying hardware is introduced. In [8], online260

reinforcement learning based adaptive DVFS is performed261

to achieve energy savings. These approaches perform well262

for unknown applications to be executed at run-time, but263

lead to inefficient results as optimization decisions need264

to be taken quickly and offline analysis results are not265

used. Further, they are agnostic of concurrent workload266

variations and thus fail to adapt for concurrently executing267

multiple applications. Recently, there has been focus on268

online optimization facilitated by offline analysis results [6],269

[10]–[13], [25], [26]. Such approaches lead to better perfor-270

mance results than only online optimizations as they take271

advantage from both offline and online computations. In272

[10], thread-to-core mapping and DVFS is performed based273

on power constraint. Similarly, in [11], first thread-to-core274

mapping is obtained based on utilization and then DVFS275

is applied depending upon the surplus power. However,276

the approaches of [10], [11] target homogeneous multi-core277

architectures and thus cannot be applied to heterogeneous278

ones.279

For heterogeneous multi-cores, recently some works280

have been reported that consider multi-threaded applica-281

tions [6], [12], [13], [25], [26]. However, most of these ap-282

proaches map application threads completely on one type283

of core situated within a cluster [25] [13] [26] [6]. This284

reduces the thread-to-core mapping complexity, but misses285

to benefit from the distribution of an application threads to286

multiple types of cores at a given moment of time. In [25],287

performance impact estimation (PIE) is used as a mecha-288

nism to predict which thread-to-core mapping is likely to289

provide the best performance in order to map the threads290

on the most appropriate core type. In a similar direction,291

some proposals have used workload memory intensity as292

an indicator to guide applications’ thread-to-core mapping293

[27]–[31]. For a given platform containing two types of cores294

as big and LITTLE, such proposals map memory-intensive295

workloads on a LITTLE core and compute-intensive work-296

loads on a big core. Similarly, in [13], at a given moment of297

time, all the threads of an application are mapped on one298

type of cores. The threads are moved from one core type to299

another when it beneficial by checking at a regular interval.300

However, DVFS is not exploited in [25] and [13], which can301

help to achieve further energy savings. In contrast, the ap-302

proaches of [6], [12], [26] exploit DVFS, but they have several303

drawbacks. For example, in [26], design space is explored304

for a single application, which increases exponentially if305

concurrent applications have to be considered. In [6], each306

application is executed as single threaded and use only one307

type of core for it at a time. In [12], application threads are308

mapped to more than one type of cores, but the approach309

heavily depends on off-line regression analysis of perfor-310

mance and energy for all possible thread-to-core mappings311

and V-f settings, which is non-scalable. Additionally, V-f312

setting is not adjusted during execution, which is beneficial 313

for adapting to workload variations. 314

In contrast to existing approaches, our approach con- 315

siders concurrent execution of multiple applications, dis- 316

tributes threads on more types of cores at the same time 317

(performs inter-cluster thread-to-core mapping), applies 318

adaptive DVFS to save energy consumption and has been 319

implemented in hardware. 320

3 SYSTEM AND PROBLEM FORMULATION 321

This section describes the system architecture and applica- 322

tions considered in this work along with a detailed problem 323

definition. 324

3.1 System Architecture 325

The modern heterogeneous architectures contain different 326

types of cores in varying number. Further, cores of the same 327

type are grouped into clusters. One such architecture is 328

considered for our work. We have taken a 28 nm Samsung 329

Exynos 5422 chip hosted on the Odroid XU3 board [7], 330

which is based on the ARM’s big.LITTLE heterogeneous 331

architecture and contains two clusters named big and LIT- 332

TLE [32]. In addition, the chip contains a Mali-T628 GPU 333

and 2GB DRAM LPDDR3. The big and LITTLE clusters 334

contain high performance Cortex-A15 quad core processor 335

and low power Cortex-A7 quad core processor, respectively. 336

The board also contains four real time current/voltage 337

sensors that facilitate measurement of power consumption 338

(static and dynamic) on the four separate power domains: 339

big (A15) cores, LITTLE (A7) cores, GPU and DRAM. The 340

Odroid-XU3 board can run different flavors of Linux. It also 341

supports core disabling and DVFS, helping in optimizing 342

system operation in terms of performance and energy con- 343

sumption. DVFS can be used to change V-f levels at a per- 344

cluster granularity. For each power domain available for 345

a cluster, the supply voltage and clock frequency can be 346

adjusted to pre-set pairs of values. The Cortex-A15 quad 347

core cluster has a range of frequencies between 200 MHz 348

and 2000 MHz with a 100 MHz step, whereas the Cortex- 349

A7 quad core cluster can adjust its frequencies between 350

200 MHz and 1400 MHz with a step of 100 MHz. The 351

device firmware automatically adjusts the voltage for a 352

selected frequency, therefore, adjusting V-f and frequency 353

has interchangeably been used throughout the paper. 354

3.2 Applications 355

For multi-core systems, multi-threaded applications repre- 356

sent current and emerging workloads as they can used to 357

evaluate concurrency and parallel processing. Examples of 358

such applications are available in several benchmarks such 359

as PARSEC [9] and SPLASH [33]. Applications from PAR- 360

SEC and SPLASH benchmarks exhibit different memory 361

behavior, data partitions and data sharing patterns from 362

other benchmarks in common use. The memory behavior 363

of some applications is presented in Fig. 2, which shows 364

whether they are compute intensive, memory intensive or 365

both compute and memory intensive while executing in 366

various time intervals. Such a classification helps to take 367

appropriate actions to perform required optimizations. 368

We have used applications from PARSEC and SPLASH 369

benchmarks on the multi-core architecture of the Odroid- 370

XU3 platform. For each considered application, the user can 371
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specify a performance requirement in terms of completion372

time of the application. Such performance requirements373

can be translated to throughput requirements for frame374

based applications like audio/video applications, where375

throughput is expressed as a frame rate to guarantee a good376

user experience. In a similar manner, the completion time377

requirement can also be translated to an instructions per378

second (IPS) requirement, as the total number of instructions379

in an application is known.380

3.3 Problem Definition381

For an application with R threads to be mapped onto a382

heterogeneous multi-core architecture with N clusters, i.e. N383

core types (C1, C2, C3, ..., CN ), where each cluster contains384

li (i = 1, ..., N ) cores, the possible number of thread-to-core385

mappings (TCmap) can be represented as,386

TCmap =



N∑
i=1

li +

N∏
i=1

li R ≥
N∑
i=1

li & R ≥ li

R ∗N +RN R <

N∑
i=1

li & R < li

(1)

For run-time power management, the modern cluster-based387

architectures support cluster-wide DVFS, where cores of the388

same type organized as a cluster are set to the same V-f389

level from a predefined set of V-f pairs [3]. For example,390

Odroid-XU3 [7], and Mediatek X20 [34] platforms employ391

such architecture. Let li be the number of cores of type Ci in392

a cluster Ei and nFi be the number of available V-f levels.393

Then, to incorporate the V-f levels (nFi) into thread-to-core394

mapping decisions, equation 1 will be modified as follows,395

TCmap V F =



N∑
i=1

li ∗ nFi +

N∏
i=1

li ∗ nFi R ≥
N∑
i=1

li & R ≥ li

N∑
i=1

R ∗ nFi +

N∏
i=1

R ∗ nFi R <

N∑
i=1

li & R < li

(2)
As it can be seen from equation 2, the initial design space is396

prohibitively large to explore during the application execu-397

tion at different time intervals, and thus cannot be applied at398

runtime. In order to overcome this issue, the exploration of399

mapping can be fixed to the initial design space, and DVFS400

exploration can be carried at run-time during different time401

intervals by fixing the mapping from the initial design402

space. This helps to solve the thread-to-core mapping and403

DVFS problems orthogonally. We tackle the problem in the404

same manner, as defined below:405

Given an active application or a set of active applications406

with performance constraints and a clustered heterogeneous407

multi-core architecture supporting DVFS408

Find an efficient static thread-to-core mapping for each409

application at runtime and then apply DVFS during the410

application execution to minimize the energy consumption411

subject to meeting performance requirement of each ap-412

plication without violating the resource constraints (number413

of available cores in a platform)414

For a total of n applications, there are 2n possible use-415

cases, where each use-case represent a set of active applica-416

tions. Finding all the possible mappings for each use-case417
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Fig. 4. Overview of a three-layer run-time management (left) and our
contributions (right).

might not be possible within a limited time in case the 418

number of applications and/or cores in each heterogeneous 419

cluster increases. Therefore, the mappings can be explored 420

for an individual application and used in conjunction for 421

various use-cases at run-time, which also reduces the over- 422

head to store the mappings. We employ the same measures. 423

4 PROPOSED RUN-TIME MANAGEMENT 424

A three-layer view of a typical run-time management is 425

presented in Fig. 4 (left), where each layer interacts with the 426

others to execute an application, as indicated by arrows. The 427

top most layer is the application layer, which is composed of 428

multiple applications having various workload classes. The 429

middle layer is the operating system layer (e.g. iOS, Linux, 430

etc.), which coordinates an application’s execution on the 431

hardware (bottom), consisting of multi-core processors. An 432

overview of the proposed run-time management approach 433

employed by the OS has been illustrated in Fig. 4 (right), 434

which has the following stages: 435

(a) Thread-to-core mapping 436

(b) Workload selection and prediction 437

(c) Workload classification and frequency selection 438

(d) Performance observation and compensation 439

The novel aspects of proposed run-time management of 440

concurrent execution of multiple applications are as follows: 441

• Run-time identification of energy efficient inter- 442

cluster thread-to-core mapping that satisfies perfor- 443

mance and resource constraints. 444

• Online selection and classification of concurrent 445

workloads. 446

• A pro-active online DVFS technique using workload 447

prediction, which takes performance degradation 448

into account and adjusts the chosen V-f setting to 449

compensate. 450

A detailed discussion of each stage is presented in the 451

following sections. 452

4.1 Thread-to-Core Mapping 453

In order to meet the performance requirements of the 454

applications to be run concurrently, and to minimize the 455

energy consumption, an effective thread-to-core mapping is 456
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points for Blackscholes application.

important. This involves choosing an appropriate number457

of cores and their type for each application. Since there are458

several thread-to-core mapping options for each application,459

exploring the whole mapping space is time consuming.460

Therefore, at run-time, thread-to-core mapping is facilitated461

through an extensive offline analysis to guide application462

execution towards an energy efficient point. The offline463

analysis evaluates performance, and energy consumption464

for all the possible thread-to-core mappings at the maximum465

available frequency that helps to meet high performance re-466

quirements. At run-time, one of these mappings that leads to467

energy-efficiency while meeting performance and resource468

constraints is selected for each application. The following469

sections present a detailed discussion on offline analysis and470

run-time mapping selection.471

4.1.1 Offline Analysis472

For each available application, the offline analysis com-473

putes all the possible thread-to-core mappings and their474

performance and energy consumption on a given cluster-475

based heterogeneous architecture. For the considered ap-476

plications, the number of threads is greater than the num-477

ber of cores available on the chosen hardware platform478

(Odroid-XU3). Therefore, following equation 1, the total479

number of thread-to-core mappings for each application is480

24 (TCmap =4+4+4*4). Fig. 1 presents an example analysis481

for the Blackscholes application that shows 24 mappings482

and their respective performance (1/execution time) and483

energy consumption.484

The analysis results for each application are stored as485

design points that represent performance and energy trade-486

off points for all possible thread-to-core mappings at the487

maximum frequency. Each design point is represented as488

4-tuple: (Prf,EC, nL, nb), where Prf , EC, nL, and nb de-489

note performance, energy consumption, number of LITTLE490

cores, and number of big cores, respectively. These design491

points are sorted in descending order to quickly identify the492

points meeting a certain level of performance. This helps in493

minimizing the run-time overhead while choosing the mini-494

mum energy point for each performance-constrained appli-495

cation. Fig. 5 shows the design points for the Blackscholes496

application corresponding to Fig. 1. Similarly, design points497

are stored for other applications as an outcome of the offline498

analysis.499

4.1.2 Run-time Mapping Selection500

For a set of active applications, the runtime mapping has to501

identify appropriate design points for each application such502

that the overall energy consumption is minimized without503

violating the performance and resource constraints (number504

Algorithm 1 Run-time thread-to-core mapping selection

Input: CAApps, AppsPrfr , DP
Output: Map for each application

1: for each application Am do
2: Choose points DAm (∈ DP ) such that Prf > AmPrfr ;
3: end for
4: for each combination point CP (from CAApps) do
5: Compute energy consumption of CP as Energy[CP ]

(Equation 3);
6: Compute total number of used cores of different types

(Equation 4);
7: Add CP with its Energy[CP ] and Ci UsedCores[CP ] in

set CPS;
8: end for
9: From CPS, select the point having minimum energy con-

sumption (minEnergy[CP ]) and satisfying resource con-
straint (i.e., Ci UsedCores[CP ] < available Ci Cores);

10: For the minEnergy[CP ], return number of used cores and
their types for each application as Map;

of cores available in the platform). For example, in case of 505

the Odroid-XU3 platform, the total number of used big and 506

LITTLE cores should not exceed four of each. 507

Algorithm 1 describes the run-time mapping selection 508

algorithm. The algorithm takes concurrently active applica- 509

tions (CAApps), their performance requirements (AppsPrfr) 510

and design points (generated in the previous step, DP = 511

D1, ..., Dm) as input and provides a static thread-to-core 512

mapping Map in terms of number of used cores and their 513

types as output for each application. It has been observed 514

in [10] that allocating more number of threads than cores 515

does not actually give any performance benefits. Moreover, 516

by varying number of threads per core (1, 2, .., t) where 517

the value of t can vary depending on the application and 518

resource allocation), the design space becomes prohibitively 519

large. Therefore, to reduce the mapping complexity, the 520

number of threads are chosen the same as the number 521

of cores. For each application, the algorithm first chooses 522

performance requirement satisfying points from its design 523

points. Since the points are stored in decreasing order of 524

performance, the points are chosen as the first entry in the 525

storage to the last entry meeting the performance require- 526

ment. Thus, a quick selection of points take place. Then, 527

for each combination point CP (formed by considering one 528

point from each application), energy consumption and used 529

cores of type Ci are computed as follows. 530

Energy[CP ] =

NrCApps∑
m=1

Energym (3)

Ci UsedCores[CP ] =

NrCApps∑
m=1

Ci coresm (4)

where, Energym and Ci coresm are the energy consump- 531

tion and used Ci type cores of application m, respectively. 532

For NrCApps active applications, a combination point con- 533

tains one point from each application. 534

After above computations for different combination 535

points, the point having minimum energy consumption 536

(based on minimum value selection algorithm) and satis- 537

fying the resource constraint is chosen (line 9, Algorithm 538

1). Then, for this chosen point, the number of used cores 539
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and their types (nL and nb) for each application are re-540

turned as the thread-to-core mapping Map, which is fur-541

ther controlled by sched_setaffinity interface in the542

Linux scheduler. Our approach is generic, but one-time543

offline analysis is required when the application or platform544

changes. In case a new application needs to be executed and545

its offline analysis is not done, the best effort or online learn-546

ing heuristics [12] can be employed to obtain the mapping,547

but achieved results might not be efficient.548

Simultaneous execution of multiple applications may549

affect each other due to interference in the shared memory.550

Thus, their execution time might increase in comparison to551

the scenario when executed individually. The stretching in552

the execution time depends upon the compute and memory553

intensiveness of the applications, e.g. higher stretching is554

expected for memory intensive applications due to heavy555

memory accesses in the shared memory. The degraded per-556

formances of the applications are compensated by proper V-557

f selections during various time intervals during execution,558

which is described in the following sub sections.559

4.2 Workload Selection and Prediction560

V-f setting is a function of workload, at time tj it can be561

represented as:562

V -f j =

{
f (wj) Individual workload
f (w1j ,w2j , ..., wRj) Concurrent workloads

(5)

where, 1 to R represent threads of the application(s). More-563

over, in a cluster based architecture, the V-f of an individual564

cluster will be set by considering the workloads of all the565

cores within a cluster which can be represented as:566

V -fEi
= f(WEi

) (6)

It is important to note that, for concurrent execution of567

multi-threaded applications, the V-f setting of each cluster568

should be chosen in such a way that all the applications569

meet their performance requirements. Furthermore, these570

applications generate varying and mixed workloads due to571

resource sharing (e.g. L2 cache and memory) showing intra572

and inter workload variations during their execution (see573

Fig. 2). Therefore, we need to select a representative V-f pair574

to guide the further stages in achieving energy efficiency575

without performance loss. Pseudo code of the proposed576

online DVFS is given in Algorithm 2.577

Assume that there are R concurrently executing threads578

of application(s) on cluster Ei, and wrj is the workload579

of a thread r for time interval tj−1 → tj . There will be580

R different workloads at every time interval of execution.581

The workload is quantified by the MRPI, where a low value582

represents a high load on the core and vice versa. If there are583

multiple workloads running within a cluster, choosing a V-f584

setting based on an average or single workload may lead585

to violation of performance requirements for some of the586

applications. For example, setting the V-f according to the587

high MRPI (memory-intensive) workload may hurt the per-588

formance of the compute-intensive workload, as memory-589

intensive workload can be run at lower frequencies than590

compute-intensive workload. Therefore, in a cluster-based591

DVFS supporting architectures, V-f level of the cores within592

Algorithm 2 Proposed online DVFS approach

Input: Application scenario, Ts, f-tab and len
Output: V-f pair for each cluster

1: Initialisation: predicted workload (Pw)=0, cl=cb=0;
2: PMUINITIALIZE()
3: fcur = cpufreq_get_frequency (core#)
4: while (1) do
5: compute new IPS value (IPSn) for each application
6: wait for Ts /*DVFS interval*/
7: /*Set V-f level of A15-cluster*/
8: if (∗cb 6= len) then
9: actual workload(Aw) = Pmc data A15()

10: prediction error (Pe) = Aw − Pw

11: q = 0
12: FIND SET VF(Aw, Pw, Pe, cb, core#)
13: q = 1
14: else
15: wait for Ts ∗ len /*Adaptive sampling*/
16: ∗cb = 0
17: end if
18: /*Set V-f level of A7-cluster*/
19: if (∗cl 6= len) then
20: actual workload (Aw) = Pmc data A7()
21: prediction error (Pe) = Aw − Pw

22: FIND SET VF(Aw, Pw, Pe, cl, core#)
23: else
24: wait for Ts ∗ len /*Adaptive sampling*/
25: ∗cl = 0
26: end if
27: end while
28: function FIND SET VF(Aw, Pw, Pe, c, core#)
29: Pw = EWMA(Pw, Aw, Pe,&c)
30: classify Pw, compute δ and get fn from f − tab
31: if q == 0 then
32: for each cluster do
33: Perf loss = ((IPSreq − IPSn)/IPSreq)
34: end for
35: λ = Perf loss ∗ 100
36: end if
37: if (λ > x%) then
38: fn = fn + λ ∗ fmax

39: end if
40: if (fnew 6= fcur) then
41: cpufreq_set_frequency (core#,fn)
42: fcur=fnew

43: *c−−
44: else
45: *c++
46: end if
47: end function
48: PMUTERMINATE()

a cluster should be set based on the most compute-intensive 593

(minimum MRPI) workload running on those cores. To meet 594

each application’s performance requirement, the V-f setting 595

for cluster Ei for the time interval tj−1 → tj (considering 596

single V-f domain for whole cluster) is set by the following 597

workload (line 9 and 20 in Algorithm 2): 598

WEji = min (w1ji, w2ji, w3ji, w4ji, ..., wRji) (7)

Concurrent execution of multiple applications create con- 599

tention/interference for shared resource, which impacts 600

the performance of an individual application. Furthermore, 601

the memory access latency experienced by each applica- 602

tion, calculated at run-time based on the average memory- 603

intensiveness of the running applications, is used to mini- 604



IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. XX, NO. X, DECEMBER 2016 8

TABLE 1
Design time analysis of workload classes (MRPI range) and corresponding frequencies

A15 A7
MRPI Range Frequency (MHz) MRPI Range Frequency (MHz) MRPI Range Frequency (MHz)

>0.036 1000 (0.018,0.021] 1600 >0.055 900
(0.033,0.036] 1100 (0.015,0.018] 1700 (0.05,0.055] 1000
(0.03,0.033] 1200 (0.012,0.015] 1800 (0.044,0.05] 1100
(0.027,0.03] 1300 (0.009,0.012] 1900 (0.04,0.044] 1200
(0.024,0.027] 1400 <0.009 2000 (0.032,0.04] 1300
(0.021,0.024] 1500 <0.032 1400

mize the wasted cycles/switching activity by scaling down605

the frequency. We represent this latency as δ amount of606

increase in WEji
. Therefore, equation 7 can be modified as:607

WEji
= min (w1ji, w2ji, w3ji, w4ji, ..., wRji) + δji (8)

The value of δ is computed from average MRPI of the cores608

within a cluster. If all the running applications are memory-609

intensive, then the value of δ will be high due to increased610

memory traffic. We experimentally verified that, δ increases611

the application execution time from 1.08% to 3.80%, when612

multiple applications are executed concurrently. Based on613

the above observation, the δ value is set to 4.5% of average614

MRPI.615

Proactive control of V-f is of utmost importance for616

online energy minimization [8]. Therefore, the future work-617

load needs to be predicted at tj to set the V-f pair for618

the interval tj → tj+1. An exponential weighted moving619

average (EWMA) filter [35] is used to predict workload pj+1620

during the interval tj → tj+1 (line 29, Algorithm 2):621

pj+1 = γ ∗ aj + (1− γ) ∗ pj (9)

where γ, pj and aj are the smoothing factor, predicted622

and actual workloads respectively during the interval tj−1623

→ tj . It is to be noted that WEji
, computed from equa-624

tion 8 represents the actual workload aj . To minimize miss-625

predictions caused by dynamic variations in the workload,626

the predicted workload of the interval tj−1 → tj is com-627

pared against the actual workload measured from hard-628

ware PMCs (line 10 and 21 in Algorithm 2). Subsequently,629

computed prediction error Pe (the difference between actual630

and predicted workloads) is used to improve the workload631

prediction for tj → tj+1. The effectiveness of proactive V-632

f control depends on the accuracy of workload prediction,633

hence an evaluation is provided in Section 5.634

4.3 Workload Classification and Frequency Selection635

It is essential to classify the predicted workload for identi-636

fying an appropriate V-f pair for meeting the performance637

requirements and optimizing the energy. We use hardware638

PMCs for periodically getting information regarding archi-639

tectural parameters during application execution (line 9 and640

29, Algorithm 2). The modified performance monitoring tool641

perfmon [36] (enabled access to the A15- and A7-clusters)642

is used for accessing the PMCs, initialized and terminated643

through PMUINITIALIZE and PMUTERMINATE (line 2 and644

48, Algorithm 2).645

Classification of the workload as compute-intensive or646

memory-intensive, depends on the instruction mix during647

the time interval Ts. For example, if there is a large pro- 648

portion of load/store instructions causing frequent cache 649

misses, then the workload can be classified as memory- 650

intensive. Furthermore, when there are frequent branch 651

miss-predictions and lower-level cache misses (e.g. L1 in 652

Odroid-XU3), the number of instructions executed and 653

MRPI could be low. However, the penalty (measured in 654

cycles) will remain intact no matter what the frequency 655

is, because a branch miss-prediction involves only in-core 656

operations [37]. Therefore, the workload will be treated as 657

compute-intensive and the highest frequency is selected to 658

minimize performance loss. On the other hand, if the pro- 659

cessing core is idle or running only background processes, 660

the number of instructions and MRPI may be low. However, 661

this will not come under the compute-intensive case and 662

the operating frequency can be set to a minimum value to 663

minimize the power consumption. Here, the unused core 664

is said to be idle, i.e. no application thread is executing on 665

that core. The idle cores can be identified from the resource 666

combination achieved by the thread-to-core mapping, which 667

decides number of cores and their type allocated to each 668

application (see Table 4). For example, in an octa-core (c0, ..., 669

c7) platform, if thread-to-core mapping allocates four cores 670

(c0, .., c3) to an application, the remaining four cores (c4, ..., 671

c7) will be idle. The status of the core (used/idle) can be 672

maintained in a shared location. 673

Workload classes are predetermined by observing the 674

variation in execution time through a custom program, 675

which generates a varying number of L2-cache misses by 676

performing memory accesses on a large array. Subsequently, 677

the experiment is repeated ten times across all available 678

frequencies (200 MHz - 2000 MHz) on an Odroid-XU3 679

platform [7]. The A15-core is an out of order core which 680

takes advantage of memory level parallelism such that part 681

of an L2 cache miss latency overlaps with other indepen- 682

dent L2 cache misses. Furthermore, the A15-cluster has 683

greater L2-cache capacity compared to the A7-cluster. The 684

influence of these factors is seen during exploration, and 685

taken into account while choosing the MRPI range and 686

its corresponding frequency. The classified workloads and 687

corresponding optimal V-f settings obtained from f-tab are 688

given in Table 1, where various MRPI ranges are mapped 689

to frequency through DSE, and used at run-time to set the 690

operating frequency to a desired value through the util- 691

ity cpufreq-set, thereby minimizing run-time overheads 692

(lines 41, Algorithm 2). 693

The range of MRPI values having little (<1%) or no effect 694

on execution time for the same frequency are grouped into 695

a single class. Application execution intervals with a large 696
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MRPI are actually memory-intensive workloads, so they697

can be run at lower frequencies to save energy as higher698

frequencies will simply result in stalls while waiting for data699

from memory. This motivates us to assign a low frequency700

to large MRPI workloads, and it is decided by the speed of701

memory (∼933 MHz in our case).702

4.4 Performance Observation and Compensation703

It is important to evaluate performance during execution704

to ensure all applications meet their performance require-705

ments. Moreover, dynamic resource availability in a multi-706

core platform may impact the run-time performance of the707

applications. Therefore, we use instructions per second (IPS)708

as a metric for quantifying the run-time performance of each709

application for every elapsed time interval Ts. The perfor-710

mance loss is calculated once (lines 31-35, Algorithm 2) by711

comparing the achieved IPS (IPSn) on each cluster with712

their required IPS (IPSreq) at every time interval. If the713

maximum performance loss λ% of all the currently running714

applications during the interval tj−1 → tj is significant,715

the selected V-f (fn) is increased by λ*fmax (lines 32 - 39,716

Algorithm 2) for subsequent time interval (tj → tj+1) to717

compensate. Furthermore, the frequency is modified only718

when the performance loss (λ) is significant to minimize the719

overheads associated with DVFS [38]. We experimentally720

verified and set the value of λ to 1% by taking the variations721

in PMC data into account [39]. It is worth noting that setting722

any core’s V-f to a new value within a cluster is sufficient723

to change the V-f of remaining cores belonging to the same724

cluster.725

4.5 Adaptive Sampling726

A smaller time interval (Ts, difference between tj−1 and727

tj), for which a value of V-f is computed and set, increases728

the run-time overhead and degrades overall performance.729

Therefore, the value of Ts is experimentally chosen to be 200730

ms so as to minimize the overhead on application perfor-731

mance considering the overheads associated with the PMC732

data collection, subsequent processing, system reliability733

and DVFS [38]. Furthermore, it can be observed from Fig. 2734

that not every combination of applications exhibits large735

variation in workload during the execution, for example fm736

and fm-ra. This negligible variations will have no influence737

on the V-f setting. Therefore, to further reduce the run-738

time overheads, time period is adjusted according to the739

application workload variations.740

To accomplish this we use counters cb and cl for tracking741

the workload variations on A15- and A7-clusters, respec-742

tively. These counters get incremented when the workload743

TABLE 2
Selected applications from PARSEC [9] and SPLASH [33] benchmarks

Benchmark App Name Abbreviation

PARSEC

blackscholes bl
bodytrack bo
swaptions sw
freqmine fr

vips vi

SPLASH
water-spatial wa

raytrace ra
fmm fm

at tj is significantly different (MRPI range) than that of 744

the workload at tj−1 (lines 40-46, Algorithm 2). When cb 745

or cl is equal to a configurable parameter len, the run-time 746

adaptation on A15- or A7-cluster (PMC data collection and 747

subsequent processing) is paused for len*Ts period (lines 15 748

and 24, Algorithm 2). We evaluated the effect of adaptive 749

sampling for the application workload combinations fm, ra, 750

fm-ra and fm-rd (see Fig. 2), where an average improvement 751

of 0.9% and 0.6% in energy and performance are observed 752

respectively when adaptive sampling is enabled, as shown 753

in Fig. 6. 754

5 EXPERIMENTAL VALIDATION 755

5.1 Experimental Setup 756

The proposed run-time management approach for energy 757

optimization is extensively validated on an Odroid-XU3 758

platform running a modified Ubuntu Linux Kernel 3.10.96 759

with a number of combinations of applications from PAR- 760

SEC [9] and SPLASH [33] benchmarks. The details of the 761

Odroid-XU3 platform are already provided in Section 3.1. 762

We selected applications from PARSEC and SPLASH, based 763

on variations in MRPI values. Table 2 lists the considered 764

applications. The applications are taken in various combi- 765

nations to make sets of simultaneously active applications. 766

To have better predictability and to ensure that each appli- 767

cation meets its performance requirement, the system is not 768

overloaded, i.e. no two applications share the cores. This 769

allows scheduler not to delay the application execution. 770

If applications arrive at different times, the later arrived 771

ones can be mapped by taking the available resources and 772

current status of the existing applications, computed as the 773

remaining time to complete them. If existing applications 774

are going to complete soon, the freed resources by them can 775

be considered to decide the mapping of the current appli- 776

cation, otherwise it should be decided based on the current 777

available resources. This also avoids the overhead of data 778

transfer for existing applications as their mapping is not 779

disturbed. Energy consumption is calculated as a product 780

of average power consumption (dynamic and static) and 781

execution time. This includes both the core and memory en- 782

ergy consumption of all the software components (proposed 783

algorithms (Algorithm 1 and 2), profiled data, OS, applica- 784

tions, etc.). The proposed run-time management approach 785

is compared against various approaches, given in Table 5.1, 786

to show energy savings while satisfying the performance 787

constraints. As part of these, the state-of-the-art solution 788

for the run-time resource management of the big.LITTLE, 789

Heterogeneous Multi-Processing (HMP) scheduler [40] with 790

various DVFS governors (ondemand, performance, conser- 791

vative and interactive) is considered. HMP is a patch to the 792
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TABLE 3
Approaches considered for comparison

Reference Approach Abbreviation
[12] Exhaustive Search-based ES

[25], [28]–[31] Workload Memory Intensity
based thread-to-core mapping WMI

[40], [41] HMP + Ondemand HMPO
[40], [41] HMP + Performance HMPP
[40], [41] HMP + Conservative HMPC
[40], [41] HMP + Interactive HMPI

proposed Inter-cluster Thread-to-core
Mapping and DVFS ITMD

standard scheduler in the Linux kernel which dynamically793

dispatches threads to big and LITTLE cluster according to794

their characteristics.795

Furthermore, a mapping approach, which allocates the796

application’s threads onto only one type of core(s) based on797

memory intensiveness [25], [28]–[31] is considered for the798

comparison. As concurrent execution of multi-threaded ap-799

plications is not taken into account by the above approaches,800

following changes are made for a fair comparison.801

• In case of single-application scenario, a memory in-802

tensive application’s threads are mapped onto LIT-803

TLE cluster.804

• In multiple-application scenario, applications are805

sorted based on their memory intensiveness and then806

one with the high memory intensity is mapped onto807

little cores and remaining applications are allocated808

onto big cluster with equal number of cores.809

The proposed approach is also compared against a810

recently published exhaustive search-based (ES) approach811

[12]. As part of this, we used the thread-to-core mappings812

produced by our approach and varied the frequencies (247813

design points; 200 MHz - 1400 MHz on LITTLE-cluster and814

200 MHz - 2000 MHz on big-cluster) for different application815

scenarios. Then, selected the configuration (number of cores816

and their frequencies), having the lowest energy consump-817

tion while satisfying the performance requirements. Sta-818

moulis and Marculescu [14] presented a process variation-819

and workload-aware thread-to-core mapping approach on820

heterogeneous multi-core systems. However, we could not821

consider this approach for the direct comparison with the822

proposed approach for the following reasons. It is proposed823

for maximizing the throughput under both performance824

and power constraints, while our approach minimizes the825

energy consumption under performance constraints. More-826

over, the system architecture is different than the one827

(cluster-based architecture) used in this paper.828

To show the effectiveness of the proposed methodology829

compared to various existing approaches in terms of energy830

savings and performance, single and multiple-application831

scenarios are considered for the validation. Moreover, the832

validation of the workload prediction is also presented.833

5.2 Energy Savings and Performance Comparison834

5.2.1 Energy Savings835

Table 4 presents the resource combinations achieved by the836

proposed mapping approach at run-time for various appli-837

cation scenarios. The mapping approach takes the individ-838

ual application performance requirements into account, and839

TABLE 4
Resource combination achieved by our mapping approach at run-time

for different application scenarios.

App scenario App combination Resource combination

single

bl 4L+4B
bo 4L+4B
sw 4L+4B
fr 4L

wa 4L+4B
ra 3L+4B

double

bl-bo 2L+2B : 2L+2B
bl-sw 4B : 4L
fr-sw 4L : 4B
wa-bo 2L+2B : 2L+2B
wa-bo 4L+3B : 1B
wa-ra 4L+3B : 1B

triple

bl-bo-sw 3B : 1B : 4L
bl-bo-fr 3B : 1B : 4L
sw-bo-fr 4L : 1B : 3B
bl-sw-fr 3B : 1B : 4L

wa-ra-fm 3L+2B : 1B : 1L+1B
wa-ra-vi 2L+2B : 1B : 2L+1B
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Fig. 7. Comparison of proposed approach with reported approaches for
single active application.

chooses the points that minimize total energy consumption 840

from the sorted profiled data, without violating the resource 841

constraints. As discussed earlier, the selected thread-to-core 842

mapping is not altered during the application execution. 843

In single-application scenario, there is only one active 844

application. Fig. 7 shows the comparison of the adopted 845

approach with existing techniques in terms of energy con- 846

sumption. First, an energy efficient thread-to-core mapping 847

is determined to satisfy the given performance require- 848

ment and resource availability. The experimental observa- 849

tion shows that, for most applications our thread-to-core 850

mapping approach tends to choose all available cores, ex- 851

cept for fr and ra (see single-application scenario in Table 4), 852

as it is the energy efficient point. Afterwards, the proposed 853

online DVFS approach takes control of the frequency scaling 854

to minimize the wasted cycles in case of memory-intensive 855

workloads. It periodically samples the PMCs data and uses 856

a proactive V-f setting strategy using the workload pre- 857

diction. From Fig. 7, it can be observed that the proposed 858

method ITMD outperforms all existing approaches which 859

used HMP scheduler for thread-to-core mapping with var- 860

ious Linux governors for DVFS and WMI. Except for fr 861

and ra, energy savings are mostly due to DVFS as both 862

HMP and proposed approach have the similar thread-to- 863

core mapping. The higher energy savings in case of fr are 864

because of mapping threads to power efficient A7 (L) cores, 865

which is the same as that of WMI. It also has long execution 866

that benefits from periodic DVFS. On an average, proposed 867

approach achieves, 25%, 20%, 27%, 22%, and 33% energy 868
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Fig. 9. Comparison of proposed approach with reported approaches for
two active applications.

savings while meeting performance requirements compared869

to HMPO, HMPC, HMPP, HMPI and WMI, respectively.870

Furthermore, as our approach (ITMD) applies online DVFS871

at regular intervals, it provides better energy savings (17%)872

than the exhaustive search-based approach (ES).873

Moreover, Fig. 8 shows the adaptiveness of the proposed874

online DVFS technique to workload variations for the appli-875

cation fr. A high MRPI leads to scaling down the frequency,876

thereby ITMD approach minimizes the power consumption,877

whereas HMPO and HMPC runs at max frequency. This878

is due to the fact that whilst the application is memory879

intensive, it places a high load on the processor cores as far880

as the load measured by the kernel is concerned. Therefore,881

these select the highest frequency even if it does not offer882

improvement in performance.883

In case of multiple-application scenario, at a given mo-884

ment two or more active applications will be contending885

for resources to meet their requirements. Such scenarios886

can be observed in a mobile phone where user tries to run887

more applications at the same time, e.g., mp3-decoder to888

listen to music and jpeg-decoder to view an image. A set889

of two applications from Table 2 are considered to stress on890

effectiveness of the adopted approach in choosing resources891

and V-f pair for minimizing the energy consumption while892

meeting each application performance requirement. Due893

to limited resource availability and contention, the energy894

savings are comparatively less than the single-application895

scenario. Fig. 9 gives the energy consumption for various896

approaches. On an average, proposed approach achieves897

13%, 14%, 10%, 20%, 15%, and 23% energy savings while898

meeting performance requirements compared to ES, HMPO,899

HMPC, HMPP, HMPI and WMI, respectively. Moreover,900

chosen resource combinations are presented in row two of901

Table 4.902

To further validate the ability of the proposed approach903

to adapt to concurrent execution of multiple applications,904

three-application scenario is also considered. Increase in905

number of active applications will lead to reduced solution906
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space for choosing an energy efficient thread-to-core map- 907

ping. As mentioned before, it is caused by the resource con- 908

straints (see Table 4 for resource combination) and increased 909

contention due to concurrent workloads and demand for 910

meeting their requirements. Furthermore, the online DVFS 911

will have a little choice to scale down the frequency as 912

it has to satisfy the performance requirement of different 913

dynamic workloads (e.g. compute and memory). This re- 914

sults in decreased energy savings compared to single and 915

two-application scenarios. Fig. 10 presents the comparison 916

of adopted methodology with various previous techniques. 917

On an average, proposed technique achieves 11%, 12%, 918

9%, 16%, 14%, and 30% energy savings while meeting 919

performance requirements compared to EC, HMPO, HMPC, 920

HMPP, HMPI and WMI, respectively. 921

The four and more applications scenario seems to be 922

not feasible because of high resource contention, leading 923

to not meeting given requirements (some applications were 924

terminated by out of memory (OOM) killer daemon when 925

multiple memory intensive applications are run). It is ex- 926

plained further in the following section. On an average 927

the adopted approach achieves energy savings up to 33% 928

compared to existing techniques. 929

5.2.2 Breakdown of Energy Savings by Our Mapping and 930

DVFS Approaches 931

Individual contribution of the thread-to-core mapping (ITM) 932

and online DVFS in energy savings is computed by dis- 933

abling and enabling DVFS respectively. Further, percent- 934

age energy savings are calculated by comparing against 935

the HMPP, as shown in Fig. 11 for different application 936

scenarios. On an average ITM achieves energy savings of 937

9% w.r.t HMMP. Further, when proposed online DVFS is 938

applied on top of ITM (ITMD), an extra 11% of energy 939

savings is obtained. It can be observed from Fig. 8 that, the 940

workload varies over time, for example from low MRPI to 941

high MRPI (at 8th and 10th time intervals). As the online 942

DVFS is applied at regular intervals, the proposed approach 943
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Fig. 12. Performance improvement/degradation of the adopted approach
and HMPP.

exploits these variations to achieve energy efficiency even944

for a compute-intensive application.945

5.2.3 Performance946

As discussed earlier, performance requirements are defined947

for each application. The proposed approach always tries948

to meet the performance requirement of each application,949

i.e. finishing the execution within the stipulated time. To950

validate the adaptability of the proposed approach to the951

performance requirements, the achieved performance is952

compared against the given performance requirement, com-953

puted as percentage improvement, for all the application954

scenarios. The average percentage improvement in each955

scenario is presented in Fig. 12 in comparison with HMPP956

(performance requirements-unaware), as it maximizes the957

performance. The figure shows that ITMD always outper-958

forms HMPP even when there is a high contention due959

to more active applications (e.g. three-application scenario).960

Moreover, in some cases, the adopted technique achieves up961

to 15% improvement over given performance requirements,962

whereas HMPP achieves 10% improvement. Additionally,963

the following observation can be made from Fig. 12. As the964

number of active applications increases, meeting high per-965

formance requirements is not feasible (see three-application966

scenario in Fig. 12) due to resource constraints and interfer-967

ence. Therefore, choosing a low performance requirement968

or a platform with more resources may guarantee meeting969

the requirements while running higher number of active970

applications.971

To further substantiate the need for performance972

requirements-aware approaches, we recorded the number973

of violations by disabling the performance requirements-974

aware property of the proposed approach, resembling the975

technique presented in [12]. As a result, the mapping al-976

gorithm produces thread-to-core mappings that minimize977

the total energy consumption, which may not satisfy the978

performance constraints. For single application scenario, the979

average percentage of performance requirement-violating980

mappings are nearly zero. This is because, using all the cores981

(4L and 4B) leads to minimum energy and better perfor-982

mance for all the applications (except for fr (4L)). In case of983

multiple applications executing concurrently, performance984

violations are significantly high. The average percentage of985

performance requirement-violating mappings are 98.2% and986

99.6% for two- and three-application scenarios, respectively.987

5.3 Workload Prediction 988

The accuracy of the predicted workload as compared to 989

the actual workload of the prior time intervals depends 990

on the smoothing factor γ (9). The optimal value of γ 991

was experimentally obtained by sweeping it between 0.1 992

and 1, and observing the corresponding workload miss- 993

predictions (under/over) for various application workloads. 994

A value of 0.6 is used for all the experiments as it resulted 995

in relatively accurate workload prediction. Fig. 13 shows the 996

actual and predicted values for three different application 997

scenarios along with the percentage root mean square error 998

(that is up to 2.4%). The figure shows that the prediction 999

slightly goes up with the number of active applications, 1000

which is due to increased dynamic workload variations. To 1001

improve the accuracy in such cases, we will look into better 1002

workload prediction techniques in the future. 1003

5.4 Overheads of the Proposed Approach 1004

5.4.1 Run-time Overhead 1005

The run-time overhead of the adopted approach includes 1006

time for finding thread-core-mapping (Tmap) and V-f pair 1007

(TV -f ), which can be represented as, 1008

To = Tmap + TV -f (10)

TV -f =
Tex − r ∗ len ∗ Ts

Ts
∗ [V f So + PMCo + Proco]

(11)

where To, Tex, r, V f So, PMCo, and Proco, represent 1009

total overhead, execution time, number of times the adap- 1010

tation is paused, overheads associated with V-f switching, 1011

PMC collection and remaining processing steps (involving 1012

len and Ts, shown in Algorithm 2), respectively. Tmap 1013

depends on the implementation of the Algorithm 1, in our 1014

case it is up to 1.6 ms (averaged over various application 1015

scenarios). Moreover, TV -f is about 300 µs, which is 0.15% of 1016

Ts (200 ms). Fig. 14 illustrates the total run-time overhead, 1017

computed as percentage of total execution time, for eight 1018

application scenarios. The run-time overhead for application 1019

scenario bl-bo-fr, having a long execution time of 1053 sec is 1020

∼0.17%, which is very minimal. Whereas, commonly used 1021

learning-based approaches have significant overheads (up 1022

to 216 sec for learning and 1 sec for subsequent stages) for 1023

a single-application scenario [16]), which gets further ag- 1024

gravated by dynamic workload variations causing frequent 1025

re-learning. Therefore, the scalability of such approaches in 1026

comparison to the proposed technique is limited for multi- 1027

core platforms executing multiple multi-threaded applica- 1028

tions concurrently. 1029

5.4.2 Offline Analysis Overhead 1030

As discussed earlier, the profiled data of each application 1031

contains performance (1/execution time), energy consump- 1032

tion, number of big, and number of LITTLE cores for each 1033

design point. The total number of design points for each 1034

application is 24, which results in a small storage overhead 1035

of 770 bytes. The energy overhead due to storing of profiled 1036

data is already included in the energy consumption values 1037

reported in the previous sections. 1038
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6 CONCLUSIONS1039

We proposed a run-time management methodology for con-1040

currently executing multi-threaded applications on a het-1041

erogeneous multi-core system. It uses the knowledge from1042

design time analysis for efficient thread-to-core mapping1043

and workload classification through MRPI to make run-1044

time decisions. Furthermore, it also employs workload se-1045

lection and prediction techniques for pro-active V-f control1046

and online performance observation and compensation to1047

adapt to the dynamic variations. Validation on Odroid-XU31048

platform for various application scenarios shows an average1049

improvement up to 33% in energy consumption compared1050

to the existing approaches while achieving up to 15% perfor-1051

mance improvement over given performance requirements.1052

The advances reported in this paper are important contri-1053

butions towards the development of future energy efficient,1054

feature rich embedded systems with heterogeneous many-1055

cores. In future, we will look into per-core DVFS techniques1056

which allow to control the V-f level of each core separately.1057
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