Poster: A Generic Middleware for External Peripheral State
Retention in Transiently-Powered Sensor Systems

Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V. Merrett, Alex S. Weddell
Department of Electronics and Computer Sciences
University of Southampton
{aralgl3, db2al2, gvm, asw}@ecs.soton.ac.uk

ABSTRACT

Sensor systems powered by energy harvesting usually include
batteries or supercapacitors which impact the system cost and
size, need time to be charged and are not environmentally
friendly. In recent years, designers have proposed a new
concept called transient computing that aims to remove these
energy storage units and retain the system’s state between
power outages, in order to cope with an unreliable energy
source. However, existing approaches cannot retain the state
of external peripherals or are specific to certain peripherals,
i.e. they are not generic. This poster proposes a generic
middleware, capable to retain the state of external peripherals
that are connected to a microcontroller through SPI. The
validation shows the proposed approach retains the peripheral
configuration between power failures with a maximum time
overhead of 15% when configuring the peripheral. However,
this represents a 0.77% overhead for a complete example
application, which is lower than that caused by existing
approaches.

CCS CONCEPTS

« Computer systems organization — Sensors and actu-
ators;

KEYWORDS

Energy Harvesting;External Peripheral;Transient Computing

1 INTRODUCTION AND
BACKGROUND

The Internet of Things (IoT) is the interconnection of trillions
of ultra-low power and resource-constrained sensor systems.
Efficiently powering IoT systems is an important challenge as
they have to operate autonomously for years without charging
or replacing batteries. Energy harvesting (EH) can potentially
power these devices by generating electrical power from the
environment. However, as these sources are unpredictable, EH
powered systems incorporate supercapacitors or rechargeable
batteries to sustain computation when EH is insufficient.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner /author(s).

ENSsys’17, November 5, 2017, Delft, Netherlands

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5477-X /XX /XX.

https://doi.org/10.1145 /XXX X XXX . XXXXXXX

EHSource | PvCell || Wind || Piezo
N

Microcontroller

Communication
ProL:olcolI | 'ic | | sht | ‘
pli)r(it:}:g?; | Sensor | | Transceiver |

Figure 1: Block diagram of a typical EH sensor sys-
tem including two external peripherals.

Nevertheless, these energy storage units have a limited life
time and increase system cost and physical dimensions.

Transient computing aims to develop systems that operate
directly from the EH source, removing the need for energy
storage. Prominent approaches to transient computing (e.g.
Hibernus [1] and HarvOS [3]) have solved the challenge of
frequent power outages by saving the system’s state (main
memory, registers, etc.) into non-volatile memory (NVM)
before a power failure. Nevertheless, these approaches do not
retain the state of peripherals that are attached to the MCU
through serial protocols such as I?C or SPI (Fig. 1).

Another approach called Sytare [2] is able to retain the
system state and the configuration of SPI peripherals. How-
ever, this approach requires the user to write not only the
structure where the functions to configure the peripheral are
encapsulated and saved, but also the function to restore the
peripheral state after a supply interruption. Moreover, this
approach saves a snapshot each time a peripheral instruction
is issued, which introduces a time overhead of up to 30us
per instruction. This represents an overhead over 137% when
configuring a radio transceiver.

This poster proposes a generic middleware, which is able to
retain the state of external peripherals that interact with the
MCU through SPI. The proposed approach was experimen-
tally validated with an SPI radio transceiver in a transiently-
powered system. Results demonstrate the proposed approach
properly retains the peripheral state causing a maximum
time overhead on the example application of 0.77%, which is
lower than that caused by existing approaches.

2 PROPOSED METHODOLOGY

Fig. 2 shows a block diagram of the proposed middleware,
which acts as an interface between the main application and
the external peripheral. Each instruction, issued by the main
application, is saved in a table and then executed on the

https://doi.org/10.1145/XXXXXXX.XXXXXXX

ENSsys'17, November 5, 2017, Delft, Netherlands

Main Middleware

1| H
Peripheral M History L& Execute bl
|

I

Instruction W/ Table Instructlon

Restore \—[

Routine

Figure 2: The middleware acts as an interface be-
tween the main application and peripherals.

external peripheral. The table (so-called Instruction History
Table) can be located in the main memory and protected from
supply interruptions through one of the existing approaches to
transient computing [1, 3]. The criteria to save an instruction
in the history table is explained in Section 2.1, and the process
to restore the peripheral state is detailed in Section 2.2.

2.1 Criteria to Save an Instruction

The decision to save an instruction in the history table is
taken off-line by the developer following three options:

(1) Not-save: The issued instruction is not saved because
it does not affect the peripheral configuration (e.g.
reading a status register).

(2) Save: The issued instruction is saved in the table but
it will be replaced if a similar instruction (i.e. with the
same register value) is later issued.

(3) Preserve: The saved instruction has to be kept re-
gardless of whether a similar instruction is later issued.

Fig. 3 shows the process to save and execute a periph-
eral instruction. The middleware first evaluates whether the
issued instruction is to reset the peripheral. Reset is a write in-
struction that not only resets the peripheral but also removes
the saved instructions from the table because it discards all
previously executed configuration. Once the Reset condition
is evaluated, the middleware checks whether the issued in-
struction has to be saved. If not (Not-save), the instruction
is executed on the peripheral (through the SPI protocol) and
the main application continues.

In case the developer wants to save the instruction (Save),
the middleware checks whether a similar instruction was
previously saved in the table. If not, the issued instruction
is saved and then executed on the peripheral. If a similar
instruction already exists in the table, it evaluates whether
that instruction has to be preserved or can be replaced. In
the first case (Preserve), the issued instruction is saved in a
new location in the history table and then it is executed. If
the saved instruction can be replaced, it is deleted from the
table and the new one is added instead.

2.2 Restore Routine

The restore routine for the proposed middleware is much
simpler than the process of saving an instruction. Restoring
the peripheral state does not add any substantial overhead,
other than that caused by executing the saved instructions.
After a power failure, the middleware fetches each saved
instruction from the history table and issues it on the SPI

A. Rodriguez et al.

MCU Serial Interface Read/Write
Initialization Configuration Instruction

Main Application |

Figure 3: Process followed by the middleware to save
and execute a peripheral instruction.

Middleware

¥ i (Prv,Register,Value,B)
| SPl_read (Prv,Register,B)

| 1 void SPI_strobe (Prv,Register)
I i

Figure 4: Parameters of each generic function.

interface, following the same order the instructions were
issued in before the power outage. When the peripheral state
is restored, the main application continues execution.

3 SOFTWARE ALGORITHM

The proposed middleware is composed of three main blocks:
generic functions to execute each peripheral instruction, pa-
rameters required to describe each peripheral instruction and
an instruction history table where the issued instructions are
saved.

3.1 Generic Functions

The middleware has four functions that wrap the peripheral
instructions to save the exchanged data in the history table:
(1) SPI_read(): This function returns the value read
from the specified peripheral register.
(2) SPI__write(): Performs write operations on the pe-
ripheral.
(3) SPI__strobe(): Performs single byte instructions (no
data) that when issued, a peripheral sequence starts.
(4) SPI_restore(): This function is in charge of execut-
ing all the instructions stored in the history table and
has to be included by the user in the restoring routine
of the system.

3.2 Parameters and Configuration File

We have separated the parameters that vary from one periph-
eral instruction to another (which are entered through the

Poster: A Generic Middleware for External Peripheral State Retention in Transiently-Powered Sensor Systems

Vee [—— SPI- === Ve
S' 1 : Cdecouple
@ igna ple|
Generator

= |_MSP43OF R Evaluation Board
Figure 5: Schematic of the test platform.

generic functions) and those that are static for the peripheral
which are declared in a configuration file. Fig. 4 shows the
parameters that each function receives from the user. Param-
eter Prv is a 2-bit flag that can have three different values
following the criteria detailed in Section 2.1:

e ’b00: Not-save.

e ’'b01: Save.

e ’'bll: Save and Preserve.

Register and Value have a width of one byte each, which
is the register width of typical SPI peripherals. Parameter B
indicates the function will execute a data burst transmissions
that consist of setting a register which prompts the peripheral
to send back a sequence of bytes (if it is a read operation),
or receive a sequence of values to be written. The function
SPI _restore() does not receive any parameter.

In the case of the configuration file, the user declares the
values for three different parameters:

e reg_reset: The user has to write the register that
resets the attached peripheral.

e cmd__read: Refers to the peripherals that need a com-
mand parameter to indicate the instruction is to read
from the peripheral.

e cmd_ write: Similar to the previous one but for write
operations.

3.3 Instruction History Table

The instruction history table is based on a linked list where
each element corresponds to a peripheral instruction. The
linked list is implemented by an array of structures, where
each structure contains the parameters received through the
generic functions. The size of the array can vary depending
on the number of instructions that have to be saved.

4 FUNCTIONAL VALIDATION

Fig. 5 shows the experimental set-up, which consists of a sig-
nal generator (to emulate an intermittent source), a CC1101
SPI radio transceiver and a TI MSP-EXP430FR5739 eval-
uation board. The voltage divider is used by the on-chip
comparator to monitor input voltage. Cdecouple refers to the
total on-board decoupling capacitance. In order to protect
the system from power failures, we included Hibernus [1]
in the test application, as it has the best performance in
terms of energy and time overheads [4]. However, the pro-
posed middleware can be incorporated in any other transient
computing approach. It is important to mention that the
inclusion of our middleware in any system is straightforward.

ENSsys'17

Table 1: Time overhead caused by the middleware.

Active Time (ms)

time N N* N° FET No Middleware Middleware O/Ll/ead
(ms) Samples| snapshot | restore Transceiver | Total | Transceiver | Total %)
10 32 2 2 19.71 1.05 26.24 121 26.4 0.61
10 64 6 6 47.27 1.05 64.76 121 64.92 [0.25
10 128 14 14 100 1.05 139.41 121 139.57(0.11
50 32 0 0 19.71 1.05 20.76 121 20.92 | 0.77
50 64 0 0 47.27 1.05 48.32 121 48.48 | 0.33
50 128 1 1 100 1.05 103.79 121 103.95(0.15
100 32 0 0 19.71 1.05 20.76 121 2092 | 0.77
100 64 0 0 47.27 1.05 48.32 121 48.48 | 0.33
100 128 1 1 100 1.05 103.79 121 103.95(0.15

The developer only needs to import the library and use the
functions provided (described in Section 3.1) to configure the
peripheral, obtain data from it or restore its configuration
after a supply interruption.

The main application consists of a Fast Fourier Transform
(FFT) that processes 32, 64 and 128 samples previously ob-
tained from a tri-axial accelerometer. In order to measure the
time overhead caused by the middleware to the main applica-
tion, we ran the test with and without including the proposed
solution. As shown in Table 1, the middleware causes a maxi-
mum time overhead of about 0.16ms (15%) when configuring
the transceiver. However, this only represents an overhead of
0.77% for the complete application.

5 CONCLUSION

In this poster, a new middleware for external peripheral
state retention in transiently-powered systems has been pro-
posed. The presented solution retains the configuration of
SPI peripherals between power outages. Each peripheral in-
struction is saved in an instruction history table from where
the approach restores the peripheral state. The proposed
middleware was implemented and the experiments demon-
strate that our middleware properly saves and restores the
peripheral configuration causing a time overhead to the main
application of up to 0.77%, which is substantially lower than
that caused by existing approaches.

6 ACKNOWLEDGEMENTS

This work was supported by the Mexican CONACYT and the
UK EPSRC under EP/P010164/1. Experimental data used
in this work can be found at DOI:10.5258/SOTON/D0264
(http://doi.org/10.5258 /SOTON/D0264).

REFERENCES

[1] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini. Hibernus: Sustaining computation dur-
ing intermittent supply for energy-harvesting systems. Embedded
Systems Letters, IEEE, 2015.

[2] G. Berthou, T. Delizy, K. Marquet, and T. Risset. Peripheral State
Persistence For Transiently Powered Systems. Technical report,
2017.

[3] N. A. Bhatti and L. Mottola. HarvOS: Efficient Code Instrumenta-
tion for Transiently-powered Embedded Sensing. In Proceedings of
the 16th ACM/IEEE International Conference on Information
Processing in Sensor Networks - IPSN ’17. ACM Press, 2017.

[4] A. Rodriguez Arreola, D. Balsamo, A. K. Das, A. S. Weddell,
D. Brunelli, B. M. Al-Hashimi, and G. V. Merrett. Approaches to
Transient Computing for Energy Harvesting Systems. In ENSsys
’15, pages 3-8, Seoul, Korea, 2015. ACM Press.

	Abstract
	1 Introduction and Background
	2 Proposed Methodology
	2.1 Criteria to Save an Instruction
	2.2 Restore Routine

	3 Software Algorithm
	3.1 Generic Functions
	3.2 Parameters and Configuration File
	3.3 Instruction History Table

	4 Functional Validation
	5 Conclusion
	6 Acknowledgements
	References

