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Abstract

Liquid crystal dimers with odd spacers are good candidates as materials for biaxial ne-

matic phases (NB). The dimers are flexible molecules sustaining biaxial conformations, and

couplings between the conformational and orientational distributions could be expected to

stabilise NB . We apply a molecular field theory for flexible molecules developed elsewhere

to study a simple system made up of dimers composed of two cylindrically symmetric meso-

genic groups. Our model allows for two idealised conformations: one linear and one bent

at a tetrahedral angle. For a restricted set of chain lengths, the model predicts a first-order

reentrant phase transition from the NB phase into a low temperature uniaxial nematic phase

(NU ). However the formation of the biaxial nematic could be blocked by the appearance of a

twist-bent nematic.
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I. INTRODUCTION

Most known nematic liquid crystals are uniaxial (NU), in which, informally speaking,

constituent molecules align one molecular axis to form a single macroscopic director [1].

Over forty years ago, Freiser [2] predicted the possible existence of a biaxial nematic

liquid crystal phase (NB). In this phase, again informally speaking, all three molecular

axes align to form three macroscopic directors. Despite a well-attested observation of

lyotropic biaxial nematic phases [3], for a long time there was no report of a thermotropic

nematic biaxial phase. Following observational reports of such phases (see e.g. [4–8]),

there has been a renewal of interest in this field; the subject has been reviewed recently

in a book edited by two of the present authors [9].

From a technological viewpoint, the switching of the nematic director by an elec-

tric field is the basic working principle of liquid crystal display devices. However,

for calamitic molecules, the switching times of the shorter molecular axes have been

demonstrated to be much shorter than that of the major axis. This suggests that biaxial

nematic phases could possess interesting electro-optical applications [10–12].

Following Freiser [2], several molecular field theories for the elusive NB phase were

proposed. Most such theories assume the constituent molecules to be rigid and to pos-

sess D2h symmetry (see e.g. [13–16]). These theories were also validated by computer

simulations (see e.g. [17–20]). On the experimental side, the early observations of ly-

otropic biaxial nematic phases [3] were followed much later by well-publicised reports

of the existence of thermotropic biaxial nematic phases in V-shaped nematics [4, 5]

and molecular tetrapodes [6–8]. The V-shaped systems [4, 5] have attracted some con-

troversy in the literature (see e.g. [10, 21–23]). In addition, it is now realised that

nematics consisting of V-shaped molecules are often susceptible to the formation of

the so-called twist-bend nematic phase NTB. In this phase, the director forms a tight

helical twist of both chiralities [24–26]; this phase may be pre-empting biaxial nematics
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in experimental cases. We shall return to this intriguing possibility at the end of our

paper in the Discussion.

The NB phases formed by the tetrapodal systems may be regarded as more but not

completely conclusive [27–30], and on the other hand more challenging for theoretical

studies. Four flexible chains connect the core with the mesogenic groups, implying

a very large number of conformations. This modelling difficulty is also relevant for

a number of molecular structures which are highly biaxial in shape and potentially

good candidates to stabilise NB (see e.g. [31]). To address this issue, Luckhurst [31]

developed a molecular field theory for NB formed from flexible molecules. Our paper

concerns primarily the application of this theory to a simple system of dimers consisting

of two identical uniaxial mesogenic groups connected via a hydrocarbon chain [32].

One appealing strategy to stabilise the NB phase is simply to form a mixture of rod-

and disc-like molecules [33]. However this strategy often seems to fail. Rather than

stabilise the NB phase, the mixture tends to phase separate into two coexisting uniaxial

nematic phases, one calamitic and one discotic [34]. However, if in an analogous system,

the rod- and disc-like molecules are interconvertible, then the Gibbs phase rule forbids

such phase separation. An early attempt at employing this strategy to locate a biaxial

nematic phase was made by Vanakaras et al. [35] for an interconverting mixture of

hard rod-like and plate-like conformers. However, it appears that packing such hard

particles created difficulties for the formation of the NB phase. More recently Teixeira

and Masters [36] attempted to solve the same problem using interconverting prolate

and oblate spheroids based on an Onsager theory. Unfortunately, in this system, the

NB phase is always unstable with respect to the NU phase. However, in general, we

might expect the presence of biaxial conformers in an interconverting multicomponent

system of liquid crystal dimers to stabilise the NB phase. For example, a lattice system

of flexible V-shaped molecules allowing for a continuous range of conformations has

been studied by Bates [37] using Monte Carlo simulations. This study indeed finds
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that the NB phase is stabilised in the ground state, and also finds a second biaxial NB

phase near the clearing point. The two NB phases are separated by a NU phase rich in

rod conformers.

Here we use molecular field theory to study interconverting V-shaped molecules, and

we also expect to find a rich phase behaviour. Our goal is to study the effect of the

interaction between conformational-orientational distributions and the stability of the

biaxial phase. A previous study by Ferrarini et al.[32] found that certain mixtures rich

in the bent conformer were able to undergo a strong nematic-nematic transition; both

nematics being uniaxial. This striking transition occurs because the high-temperature

nematic has a low orientational order coming from the high concentration of the bent

conformer. As a consequence it can couple to the nematic order and so enhance the

concentration of the linear conformer in the low temperature nematic. Likewise, we

expect that biaxial order would induce an increase in the mole fraction of the biaxial

conformer, and hence stabilise phase biaxiality. Indeed this might have been anticipated

for the model system originally studied by Ferrarini et al. [32]. However the theory

needed to observe the biaxial nematic was not available at the time and it is our

intention to remove this omission here.

The plan of the paper is as follows. In Section II we present the theoretical back-

ground proposed by Luckhurst [31] for a general system of flexible molecules. This

general theory is applied to illustrate our approach for a flexible system having two

conformers in Section III. In Section IV, we present the numerical results of our calcu-

lations for the flexible system. In Section V, we discuss our results and their relation to

other work, in particular to the twist-bend nematic phase. Our conclusions are given

in Section 6.
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II. THEORETICAL BACKGROUND

A. Basis functions and order parameters

The molecular field theory requires an orientational distribution function f(Ω) and

a set of order parameters. The molecular orientation Ω is parameterised in terms of

the three Euler angles α, β, γ which take their conventional meanings (polar angle β

and zenithal angles α, γ). The Euler angle α is only required in the spontaneously

biaxial phases. A complete theory for biaxial nematics possessing D2h symmetry (i.e.

that of a rectangular parallelepiped) formed from molecules with C2v symmetry (that

of the letter V) requires four scalar second-rank order parameters. These second-rank

order parameters are the same as those for biaxial nematics with D2h symmetry formed

from molecules with D2h symmetry. They are denoted as (S,D, P, C) [16, 38], which

are orientational averages of basis angular functions (RS, RD, RP , RC). We follow the

notation convention of Teixeira et al.[39], but with different scaling (see also Dunmur

and Luckhurst [40] and Luckhurst [41]). Some of this material can also be found

elsewhere [42]. The functions are:

RS(Ω) =
1

2

(

3 cos2 β − 1
)

; (1a)

RD(Ω) =

√

3

8
sin2 β cos 2γ; (1b)

RP (Ω) =

√

3

8
sin2 β cos 2α; (1c)

RC(Ω) =
1

2

(

1 + cos2 β
)

cos 2γ cos 2α

− cos β sin 2γ sin 2α. (1d)

The order parameters are defined in terms of basis angular function averages:

i = 〈Ri〉 =
∫

dΩf(Ω)Ri(Ω), (2)
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with i ∈ {S,D, P, C}. We note that (subject to exchange of axes) in the NU phase,

in general, S,D 6= 0, but C = P = 0. In biaxial phases all four order parameters in

general are non-zero. At the ground state S = C = 1 and D = P = 0 in the complete

order limit.

B. Basic material

We suppose the constituent bent-core molecules possess C2v symmetry. We will

refer to them as V-shaped molecules. Thermodynamic quantities, namely the free

energy, internal energy, potentials of mean torque, orientational distribution functions

and partition functions are formulated per particle. Moreover, the temperature and

energy quantities are expressed in non-dimensional units. We denote the internal energy

by U , and the potential of mean torque acting on a molecule with orientation Ω by U(Ω).

Our molecular field theory is an extension of the Maier-Saupe theory which was

developed for uniaxial nematics formed from uniaxial molecules. The free energy per

particle is given by:

A = kBT

∫

Ω

dΩf(Ω) ln
(

8π2f(Ω)
)

− 1

2

u200

v
S2, (3)

where kB denotes the Boltzmann constant, T is the absolute temperature, u200 sets the

scale of the molecular anisotropic interaction, and v is the volume of the mesogenic

group. Here the inverse volume dependence originates, as Cotter has shown, from

statistical mechanical consistency in the molecular field theory [43].

The model combines elements of the molecular field theory of biaxial nematics with

C2v and D2h symmetry developed elsewhere [13–15, 44] with the molecular field the-

ory of uniaxial nematics formed from a binary system of interconverting rod-like and

tetrahedral V-shaped conformers [45]. At second-rank level, the theories for molecules

formed from D2h and C2v symmetry are equivalent. We note that in this sense the
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mathematical structure of our model is equivalent to that for a system consisting of

uniaxial and biaxial parallelepiped molecules, although the formation of the NTB phase

requires a V-shape.

C. Theory of rigid molecules

Here, we discuss the theory for rigid V-shaped molecules composed of two identical

arms as a preliminary background before developing the theory for flexible V-shaped

molecules in the next Subsection. Following the Maier-Saupe theory, we assume that

second-rank order parameters are dominant. Thus the anisotropic internal energy for

a rigid molecular system is given by

U = Uanis = − 1

2v

∑

u2mn〈D2
pm〉〈D2

−pn〉, (4)

where the 〈D2
pm〉 are the thermodynamic averages of the Wigner rotation matrices

D2
pm(Ω) (see Section A.2, p. 458 [46]), v is the volume of a mesogenic group. The

irreducible supertensor u2mn depends on the properties of two interacting molecules.

To simplify the theory, we use the separability approximation [47]:

u2mn = u2mu2n. (5)

Here, the spherical tensor u2m depends on the molecular structure. For example, if

the u2mn are the coefficients in the expansion of the dispersion interaction between two

molecules then the u2m are the components of the molecular polarisability tensor (see

Eq. (2.234), Section 2.6, p. 98 [46]). For C2v and D2h molecules, this approximation is

also in agreement with the so-called geometric mean approximation [13, 14, 48]. This

model requires only two order parameters, rather than the full complement of four.

These are defined as follows:

J1 = 〈J1(Ω)〉 = 〈RS(Ω) + 2λRD(Ω)〉 = S + 2λD, (6a)
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J2 = 〈J2(Ω)〉 = 〈RP (Ω) + λRC(Ω)〉 = P + λC, (6b)

where λ is the molecular biaxiality parameter. In the I phase both order parameters

are zero, in the NU phase, J1 6= 0, but J2 = 0, while in the NB phase neither order

parameter is zero. The case λ = 0 corresponds to uniaxial D∞h molecules.

FIG. 1. A sketch of the idealised V-shaped molecule. The axis x points along the bisector

of the two axes of the arms. The axis z is in the same plane as the two arm axes and

perpendicular to x. The axis s points along an arm. Note that θ here is the full interarm

angle between the cylindrical arms A and B.

The value of λ can be related to the shape of V-shaped molecules by the method

given by Ferrarini et al.[45] and Bates and Luckhurst [47]. In Fig. 1 we show this

molecular model which consists of two identical uniaxial arms joined with an interarm

angle θ. In this paper we define the molecular coordinate axes as in Fig. 1. The x axis

points along the bisector of the two symmetry axes of the arms while the z axis is in

the same plane as the two arm axes and the s axis points along the symmetry axis of

an arm. Following Eqs. (B10), p. 13 [47], the molecular tensor components u2m are

the sum of the contributions from both the two arms. In the principle coordinate axes
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shown in Fig. 1 they can be written as

u20 =

√

3

8
ǫ(1 + 3|cosθ|)

√

φ, (7a)

u22 =
3

4
ǫ(1− |cosθ|)

√

φ, (7b)

where ǫ is the Cartesian tensor component of an arm along the s axis. The value of ǫ

can be related to the spherical tensor component of the arm ũ20 by using Eqs. (A.231a,

A.231b, A.231c), p. 492 [46] together with the property that the second-rank Cartesian

tensor is traceless which gives

ǫ =

√

2

3
ũ20. (8)

φ is the volume fraction of a mesogenic group in the molecule [49]. For our model of

V-shaped molecules where there are two mesogenic groups, φ = 1/2. Then we can

rewrite Eqs. (7) as

u20 =
1

2
ũ20(1 + 3|cosθ|)

√

φ, (9a)

u22 =
1

2

√

3

2
ũ20(1− |cosθ|)

√

φ. (9b)

The expansion of the internal energy (4) with the separability approximation (5) de-

pends on two molecular parameters u20 and u22. These molecular parameters depend

on those of the arms according to Eq. (9). Thus we shall work, where possible, in

non-dimensional quantities, given in terms of their physical quantities by

T ∗ =
vkBT

ũ2
20

; A∗ =
vA

ũ2
20

;

U∗ =
vU

ũ2
20

; U∗(Ω) =
vU(Ω)

ũ2
20

. (10)

The scaled internal energy is given by

U∗ =
vU

ũ2
20

= −1

2
φg(θ)2(J 2

1 + 2J 2
2 ). (11)
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Here, the parameters are defined as

λ(θ) =
u22

u20

=

√

3

2

(1 + cos θ)

(1− 3 cos θ)
, (12a)

and

g(θ) =
u20

ũ20

=
1

2
(1− 3 cos θ). (12b)

Here, g(θ) measures the relative anisotropy between the molecule and a mesogenic

group.

The orientational distribution function f(Ω) is derived by minimising a Helmholtz

free energy functional:

A∗ = −T ∗

∫

dΩf(Ω) ln
(

8π2f(Ω)
)

+ U∗. (13)

The resulting equilibrium orientational distribution function, f(Ω), is expressed in terms

of the potential of mean torque

U∗(Ω) = −φg(θ)2
(

J1J1(Ω) + 2J2J2(Ω)
)

, (14)

and is given by

f(Ω) = Q−1 exp

[

−U∗(Ω)

T ∗

]

, (15)

where the partition function Q is defined in order to normalise the orientational distri-

bution function such that
∫

f(Ω)dΩ = 1:

Q =

∫

dΩexp

[

−U∗(Ω)

T ∗

]

. (16)

The phase stability of the system is determined from the equilibrium Helmholtz free

energy:

A∗ = −T ∗ logQ− U∗. (17)

The phase diagram in Fig. 2 shows the dependence of the scaled transition tempera-

tures on the interarm angle θ for V-shaped molecules; this has been discussed by several
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FIG. 2. The scaled transition temperatures as a function of the interarm angle θ for V-shaped

molecules. Solid lines: first-order transitions. Dashed lines: continuous transitions. For the

V-shaped dimers forming the twist-bend nematic phase denotes the T ∗

NU−I transition, the

T ∗

NTB−NU
transition and the T ∗

NTB−I transition (see Section VB).

authors [10, 45, 47]. Here we use N+

U and N−

U to denote the uniaxial nematic phases

formed by aligning the molecular axis z and y (orthogonal to x and z), respectively.

Thus N+

U is a calamitic uniaxial nematic which exists between the I and NB phases for

0o < θ . 70.5o and 109.5o . θ < 180o (equivalent to 0 < λ < 1/
√
6). On the other

hand, N−

U is a discotic uniaxial nematic which exists between the I and NB phases for

70.5o . θ . 109.5o (equivalent to 1/
√
6 < λ <

√

3/2). At the intersection of these

parameter ranges, namely θ = θc = cos−1(1/3) ≈ (70.5o, 109.5o) or λ = 1/
√
6 (see also

[13–15, 50]), the I phase enters directly into the NB phase through a continuous phase
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transition at the Landau multicritical point. Since the phase diagram is symmetrical

about θ = 90o, it suffices to analyze the case θ > 90o.

The stability of the biaxial nematic phase NB increases relative to that of the uniaxial

nematic N−

U on increasing θ from 90o up to the Landau multicritical point at θ =

θc. As θ increases away from θc the stability of NB decreases relative to that of N+

U .

Here, the ground state is always NB. For θ . 100o and θ & 130o, the NB phase

only intercedes at very low temperature. As θ approaches θc the NB − NU phase

boundary increases gradually in temperature. We note the sharp increase of theNB−NU

transition temperature in the vicinity of θc, indicating the sensitivity of the phase

transition to θ at the Landau point. Then at the Landau multicritical point θ = θc, all

phases coincide.

D. Theory of multi-conformer systems

In this Subsection we summarise the theory, due to Luckhurst [31], for liquid crystals

formed from flexible molecules. In a system of discrete exchanging conformers the total

internal energy per particle consists of the anisotropic and the conformational energies

U = Uanis + Uconf. (18)

The anisotropic internal energy per particle is given by

Uanis = −1

2

φ

v

∑

pkpju
kj
2mn〈D2

pm〉k〈D2
−pn〉j, (19)

where pj denotes the conformational distribution function of conformer j ; ukj
2mn denotes

the component of the interaction supertensors between the two conformers, k and j ;

〈D2
pm〉k denotes the order parameter defined by averaging the corresponding Wigner

function with respect to the orientations of conformer k. The conformational energy

12



per particle can be written as

Uconf =
∑

pjũ
j
conf

, (20)

where ũj
conf is defined as the sum of the conformational energy uj

conf and the additional

scalar interaction, ukj
0 between two non-identical molecules. According to the Flory

RIS model [51], the two bonds which connect to a third bond in the hydrocarbon chain

can take one of three states, namely one trans and two gauche configurations, where

the trans configuration is taken as the ground state. Thus the conformational energy

uj
conf

is the sum over the energy difference of all the gauche links with respect to their

trans configuration.

Next, we define the total entropy which has contributions from the conformational

and orientational terms

S = −kB
∑

{

pj

∫

fj(Ω) ln fj(Ω)dΩ + pj ln pj

}

. (21)

Here, the first term of the sum denotes the orientational entropy and the second term

denotes its conformational counterpart.

To find the distribution functions, we minimise the free energy per particle,

A = U − TS, (22)

with respect to the distribution functions. The resulting orientational distribution

function for a given conformer is written in terms of the potential of mean torque as:

fj(Ω) = Q−1
j exp

(

Uj(Ω)

kBT

)

, (23)

where the partition function , Qj , is defined in order to normalise the orientational

distribution function such that
∫

fj(Ω)dΩ = 1,

Qj =

∫

exp

(

Uj(Ω)

kBT

)

dΩ. (24)
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Here, the potential of mean torque for conformer j is given by

Uj(Ω) = −φ

v

∑

pku
kj
2mn〈D2

pm〉kD2
−pn(Ω). (25)

In addition, the resulting conformational distribution function is given by

pj = Z−1Qjexp

(

− ũj
conf

kBT

)

. (26)

Here, Z denotes the conformational-orientational distribution function

Z =
∑

k

exp

(

− ũk
conf

kBT

)

Qk. (27)

Finally, the free energy at equilibrium is given by

A = −Uanis − kBT lnZ, (28)

where Uanis represents the specifically anisotropic contributions to the free energy, and

the isotropic contributions are not relevant for our purposes and is infact contained in

Z.

III. THEORY FOR TWO-CONFORMER SYSTEMS

A. Application of the general theory

In this Section we apply the theory developed in Section II to the system of liquid

crystal dimers consisting of just two conformations. These, one bent and the other

linear, are shown in two dimensions and sketched in Fig. 3, the limitation to just two

has the clear merit of simplifying the molecular field calculations. However, it also

has a realistic element consistent with the discrete conformations of the Rotational

Isomeric State (RIS) model of Flory [51]. For an alkane, having tetrahedral angles,

cos−1(1/3) ≈ 109.5o, between linked C-C bonds, each of the carbon atoms or methylene
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FIG. 3. Two-dimensional sketches of the odd dimer CB7CB in mesogenic conformers with (a)

bent (all-trans) and (b) parallel mesogenic groups (hairpin) conformation. In (a), the all-trans

conformation of the heptane spacer is (tttttt). In (b), The hairpin conformation with its two

gauche states in the centre of the spacer is (ttg+g−tt).

groups occupy the sites of part of a diamond lattice. As a result, for a liquid crystal

dimer with a heptane spacer, in the all-trans form, the para-axes of the two mesogenic

groups are inclined at the tetrahedral angle. In contrast with two gauche links in the

centre of the spacer, ttg+g−tt, the para-axes are found to be parallel to each other giving

the hairpin conformation. No other relative orientations are possible and so based on

the RIS model the use of just two conformers in our calculations is quite reasonable. The

other feature of the model is the probability of these conformers. In the isotropic phase

by far the most probable conformer is that which is bent. This situation can change

significantly in the nematic phase because of the orientational order which couples to

the conformational distribution; as a consequence the probability of the linear or hairpin

conformer will grow at the expense of the bent [45].
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In our model based on second-rank interactions, there are two potentials of mean

torque, given by replacing the dummy subscripts (j, k) in Eq. (25) by (l, b) which

represent the linear and bent conformers, respectively. We also use the separability

approximation of Eq. (5) [31]

ukj
2mn = uk

2mu
j
2n. (29)

Previous studies by Ferrarini et al.[45] and Bates and Luckhurst [47] give us the values

for the interaction tensor components in Eqs. (12)

g(180o) =
ul
20

ũ20

= 4, (30a)

λ(180o) =
ul
22

ul
20

= 0, (30b)

g(θc) =
ub
20

ũ20

= 2, (30c)

λ(θc) =
ub
22

ub
20

=
1√
6
. (30d)

Thus the explicit expressions of the potentials of mean torque for linear and bent

conformers are given by

Ul(Ω)
∗ = −4φ [J1RS(Ω) + 2J2RP (Ω)] , (31a)

Ub(Ω)
∗ = −2φ

[

J1

(

RS(Ω) +
2√
6
RD(Ω)

)

+ 2J2

(

RP (Ω) +
1√
6
RC(Ω)

)]

. (31b)

Here, the order parameters J1 and J2 are the linear combinations of the order param-

eters of the linear and bent conformers

J1 = plSl +
1

2
pb

(

Sb +
2√
6
Db

)

,

J2 = plPl +
1

2
pb

(

Pb +
1√
6
Cb

)

, (32)
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where

il = 〈Ri〉l =
∫

dΩfl(Ω)Ri(Ω), i = S, P ,

ib = 〈Ri〉b =
∫

dΩfb(Ω)Ri(Ω), i = S,D, P, C. (33)

The distribution functions for the linear and bent conformers are given by:

fl/b(Ω) = Q−1

l/b exp

(

Ul/b(Ω)

kBT

)

, (34)

where the partition functions, Ql/b, are defined to normalise the distribution functions

such that
∫

fl/b(Ω)dΩ = 1,

Ql/b =

∫

exp

(

Ul/b(Ω)

kBT

)

dΩ. (35)

The mole fractions of the two conformers in the isotropic phase are related to the

scaled internal energy difference between them (see Eq. (26)) by

p0b =
exp

(

∆E∗

T ∗

)

[

1 + exp
(

∆E∗

T ∗

)] , (36)

where ∆E∗ = v∆E/ũ2
20 and the energy difference is defined as

∆E = (ũl
conf − ũb

conf). (37)

In the nematic phase, the mole fraction of the bent conformer is given by (see Eq.

(26))

pb =
exp

(

∆E∗

T ∗

)

Qb
[

Ql + exp
(

∆E∗

T ∗

)

Qb

] . (38)

We note that, pl + pb = 1. The variation of the conformational distribution of the bent

conformer in the mesophase can be derived from Eq. (36) and Eq. (38)

pb =
p0bQb

(p0bQb + p0lQl)
. (39)
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Finally, the scaled free energy at equilibrium is given by (see Eq. (28))

A∗ = 2φ
(

J 2
1 + 2J 2

2

)

− T ∗ ln

(

Ql +
p0b
p0l
Qb

)

. (40)

Now we have a theory with two self-consistent equations for (J1,J2) given in Eqs.

(32). On the right-hand-side of Eqs. (32), J1 and J2 appear inside the potential of

mean torque given in Eqs. (31). Each dimeric system is characterised by a value of

∆E∗. The equilibrium state of a system at a given scaled temperature T ∗ is determined

by the solution to Eqs. (32) that gives the lowest free energy (Eq. (40)).

B. Method

Rather than solve Eqs. (32) directly, we minimise the Helmholtz free energy in Eq.

(40). The first derivatives of this equation are the self-consistent Eqs. (32). We note

that there are some subtle analytic points, which are addressed, for example by Katriel

et al.[52]. Strictly speaking this procedure is not valid everywhere for finding minimisers

of A[f(Ω)]. We note that Eqs. (32) describe both the minima and the saddle points

of the Helmholtz free energy in Eq. (40). Thus, in cases where Eq. (40) has saddle

points, the method of minimising it is invalid and we have to resort to solving Eqs. (32)

directly. However, the minimisation method is valid for finding stationary points. In

the region of interest the method also suffices for determining the present quantities of

interest.

The procedure determines the equilibrium order parameters (J1,J2) at a given tem-

perature. The minimisation uses the MATLAB function fmincon and iterates toward a

solution using a quasi-Newton method. The phase transitions are found by determin-

ing (J1,J2), as a function of T ∗. The first-order transition is located when there is a

discontinuous change in the order parameters as a function of T ∗.
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IV. NUMERICAL RESULTS

A. Phase diagram
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FIG. 4. Approximate phase diagrams obtained by fixing χ = ∆E∗/T ∗ with respect to T ∗.

(a): Transition temperatures as a function of the mole fraction p0b in the isotropic phase. (b):

Equivalent to (a), but now using χ as the abscissa. We convert p0b into χ using Eq. (41).

Lines: thick-solid: first-order transitions; thin-solid: weakly first-order transition; dashed:

continuous phase transitions.

We see from Eq. (36) that the conformational distribution in the isotropic phase

p0b depends on the energy difference between the two conformers ∆E∗ and the scaled

absolute temperature T ∗ through the Boltzmann factor. In the nematic phases, as

shown in Eq. (38), the conformational distribution also depends on the orientational

orderings of the two conformers via the partition functions Ql/b. We shall perform two

sets of calculations to determine two phase diagrams. In the first set of calculations

we approximate p0b to be independent of temperature. In other words, ∆E∗/T ∗ = χ is
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regarded as independent of T ∗. Thus we can write

p0b =
expχ

1 + expχ
. (41)

The free energy in Eq. (40) is minimised for selected values of 0 ≤ p0b ≤ 1. Using this

approximation we can make comparison with the previous work by Ferrarini et al.[32].

In addition, this approximation gives us an estimate for the range of values of ∆E∗

which may stabilise the NB phase. After we have this estimated range of ∆E∗, we

remove the assumption that ∆E∗/T ∗ = χ is independent of T ∗ and we let p0b vary with

T ∗ as in Eq. (36). Then we minimise the free energy in Eq. (40) with p0b given in Eq.

(36) for our estimated range of ∆E∗ which stabilises the NB phase.

Fig. 4a shows the approximate phase diagram as we assume p0b to be independent

of T ∗. We use N+

U and N−

U to denote the uniaxial nematic phases rich in linear and

bent conformers, respectively. The ground state for this system is always a calamitic

uniaxial nematic N+

U . For p
0
b . 0.97, the N+

U − I transition temperature decreases as p0b

increases, but there are no extra phases. For 0.97 . p0b . 0.9978, the onset temperature

of the N+

U phase continues to decrease, but now a discotic uniaxial nematic N−

U phase is

interposed between the I and the N+

U phases. The N−

U −I transition is weakly first order

and the N+

U − N−

U transition is first order. These phenomena have been discussed by

Ferrarini et al.[32] in their study of uniaxial nematics formed from liquid crystal dimers.

In our calculation we find a small region of biaxial nematic NB for 0.9978 . p0b < 1.

The NB − N−

U transition is continuous whereas the N+

U − NB transition is first order.

The second phenomenon may be analogous to results found by Ferrarini et al.[32], in

which the most bent conformers convert into linear conformers. This causes the phase

to become calamitic uniaxial. We will address this issue in the next Subsection.

The corresponding parameter range for ∆E∗ can be estimated approximately by

converting the phase diagram in Fig. 4a from p0b space into χ parameter space using

Eq. (41). The resulting phase diagram is shown in Fig. 4b. We see that NB exists
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for χ & 6 and T ∗ ≈ 0.1. Thus we expect that the NB phase will be found for ∆E∗ =

χ · T ∗ & 6 · 0.1 = 0.6 and so ∆E∗ & 0.6.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

∆E∗

T ∗

N+

U

N−

U

NB

I

FIG. 5. Phase diagram, showing phases as a function of the scaled conformational energy

difference ∆E∗ between linear and bent conformers. Lines: thick-solid: first-order transi-

tions; thin-solid: weakly first-order transition; dashed: continuous phase transitions. Vertical

crosses: temperature range over which the order parameters and the conformational distribu-

tion function shown in Figs. 6 were calculated.

We can now remove the assumption that χ = ∆E∗/T ∗ is independent of T ∗ and we

find the phase diagram by varying ∆E∗ from 0 to 1. The resulting diagram is given

in Fig. 5. Several features found in Fig. 4b are still preserved in Fig. 5. First, the

N+

U − I phase transition is first order for ∆E∗ . 0.5. Secondly, the N−

U phase exists in

between the I and the NB phase; the N−

U − I transition is weakly first order and the

N+

U −N−

U transition is first order. Third, the NB −N−

U transition is continuous whereas

the N+

U −NB transition is first order. However, a difference between Fig. 5 and Fig. 4b
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is that the ground state is N+

U only for ∆E∗ . 0.7. For ∆E∗ & 0.7, the ground state

is NB; thus in this case the large value of ∆E∗ does not allow a conversion of the bent

conformer into the linear and the ground-state equilibrium at low temperature remains

NB.

B. Coupling of conformational and orientational distributions
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FIG. 6. (a): order parameters (J1,J2); (b) conformational distribution function of the bent

conformer pb. Both quantities are functions of the scaled temperature T ∗ for ∆E∗ = 0.63, i.e

along the crossed line in Fig. 5. Lines in (a): solid: J1; dashed: J2. Note anomalous scale in

(b), showing that pb ≪ 1 in the N+
U low temperature phase, whereas pl ≪ 1 in the NB and

N−

U phases; see Fig. 5.

A previous study by Ferrarini et al.[32] has analyzed the coupling between the confor-

mational and orientational distributions for two phase sequences N+

U −I (for ∆E∗ . 0.5)

and N+

U − N−

U − I (for 0.5 . ∆E∗ . 0.6). Here we investigate this coupling for the

NB phase in order to analyse this phase stability. In particular, we want to understand
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the NB − NU reentrance behaviour for the phase sequence N+

U − NB − N−

U − I for

0.6 . ∆E∗ . 0.7. Thus in Fig. 6 we show the order parameters (J1,J2) (see Fig. 6a)

and the conformational distribution function of the bent conformer pb (see Fig. 6b) as

functions of the scaled temperature T ∗ for ∆E∗ = 0.63.

The figures show that the mole fraction of the bent conformer decreases in the

N−

U phase and increases in the NB phase. Equivalently, the biaxial bent conformer is

preferentially stabilised in the NB phase. But at a low temperature T ∗ ≈ 0.073, there is

a first-order transition to a N+

U phase rich in linear conformers. A significant proportion

of the bent conformer converts to the linear configuration, there is a jump in the order

parameter J1, and the biaxial order parameter J2 necessarily suddenly vanishes. As

expected, the mole fraction of the bent conformer continues to decrease in the N+

U phase

as the order parameter J1 increases. In contrast, the first-order N+

U − NB transition

does not occur for ∆E∗ & 0.7 and so in this case pb continues to increase in the NB

phase and tends to 1 as the temperature is lowered. However, the underlying reason

for the reentrant behaviour, i.e. the low temperature reappearance of a uniaxial phase,

remains unclear.

V. DISCUSSION

A. Biaxial nematics

A previous analysis by Ferrarini et al.[45] for the phase sequences N+

U − I and N+

U −
N−

U − I shows that the linear conformation is more favoured than the bent counterpart

in the uniaxial phase. Here we have further confirmed this phenomena for the phase

sequences that include NB which is shown in Fig. 6. That is, as expected, in the

uniaxial phases, the mole fraction of the linear conformer increases as the uniaxial

order parameter J1 increases. Moreover, Fig. 6 shows that the mole fraction of the bent
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conformer increases in the NB phase as the biaxial order parameter J2 increases. This

confirms our expectation that the biaxial order induces an increase in the concentration

of the biaxial conformer.

Our theory is also related to recent work by Teixeira and Masters [36] (TM), who

modelled a binary system of interconverting uniaxial rod-like and disc-like ellipsoids

using an Onsager-like approach. By comparison, the present work develops a Maier-

Saupe-like theory for a biaxial nematic phase formed from a binary system of two

nematogenic interconverting conformers, and models liquid crystal dimers, thus ex-

tending the model of Ferrarini et al. [32]. We note that real dimeric systems with long

spacers possess, of course, a large number of conformer shapes. Our model system, in

which one conformer is uniaxial and rod-like while the other possesses the maximum

biaxiality with an interarm angle θ ≈ 109.5o, merely corresponds to the two extreme

liquid crystal dimer conformers. Intuition nevertheless suggests that this model will be

sufficient to yield qualitatively sensible results.

Although the TM methodology is different from ours (Onsager vs. Maier-Saupe),

and the systems are also different (ellipsoids vs. dimers), nevertheless some comparison

is possible. In our model the uniaxial disc-like conformer would be equivalent to a

molecule with an interarm angle θ of 90o. TM found that the NB phase is always

unstable with respect to the NU phases. A plausible, if preliminary, inference of a

comparison of our study with that of TM is thus that the presence of a biaxial phase

requires a biaxial component; the mixture of uniaxial prolate and oblate conformations

appears to be less efficient to stabilise NB phase.

A final theoretical connection is with recent results from lattice Monte Carlo sim-

ulations by Bates [37]. He studied a system of V-shaped molecules which can adopt

a continuous range of conformations with different interarm angles, but having a pre-

ferred value. The conformational distribution varies according to a harmonic bending

potential Ui = ǫk(θ− θ0)
2 which depends on the interarm angle where ǫk is the stiffness
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of the bending potential and θ0 is the preferred interarm angle. The V-shaped molecules

interact via a simple Maier-Saupe potential between the molecular arms. Thus ǫk plays

a role analogous to ∆E in our case. In addition, the bending stiffness and temperature

is scaled with the interaction tensor along the arm ǫAA, which is equivalent to ũ2
20 in

our case. Thus the scaled bending stiffness ǫK = ǫk/ǫAA plays a role analogous to ∆E∗

in our case and they are both nondimensional quantities. However these quantities are

not exactly equivalent since our model is discrete with just two values whereas that of

Bates is continuous and with only one extreme value.

However, it seems that the continuous conformational distribution causes the phase

topology to be different from that shown in our phase diagram (see Fig. 5). For

θ0 = θc ≈ 109.5o, the phase sequence NB − I was observed for large ǫK & 1000, as we

would expect for very large ∆E∗. For smaller ǫK , the N
+

U phase is inserted between the

NB and the I phases, in contrast to our results for intermediate ∆E∗ where the N−

U

phase is found. For a smaller preferred angle θ0 = 100◦, the N−

U phase is found between

the NB and the I phase at intermediate and large ǫK & 11. For 8 . ǫK . 11, the

N+

U −N−

U transition is observed, similar to our results. Moreover, in the simulations by

Bates, the ground state is always NB, in contrast to our results. This may be because

the conformational distribution is continuous which allows for more biaxial conformers

to be present in the system. Further studies are required to elucidate the precise reasons

for the differences between Bates’ results and our own.

Among the low molar mass systems that are claimed to form thermotropic biaxial

nematics, tetrapodes [6–8] seems to have been the most widely accepted (but note refs

[27–30] for alternative views). However, modelling this system is a challenge due to

the flexibility of the four flexible chains connecting the four mesogenic groups. This

modelling challenge has been addressed for uniaxial nematics [53]. Thus our future work

will involve modelling NB phases formed from tetrapodes based on the combination of

our work in this paper and the numerical method for uniaxial nematics formed from
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tetrapodes [53] using the theory developed by Luckhurst [31].

B. Twist-bend nematics

We now return to our original idea that although rigid V-shaped molecules may form

the biaxial nematic phase there is the possibility that this phase might be blocked by

the formation of the twist-bend nematic phase. It is, however, necessary to quantify

this notion by estimating the transition temperature at which this new nematic phase

might be formed by using the same temperature scale as that in Fig. 2. In fact this

is possible because a molecular field theory of the twist-bend nematic phase formed by

rigid V-shaped molecules has been developed by Greco et al. using a generalisation

of the Maier-Saupe theory [54]. As for the model described in Section 2.3 the rigid

molecules are V-shaped with an angle, θ, between the two uniaxial mesogenic arms.

To the microscopic orientational order parameter 〈P2〉 for each arm are added two

macroscopic order parameters to describe the heliconical structure of the NTB phase.

One is the pitch, p, of the helix and the other is the tilt angle between the helix axis

and the director, θ0. To place these parameters in their proper context we note that in

the standard nematic phase 〈P2〉 6= 0, p → ∞, and/or θ0 = 0 whereas in the twist-bend

nematic phase the helical pitch is finite, the director makes a non-zero angle with the

helical axis and 〈P2〉 6= 0. As with the theory described in Section 2.3 the strength

of the anisotropic interaction of each mesogenic arm of the V is denoted by ũ2
20 and

the scaled temperature, T ∗, is vkBT/ũ
2
20. The variable of special interest to us is the

angle θ between the two arms of the molecular V but the range of values studied so

far is quite small [54, 55] having been chosen to exhibit phase sequences and transition

temperatures analogous to those observed experimentally. For example with θ of 140◦

the phase sequence is NTB − NU − I with a long nematic range while for the slightly

smaller value of 135◦ the phase sequence is the same but the nematic range is much
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smaller. More interestingly, a further reduction of the value for θ to 130◦ the nematic

phase is removed from the phase sequence giving a transition from the isotropic phase

directly to the twist-bend nematic phase. While the sequence NTB − NU − I is quite

common the NTB− I transition has only been observed relatively recently [56–58]. The

scaled transition temperatures, T ∗

NU−I , T
∗

NTB−NU
and T ∗

NTB−I available for a range of

interarm angles are shown in Figure 2 as a function of the angle θ by the points ( ),

( ) and ( ), respectively. What we find is that the four transitions to the twist-bend

nematic phase occur above that to the biaxial nematic phase showing that for this

choice of interarm angles the formation of the NB phase would indeed be blocked by

the NTB.

It is perhaps more interesting to see how the transition to theNTB phase changes with

respect to TNU−I for changes in the interarm angle. As we might expect as θ decreases

from 140o so the nematic-isotropic transition temperatures shown as the three red circles

also decrease. In contrast the twist-bend transition temperatures shown by the green

squares increase. The reduction in TNU−I occurs because of the increased molecular

biaxiality or curvature with the decrease in the interarm angle. In contrast as the angle

decreases and the curvature grows so too does TNTB−NU
. These two changes reduce the

nematic range and eventually the twist-bend nematic phase is formed directly from the

isotropic phase. We also note that the NTB − I transition falls on the NU − I phase

boundary which may simply be a coincidence. To explore this behaviour further we

exploit the proposed analogy between the twist-bend nematic phase and the smectic

A phase (SmA) [59]. As we have seen the driving force for the NTB is the curvature

or interarm angle. For the SmA it is the molecular inhomogeneity which is related to

the length of the terminal chain attached to the aromatic mesogenic group. As the

inhomogeneity increases so the tendency to form the SmA phase grows and the N − I

transition temperature falls. As experiment shows the boundary between the isotropic

phase with either the nematic or the smectic A phase is essentially continuous [60]. In
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addition the phase boundary between the N and SmA phases is discontinuous with

the boundary to the isotropic phase meeting at the SmA − N − I triple point. Such

behaviour is in good accord with what is predicted for the NTB −N − I phases, clearly

supporting our understanding of the phase behaviour of the twist-bend nematic phase

as the molecular curvature changes in terms of the analogy between the behaviour of

the NTB and SmA phases. We note that although for rigid V-shaped molecules the

twist-bend nematic can block the formation of the biaxial nematic phase we cannot

say that this will be the case for flexible liquid crystal dimers. To do this we need to

extend the theory for the NTB to flexible molecules and this is certainly a non-trivial

task which we choose to postpone.

VI. CONCLUSIONS

Our model for flexible, odd liquid crystal dimers has allowed the propensity to form

the NB phase to be investigated. A molecular property of some significance is the

energy difference between the linear and bent conformers, and as ∆E∗ increases so

the probability for the bent conformer grows. Consequently the propensity for the

formation of the biaxial nematic phase should also increase. These features of the

phase behaviour are clearly apparent in Fig. 5. For small values of ∆E∗ the dominance

of the uniaxial nematic phase composed largely of the linear conformer N+

U is seen.

However the stability of this phase with respect to the isotropic decreases as the value

of ∆E∗ increases and the N−

U phase rich in the bent conformer appears below the

isotropic and above the N+

U phase. Its appearance corresponds to a nematic-nematic

phase transition; both phases are uniaxial and the difference between them is in the

molecular structure. At a slightly higher value of the conformational energy difference

the desired biaxial nematic phase appears below the N−

U phase. As the value of ∆E∗

grows further so the width of the N−

U phase decreases slightly but eventually, with
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further increase in ∆E∗, the biaxial nematic phase should be formed directly from the

isotropic phase. We can also see that for a small range of ∆E∗ below the NB phase the

N+

U reappears corresponding, in effect, to a re-entrant nematic phase.

Our results can also provide us with access to the orientational order parameters

characteristic of the phases, the uniaxial, J1, and the biaxial, J2, and their variation

with respect to T ∗. To achieve this it is convenient and realistic to fix the conformational

energy difference, ∆E∗; in Fig. 6a the energy difference is fixed at 0.63. This value

then demands, as we have seen in Fig. 5, that the dimer exhibits the three nematic

phases N−

U , NB and N+

U . The temperature variations of the order parameters given in

Fig. 6a are consistent with these results. Thus at high temperatures, just above T ∗

of ∼ 0.136, we see that both order parameters are zero as required for the isotropic

phase. Then, at T ∗ of 0.136, there is a small jump in J1 to about 0.05 corresponding to

a very weak first order phase transition; for comparison we note that for a nematogen

of uniaxial, rod-like molecules the jump at the nematic-isotropic transition would be

0.429. As expected the biaxial order parameter, J2, is zero in the N−

U phase. But

then at the lower temperature of ∼ 0.104 there is a reduction in the slope of J1 which

corresponds to a second order phase transition. This is to the biaxial nematic phase as

the continuous growth of the biaxial order parameter J2 demonstrates; the nature of the

N−

U −NB transition also demonstrates that the transition is second order in character.

Perhaps surprisingly when the temperature has decreased to 0.073 the biaxial order

parameter decreases to zero showing that the NB phase has undergone a first order

transition to the uniaxial nematic N+

U . Even more striking is that at the transition the

uniaxial order parameter has increased to a value somewhat greater than 0.9. This is

clearly a very strong first order phase transition and quite unlike that found for the

transition to the NB phase from the N−

U phase. This qualitative difference in behaviour

is associated with the significant change in the conformational distribution when N+

U is

formed with its high concentration of the linear conformer. Analogous behaviour has
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been found for the nematic-nematic transition also predicted to be exhibited by odd

liquid crystal dimers [32]. However, the biaxial nematic phase was not predicted for

this system because the molecular field theory did not include the order parameter for

phase biaxiality.
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