Reliable Mapping and Partitioning of Performance-constrained
OpenCL Applications on CPU-GPU MPSoCs

Eduardo Weber Wachter, Geoff V. Merrett and
Bashir M. Al-Hashimi

University of Southampton
Southampton, United Kingdom
ewwlnl7@soton.ac.uk,{gvm,bmah}@ecs.soton.ac.uk

ABSTRACT

Heterogeneous Multi-Processor Systems-on-Chips (MPSoCs) con-
taining CPU and GPU cores are typically required to execute ap-
plications concurrently. Existing approaches exploit applications
executing in CPU and GPU cores at the same time taking into
account performance and energy consumption for mapping and
partitioning. This paper presents a proposal for mapping and parti-
tioning of applications in CPU-GPU MPSoCs taking into account
the temperature behavior of the system. We evaluate the tempera-
ture profiling to partition the applications between CPU and GPU.
The profiling is done by measuring the temperature of the CPU
and GPU cores while executing different applications at different
partitions. Results shown up to 13% savings of average temperature
of the chip while maintaining performance requirements. A lower
thermal behavior represents a better long-term reliability (lifetime)
of the SoC.

CCS CONCEPTS

« Computer systems organization — Embedded systems;

KEYWORDS

Heterogeneous MPSoC, OpenCL applications, Mapping, Partition-
ing, Performance, Energy consumption, Temperature-aware

ACM Reference format:

Eduardo Weber Wachter, Geoff V. Merrett and Bashir M. Al-Hashimi and Amit
Kumar Singh. 2017. Reliable Mapping and Partitioning of Performance-
constrained OpenCL Applications on CPU-GPU MPSoCs. In Proceedings of
15th IEEE/ACM Symposium on Embedded Systems for Real-Time Multimedia,
, 2017 (ESTIMEDIA), 6 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Modern embedded systems, e.g. mobile phones, rely on hetero-
geneous Multi-Processor Systems-on-Chips (MPSoCs) containing
different types of cores. An example of a commercial heterogeneous
MPSoC is the Samsung Exynos 5422 SoC [1]. This SoC contains

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESTIMEDIA, 2017,

© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Amit Kumar Singh
University of Essex
Colchester, United Kingdom
a.k.singh@essex.ac.uk

4 ARM Cortex-A15 (big) CPU, 4 ARM Cortex-A7 (LITTLE) CPU
and 6 ARM Mali-T628 GPU cores. Such an architecture provides
opportunities to exploit distinct features of different types of cores
in order to meet end-user demands in terms of performance, energy
consumption and thermal profile [22] [23] [21]. This platform also
has five temperature monitors enabling to take decisions based on
the current state of the chip. The GPU and each one of the four A15
cores have its own temperature monitor.

Platforms as this SoC became possible due to the technology
node size reduction. But these integrated circuits become also more
prone to aging phenomena jeopardizing their reliability. Scaling
to new technology nodes leads to progressive degradation of the
performance characteristics of devices and system components [7]
induced by aging phenomena. Some works show that the impact
of temperature-induced variability on circuit lifetime can be higher
than that due to stress and exceed 50% over the value estimated
considering the circuit average temperature [6].

For a given application, simultaneous exploitation of heteroge-
neous cores having different instruction set architectures (ISAs)
such as CPU and GPU is challenging, as they handle instructions
in different ways. Additionally, CPU cores typically handle task
and thread level parallelisms, whereas GPU cores handle data level
parallelism.

OpenCL [2] provides an opportunity to write programs that
can execute across heterogeneous cores including CPUs and GPUs
[13, 15, 17, 20]. However, depending upon the kind of parallelism
dominant in the application, the performance, energy consumption
and temperature will vary when it is allocated onto only CPU, only
GPU, or both CPU and GPU cores.

This paper presents a proposal for mapping and partitioning of
applications in CPU-GPU MPSoCs taking into account the tempera-
ture behavior of the system. We evaluate the temperature profiling
to partition the applications between CPU and GPU. The profiling
is done by measuring the temperature of the CPU and GPU cores
while executing different applications at different partitions. With
a temperature profiling, we can choose a better thermal behavior
and consequently present a lower impact on long-term reliability
(lifetime) of the SoC.

The data-parallel applications are potential candidates to con-
currently exploit cores of a MPSoC as data can be processed in
parallel on the cores. However, each application should be written
in OpenCL to exploit cores of two different ISAs such as CPU and
GPU. The GPU version of the popular Polybench benchmark suite
[12] contains such data-parallel applications written in OpenCL
and we use them. The application codes are slightly modified to
launch them only on CPU cores, only on GPU cores, or on both

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESTIMEDIA, 2017,

CPU and GPU cores. Additionally, an appropriate work-group size
for each application is selected as in [20].

2 MOTIVATIONAL EXAMPLE

Figures 1 presents four OpenCL applications (SYR2K, SYRK, COR-
RELATION, and COVARIANCE) from the Polybench benchmark
[12] executing on the Exynos 5422 heterogeneous MPSoC while
varying the fraction of application workload (threads) executed on
CPU cores and remaining threads on GPU cores. Both CPU and
GPU are set with the maximum possible voltage-frequency. A frac-
tion of zero indicates that no threads are executed on CPU cores,
i.e. all of them are executed only on the GPU cores. Similarly, when
this value is 1, all the threads are executed only on CPU cores and
none on GPU cores.

160,0
140,0
120,0

100,0
80,0
60,0
40,0
200 I
0,0
0 s 28 38 48 58 6/8 78 1

Fraction of workload on CPU cores

W syr2k msyrk - correlation M covariance

Execution Time (seconds)

Figure 1: Execution time (ET) at varying fraction of applica-
tion workload (threads) to be executed on CPU cores.

Figure 1 [24] shows that different applications have different
behaviors in different cores. Some execute faster on CPUs (e.g.,
CORRELATION) and some on GPU (e.g., COVARIANCE). Further,
all applications show a significant reduction in execution time when
run on both the CPU and GPU cores, with the best partitioning of
threads. These observations indicate the advantages of simultane-
ously exploiting both CPU and GPU cores for each application.

This work [24] evaluates performance and energy consumption,
but does not take into account the temperature variations due to the
partition between CPU and GPU. Figure 2 shows the same testcase
from Figure 1 but evaluates the average temperature of the CPU and
GPU cores. It also shows the average temperature has a different
behavior for each application. Some applications shows a lower
temperature with all workloads executing on GPU (e.g. SYRK) and
some on CPUs (e.g. CORR).

Figure 3 illustrates the temperature behavior of one A15 core
(the core 7 is used in these four testcases) temperature for the SYRK
application when the big and LITTLE CPU cores are used in four
different mapping combinations: one LITTLE and four big (1L+4B),
two LITTLE and four big (2L+4B), three LITTLE and three big
(3L+3B) and four LITTLE and two big (4L+2B). In this testcase
we are only evaluating the mapping between different CPU cores,
therefore the GPU is not used. The best temperature profile is
achieved when using the mapping 4L+2B, which has an average of
66.2 °C, but it shows the longest execution time. Using three cores
of each (3B+3L) leads to a higher temperature profile, but with a
lower execution time. The best execution time is achieved with two

E. Wachter et al.

66,0
610 Wsyr2k msyrk © correlation ® covariance

62,0
60,
58,0
56,0
54,
520
50,
48,0
] U8 28 3/8 78 1

48 5/8 6/8
Fraction of workload on CPU cores

=}
=}

=}

CPU and GPU
Average Temperature (°C)
o
o

Figure 2: Average Temperature on CPU and GPU at varying
fraction of application workload (threads) to be executed on
CPU cores.

mappings (1L+4B and 2L+4B), with similar temperature profiles,
which shows that there will be no gain executing the application
with more than 1 LITTLE and four big cores.

—1L+4B —2L+4B 3L+3B —4L+2B

507

45

Core 7 Temperature (°C)

40
12 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Time (seconds)

Figure 3: Temperature behavior in one A15 CPU core over
time for four mappings of application SYRK.

Figure 4 shows the temperature behavior over time for three of
the partitions in application SYRK. The temperature is measured
each second in this scenario. In this scenario, a partition of 0 (all
workload executing on the GPU) shows a better profile (lower
temperature), but it shows a higher execution time (32 seconds).
The partition 1/8 shows a lower execution time (24 seconds), but a
higher temperature.

75
70

65
60
55—
50

45

—0
40 —18
35 2/8

30

GPU Temperature (°C)

25

20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Time (seconds)

Figure 4: GPU Temperature behavior over time for three par-
titions of application SYRK. CPU executes 0, 1/8 and 2/8 of
the applications workload.

Reliable Mapping and Partitioning of Performance-constrained OpenCL Applications on CPU-GPU MPSoCs

The same behavior is observed in one of the A15 cores shown in
Figure 5. It shows that the partition of 0 has a lower temperature
with higher execution time, while the partition 1/8 has a lower exe-
cution time but a higher temperature. These observations indicate
that there is design exploration space for choosing the best trade
off between temperature profile and performance (execution time).

70

65

o /_/_/_/—/_\—
_—
55 _ =
50
45
—0

35 —18
20 2/8

Core 7 Temperature (°C)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Time (seconds)

Figure 5: Temperature behavior in one A15 CPU core over
time for three partitions of application SYRK. CPU executes
0, 1/8 and 2/8 of the applications workload.

3 STATE-OF-THE-ART

Mapping of multi-threaded applications on single-ISA heteroge-
neous MPSoCs has been a hot topic [4, 5, 8, 10, 18, 25, 26]. Most
of these approaches consider Samsung Exynos 5422 SoC and uti-
lize 4 big and/or 4 LITTLE cores that have the same ISA [4, 8, 25].
Further, for a given application, most of these approaches do not
concurrently exploit more than one types of cores [10, 18, 25, 26].
Although there has been some effort to concurrently exploit both
big and LITTLE cores [4], it cannot be applied to exploit cores
having different ISAs such as CPU and GPU because they handle
instructions in different ways.

There has been efforts to simultaneously exploit CPU and GPU
cores in desktop platforms, but CPU and GPU cores are not situated
within a single chip [14, 17]. In these works, CPU cores are used
for general purpose tasks and GPU cores to accelerate data-parallel
tasks. Such allocation of tasks to cores leads to improved through-
put and energy efficiency. Further, since CPU and GPU cores are
situated in different chips, these approaches cannot be efficiently
applied to MPSoC due to different communication infrastructure.

For desktop platforms, there has also been efforts to exploit CPU
and GPU cores present within a single chip [19, 27, 28]. In these
platforms, coordination of CPU and GPU cores needs more consid-
eration. In [27], an algorithm is proposed to partition the workload
and power budget between CPU and GPU cores of an AMD Trinity
single chip heterogeneous platform to improve throughput. In [28],
similar AMD platform is used to perform coordinated CPU-GPU ex-
ecutions, but memory contention occurs due to access of the same
bank in different patterns by the CPU and GPU. In [19], the problem
of shared resources in AMD platforms is addressed. However, these
efforts do not consider limited power budget that is available for
embedded systems operating from batteries.

For mobile platforms used in embedded systems and containing
CPU and GPU cores within a single chip, there has been some

ESTIMEDIA, 2017,

works to partition the application threads between CPU and GPU
cores. In [11], HPC workloads are executed on Mali GPU to achieve
energy efficiency, but the possible collaboration with CPU is not
considered. In [9], the threads are partitioned by considering shared
resources and synchronization. However, these works do not use
GPU for OpenCL kernel execution. OpenCL framework for ARM
processors was introduced in [16]. In [20], a similar open source
framework, FreeOCL [3] is used for the ARM CPU that acts as both
the host processor and an OpenCL device. This enables concurrent
use of CPU and GPU to execute an application threads, but in [20],
a static partitioning is performed by using all the CPU and GPU
cores.

The Authors in [6] show that the impact of temperature-induced
variability on circuit lifetime can be higher due to stress and exceed
over the value estimated considering the circuit average tempera-
ture. They propose a simulation framework for the BTI degradation
analysis of DVFS designs that considers thermal profiles under the
influence of a Dynamic Thermal Management (DTM) system. Using
the proposed framework the work explores the expected lifetime
and performance circuits from a 32nm CMOS technology library,
for various thermal management constraints. Results shown that
the proposed framework can tradeoff long-term reliability (lifetime)
and performance with higher accuracy when taking into account
the temperature of the chip.

A close observation of approaches to map and partition appli-
cation threads between CPU and GPU cores of a mobile MPSoC
indicates that they cannot be efficiently applied. Further, while
doing such partitioning, existing approaches do not consider the
temperature behavior of the applications. In contrast, our proposed
approach performs energy-efficient and temperature-aware map-
ping and partitioning of applications’ threads of each application.

4 PROPOSED MAPPING AND PARTITIONING

An overview of the proposed thread mapping and partitioning ap-
proach is illustrated in Figure 6. Similar approach is followed for all
the applications, one after another. Our approach extends the work
in [24] taking into account the temperature behavior of the appli-
cations to execute the mapping and partitioning. The main steps of
the approach are as follows (See Figure 6): (1) Generating mappings
using CPU/GPU cores. (2) Evaluation of each mapping for execu-
tion time, energy consumption and temperature profile at various
partitions. (3) Finding performance and energy optimized set of
design points meeting performance requirements. (4) Selection of
the point having the best temperature and energy profile.

The main aspects of the mapping and partitioning approach are
as follows.

o Consideration of CPU and GPU cores processing capability
to identify the partitioning of work-groups.
o Consideration of CPU and GPU cores temperature behavior.

Algorithm 1 provides more details of the proposed methodology
to perform energy and thermal aware partitioning. The details of
Algorithm 1 are as follows.

ESTIMEDIA, 2017,

Appm Performance || CPU-GPU
[Tri [..] Tek] || requirements MPSoC

v v v

Generate Mappings using CPU/GPU
Cores

v

Find execution time, energy
consumption and temperature profile
at various partitions

v

Performance/Energy optimized set of
design points meeting requirements

Select the point having best
emperature and energy consumptio

Figure 6: Methodology

4.1 Generating mappings using CPU/GPU
cores

For each available application (App; to Appm), The total number of
mappings (design points) considering both the CPU and GPU cores
of the considered MPSoC are:

NumMappings = {Np, + N + (Np X Np)} + 1 (1)

Where, Nj, and N, are the number of big and LITTLE cores, respec-
tively. For GPU cores, since all the cores are used by the application,
there is only one mapping. For the considered MPSoC, there are 4
big and 4 LITTLE CPU cores.

4.2 Evaluation of mappings at various
partitions

For each mapping (line 1), the fraction of work-items to be executed
on CPU and GPU cores are varied and execution time (ET), energy
consumption (EC) and temperature profile (TEMP) is captured. The
ET is determined by the device taking maximum time, CPU or GPU.
EC is computed by using the available on-board power sensors by
getting power samples at every 100ms. The TEMP is captured by
using the available on-board temperature sensors. Although the
TEMP is captured over time, we take average over all the temper-
ature samples as it affects reliability the most. Evaluation at each
partition represents a design point. For facilitating application ex-
ecution as OpenCL kernels, the workload on both CPU and GPU
should be multiples of work-group size. Therefore, the partitioning
point has been calculated as the number of work-groups that is
nearest to the desired fraction of the CPU workload. Similar steps
are followed for each mapping.

E. Wachter et al.

Algorithm 1 Thread-to-core mapping and repartitioning of threads

1: for each mapping do

2 for each partition do

3 Find execution time ET;

4 Find energy consumption EC;

5 Find temperature profile TEMP;

6 end for

7. end for

8: Create a set (minEC) of design points having low energy con-
sumption and satisfying Appsp, frs

9: Find the minTEMP_EC design point, return partition and num-
ber of used cores, their types and frequencies;

4.3 Finding performance and energy optimized
set

For each mapping, among all the evaluated design points in the
previous step, the ones satisfying the performance requirements and
having low energy consumption are selected as set minEC. Towards
this, we select a limited number of design points at each mapping
option such that their number is in control. This whole process
gives energy optimized design options at various combinations of
used CPU and GPU cores and designer can choose one of them
depending upon the resource availability.

4.4 Energy and temperature optimized design
point

Among the performance and energy optimized set of design points,
one appropriate partitioning of work-items between CPU and GPU
leading to optimized temperature profile is possible, which will
give energy and temperature optimized design point. Towards this,
we select the point having minimum energy_consumption X aver-
age_temperature. Such selection leads the a design point having
optimized energy consumption and temperature as we want to
minimize both of these metrics. For this selected design point, Algo-
rithm 1 returns number of used cores, their types and frequencies
as the mapping and fraction of work-items as the partition.

5 RESULTS

This section evaluates the mapping and partitioning of threads for
all applications of the Polybench benchmark. The evaluation is
executed on an Odroid-XU3 platform that runs a modified Ubuntu
Linux Kernel 3.10.96. The experiments were validated on the board
with the heat sink and fan. For this evaluation we take into account
each application executing individually at the platform with all
processing cores set to the maximum frequency: 2 GHz for A15,
1.4 GHz for A7 and 600 MHz for GPU. The first column of Table 1
shows considered applications with its abbreviations and work
groups. Some of these applications, e.g., 2 dimensional convolution
(2DCONYV) and 2 dimensional matrix multiplication (2MM) are
representative set of kernels used in multimedia processing.

Each one of these applications is executed with different parti-
tions and mappings to profile energy consumption, temperature
profile and performance (application execution time). These experi-
ments are repeated to ensure correctness and we report the average

Reliable Mapping and Partitioning of Performance-constrained OpenCL Applications on CPU-GPU MPSoCs

Table 1: Selected applications from Polybench [12], their
number of work-groups

App Name Abbreviation | # work-groups
CORRELATION CR 2048
SYR2K S2 512
SYRK SR 512
COVARIANCE CvV 2048
2MM 2M 128
2DCONV 2D 2048
GEMM GE 512
MVT MV 4096

of these runs. Then, the proposed method is applied to perform a
trade-off between temperature and energy while maintaining the
performance requirements. To put the results in perspective, we
compare our approach with the work in [24] which does not take
into account the temperature profiling.

Figures 7 and 8 show some design exploration points for appli-
cation S2 evaluating the temperature on GPU and CPU. Figure 7
shows the temperature behavior for mapping on two LITTLE and
four big cores while Figure 8 on four LITTLE and two big cores.
Both Figures shows the exploration of partitions for fractions 6/8,
7/8 and 1 threads executing on CPU. Both Figures show the differ-
ent behavior on temperature for each mapping and partition. On
Figure 8 the behavior of the A15 core 4 shows a bigger variation
according to the desired fraction, while in Figure 7 there is less
variation.

Temperature (°C)

—GPU2L+4B P=6/8 ——GPU 2L+4B P=7/8

GPU 2L+4B P=1

——core4 2L+4B P=6/8 ——cored4 2L+4B P=7/8 cored 2L+4B P=1
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (seconds)

Figure 7: Temperature behavior exploration of fractions 6/8,
7/8 and 1 for application S2 mapped on two LITTLE and four
big cores.

Basically, the difference between these two approaches is that
we evaluate design points at various partitions with temperature
profiles, whereas in [24] it is only performance-energy optimized.

Table 2 shows the comparison for some applications from Poly-
bench benchmark with the best mapping/partition chosen by each
one of the proposals. The column Best Partition shows an approxi-
mate value of the workload to be executed on the CPU for the work
in [24] (Perf-energy column) compared to this work (Temp. column).
A value of zero represents that all workload is executed on the GPU,
while a value in a value of one all tasks are executed on the GPU.

The column Average Temperature shows the differences com-
paring our approach with [24]. Three overheads are shown, Per-
formance (Application execution time), the average temperature

ESTIMEDIA, 2017,

Temperature (°C)

—GPU 4L+2B P=6/8 ——GPU 4L+2B P=7/8 GPU 4L+2B P=1

——core4 4L+2B P=6/8 —core4 4L+2B P=7/8 core4 4L+2B P=1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (seconds)

Figure 8: Temperature behavior exploration of fractions 6/8,
7/8 and 1 for application S2 mapped on four LITTLE and two
big cores.

Table 2: Performance and Temperature differences for appli-
cations from Polybench. Comparison between our proposal
and [24]

Best Partition Average Temperature
24] Perf. s
APP | Perf- | Temp. GPU A15 GPU
energy
2D 1/8 0 888% | -10.73% | -7.97% | -13.27%
2M | 3/8 4/8 38.20% | -1.97% | -0.81% | -3.22%
CR 3/8 4/8 4.44% | -3.32% | -2.01% | -4.71%
Cv | 2/8 3/8 23.80% | -0.40% | 0.19% -0.99%
GE | 1/8 0 13.17% | -11.55% | -13.44% | -9.54%
MV | 2/8 2/8 0.00% | 0.00% 0.00% 0.00%
S2 6/8 7/8 8.03% | -3.96% | -2.69% | -5.37%
SR 1/8 0 33.05% | -13.83% | -13.14% | -14.49%

on the GPU, on the A15 core and the average between this two
values (A15+GPU column). For the application 2D, for example, our
partition adds an overhead of 8.88% in performance, but it saves
10.73% of temperature. The savings in temperature can go up to
13.83% in some cases. A saving of 13% represents a lower average
temperature of 8 °C.

6 CONCLUSIONS

This paper presented a temperature-aware mapping and partition-
ing for CPU-GPU MPSoCs. Taking the temperature behavior of the
applications from the Polybench benchmark allows to reduce the
average temperature of the system by 13% while mantaining perfor-
mance when comparing to other state of the art approaches. This
reduction on average temperature represents a significant impact
on long-term reliability (lifetime) of the SoC.

This mapping and partitioning can be extended to multiple ap-
plications executing at run-time. The method can also be extended
to apply DVFS for each computing module separately (A15, A7 and
the GPU cores).

ESTIMEDIA, 2017,

ACKNOWLEDGMENTS
This work was supported in parts by the EPSRC Grant EP/L000563/1
and the Grant EP/K034448/1, PRIME Programme (www.prime-

project.org). Experimental data used in this paper can be found
at DOI: http://doi.org/10.5258/SOTON/D0258.

REFERENCES

(1]
(2]

(3]

l6

=

[7

[

[10]

[11]

[12

[13

[14

[15

[16]

[17]

2016. Exynos 5 Octa (5422). (2016). www.samsung.com/exynos/

2016. The open standard for parallel programming of heterogeneous systems.
(2016). https://goo.gl/AYWXR]

2017. FreeOCL: Multi-platform implementation of OpenCL 1.2 targeting CPUs.
(2017). Retrieved 2017 from https://github.com/zuzuf/freeocl

Ali Aalsaud, Rishad Shafik, Ashur Rafiev, Fie Xia, Sheng Yang, and Alex Yakovlev.
2016. Power—Aware Performance Adaptation of Concurrent Applications in
Heterogeneous Many-Core Systems. In Proceedings of the 2016 International
Symposium on Low Power Electronics and Design (ISLPED ’16). ACM, New York,
NY, USA, 368-373. https://doi.org/10.1145/2934583.2934612

Karunakar Reddy Basireddy, Amit Singh, Geoff V. Merrett, and Bashir M. Al-
Hashimi. 2017. ITMD: run-time management of concurrent multi-threaded
applications on heterogeneous multi-cores. In Conference on Design, Automation
and Test in Europe 2017 (DATE’17). https://eprints.soton.ac.uk/406291/

H. Chahal, V. Tenentes, D. Rossi, and B. M. Al-Hashimi. 2016. BTI aware thermal
management for reliable DVFS designs. In 2016 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). 1-6.
https://doi.org/10.1109/DFT.2016.7684059

V. Chandra. 2014. Monitoring reliability in embedded processors - A multi-layer
view. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6.
https://doi.org/10.1145/2593069.2596682

Kiran Chandramohan and Michael F.P. O’Boyle. 2014. Partitioning Data-parallel
Programs for Heterogeneous MPSoCs: Time and Energy Design Space Explo-
ration. In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES ’14). ACM, New York, NY, USA,
73-82. https://doi.org/10.1145/2597809.2597822

Kiran Chandramohan and Michael F.P. O’Boyle. 2014. Partitioning Data-parallel
Programs for Heterogeneous MPSoCs: Time and Energy Design Space Explo-
ration. In Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES ’14). ACM, New York, NY, USA,
73-82. https://doi.org/10.1145/2597809.2597822

B. Donyanavard, T. MAijck, S. Sarma, and N. Dutt. 2016. SPARTA: Runtime task
allocation for energy efficient heterogeneous manycores. In 2016 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
1-10.

1. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez. 2014. Energy
Efficient HPC on Embedded SoCs: Optimization Techniques for Mali GPU. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium. 123-132.
https://doi.org/10.1109/IPDPS.2014.24

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. 2012. Auto-
tuning a high-level language targeted to GPU codes. In 2012 Innovative Parallel
Computing (InPar). 1-10. https://doi.org/10.1109/InPar.2012.6339595

Dominik Grewe and Michael F. P. O’Boyle. 2011. A Static Task Partitioning
Approach for Heterogeneous Systems Using OpenCL. In Proceedings of the 20th
International Conference on Compiler Construction: Part of the Joint European
Conferences on Theory and Practice of Software (CC’11/ETAPS’11). Springer-Verlag,
Berlin, Heidelberg, 286-305. http://dl.acm.org/citation.cfm?id=1987237.1987259
Dominik Grewe and Michael F. P. O’Boyle. 2011. A Static Task Partitioning
Approach for Heterogeneous Systems Using OpenCL. In Proceedings of the 20th
International Conference on Compiler Construction: Part of the Joint European
Conferences on Theory and Practice of Software (CC’11/ETAPS’11). Springer-Verlag,
Berlin, Heidelberg, 286-305. http://dl.acm.org/citation.cfm?id=1987237.1987259
Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. 2014. OpenCL Task
Partitioning in the Presence of GPU Contention. Springer International Publishing,
Cham, 87-101. https://doi.org/10.1007/978-3-319-09967-5_5

Gangwon Jo, Won Jong Jeon, Wookeun Jung, Gordon Taft, and Jaejin Lee. 2014.
OpenCL Framework for ARM Processors with NEON Support. In Proceedings of
the 2014 Workshop on Programming Models for SIMD/Vector Processing (WPMVP
’14). ACM, New York, NY, USA, 33-40. https://doi.org/10.1145/2568058.2568064
C. K. Luk, S. Hong, and H. Kim. 2009. Qilin: Exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping. In 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 45-55.

[18] J. Ma, G. Yan, Y. Han, and X. Li. 2016. An Analytical Framework for Estimating

[19]

Scale-Out and Scale-Up Power Efficiency of Heterogeneous Manycores. IEEE
Trans. Comput. 65, 2 (Feb 2016), 367-381. https://doi.org/10.1109/TC.2015.2419655
Indrani Paul, Vignesh Ravi, Srilatha Manne, Manish Arora, and Sudhakar Yala-
manchili. 2013. Coordinated Energy Management in Heterogeneous Processors.
In Proceedings of the International Conference on High Performance Computing,

[20

[21

[22]

[23]

[24]

[25]

[26

[27]

(28]

E. Wachter et al.

Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 59,
12 pages. https://doi.org/10.1145/2503210.2503227

A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra. 2015. Energy-efficient execution
of data-parallel applications on heterogeneous mobile platforms. In 2015 33rd
IEEE International Conference on Computer Design (ICCD). 208-215. https://doi.
org/10.1109/ICCD.2015.7357105

Karunakar Basireddy Reddy, Amit Kumar Singh, Dwaipayan Biswas, Geoff V.
Merrett, and Bashir M. Al-Hashimi. 2017. Inter-cluster Thread-to-core Mapping
and DVFS on Heterogeneous Multi-cores. IEEE Transactions on Multi-Scale
Computing Systems (2017).

Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Lean-
dro Soares Indrusiak. 2017. A Survey and Comparative Study of Hard and
Soft Real-Time Dynamic Resource Allocation Strategies for Multi-/Many-Core
Systems. ACM Comput. Surv. 50, 2, Article 24 (April 2017), 40 pages. https:
//doi.org/10.1145/3057267

Amit Kumar Singh, Charles Leech, Karunakar Reddy Basireddy, Bashir M Al-
Hashimi, and Geoff V Merrett. 2017. Learning-based Run-time Power and Energy
Management of Multi/Many-core Systems: Current and Future Trends. In Journal
of Low Power Electronics (JOLPE). 26.

Amit Kumar Singh, Alok Prakash, Karunakar Reddy Basireddy, Geoff V. Merrett,
and Bashir M. Al-Hashimi. 2017. Energy-Efficient Run-time Mapping and Thread
Partitioning of Concurrent OpenCL Applications on CPU-GPU MPSoCs. ACM
Trans. Embedd. Comput. Syst. (2017), 22p.

E. Del Sozzo, G. C. Durelli, E. M. G. Trainiti, A. Miele, M. D. Santambrogio, and
C. Bolchini. 2016. Workload-aware power optimization strategy for asymmetric
multiprocessors. In 2016 Design, Automation Test in Europe Conference Exhibition
(DATE). 531-534.

Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. 2012. Scheduling Heterogeneous Multi-cores Through Performance Impact
Estimation (PIE). In Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA ’12). IEEE Computer Society, Washington, DC, USA,
213-224. http://dl.acm.org/citation.cfm?id=2337159.2337184

Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and Nam Sung
Kim. 2012. Workload and Power Budget Partitioning for Single-chip Heteroge-
neous Processors. In Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT ’12). ACM, New York, NY, USA,
401-410. https://doi.org/10.1145/2370816.2370873

Hao Wang, Ripudaman Singh, Michael J. Schulte, and Nam Sung Kim. 2014.
Memory Scheduling Towards High-throughput Cooperative Heterogeneous
Computing. In Proceedings of the 23rd International Conference on Parallel Ar-
chitectures and Compilation (PACT ’14). ACM, New York, NY, USA, 331-342.
https://doi.org/10.1145/2628071.2628096

www.samsung.com/exynos/
https://goo.gl/A9wXRJ
https://github.com/zuzuf/freeocl
https://doi.org/10.1145/2934583.2934612
https://eprints.soton.ac.uk/406291/
https://doi.org/10.1109/DFT.2016.7684059
https://doi.org/10.1145/2593069.2596682
https://doi.org/10.1145/2597809.2597822
https://doi.org/10.1145/2597809.2597822
https://doi.org/10.1109/IPDPS.2014.24
https://doi.org/10.1109/InPar.2012.6339595
http://dl.acm.org/citation.cfm?id=1987237.1987259
http://dl.acm.org/citation.cfm?id=1987237.1987259
https://doi.org/10.1007/978-3-319-09967-5_5
https://doi.org/10.1145/2568058.2568064
https://doi.org/10.1109/TC.2015.2419655
https://doi.org/10.1145/2503210.2503227
https://doi.org/10.1109/ICCD.2015.7357105
https://doi.org/10.1109/ICCD.2015.7357105
https://doi.org/10.1145/3057267
https://doi.org/10.1145/3057267
http://dl.acm.org/citation.cfm?id=2337159.2337184
https://doi.org/10.1145/2370816.2370873
https://doi.org/10.1145/2628071.2628096

	Abstract
	1 Introduction
	2 Motivational Example
	3 State-of-the-Art
	4 Proposed Mapping and Partitioning
	4.1 Generating mappings using CPU/GPU cores
	4.2 Evaluation of mappings at various partitions
	4.3 Finding performance and energy optimized set
	4.4 Energy and temperature optimized design point

	5 Results
	6 Conclusions
	Acknowledgments
	References

