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Abstract  

 

Purpose: Genetic and morphological heterogeneity is well-documented in solid cancers. 

Immune cells are also variably distributed within the tumor; this heterogeneity is difficult to 

assess in small biopsies, and may confound our understanding of the determinants of successful 

immunotherapy. We examined the transcriptomic variability of the immunological signature in 

head and neck squamous cell carcinoma (HNSCC) within individual tumors using transcriptomic 

and immunohistochemical assessments. 

Experimental design: Forty-four tumor biopsies from 16 HNSCC patients, taken at diagnosis 

and later at resection, were analyzed using RNA-sequencing. Variance filtering was used to 

identify the top 4000 most variable genes. Principal component analysis, hierarchical clustering 

and correlation analysis were performed. Gene expression of CD8A was correlated to 

immunohistochemical analysis.  

Results: Analysis of immunological gene expression was highly consistent in replicates from the 

same cancer. Across the cohort, samples from the same patient were most similar to each other, 

both spatially (at diagnosis) and notably, over time (diagnostic biopsy compared to resection); 

comparison of global gene expression by hierarchical clustering [p=<0.0001] and correlation 

analysis [median intrapatient r=0.82; median interpatient r=0.63]. CD8A gene transcript counts 

were highly correlated with CD8 T-cell counts by immunohistochemistry (r=0.82). 

Conclusion: Our data demonstrate that in HNSCC the global tumor and adaptive immune 

signatures are stable between discrete parts of the same tumor and also at different timepoints. 

This suggests that immunological heterogeneity may not be a key reason for failure of 

immunotherapy and underpins the use of transcriptomics for immunological evaluation of novel 

agents in HNSCC patients. 
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Translational relevance 

Our aim was to evaluate and to quantify the immunological heterogeneity in head and neck 

squamous cell carcinoma (HNSCC). Understanding variability is important if immunological 

tumor assessment is used to inform treatment choice, to monitor response and to understand the 

variability of outcome after immunotherapy observed in clinical practice.  

Multi-region tumor sampling at baseline, resection or both, were followed by RNA-Sequencing. 

We observed a high level of intertumoral heterogeneity but significant stability of intratumoral 

transcriptomes in individual patients; transcriptomes and immune cell signatures are stable in 

HNSCC across time and space in tumors that have not been exposed to treatment in the interim. 

The use of RNA-Seq accurately captures the immune landscape of an individual patient’s tumor. 

Our data support that biopsies offer a representative insight into the immune characteristics of 

cancer tissue and provide a basis for interpreting changes that are observed following treatment.  
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INTRODUCTION 

Morphological heterogeneity in cancer has long been appreciated by pathologists; more recent 

data show that tumor cell clones may undergo marked diversification over space and time as a 

result of mutational divergence on the one hand and selection by, for example, immunological 

attack on the other hand (1-7). It has further become evident that immune attack appears to vary 

according to its location in the cancer tissue: when quantifying the density of tumor-infiltrating 

immune cells by microscopy, the spatial distribution of immune cells with respect to tumor cells 

needs to be taken into account (8). Given that immunotherapeutics only benefit a minority of 

patients (9), heterogeneity of immune cell distribution might contribute to treatment failure; and 

in that case small biopsy samples might not accurately represent the tumor microenvironment 

and immune status of a patient’s tumor. In clinical practice however, it is difficult to sample 

multiple tumor areas at any time other than at surgical resection. 

Valuable prognostic information can be gained from simple enumeration of T-cell infiltrates in 

both human papillomavirus expressing (HPV(+)) and  HPV independent (HPV(-)) head and neck 

squamous cell carcinoma (HNSCC) (10,11). Transcriptomic analysis of primary HNSCC using 

RNA-sequencing (RNA-Seq) allows further characterization of global molecular signatures (12) 

and detailed assessment of immune infiltrates (13). Such evaluation of gene expression provides 

unprecedented insight into biological processes that occur in tissue. Like morphological 

assessments, molecular data are shaped by tumor-driving mutations, tissue heterogeneity, disease 

progression or selective pressures from treatment (14-16). Technical issues may further affect 

interpretation: in breast cancer, significant differences were identified between diagnostic tissue 

core biopsies when compared to tumor excisions. Surgical ischemia was identified as a 

significant confounding factor in transcriptomic analysis (17). 

Knowledge of variability is critical for the understanding and effective evaluation of 

immunotherapy interventions using checkpoint inhibitors (e.g. anti-CTLA4, anti-PD1 and anti-

PDL-1 antibodies) (18,19). The mechanisms that underpin immunotherapeutic success as 

opposed to treatment failure remain poorly understood but must be linked to the particulars of 

the pre-existing immune infiltrate (5,20,21). To make sense of treatment failure therefore, and of 

any changes detected in longitudinal assessments, understanding of natural variability is critical, 
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as is the understanding of how results from different assays (e.g. histological and transcriptomic 

assessment) correlate with each other.  

Using high resolution transcriptomic evaluation with RNA-Seq (22), we assessed variability in 

HNSCC within an individual cancer between multiple samples (replicates). Additionally, we 

wondered whether replicates at diagnosis would be similar or different to replicates from a 

resection specimen of the same cancer in one person, taken about a month later. We were 

particularly interested in immunological readouts and included both HPV(+) and HPV(-) 

HNSCC.  Up to 6 tumor samples (replicates) per patient were collected from a total of 16 

patients. Gene expression analysis using RNA-Seq revealed consistent hierarchical clustering 

and a high level of correlation between replicates in the same patient. Detailed analysis of 

immunological gene signatures showed clustering of replicates by patient. Overall our data  show 

a stable transcriptional immunological signature between multiple samples from the same patient 

and between diagnosis and surgical resection. This suggests that if applied to treatment study, the 

approach has the potential to allow definition of treatment consequences. Our data further 

suggest that immunological heterogeneity within the primary tumor is not the cause for treatment 

failure in HNSCC.   
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MATERIALS AND METHODS 

Sample acquisition & consent. 

Following LREC approval and written informed consent, multi-region tumor samples 

(replicates) were collected under general anesthesia and were snap frozen immediately at 

diagnostic biopsy and surgical resection. Pre-resection replicates were taken before vascular 

ligature to minimize hypoxic time. Spatial heterogeneity was assessed by collection of multiple 

replicates at either diagnostic sampling or at resection. Samples were taken at least 10mm apart 

to maximize the chance of capturing spatial heterogeneity. The comparison between replicates 

collected at diagnostic sampling to those replicates from the same patient at resection were 

further used to assess change over time (temporal heterogeneity), in the recognition of the fact 

that this comparison may also be shaped by any spatial heterogeneity in any given cancer. Patient 

demographics, clinical details and number of replicates are shown in Supplementary Table 1. For 

RNA extraction, cryosections (10µm) were cut and RNA isolated with the RNeasy Mini Kit 

(Qiagen Ltd., Manchester, UK). From 16 patients, 44 samples were collected. Samples with 

transcript bias or RIN score <7 were removed (n=5); this led to the exclusion of two patients who 

as a result only had a single sample but no replicate.  The full analysis included 14 patients and 

n=37 tumor replicates; from 6 patients 15 samples were collected at a single timepoint, 8 patients 

had replicates (n=22) from two timepoints, both diagnosis and resection, with an average of 26 

days between them (Supplementary Table 1). Clinical information for an additional cohort of 

patients also assessed between diagnostic biopsy and surgical resection is shown in 

Supplementary table 1.  

 

RNA Sequencing. 

RNA quality was assessed using the Agilent 2100 Bioanalyzer generating an RNA integrity 

number (RIN) (Agilent Technologies UK Ltd., UK). Poly-A mRNA was purified from total 

RNA (100ng) using the Poly(A) Purist Mag Kit (Life Technologies Ltd., UK), according to the 

manufacturer’s instructions. RNA was converted into a library for sequencing using the 

TruSeq™ stranded mRNA Sample Preparation Kit (Illumina Inc., USA) followed by 

hybridization to the flow cell for single-end (SE 35bp) sequencing on the HiSeq 2000 (Illumina 

Inc., USA). Low-quality SE read data from FASTQ files were trimmed or removed. High-quality 
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reads were mapped to the human genome (hg19) using TopHat (23) (version 2.0.9) and, 

following the removal of multi-mapping reads, converted to gene specific read counts for 

annotated genes using HTSeq-count (version 0.5.4) (24). A sample was considered positive for 

HPV if there were greater than 500 HPV assigned reads against the HPV reference genome (12) 

and confirmed with Illumina Pathseq (data not shown) (25). Data is available at: ArrayExpress 

accession E-MTAB-4546 (public upon manuscript publication).  

 

Immunohistochemistry. 

Tumor grade and differentiation were recorded from formalin fixed, paraffin embedded (FFPE) 

tissue. Immunohistochemical (IHC) staining for CD8a (anti-CD8a antibody (clone: C8/144B, 

DAKO) was performed on each frozen tumor tissue replicate for each case using a region 

immediately adjacent to that used for RNA-Seq analysis. An insufficient amount of material 

remained for cases #6, #11 and #13. An additional group of 9 patients were added in which 

FFPE from diagnostic material was compared to resection specimen again using anti-CD8a for 

IHC evaluation. Tumor-infiltrating lymphocytes (TILs) were quantified using an Olympus 

CKX41 with an average of 10 high-power (x400) fields; an average intratumoral score per high-

power field (HPF) was calculated.  

 

Statistical analysis. 

Raw counts from RNA-Seq were processed in Bioconductor package DESeq, variance was 

estimated and size factor normalized. Correlations and statistics were performed in Corrplot 

0.73, in an R statistical environment (3.3). Qlucore Omics software (3.2) was used to visualize 

the normalized RNA-Seq data using Principle component analysis and hierarchical clustering. 

These were performed on data using the setting: mean=0, variance=1 normalization in the 

Qlucore Omics software (3.2). Where the clustering is agglomerative, average linkage criterion 

was used to determine the distance between sets of samples and hierarchical clustering is based 

on Euclidean distances, where the Euclidean distance will be equal to sqrt(1-r)^2, where r is 

the Pearson correlation coefficient. In order to identify the 4000 most variable genes, variance 

was set at 0.2879. Briefly genes with a standard deviation (SD) less than a specified variance cut 
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off from the maximal SD were removed using Qlucore Omics Explorer (3.2) as previously 

reported (22). Data were visualized in heat maps where each row represents normalized gene 

expression values for a given gene; each column represents the gene expression for a given 

tumor: red shading denotes greater gene expression; blue shading denotes lower gene expression. 

Hierarchical clustering (cluster method=average linkage; distance measure=Pearson correlation) 

of genes and tumors based on their expression profile is reflected in the dendrograms to the left 

and the top of the heatmap, respectively. A curated list of immune genes relating to immune cell 

markers, effector function and exhaustion/ regulatory function were derived from the gene 

ontology terms GO:0002250 adaptive immune response, GO:0002449 lymphocyte mediated 

immunity and GO:0002456 T cell mediated immunity. As a measure of similarity and 

dissimilarity for intrapatient and interpatient samples, we quantified Euclidean distances for the 

4000 most variable genes (mean=0, variance=1 normalized) in the R statistical environment (3.3) 

between all replicates from the same patient to all other replicates, where the Euclidean distance 

is equal to the sqrt(1-pearson)^2. This measures distances between samples in the hierarchical 

tree, with smaller distances between replicates indicating a closer relationship. The median 

distances were calculated for all replicates to all other replicates (interpatient) and compared to 

the median distances from intrapatient replicates, e.g. case #14 median distance for intrapatient 

derived from n=6 and compared to median distance to all other cases n=31 (each replicate 

comparison is plotted). The Wilcoxon matched-pairs signed rank test was used to compare 

median distances between replicates from the same patient to those from different patients. 

Reads per kilobase per million mapped reads (RPKM) were used to display expression of genes 

between replicates in dot plot comparisons. Spearman correlation analysis between CD8A gene 

expression and CD8 T-Cell IHC count were performed; correlation analysis was also carried out 

on CD8 T-cell IHC count between diagnostic biopsy and surgical resection from FFPE samples 

in the second cohort. 

Role of the funding source: 

The funding for this work was provided by Cancer Research UK grant number C491/A15951. 
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RESULTS 

Replicates from the same patient cluster hierarchically and are significantly related.  

The top 4000 most variable genes across the cohort were displayed by variance filtering of the 

RNA-Seq data. These were hierarchically clustered and displayed in a heatmap (Figure 1A). The 

37 replicates from 14 patients evaluated at either diagnosis or resection cluster precisely by 

patient in  9/14 cases. The same genes were visualized with principle component analysis (PCA) 

in Figure 1B showing grouping of replicates by patient, complementing the hierarchical 

clustering. In addition to this, the assessment of all genes (n=18979) and all cases was performed 

using Hierarchical clustering and PCA (Supplementary Figure 1A and B) again showing 

replicates grouping by case. In order to quantify the level of variation between replicates, the 

Euclidean distance was assessed for each replicate (Figure 2A). The graph displays each case 

and the median intrapatient (circle) distance compared to the median interpatient distance 

(diamond). The length of the line connecting circles and diamonds is a measure of difference 

when replicates from one case are compared to all other samples. A long line indicates large 

differences (e.g. case #13), conversely a short line highlights cases where this difference is small. 

The minimum and maximum distance for each replicate is shown in Supplementary Figure 2. 

The individual Euclidean distances are presented as a scatter graph in Figure 2B demonstrating 

that tumor samples from the same patient (intrapatient) are significantly closer to each other than 

to those from other patients (interpatient) (p=<0.0001).  

  

Replicates from the same patient are highly correlated. 

Correlation analysis of the top 4000 most variable genes was carried out across all samples 

(Figure 3). The r values in the correlation matrix range from r=1 (highly correlated, yellow) to 

r=0.5 (less correlated, blue with values <0.5 also shown as blue). It shows that intrapatient tumor 

replicates are more correlated to each other than interpatient replicates. Case #14 shows a 

variable correlation between samples, but there is a higher correlation between its own replicates 

than to samples from other cases. The global median correlation coefficient for intrapatient 

replicates was r=0.82 compared to an
 
r=0.63 for interpatient replicates.  When cases are 

displayed in a correlation matrix, cases #13 and #9 have similar gene expression; this was also 

visible in the heatmap (Figure 1A). Our data suggest that each patient’s tumor has a distinct 
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transcriptomic landscape. Correlation analysis of all genes across all samples with the inclusion 

of the less variable genes increases the correlation between samples (r scale=0.9–1); again 

replicates from the same patient are most similar to each other (Supplementary Figure 3). 

 

Immunological gene expression in tumor replicates from the same patient is consistent. 

The prognostic importance of T-cell infiltration in HNSCC is well-documented (10-12). Gene 

expression for immune cell lineage markers, effector function, exhaustion and regulatory genes 

were therefore represented in a heatmap (Figure 4). Samples are ordered by case number and 

cases with replicates at a single timepoint were grouped, as were cases with replicates from two 

timepoints. We observe remarkable visual consistency in the immunological signature between 

replicates from the same patient including the markers of immune effector function (IFNG/ 

GZMA (5)) and targets of cancer immunotherapy (PDL1/ CTLA4 (26)). In addition to this, the 

RPKM of CD3E, GZMA, IFNG, CTLA4 and PDL1 (CD274) are displayed as dot plots 

(Supplementary Figure 4A to E). Cases #1, #8, #5, #6 and #7 contain a consistent and low 

relative level of immune-gene expression, while cases #16, #9 and #13 have consistently high 

immune-gene expression. However, in some cases, replicates #2, #3, #6, #10 and one sample 

from case #14, the level of immune-gene expression is more variable, this is reflected in the 

hierarchical clustering of the tumor replicates for immune genes only (Supplementary Figure 5).   

 

Correlation of CD8 by IHC and gene expression. 

We evaluated how the gene expression for CD8A compared to the assessment of CD8 cell counts 

by standard IHC. Using tumor tissue sections that were immediately adjacent to those used for 

RNA-Seq, we were able to assess 11/14 cases. Gene expression for CD8A is presented as dot 

plots for cases grouped by whether we had replicates from a single timepoint or two timepoints 

(Figure 5A). CD8+ counts (average of 10 HPF) evaluated by IHC are shown in Figure 5B. 

Visually, the cases with high CD8A transcript count appear to be equally rich in CD8 T-cells. 

This can be quantified by assessing the Spearman correlation of the CD8A gene expression to 

CD8 T-cell IHC count with an r=0.82 (Supplementary Figure 6A). We asked if this degree of 

immunological homogeneity assessed by immunohistochemistry was unique to our cohort and 
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evaluated the immune cell counts in an additional tumor cohort of paired samples (Figure 6). The 

paired tumor replicates between diagnostic biopsy and surgical resection showed comparable 

levels of CD8+ T-cells with a Spearman correlation of r=0.95 (Supplementary Figure 6B). 
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DISCUSSION  

In solid cancers, morphological heterogeneity is commonly observed and raises the concern of 

how representative of the whole cancer biopsy samples are. This is important clinically as biopsy 

samples are used to make treatment decisions and failure to appreciate heterogeneity could 

contribute to treatment failure. In addition, if tumor samples are used to gain detailed insights 

into molecular events resulting from therapeutic intervention(s), understanding transcriptomic 

heterogeneity becomes critical. Recent high-resolution studies have identified that beyond 

morphological features, genetic features can vary within the geography of an individual’s cancer 

(4,6,7). Therefore, we wished to quantify tumor and immunological heterogeneity at high 

resolution using RNA sequencing in multiple tumor biopsy samples from individual patients. 

Our focus was to understand gene expression that reflects adaptive immune attack; as boosting 

this is the key for success of immunotherapy. We have previously shown that in HNSCC, TIL 

density is tightly linked to outcome, in both HPV(+) and HPV(-) cancers (11,13). Here we used 

RNA-Seq to quantitate the immune signatures and global tumor gene expression profiles from 

tumor biopsies, separated in space (more than one sample at the same time) and time (samples 

taken at diagnosis and compared to samples from resection). Molecular immune cell 

quantification was then correlated to data generated by the current ‘gold standard’, 

immunohistochemical assessment of HNSCC patients, which is known to be important for 

outlook (10,11,13,27). 

The gene expression data generated using RNA-Seq for our patient cohort were assessed by 

PCA, hierarchical clustering and correlation analysis of the top 4000 most variable genes, as well 

as evaluation of specific immune-genes. Hierarchical clustering and Euclidean distance measures 

showed that multiple samples from the same patient were significantly more similar to each other 

than to those from other patients, this was also mirrored in the correlation analysis. Our data 

suggest a single sample is able to capture the key immune characteristics of the patient’s primary 

HNSCC, irrespective of whether patient samples were taken at the same time or at different 

timepoints. Tumor biopsies clustered by patient and also displayed similar expression levels of 

the immune genes. In contrast, there is considerable variability between patients (11,13,28). We 

have previously identified that the global transcriptomic signature of T-cells is similar between 

HPV(+) and HPV(-) tumors, but that HPV(-) cancers have a lower overall density of immune 
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cell infiltrates (11,13). We find here that the similarity of tumor replicates is maintained in both 

HPV(+) and HPV(-) HNSCC, but recognize that our series is limited by its size.  

Overall our data are suggestive of a consistent immune signature in an individual tumor across 

both location and time, at least within the window between diagnosis and resection; additionally, 

our data demonstrate that tumors can be grouped by the immune-gene expression profiles. The 

evaluation of gene expression of key markers for immune attack (IFNG/ GZMA (5)) and targets 

of cancer immunotherapy (PDL1/ CTLA4 (26)) further confirm a stable immune signature in the 

individual patient.  

Reassuringly, gene expression of CD8A correlated strongly (r=0.82) with the CD8 T-cell count 

assessed by manual counting of cells using IHC. Cell counts generated by IHC are also stable 

over time and space, this observation was confirmed in an independent cohort of paired samples 

from biopsy and resection specimens. 

Nonetheless intrapatient tumor replicates are not a perfect match with each other and in some 

cases (cases #2, #3, #10, #11, #14 and #15) the tumor samples did not cluster perfectly by 

patient: In case #10, gene expression differences were observed at the immune-gene level which 

were also reflected in the IHC of CD8. Conversely, case #2 displayed a stable CD8 and immune 

cell marker signature but variability in the expression of effector function genes. Cases #2, #6, 

#10 and #14 were laryngeal tumors, which have been highlighted as having a higher level of 

mutational heterogeneity compared to other sites in HNSCC (29). We are currently evaluating 

whether the degree of transcriptomic heterogeneity links to the genomic heterogeneity identified 

by other groups (1,30).  

Our data support that in HNSCC the global tumor and adaptive immune signatures are stable 

across space and time between replicate samples from the same tumor. Our data have a number 

of implications. They suggest that immunological heterogeneity is not likely to be a key reason 

for immunotherapy failure for the primary cancer in HNSCC; paired analysis of primary and 

metastatic disease is necessary to evaluate this question further for patients with later stage 

disease. Our data also imply that it is important to examine in other tumors whether a consistent 

immunological ‘fingerprint’ is present even in cancers with known genetic heterogeneity. 

Finally, our data support that from a background of transcriptomic stability in untreated patients, 

RNA sequencing may be useful for the detection of change resulting from treatment effects.   
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Figure legends:  

 

Figure 1. Analysis of tumor replicates using hierarchical clustering and Principle 

Component Analysis (PCA). RNA-Seq analysis showing row wise z-scores of normalized read 

counts for the 4000 (variance filtered) most variable genes across the tumor replicates. Patient 

tumor replicates are color coded and displayed on the heatmap and principle component analysis 

(PCA) plot; HPV(+)=black and HPV(-)=beige; diagnostic biopsy (DB) and surgical resection 

(SR) replicates are annotated below. (A) Hierarchical clustering (distance measure=Pearson’s 

correlation metric; clustering=average linkage method) of tumor replicates displayed as a 

heatmap shows close clustering of related samples. (B) PCA was used to visualize the sample to 

sample distances and also highlights the similarities between the tumor replicates.  

 

Figure 2. Comparison of Euclidean distance from hierarchical clustering of tumor 

replicates. The distances between paired tumor replicates in the hierarchical tree were calculated 

and used to assess how closely related intrapatient replicates are, compared to interpatient 

replicates. The median Euclidean distance (sqrt(1-pearson)⌃2) for intrapatient replicates (circles) 

was plotted, as was the median Euclidean distance for interpatient replicates (diamonds). (A) 

Displays the relationship between the intra and interpatient median Euclidean distances for each 

replicate in the cohort respectively. The length of the connecting line between circles and 

diamonds is a measure of the difference between an individual replicate and all samples from all 

other patients. (B) Represents the median intrapatient distances compared to the median 

interpatient distances. There is a significant difference between intrapatient and interpatient 

distances (p=<0.0001, Wilcoxon test). 

 

Figure 3. Correlation analysis of tumor replicates. Single timepoint (sampling across 

space)  and two timepoint (sampling across time between diagnosis and resection) tumor 

replicates were assessed using a correlation matrix of gene expression (Spearman correlation of 

top 4000 variance filtered genes); each tumor replicate’s gene expression was correlated to itself 

and to each other sample. Intrapatient tumor replicates were more correlated with a median 

correlation of r=0.82 compared to an interpatient median correlation r=0.63. 
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Figure 4. Gene expression of immune markers is consistent in tumor replicates from the 

same patient. RNA-Seq analysis showing row wise z-scores of normalized read counts for genes 

associated with immune lineage markers, cytotoxic function, exhaustion and regulatory function. 

Samples were grouped by patient and then by whether replicates had been collected at a single 

timepoint or at two timepoints. Expression profiles are consistent across tumor replicates in most 

cases.  

 

Figure 5. Comparison of CD8A gene expression with CD8 immunohistochemistry (IHC) 

counts across time and space.  (A) The gene expression of CD8A (RPKM – Reads per kilobase 

per million mapped reads) is shown for the cases grouped by single timepoint and two timepoint 

tumor replicates. (B) CD8 IHC counts are shown as the mean across 10 high power fields (HPF) 

on frozen tissue sections taken from the adjacent material used in the RNA-Seq analysis, tumor 

replicates are arranged as described above. The CD8A gene expression and CD8 IHC show a 

similar pattern of immune density and are consistent across time and space.  

 

Figure 6. Assessment of CD8 immunohistochemistry (IHC) in tumor replicates between 

diagnostic biopsy and surgical resection in an additional sample cohort. The two timepoint 

tumor replicates were obtained from an independent patient cohort at diagnostic biopsy and then 

at surgical resection. Each data point represents CD8 counts shown as mean across 10 high 

power fields (HPF) from FFPE tissue blocks. In each case, the mean CD8 count in the biopsy 

and resection samples were closely mirrored.  
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