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Abstract 16 

Therapeutic monoclonal antibodies (mAbs) have become one of the fastest growing classes 17 

of drugs in recent years and are approved for the treatment of a wide range of indications, 18 

from cancer to autoimmune disease. Perhaps the best studied target is the pan B-cell marker 19 

CD20. Indeed, the first mAb to receive approval by the Food and Drug Administration (FDA) 20 

for use in cancer treatment was the CD20-targeting mAb rituximab (Rituxan®). Since its 21 

approval for relapsed/refractory non-Hodgkin’s lymphoma (NHL) in 1997, rituximab has 22 

been licensed for use in the treatment of numerous other B-cell malignancies, as well as 23 

autoimmune conditions including rheumatoid arthritis. Despite having a significant impact on 24 

the treatment of these patients, the exact mechanisms of action of rituximab remain 25 

incompletely understood. Nevertheless, numerous second and third generation anti-CD20 26 

mAbs have since been developed using various strategies to enhance specific effector 27 

functions thought to be key for efficacy. A plethora of knowledge has been gained during the 28 

development and testing of these mAbs, and this knowledge can now be applied to the design 29 

of novel mAbs directed to targets beyond CD20. As we enter the “post-rituximab” era, this 30 

review will focus on the lessons learned thus far through investigation of anti-CD20 mAb. 31 

Also discussed are current and future developments relating to enhanced effector function, 32 

such as the ability to form multimers on the target cell surface. These strategies have potential 33 

applications not only in oncology but also in the improved treatment of autoimmune 34 

disorders and infectious diseases. Finally, potential approaches to overcoming mechanisms of 35 

resistance to anti-CD20 therapy are discussed, chiefly involving the combination of anti-36 

CD20 mAbs with various other agents to resensitise patients to treatment.  37 

 38 

 39 

 40 

  41 
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Introduction 42 

 43 

Over the last 2 decades monoclonal antibodies (mAbs) have become a key part of treatment 44 

regimens for many diseases including cancer. In 1997 rituximab became the first mAb to 45 

receive FDA approval in oncology for relapsed/refractory non-Hodgkin’s lymphoma (NHL), 46 

and has since significantly impacted on a vast number of patients with various B-cell 47 

malignancies and, more recently, autoimmune disorders(1, 2). For example, addition of 48 

rituximab to conventional (CHOP; cyclophosphamide, hydroxydaunorubicin, vincristine 49 

(Oncovin), prednisolone) chemotherapy in diffuse large B-cell lymphoma (DLBCL) has 50 

resulted in significantly increased progression free and overall survival at 10 year follow 51 

up(3, 4). In contrast, treatment success is more modest in conditions such as chronic 52 

lymphocytic leukaemia (CLL) and mantle cell lymphoma (MCL), where response rates are 53 

lower and many patients relapse and/or become refractory to treatment(5). Both the success 54 

and failure of rituximab has driven the development of further mAb reagents; leading to an 55 

increase in our knowledge of how mAb work and how resistance arises (Figure 1).  56 

 57 

Interestingly, although much of the current focus in immunotherapy is on checkpoint 58 

blockers and other immunomodulatory mAb, in fact the majority of mAbs approved for use 59 

in oncology are so-called direct targeting mAb, such as rituximab(6), which are designed to 60 

target tumour cells directly. Indeed, mAbs targeting CD20 represent over a quarter of such 61 

tumour-targeting mAbs with more in clinical development for conditions outside of cancer 62 

(Table 1). Moreover, as many immunomodulatory mAb such as anti-CTLA-4, GITR and 63 

OX40 may function as direct-targeting mAb, by deleting regulatory T cells (Tregs)(7-9), the 64 

lessons we have learnt from CD20 likely have further relevance in these settings. 65 

 66 

In this article we review developments arising from targeting CD20 and then discuss a range 67 

of approaches that are now being applied to improve efficacy, including new antibodies and 68 

combination strategies. 69 

 70 
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CD20 as a model target 71 

The pan B-cell marker CD20 remains one of the best studied antibody targets to date. 72 

Originally named B1, CD20 was discovered in 1980 as the first specific B-cell marker(10). It 73 

is a non-glycosylated tetraspanin of the membrane spanning 4-A family, with two 74 

extracellular loops(11-13) containing the epitopes for anti-CD20 antibodies (14). 75 

Early studies showed that CD20 forms homotetramers in the cell membrane, suggesting it 76 

may function as an ion channel, and that it disassociates from the B-cell receptor (BCR) upon 77 

mAb binding(15). CD20 is now thought to modulate calcium release arising from the BCR: 78 

CD20 deficient mouse cells exhibit decreased calcium signalling downstream of BCR 79 

engagement, and human B-cells (Ramos) are unable to initiate calcium signalling in the 80 

absence of the BCR despite CD20 crosslinking(16, 17). In mice and humans loss of CD20 81 

results in defects in the ability to generate antibody responses to certain antigens(18, 19). 82 

Importantly, as well as being expressed on normal B-cells, CD20 was also found to be 83 

expressed on the surface of malignant B-cells(20). Furthermore, CD20 is expressed on pre-B-84 

cells from an early stage in their development, but is not present on the precursor 85 

haematopoietic stem cells from which they are derived, and expression is lost during 86 

differentiation into antibody secreting plasma cells(21-23). This expression pattern is close to 87 

ideal for a target antigen: it minimizes the potential for off-target toxicity, retains humoral 88 

protection against previously encountered pathogens(24), whilst allowing for repopulation of 89 

the B-cell compartment after cessation of anti-CD20 treatment. 90 

 91 

Another property that affords CD20 ideal target antigen status is its expression level: it is 92 

highly expressed, with approximately 100,000 CD20 molecules expressed on the surface of 93 

normal B cells (with similarly high levels on most malignant cells)(25), which facilitates 94 

efficient target opsonisation and deletion(26). Moreover, given the extracellular structure of 95 

the molecule, the available mAb binding epitopes are located close to the plasma membrane, 96 

a feature that has been reported to facilitate efficient binding and recruitment of effector 97 

mechanisms for deletion(27, 28). Perhaps less important but also worthy of consideration are 98 

that CD20 has no known ligand to interfere with mAb binding and does not exhibit 99 

extracellular post-translational modifications, reducing the variation in, and potential loss of, 100 

binding epitopes(12). 101 
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Type I and type II anti-CD20 Antibodies 102 

Anti-CD20 mAbs also have the capacity to redistribute CD20 within the plasma membrane 103 

into lipid rafts(29). Functionally, this redistribution may be important for the role of CD20 in 104 

BCR signalling(30). However, it also has significant implications for anti-CD20 antibodies 105 

themselves. The ability (or lack thereof) of mAbs to redistribute CD20 into lipid rafts has 106 

served as a useful classification system for anti-CD20 antibodies(31, 32). mAbs such as 107 

rituximab and ofatumumab that bind CD20 and cause compartmentalization into lipid rafts 108 

are classified as type I antibodies, whereas those that bind CD20 but cause no redistribution, 109 

such as obinutuzumab, are known as type II antibodies (14). As well as a convenient basis for 110 

antibody nomenclature, the type I/II distinction describes key differences in antibody 111 

characteristics: First, opsonisation of CD20+ target cells with type I mAb results in binding 112 

twice as many antibody molecules per cell as a type II antibody(26). This is thought to be due 113 

to differences in the modes of binding between the two antibody types, as suggested by X-ray 114 

crystallography structures and tomography analysis of type I and II mAbs in complex with 115 

CD20(33). Type I antibodies are proposed to bind CD20 tetramers in a manner that does not 116 

block binding of subsequent antibodies, whereas type II antibodies are thought to bind across 117 

the tetramer, blocking the binding of further mAbs(14). 118 

The redistribution of CD20 and the associated mAb into lipid rafts is also functionally 119 

important with regard to the antibody effector functions induced. Due to the enhanced 120 

clustering of antibody Fc regions type I antibodies are able to potently induce complement 121 

dependent cellular cytotoxicity (CDC), whereas type II antibodies do not induce CDC to a 122 

similar extent(14). However, type II antibodies have been reported to induce a greater degree 123 

of directly induced, non-apoptotic cell death upon binding to target cells(34). This 124 

mechanism has been shown in both B-cell lines as well as primary B-CLL cells(35). The 125 

enhanced clustering of type I antibodies renders them more susceptible to internalisation, 126 

resulting in lysosomal degradation and a reduction in surface CD20 expression(36). Known 127 

as antigenic modulation, this is thought to be an important mechanism of resistance to type I 128 

anti-CD20 treatment.  129 

Importantly, since the very first studies on CD20 mAb carried out with B1 and 1F5(37), it has 130 

been clear that targeting the same surface marker with different mAb can have profound 131 

differences in response. Amongst many other lessons, this has been an important one that 132 

study of CD20 has revealed. In fact, subsequent work by Niederfellner et al. revealed that 133 

type I and II mAb bind an extremely similar epitope on the same loop of CD20 and it is likely 134 
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that only the orientation of binding differs between these mAb but that this results in 135 

profound differences in activity(38). 136 

 137 

Mechanisms of direct targeting mAb function 138 

As alluded to above, therapeutic mAbs are able to elicit multiple effector functions after 139 

binding to their target antigen. The study of anti-CD20 mAbs has contributed to the 140 

understanding of almost all of these; including signalling through the target molecule, 141 

triggering cell death, initiating the complement cascade, and engagement of Fc gamma 142 

receptors (FcγRs) triggering FcγR dependent responses such as target cell lysis or 143 

engulfment(39).  144 

 145 

Direct Binding Effects 146 

mAb binding can have multiple direct effects on the target cell. For example binding to a 147 

receptor can block binding of the relevant ligand, such as is the case with cetuximab binding 148 

the epidermal growth factor receptor (EGFR), inhibiting soluble EGF binding; thereby 149 

reducing proliferation and survival signalling to the tumour (40). With CD20, direct effects 150 

are again dependent upon the mAb type; type I mAb triggering a limited degree of apoptosis, 151 

which is likely reflective of BCR signalling and type II mAb provoking a non-apoptotic 152 

lysosomal form of cell death (32). How this is triggered is still the subject of much debate, 153 

but is likely related to reactive oxygen species production(41).  154 

 155 

Complement Dependent Cytotoxicity 156 

All anti-CD20 mAb used in the clinic to date have been of the IgG1 class and so are able to 157 

activate the complement cascade once bound to target expressing cells, triggering 158 

complement dependent cytotoxicity (CDC). This process begins with the binding of C1q and 159 

follows the sequential activation of several proteases that cleave serum complement proteins 160 

in a specific order, generating enzymatic complexes that trigger further protein recruitment 161 

and processing(42). The end result of the cascade is threefold: the liberation of soluble 162 

molecules that act as anaphylatoxins to recruit immune effector cells; the deposition of cell 163 

bound cleavage fragments, largely C3b, acting as opsonins promoting target cell 164 
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phagocytosis; and finally, formation of a membrane attack complex (MAC) in the target cell 165 

membrane(43). 166 

It has recently been shown how the proximity of binding to the membrane affects the effector 167 

functions engaged by an antibody, as had been previously suggested by the enhanced 168 

complement activating ability of ofatumumab(28, 44). Ofatumumab (2F2) is a type I anti-169 

CD20 mAb (Table 1) that recognises an epitope comprising both extracellular loops, binding 170 

closer to the cell membrane than rituximab(45). This membrane proximity is linked to the 171 

increased CDC seen with this antibody compared to rituximab(46). Ofatumumab has shown 172 

activity against rituximab resistant CLL cells in vitro, despite their low CD20 expression, and 173 

has been approved for CLL treatment(44, 46). 174 

Although CDC has been studied for many years, it was only recently revealed, using mAbs to 175 

CD20 and other targets, that IgG adopts a hexameric conformation in order to interact 176 

efficiently with the 6 head domains of C1q(47). The formation of hexamers on the target cell 177 

surface results from non-covalent interactions between adjacent Fc regions, increasing C1q 178 

binding avidity and subsequent CDC efficacy(47). This observation prompted a series of new 179 

developments in mAb engineering. Specific mutations capable of enhancing hexamerisation 180 

of IgG and hence CDC were identified, namely E345R, E430G and S440Y(47). Introducing 181 

the E345R mutation into anti-CD20 (IgG1-7D8) significantly increased Daudi cell lysis in 182 

comparison to wildtype IgG1(47). In a further study, De Jong et al. showed the applicability 183 

of these findings to mAbs targeting different target antigens (i.e. CD52), target cell lines with 184 

differing levels of CD20 and complement regulatory proteins, and also confirmed improved 185 

efficacy in comparison to wildtype mAb in a tumour model(48).  186 

Despite the obvious potential of such Fc region engineering for enhanced CDC, introducing 187 

multiple hexamer-enhancing mutations is likely to be detrimental, as double (E345R/E430G; 188 

RG)(48) and triple (E345R/E430G/S440Y; RGY)(47, 48) mutants formed hexamers in 189 

solution (RG – 7.7%, RGY – 73%)(48). RGY also activated complement in the absence of 190 

target cells, as measured by C4d generation(47). Although to a lesser degree than double and 191 

triple mutants, some single mutants also resulted in the formation of a small percentage of 192 

hexamers in solution (1.2% for E345R), target-independent complement activation and 193 

accelerated clearance of antibody from the circulation(48). However, an important finding 194 

was that amino-acid substitutions at positions E345 and E430 (resulting in enhanced hexamer 195 

formation on the target cell) was not restricted to R and G, respectively. Moreover, when the 196 
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preferred mutations (E435K or E430G) were introduced into the type I anti-CD20 mAbs 7D8 197 

and rituximab, an increase in CDC in 5/6 CLL samples in comparison to wildtype mAbs was 198 

observed (with one of the CLL samples being refractory to CDC due to having a very low 199 

CD20 expression).  200 

Intriguingly, it was also shown that the inefficient CDC induced by type II anti-CD20 mAbs 201 

(11B8)(48), or an anti-CD38 mAb containing IgG2 and 4 Fc regions(47) could be partially 202 

overcome by introduction of hexamer enhancing mutations. Alternatively, the poor CDC 203 

mediated by anti-EGFR (2F8) was overcome by forcing monovalent binding of antibody to 204 

the target(47), indicating that the orientation of mAbs on the target cell is important for 205 

hexamer formation. However, CDC mediated by the type I anti-CD20 mAb 7D8 was not 206 

enhanced when only capable of monovalent binding(47). Although rituximab is able to adopt 207 

a monovalent binding to target antigens due to a relatively high off-rate(49), this explanation 208 

for enhanced CDC in the case of 7D8 is unlikely as 7D8 has a lower off-rate(49) and also 209 

induces more CDC in comparison to rituximab in the presence or absence of hexamer-210 

enhancing mutations(48). Nevertheless, these results suggest that the CDC-capability of a 211 

mAb may be increased by forcing hexamerisation at the level of the target, and that a single 212 

hexamer-enhancing mutation is probably sufficient. However, what remains to be seen is 213 

whether these mutations also augment FcγR-mediated mechanisms and elicit greater efficacy 214 

in vivo. 215 

 216 

FcγR Mediated Mechanisms 217 

Unique to IgG antibodies are the effects mediated through the FcγR family. These receptors 218 

are expressed on many different cell types and are essential for several IgG functions(50). 219 

Conventionally FcγR-expressing effector cell functions have been ascribed to either natural 220 

killer (NK) cells or myeloid effectors(51). NK cells are able to mediate a direct lytic attack on 221 

opsonised target-expressing cells through FcγRIIIA (and, if present, FcγRIIC(52)) through a 222 

process termed antibody dependent cell mediated cytotoxicity (ADCC)(53). 223 

Another FcγR dependent mechanism is mediated by phagocytic cells such as macrophages, 224 

monocytes and neutrophils. Similarly to ADCC, opsonised target cells trigger signalling 225 

through FcγRs expressed on the phagocyte, resulting in actin rearrangement and extension of 226 

the phagocytic cell membrane(54). The membrane eventually engulfs the opsonised cell in a 227 

phagocytic vesicle, or phagosome, which then fuses with lysosomes within the phagocyte, 228 

resulting in degradation of the phagocytosed cell by lysosomal enzymes(51). This mechanism 229 
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has been termed antibody dependent cell mediated phagocytosis (ADCP). In fact, myeloid 230 

cells can elicit both phagocytosis and killing of targets(55). 231 

 232 

In vivo mechanisms of action 233 

The above described effector functions of IgG can all be readily demonstrated through in 234 

vitro assays (28, 56). However, knowledge of the relative importance of these effector 235 

functions to in vivo efficacy is essential to design optimal treatments.  236 

One method applied to shed light on in vivo antibody function has been the retrospective 237 

analysis of the impact of FcγR polymorphisms in human clinical trials. In some trials this 238 

analysis has revealed a significant correlation between the FcγRIIIA V158 polymorphism 239 

that encodes for higher affinity binding to IgG1 and clinical response (57, 58). This finding 240 

supported the paradigm that FcγR-mediated effector functions and particularly ADCC 241 

through NK cells, which predominantly express only FcγRIIIA, were the dominant effector 242 

mechanisms for anti-CD20 mAb. These findings also reinforced the bias that NK cells are the 243 

principle effectors for anti-CD20 mAb which derives from studies of human peripheral blood 244 

mononuclear cells (PBMCs) and blood (in which key effectors such as macrophages and/or 245 

neutrophils are lacking). However, it is important to note that several myeloid cells, including 246 

macrophages also express FcγRIIIA and that more recent, larger oncology trials have failed 247 

to show strong evidence for this receptor polymorphism as being central to antibody efficacy 248 

(59, 60). 249 

With regards other effector functions studied in humans, data from samples collected from 250 

patients treated with rituximab convincingly show that components of the complement 251 

system are depleted after mAb administration, and that supplementation of blood from these 252 

patients with additional complement components restores complement mediated lysis ex 253 

vivo(61). Furthermore, early studies with rituximab suggested that the expression of 254 

complement defence molecules including CD55 and CD59 on target cells was a predictor of 255 

poor response to anti-CD20 treatment(62). However, these studies have not been 256 

confirmed(63) and moreover, several negative associations of complement engagement and 257 

mAb effector function have been provided(64, 65). Moreover, a polymorphism in the gene 258 

encoding C1qA (A276G), known to influence C1q levels, has been linked to responses to 259 

anti-CD20, with FL patients having an AG or AA genotype (lower C1q) experiencing a 260 
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significantly longer time to progression following an initial response to rituximab (66), and 261 

patients with DLBCL harbouring the AA genotype displaying significantly longer overall 262 

survival following R-CHOP(67). This seemingly suggests a detrimental role for complement.  263 

Perhaps the best current models for elucidating in vivo effector function are mouse models, 264 

which facilitate the manipulation of various effector components to establish their relative 265 

contribution to antibody efficacy. Initial studies using mice that are defective in the FcRγ 266 

chain, and therefore do not express any activatory FcγR, showed no response to anti-CD20 267 

therapy, indicating that activatory FcγRs are absolutely required for anti-CD20 therapy(68, 268 

69). Similar studies in mice lacking the key complement mediators C1 or C3 have argued 269 

against a major in vivo role for complement as an effector mechanism of anti-CD20 270 

antibodies(36, 70, 71). Thus it would appear that FcγR dependent mechanisms predominate 271 

in mediating anti-CD20 therapy in mice. 272 

Studies in mice trying to identify the key cell type(s) for mAb mediated anti-CD20 depletion 273 

have indicated that NK cells are not essential for antibody therapy, as anti-CD20 therapy was 274 

effective in mouse strains with defective NK cells or after NK cell depletion(70, 72). 275 

Intriguingly, in the study by Uchida et al, mice deficient in perforin, one of the main NK cell 276 

effector molecules, were still capable of depleting the majority of circulating/splenic B 277 

cells(70) further supporting the absence of a role for NK cells and ADCC as an effector 278 

function in anti-CD20-mediated depletion. However, macrophage depletion using clodronate 279 

liposomes resulted in impaired deletion of normal and malignant B-cells during anti-CD20 280 

therapy(36, 70, 71). This finding argues that myeloid cells, and particularly macrophages, are 281 

the most important cell type for anti-CD20 therapy, at least in mice. Other evidence for this 282 

comes from intravital imaging, in which macrophages within the liver (Kupffer cells) were 283 

imaged engulfing opsonised B-cells after anti-CD20 therapy(73). As above, clodronate 284 

liposomes completely abrogated anti-CD20 mediated B-cell depletion. 285 

Finally, although the evidence for a role of FcγRs and macrophages in the setting of anti-286 

CD20 is unequivocal, a recent study by Lee et al.(74) indicates that next generation mAb 287 

formats may be able to elicit alternative means of activity. Those authors used a library 288 

screening approach to select variants of rituximab with enhanced C1q binding but no FcγR 289 

binding, and provided evidence that these mAbs can elicit complement-dependent cellular 290 

cytotoxicity (CDCC) and complement-dependent cellular phagocytosis (CDCP)) in the 291 

prescence of serum. In comparison to wildtype rituximab, the aglycosylated variant (RA801) 292 
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with 2 complement-enhancing mutations (K320E and Q386R) displayed some activity in 293 

FcγR-null mice(74), and is therefore worthy of consideration as a novel therapeutic; although 294 

it should be noted that the models chosen for study represent cell-line tumours which may 295 

display little complement defence. As such, further experiments are required in fully 296 

syngeneic models targeting normal or malignant B cells in a more physiological setting to 297 

confirm these findings, but nonetheless it represents an interesting approach in settings where 298 

FcγR-mediated effector functions may be limited.   299 

 300 

Neutrophils as alternative effectors 301 

As described above, macrophages are now widely recognised as key mediators of 302 

ADCC/ADCP of IgG-opsonised tumour cells in vivo, particularly with regards anti-CD20 303 

mAb. However, there have also been recent reports that neutrophils may also be involved or 304 

at least capable of effector activity with these reagents. Neutrophils are characterised by 305 

expression of the glycosylphosphatidyl inositol (GPI)-linked FcγR, FcγRIIIB (CD16B), and 306 

to a lesser extent FcγRIIA (75) and therefore may be expected to be activated by IgG-307 

opsonised tumour cells. Given their abundance in the circulation, it is reasonable to suggest 308 

they can elicit robust effector function.  309 

It has long been known that IgG mAbs are capable of inducing neutrophil-mediated 310 

cytotoxicity against B-cell targets. For example, although dependent on the target cell line, 311 

anti-human leukocyte antigen (HLA) class II IgG mAbs were shown to mediate ADCC by 312 

neutrophil effectors with a clear hierarchy of isotype (IgG1>2>3>4) albeit less than IgA 313 

mAbs(76) (see below). Moreover, in the setting of anti-CD20 mAbs, Golay et al. more 314 

recently showed that anti-CD20 IgG mAbs are capable of activating neutrophils, and 315 

inducing tumour cell phagocytosis, at least in vitro(77). Consistent with the neutrophil FcγR 316 

expression profile, phagocytosis mediated by a glycoengineered variant of rituximab was 317 

blocked with F(ab) fragments of either anti-FcγRIII or FcγRII, and to a greater extent with a 318 

combination of both. Intriguingly, as for FcγRIIIA, the highly homologous FcγRIIIB was 319 

shown to bind with a higher affinity to afucosylated mAbs in comparison to non-320 

glycomodified mAbs(77). In line with this, neutrophil activation (CD11b upregulation, 321 

CD62L downregulation and cytokine secretion) was greater with the glycoengineered 322 

(afucosylated) type II anti-CD20 obinutuzumab in comparison to wildtype rituximab. 323 

However, comparisons with a non-glycomodified obinutuzumab were not performed in this 324 
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setting and so the enhanced activation could not be ascribed solely to tighter binding to 325 

FcγRIIIB due to afucosylation. Neutrophils were also clearly capable of mediating 326 

cytotoxicity of rituximab-opsonised Raji and Ramos cells in a recent study, with an EC50 only 327 

slightly higher than with PBMC effectors(74). This was shown to be FcγR-dependent, as 328 

complement-enhanced, Fc-deficient variants of rituximab (RA801 and RA802) were 329 

inefficient in neutrophil mediated lysis(74). However, these rituximab mutants had restored 330 

activity in the presence of neutrophils and serum lacking C9 (so as not to activate MAC 331 

formation and classical CDC), with lower EC50’s in comparison to wildtype rituximab, which 332 

was blocked by mAbs to the complement receptors (CR) 3 and 4(74). This shows that in 333 

addition to ADCC via FcγRs, neutrophils can also participate in CDCC of anti-CD20-334 

opsonised targets via complement receptors. 335 

An alternative effector mechanism of neutrophils was recently proposed by Nakagawa et al., 336 

whereby target cell apoptosis is triggered through neutrophil-mediated crosslinking of surface 337 

bound rituximab(78). Blocking studies and use of afucosylated rituximab variants suggested 338 

that FcγRIIIB was responsible for such crosslinking. Intriguingly, this phenomenon mirrors 339 

the FcγR-mediated crosslinking reported for pro-apoptotic anti-TNF-related apoptosis-340 

inducing ligand (TRAIL) mAbs(79). Although neutrophil-mediated ADCC mediated by IgG 341 

mAbs, such as in the context of anti-EGFR IgG1 and IgG2(80), anti-HLA class II(76) or 342 

indeed anti-CD20(74) has been reported, neutrophil-mediated ADCC was not observed in 343 

this study(78). This possibly reflects a difference between methods of neutrophil isolation or 344 

target cells used. Similarly, no neutrophil activation was observed (as measured by 345 

upregulation of CD63 and FcγRI), which is possibly related to the fact that FcγRIIIB is GPI-346 

anchored (without an intrinsic cytoplasmic domain) and thus is not expected to signal when 347 

crosslinked alone (unless through the cross-linking of associated lipid raft-resident kinases). 348 

Nevertheless, this mirrors previous findings whereby the crosslinking of pro-apoptotic anti-349 

Fas(81) or agonistic anti-CD40 mAbs(82, 83) did not require intracellular immunoreceptor 350 

tyrosine-based inhibitory motif (ITIM)-containing signalling domains of FcγRIIB. Although 351 

effector functions such as ADCC are clearly dependent on the immunoreceptor tyrosine-352 

based activation motif (ITAM) signalling domains of activatory FcγR(84) this, along with 353 

FcγR-mediated internalisation(85) emphasises the fact that FcγR have important signalling-354 

independent functions.  355 

In addition to this in vitro work, in vivo evidence for a role of neutrophils in the killing of IgG 356 

mAb-opsonised tumour cells has also been provided. Although not in the setting of anti-357 

CD20, neutrophils protected against tumour growth following IgG mAb therapy in 358 
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subcutaneous solid tumour models (melanoma and breast cancer), in an FcγR-dependent 359 

fashion(86). However, the model used (solid tumour versus haematological) is important to 360 

consider, and utilising the same conditional neutrophil-depletion strategy in B-cell models 361 

involving anti-CD20 treatment would be worthwhile. Indeed, in our own studies, depletion 362 

studies showed that anti-CD20 mAb-mediated B-cell depletion was independent of 363 

neutrophils(87).  364 

 365 

Despite the above findings, neutrophil-mediated phagocytosis following mAb engagement is 366 

contentious, as a recent study indicated that neutrophils instead mediate the removal of 367 

mAb/CD20 complexes from the target cell, in the absence of phagocytosis or target cell 368 

death, in a mechanism known as trogocytosis(88). This activity would be expected to be of 369 

detriment to the success of mAb therapy. Surprisingly, this trogocytosis was greater for 370 

rituximab in comparison to obinutuzumab. In addition to our work on CD20 modulation(36, 371 

89) this may provide a further/alternative explanation for the improved efficacy of 372 

obinutuzumab over rituximab observed in CLL patients (90). Similarly, neutrophils have 373 

abundant pro-tumour properties(91), suggesting that recruiting neutrophils by direct-targeting 374 

mAbs may be undesirable for clinical outcomes. 375 

 376 

In summary, IgG mAbs are clearly capable of activating neutrophils. However, potential 377 

detrimental functions (i.e. trogocytosis; pro-tumoural functions) should be considered, and 378 

the precise role of neutrophils downstream of IgG mAb therapy requires clarification in 379 

further studies. Finally, as discussed below, IgG may not be the optimal isotype for 380 

recruitment of the favourable attributes of neutrophils such as ADCC and 381 

cytokine/chemokine release (92).  382 

 383 

Vaccinal responses to mAb therapy 384 

The principle success of anti-CD20 mAb has been the direct deletion of the target cells by the 385 

effector mechanisms detailed above. However, deletion of tumour cells and their engulfment 386 

by myeloid effectors raises the possibility of the induction of a T-cell mediated immune 387 

response to the foreign (mutated) components of the tumour. Although this concept has 388 

existed for several years, strong evidence in humans has not been forthcoming with the 389 

possible exception of data showing the ex vivo re-stimulation of T cells from a small number 390 

of patients post-rituximab therapy(93). Regardless, ascribing this activity to mAb-mediated 391 
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killing of the tumour following FcγR-mediated uptake has not been possible. For this reason, 392 

more mechanistic proof of concept has been attempted in mouse models.  393 

Dendritic cells (DCs), via their surface FcγRs, are adept at internalising, processing and 394 

presenting or cross-presenting antigen (Ag) to CD4+ and CD8+ T cells in vivo, as highlighted 395 

in recent experiments whereby Ag was targeted to specific FcγRs(85). In relation to tumours, 396 

however, early work showed that DCs, when loaded with immune complex (IC) and 397 

transferred into mice, are capable of presenting Ag to T cells and inducing immune responses 398 

that lead to tumour elimination in an antigen-specific manner(94). It was also indicated that 399 

FcγRIIB regulates DC maturation in response to IC, and therefore the magnitude of anti-400 

tumour T cell responses in vivo(95). This was expected based on previous studies showing 401 

that FcγRIIB regulates the activity of ICs in in vivo alveolitis models(96). 402 

An advance came from studies indicating that such T cell responses will develop in vivo 403 

following anti-CD20 mAb therapy, rather than via artificially-generated ICs. Firstly, in a 404 

series of tumour challenge and rechallenge experiments, Abes et al. showed that when treated 405 

with an anti-CD20 mAb, mice were resistant to tumour growth on rechallenge, and this was 406 

dependent on the mAb Fc region(97). Recently, the FcγR and cellular requirements for such 407 

adaptive, vaccinal effects of mAb therapy using the same model were identified. Using a 408 

series of experiments involving conditional DC knockouts, Fc-modified mAbs and 409 

humanised mice, DiLillo et al. provided indirect evidence that macrophage ADCC (via 410 

FcγRIIIA), DC uptake of ICs (via FcγRIIA) and Ag presentation were responsible for the 411 

induction of anti-tumour adaptive responses(98).  412 

Intriguingly, both these studies indicated the generation of an adaptive response specific for 413 

the CD20 antigen itself, as evidenced by poor survival of mice rechallenged with tumours 414 

lacking CD20(97, 98). Although there are various limitations with these models, such as the 415 

utilisation of a xenoantigen (human CD20) in mouse (EL4) cell-lines, a more recent study 416 

also showed that T cells were required for tumour regression of murine A20 tumours 417 

following anti-CD20 therapy, as no tumour regression was observed in nude (T cell deficient) 418 

mice(99). Notably, Ren et al. also showed a similar requirement for both macrophages (via 419 

production of type I interferon (IFN)) and DCs in the induction of anti-tumour T cell 420 

responses following anti-CD20 therapy, and that CTLA-4hi Treg cells, within larger (more 421 

established) tumours, may be responsible for ‘adaptive resistance’. This lends support for an 422 

anti-CD20/anti-CTLA-4 combination regimen. However, the particular tumour model 423 

employed is likely important, as the anti-CD20/CTLA-4 combination is not effective in all 424 

models (unpublished data). 425 
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Despite being slightly different in their T cell subset requirement, with CD4+(97) versus 426 

CD8+ T cells(99) being more important for primary tumour clearance following anti-CD20 427 

mAb therapy, the mechanisms involved in the various models are not necessarily mutually 428 

exclusive. Specifically, IC formation following initial ADCC, which are then 429 

internalised/endocytosed and presented/cross-presented by DCs, likely remains the common 430 

link. Similarly, the indicated requirement for macrophage type I IFN may help to explain the 431 

efficacy of stimulator of interferon genes (STING) agonist/anti-CD20 combination in our 432 

own experiments(87). Furthermore, considering the regulatory role of FcγRIIB at the level of 433 

the DC, it can be hypothesised that anti-FcγRIIB mAbs in combination with anti-CD20 434 

mAbs(100) (clinical trial NCT02933320, see below) may favour enhanced activation of DCs 435 

by ICs following ADCC, migration to lymph nodes and stimulation of anti-tumour T cells. 436 

Finally, this phenomenon is likely not limited to anti-CD20 mAbs, as similar observations 437 

were made using an anti-human EGFR2 (HER2) mouse model(101). In summary, in addition 438 

to the principle 4 mechanisms (direct effects, CDC, ADCC and ADCP) the vaccinal effect of 439 

mAb therapy is emerging as an additional potential mechanism of action for direct-targeting 440 

mAbs. The above studies did not measure IC production per se. It is therefore of interest to 441 

determine how changes in the nature of ICs (size/valency) influence the vaccinal response 442 

(i.e. between different patients, cancer types and treatments etc). Recent studies have 443 

attempted to define the relationship between various IC parameters and FcγR binding and 444 

activation(102), and novel assays for the detection of ICs in serum may also assist this 445 

endeavour.  446 

 447 

Enhancing anti-CD20 mAb function through Fc engineering 448 

With the progress outlined above in identifying in vivo mechanisms of anti-CD20 antibody 449 

therapy and the importance of activatory FcγRs, second and third generation anti-CD20 450 

antibodies have been developed which utilise several strategies to try and achieve greater 451 

efficacy (Figure1 and Table 1).  452 

 453 

Glycoengineering 454 

Removal of the Fc glycans results in a dramatic decrease in binding to FcγRs and 455 

complement activation without affecting antigen binding(103-105). This is thought to be due 456 

to changes in the constant heavy (CH) 2 domain structure, possibly through the 2 CH2 457 
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domains collapsing to block the FcγR/C1q binding site(106). However, the importance of Fc 458 

glycosylation extends beyond simply holding the Fc structure in place(107). Shields et al. 459 

found that removal of the core fucose residue, present on most recombinant and serum IgG 460 

molecules, resulted in increased FcγRIIIA binding up to 50 times, translating into increased 461 

NK-mediated ADCC(107). Shinkawa et al. confirmed this and reported increased ADCC 462 

using low fucose anti-CD20 mAb(108). 463 

In 2006 the structural basis for this increased binding was reported, with Ferrara et al., 464 

showing via X-ray crystallography that the fucose residue was sterically blocking a stacking 465 

interaction between the Fc glycans and those present on the Asn162 linked glycan of 466 

FcγRIIIA(109). Absence of the fucose resulted in a closer interaction, explaining the 467 

increased affinity. As a result of these findings several afucosylated antibodies have been 468 

developed which exhibit the expected increase in FcγRIIIA affinity and ADCC. Currently 469 

afucosylated mAbs targeting CD20 (obinutuzumab) or CC chemokine receptor 4 (CCR4) 470 

(mogamulizumab) produced via cell line engineering have been brought to the clinic and 471 

more may follow(110). While other glycoforms have been linked to specific functions, none 472 

have been carried forward to the clinic.  473 

Additional glycomodified anti-CD20 mAbs have been developed, further to obinutuzumab, 474 

EMAB-6, an afucosylated anti-CD20 mAb was generated with a view that it may allow lower 475 

doses of chemotherapy used in the treatment of CLL(111). This mAb was able to both bind 476 

FcγRIIIA more tightly and mediate greater NK-mediated ADCC of CLL cells at lower mAb 477 

concentrations in comparison to rituximab(111).  A later version of this mAb (LFB-R603, 478 

now known as ublituximab) was able to elicit maximal ADCC of target Raji cells at a 479 

concentration of 1ng/ml, in comparison to 100ng/ml for rituximab(112). Moreover, 480 

ublituximab recently showed promising efficacy when combined with the Btk inhibitor 481 

ibrutinib in a phase II study of relapsed/refractory CLL patients, with ~90% of patients 482 

responding, and 2 complete responses(113). This combination is currently being assessed in a 483 

phase III trial of CLL patients (NCT02301156). Another phase III trial for this indication 484 

(NCT02612311) has been initiated involving a distinct combination regimen (see below) and 485 

ublituximab was placed on Reichart’s ‘Antibodies to watch in 2017’ list(114).  486 

On a final note, although the enhancement of ADCC with afucosylated mAbs cannot be 487 

disputed, a recent study utilising mAbs to Rhesus D antigen (RhD) on erythrocytes indicated 488 

that afucosylated mAbs do not elicit greater ADCP, in comparison to a clear enhancement in 489 
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ADCC (115). This led authors to conclude that the benefit of fucose removal may be 490 

restricted to cases where NK cells are known to be involved. How this relates to anti-CD20 491 

mAbs is therefore of key interest, especially considering the predominant role of 492 

macrophages in this setting (see above). 493 

 494 

Fc Engineering 495 

While glycosylation is a post-translational modification, and thus difficult to precisely 496 

control, the IgG Fc backbone is readily amenable for mutation to create more efficacious 497 

molecules. Mutagenesis libraries have enabled the identification of IgG Fc variants that are 498 

aglycosylated but retain FcγR binding and effector functions similar to, or even exceeding 499 

that of, glycosylated IgG(116, 117). Extensive Fc backbone mutagenesis and an improved 500 

understanding of Fc-FcγR interactions has enabled the generation of mAbs with increased 501 

affinities for FcγRs and effector function(118). Multiple IgG mutations that increase binding 502 

for specific FcγR, both activatory or inhibitory, have been reported(119). 200-fold increased 503 

binding to FcγRIIB (but not FcγRIIA) was achieved through a Pro:Asp conversion at position 504 

238, and generated IgG with increased agonistic capacity when applied to anti-CD137 505 

mAb(120). Increased binding to FcγRIIIA alone, without impacting binding to FcγRI or the 506 

neonatal Fc receptor (FcRn) has also been reported using an anti-CD20 antibody(121). 507 

Increasing binding to activatory FcγRs but not FcγRIIB serves to increase the 508 

activatory:inhibitory (A:I) ratio(122), enabling greater effector cell activation. A 100 fold 509 

increase in ADCC was achieved using Fc mutation to increase FcγRIIIA binding (both high 510 

and low affinity alleles) and applied to several antibodies including rituximab(123). Fc 511 

mutations that improve binding to FcγRIIA selectively over FcγRIIB have also been reported, 512 

such as the G236A mutant, which resulted in improved macrophage phagocytosis(124). 513 

Furthermore, combination of this mutation with others can result in additive increases in 514 

ADCC and ADCP over the wild type antibody(124). 515 

AME-133v (now known as ocaratuzumab) is an example of an Fc-modified anti-CD20 mAb 516 

that is in clinical development for the treatment of B-cell malignancies (Table 1). AME-133v 517 

contains two mutations in its Fc region and elicits more efficient ADCC than rituximab with 518 

PBMCs from both FcγRIIIA VV158 and VF/FF158 patients (125). Moreover, 5/23 519 

previously-treated FL patients responded in a phase I/II clinical trial(125), suggesting 520 

potential efficacy.  In separate in vitro studies, it was also indicated that ocaratuzumab is 521 
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capable of mediating ADCC of CLL target cells at a greater level than rituximab and 522 

ofatumumab, and at a similar level to obinutuzumab(126).  523 

As discussed above several mutations are also able to promote hexamerisation of IgG and 524 

elicit potent C1q binding leading to powerful CDC. Although (to the best of the authors’ 525 

knowledge) the effect of these mutations on FcγR binding has not been reported, there have 526 

been some reports that hexamer-enhanced mAb variants also have enhanced FcγR effector 527 

functions. To this end, De Jong et al. showed that variants (E345K and E430G) of the type II 528 

anti-CD20 mAb 11B8 mediated greater ADCC of Raji cells(48), and improvements in ADCC 529 

and ADCP were indicated in the setting of a modified immunomodulatory anti-OX40 530 

mAb(127). 531 

Notably, two situations whereby complement-optimised rather than Fc-optimised mAbs may 532 

be beneficial were highlighted in the aforementioned study by Lee et al(74); reducing 533 

potential FcγR-mediated toxicity and FcγRIIB-mediated anti-CD20 mAb modulation, which 534 

has been suggested by us to be a rituximab resistance mechanism(36, 89). Finally, the authors 535 

speculated that complement-optimised mAb that work independently of FcγRs may be 536 

beneficial in the setting of unfavourable FcγR polymorphisms(74). 537 

As well as optimising affinity of IgG for C1q and FcγR interaction, mutation strategies 538 

optimising FcRn binding to improve serum IgG half-life has also been attempted to augment 539 

efficacy and reduce dosing frequency. Due to the pH dependent binding of IgG to FcRn, 540 

improving the serum half-life of an IgG requires increased binding to FcRn at pH6 (allowing 541 

for greater FcRn binding in acidic endosomes) but unaltered FcRn binding at pH7.4 (thereby 542 

allowing release at the cell surface)(128). Numerous mutations have been reported to alter 543 

FcRn binding at pH6(129). As an example, the M428L N434S double mutant on the IgG1 544 

background of bevacizumab and cetuximab yielded increased FcRn binding (~10x fold for 545 

bevacizumab) and increased half-life in both human FcRn transgenic mice and cynomolgus 546 

monkeys(130). As far as we are aware this technology has not been tested on anti-CD20 547 

mAb. Given the shorter half-life of rituximab due to internalisation, such an approach may be 548 

beneficial(36).  A mAb targeting respiratory syncytial virus carrying the YTE triple mutant 549 

(M252Y/S254T/T256E) to increase FcRn binding at pH6.0 has been tested in humans and 550 

been reported to increase mAb half-life up to 100 days(131). Further optimisation of Fc 551 

structure for optimal IgG half-life could enable the tailoring of IgG molecules to suit specific 552 

functions, including both therapeutic and also short term uses such as labelling for 553 
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imaging(132). Interestingly, enhanced FcRn binding through various Fc mutations has been 554 

combined with glycoengineering to generate low fucose anti-CD20 mAbs with increased 555 

serum half-life, FcγRIIIA binding, and ADCC(133). 556 

 557 

Isotype Selection and Engineering 558 

All direct-targeting mAbs approved for use in oncology, including anti-CD20 mAbs, are of 559 

the IgG subclass (Table 1). However, it has been questioned whether IgG is the optimal 560 

therapeutic subclass and whether efficacy could be improved by adopting other Ig subclasses. 561 

As expected, many of these proposals have used CD20 as their target of choice. 562 

IgA as an alternative Ig subclass 563 

IgA is important in mucosal immunity(92), and in contrast to IgG has only two isotypes 564 

(IgA1 and IgA2)(134). Much of the recent interest in using IgA as a therapeutic isotype has 565 

been in its potential to recruit the anti-tumour properties of neutrophils, which express the 566 

predominant (although not the only) receptor for IgA (FcɑRI, CD89)(92). Crosslinking 567 

studies showed that CD89 signalling in neutrophils is efficient, and the use of bispecific mAb 568 

constructs (i.e. anti-CD20 x CD89) highlighted that stimulating the interaction between target 569 

antigen expressing tumour cells and CD89 on neutrophils efficiently induces 570 

cytotoxicity(135). A recent study also indicated that IgA mAbs targeting the melanoma 571 

antigen gp75, but not IgG1 or 3, mediated neutrophil ADCC in vitro(136). CD89 is also 572 

expressed by other myeloid cells including monocytes (and macrophages)(92). Therefore, 573 

considering the intricate involvement of macrophages in IgG mAb-mediated target cell 574 

depletion (see above), therapeutic IgA mAbs may be able to similarly engage and activate 575 

these cells when in sufficient number. However, when compared with IgG, IgA mAbs were 576 

limited in their ability to induce mononuclear cell ADCC, which is presumably due to the low 577 

percentage (10%) of monocyte effector cells within this cell population, and/or the presence 578 

of NK cells (20%) (76) that are not expected to engage IgA mAbs.   579 

Anti-CD20 mAbs of the IgA subclass have been compared with IgG mAbs in various 580 

models. Surprisingly, anti-CD20 IgA2 was capable of mediating CD20 target cell depletion 581 

similarly to IgG1 in an adoptive transfer model utilising mice lacking CD89(137). Pascal et 582 

al. also reported activity of IgA2 anti-CD20 in similar adoptive transfer models, although in 583 

this setting IgA2 was less effective than IgG1 anti-CD20(138). Moreover, a different strategy 584 

was also employed, whereby DNA constructs encoding anti-CD20 IgG1 and IgA2 were 585 
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vaccinated following tumour challenge, to allow in vivo mAb synthesis and thus avoid 586 

difficulties in IgA purification(138). The survival of mice vaccinated with IgGA2 and IgG1 587 

constructs was similar, which is intriguing considering the absence of CD89 expression (as in 588 

Lohse et al.(137)). However, a significantly increased activity of anti-CD20 IgA2 was 589 

reported in CD89 transgenic mice in comparison to wildtype mice(138), highlighting the 590 

potential for tumour cytotoxicity downstream of IgA interaction with cognate receptor-591 

expressing effector cells in vivo. 592 

In these anti-CD20 studies it was shown that, as expected, IgA mAbs induced neutrophil-593 

mediated cytotoxicity of both cell line and CLL targets to a greater extent than IgG, although 594 

(as expected) the converse was true for mononuclear cells(137). The same trend was 595 

observed with anti-HLA class II mAbs(76). Notably, however, IgA was able to recruit more 596 

immune cells than IgG in an in vitro imaging assay, in a CD89-dependent manner(138). 597 

Interestingly, these studies also showed that hIgA anti-CD20 mAbs were capable of inducing 598 

CDC of varying CD20+ target cells in vitro(137, 138). Although of interest, the relevance of 599 

this finding in vivo is unclear due to retained activity of anti-CD20 hIgA in C1q and C3 600 

knockout mice(137). Despite differences in the kinetics of CDC mediated by IgG1 and IgA2 601 

anti-CD20 being identified, as well as sensitivity to factors such as mAb(138) or serum 602 

concentration(137), the unexpected ability of IgA mAbs to induce CDC is nevertheless 603 

intriguing from a biological perspective, as IgA antibodies are not expected to engage C1q. 604 

Pascal et al. proposed an indirect mechanism for C1q binding downstream of anti-CD20 605 

IgA(138) and recent studies have provided further evidence for a mechanism, now referred to 606 

as ‘accessory CDC’, which occurs in an Fc-independent, B-cell receptor-dependent 607 

fashion(139). Strikingly, mAbs with no expected CDC functions, namely anti-CD20 F(ab’)2 608 

fragments or IgG4 mAbs with a complement-silencing mutation (K322A), were capable of 609 

inducing CDC of BCR+ cell lines. The emerging mechanism of such Fc-independent CDC is 610 

therefore reliant on clustering of the B-cell receptor by anti-CD20 mAbs, which favours 611 

indirect binding of C1q to surface IgM and subsequent CDC(139). The phenomenon may be 612 

limited to anti-CD20 mAbs, as no CDC was observed with IgA1 or IgA2 anti-HLA class II 613 

mAbs(76). 614 

 615 

IgGA subclass chimeras 616 

Although IgA mAbs are clearly functional in vivo, it is not yet clear how IgA would replace 617 

IgG in clinical practice(137). Moreover, IgA molecules have disadvantageous attributes, such 618 
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as a difficulty of purification and a shorter half-life in comparison to IgG(138). As described, 619 

IgA molecules are also not expected to stimulate NK cells, as evidenced by the absence of 620 

cytotoxicity observed with mononuclear cells in comparison to IgG(76, 137). For these 621 

reasons, there have been efforts to engineer novel mAbs containing the Fc regions of both 622 

IgG and IgA, with a view that the resulting molecule will harness the beneficial properties of 623 

both subclasses. Kelton et al. grafted relevant regions of IgA into the Fc region of an anti-624 

HER2 mAb to form a so-called “cross-isotype” IgGA mAb(140). The resulting IgGA mAbs 625 

were capable of binding to both FcɑRI and FcγR, and induced neutrophil ADCC and 626 

macrophage ADCP of HER2+ targets similarly to IgA molecules, and to a greater extent than 627 

parental IgG mAb.  Next, as anti-HER2 mAbs did not elicit CDC, presumably due to the 628 

biology of the target, and similarly to unmodified anti-EGFR(47, 48), anti-CD20 IgGA was 629 

generated. This was capable of inducing greater CDC of CD20+ targets in comparison to IgA, 630 

and greater CDC at lower concentrations than an IgG variant of the same mAb. However, 631 

anti-CD20 IgA did induce some CDC, although in contrast to Lohse et al.(137) this was to a 632 

lesser extent than anti-CD20 IgG. This is likely related to the ‘accessory CDC’ 633 

mechanism(139) mentioned above. 634 

Notably, the IgGA construct did not bind to FcγRIIIA or FcRn(140). As this would be 635 

predicted to negatively impact ADCC/ADCP and IgG recycling, respectively, the 636 

functionality of IgGA molecules in vivo would be interesting to assess. To this end, a recent 637 

study assessed the efficacy of a similar anti-CD20 IgGA molecule which had equivalent 638 

pharmacokinetics to anti-CD20 IgG1(141). Anti-CD20 IgGA treatment of tumour bearing 639 

mice (transgenic for CD89 on CD14+ myeloid cells) led to an improved regression of tumours 640 

in comparison to IgG or IgA, in a CD89-dependent manner. Similarly, a peritoneal model 641 

was used to show that the activity of IgA or IgGA in vivo requires interaction with CD89 on 642 

monocytes/macrophages. However, a limitation of this model is that CD89 was restricted to 643 

CD14+ cells, with no neutrophil CD89 expression. It is also unclear whether the expression 644 

level of the CD89 is comparable to that seen in humans. 645 

Alternatively, in contrast to the grafting used to produce the “cross-isotype” IgGA, Borrok et 646 

al. fused the entire CH2/hinge of IgA2 onto the C terminus of an anti-HER2 IgG1 to form a 647 

tandem IgG/IgA molecule(142). Similarly to the IgGA, this molecule mediated enhanced 648 

neutrophil ADCC in comparison to both IgG and IgA2. However, in contrast, it was also 649 

capable of inducing NK-mediated ADCC due to retained FcγRIIIA binding(142), albeit lower 650 

than compared to afucosylated IgG1. Also in contrast to IgGA, tandem IgG/IgA also bound 651 

FcRn with a similar affinity to hIgG1, and had a correspondingly similar half-life to IgG1 in 652 
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vivo, therefore overcoming one of the main limitations of IgA. This can be expected as the 653 

CH2-CH3 interface contains the IgG binding site for FcRn(143), and is maintained in this 654 

molecule. Finally, considering that this study focused on HER2 as a target, comparing anti-655 

CD20 mAbs with a tandem IgG/IgA backbone with cross-isotype IgGA in vivo would be 656 

worthwhile to identify the most effective molecule. 657 

In summary, IgA mAbs clearly engage various effector mechanisms, and can exploit 658 

additional killing pathways (i.e. via CD89) compared to IgG. Although IgA in itself may not 659 

be able to replace IgG, due to reasons of half-life and manufacturability, various chimeric 660 

fusions or combination regimens have been designed or suggested that combine the beneficial 661 

aspects of both IgG and IgA. It would be interesting to assess how these novel agents 662 

influence resistance mechanisms following anti-CD20 mAb therapy. For example, is 663 

trogocytosis(88) still induced by chimeric IgG/A molecules and how does this compare to 664 

wildtype IgA and G? As highlighted previously(76), an advantage of utilising IgA mAbs is 665 

that interaction with the inhibitory FcγRIIB, known to limit effector cell activity(69), would 666 

not be expected. Similarly, IgA mAbs would not be expected to interact with FcγRIIB on the 667 

surface of malignant B-cells, thus limiting FcγRIIB-mediated modulation and removal of 668 

CD20/antibody complexes from the cell surface(36, 89). It would be interesting to assess how 669 

modulation compares with IgG/A chimeras, and whether further modifying these chimeras 670 

can reduce FcγRIIB binding to improve efficacy/limit resistance mechanisms. 671 

 672 

IgE as an alternative subclass for mAb therapies 673 

Further to IgA, the anti-tumour potential of IgE has recently been identified, leading to 674 

suggestions that IgE may be an alternative subclass for mAb therapeutics. Although IgE is 675 

widely recognised as an Ig subclass implicated in allergy and responses to parasites, Nigro et 676 

al. have recently shown that IgE has a role in immune surveillance following tumour 677 

challenge(144). Various models were utilised to show that control of tumour growth was 678 

mediated in an IgE- and Fc epsilon receptor (FcεRI)-dependent manner, with an additional 679 

role for CD8+ T cells. Further to showing that tumours induce effective IgE responses that 680 

can limit tumour growth in a tumour challenge setting, this highlights that the FcεRI-IgE axis 681 

is worth considering in the setting of mAb therapy. 682 

In the setting of anti-CD20, Teo et al. showed that an IgE mAb was capable of activating and 683 

inducing cytotoxicity, in an antigen-specific manner, through cells typically involved in 684 

allergic responses, namely mast cells or eosinophils derived from cord blood(145). The 685 
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authors also highlighted the limitation of studies involving PBMCs as effectors(146), where 686 

the poor responses observed with IgE mAb are not considered in the absence or paucity of 687 

IgE effector cells. Moreover, a crucial concern was highlighted, in that there is a risk of 688 

anaphylaxis in the setting of a large circulating tumour burden following anti-CD20 IgE 689 

therapy(145). This prevented in vivo assessment of IgE anti-CD20 in this setting. It therefore 690 

needs to be considered how anti-CD20 IgE mAb therapies can be optimised to limit toxicity 691 

in patients. Nevertheless, an anti-MUC-1 mAb in a solid tumour model (4T1) was 692 

assessed(145). Although the efficacy of the mAb alone was limited, when utilising a slightly 693 

different strategy to aid IgE and chemoattractant synthesis at the tumour site, tumour 694 

regression was observed. This, highlights the importance of effector cell chemotaxis to the 695 

tumour site in the efficacy of anti-IgE mAb therapy. 696 

 697 

Alternative IgG isotypes 698 

In addition to belonging to the IgG subclass, all but one (Panitumumab, hIgG2 anti-EGFR) of 699 

the direct-targeting mAbs approved for cancer treatment also have an hIgG1 Fc region (Table 700 

1). Therefore, further to altering the subclass, changing the isotype has been considered as an 701 

alternative to anti-CD20 hIgG1 therapy.   702 

 703 

IgG3 as an alternative isotype for mAb therapies 704 

Similar to IgG1, IgG3 is capable of effective Fc-dependent effector functions such as CDC 705 

and ADCC(146). Indeed, IgG3 binds favourably to C1q(146) and, broadly binds to FcγRs 706 

similarly to IgG1(147). There are numerous differences between IgG1 and 3, however. The 707 

latter bears an extremely long hinge region (IgG3 - 62 amino acids; IgG1 - 15) and is subject 708 

to extensive polymorphism (IgG3 - 13 allotypes; IgG1 - 4)(148). IgG3 also has a shorter half-709 

life in comparison to other isotypes(149), an inability to bind protein A(146), and suffers 710 

from aggregation issues(150). In many ways these mirror the disadvantages of IgA (see 711 

above). Despite this, some studies have suggested that IgG3 may be a more effective isotype 712 

for anti-CD20 mAbs, and have provided strategies to overcome the aforementioned 713 

limitations.  714 

Rosner et al. showed that an IgG3 variant of rituximab (C2B8-IgG3) induces greater CDC 715 

than the corresponding IgG1 variant, with indications of superior sensitivity to low CD20 716 

densities, such as in the case of CLL cells(150). However, ADCC and ADCP mediated by 717 
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anti-CD20 IgG1 versus IgG3 were not compared in this study. This greater CDC capability of 718 

anti-CD20 IgG3 in comparison to IgG1 was also observed by Natsume et al., although they 719 

reported the converse for ADCC, with IgG1 being more effective(151). Similarly, although 720 

not in the context of anti-CD20, IgG1 was more capable of inducing ADCP of melanoma 721 

cells than IgG3 in a recent study(136) further suggesting that FcγR effector functions may not 722 

be improved in the setting of IgG3. A molecule comprising the advantageous regions of both 723 

IgG1 and 3 may therefore be beneficial. To this end, similar to the ‘cross-isotype’ IgGA mAb 724 

described above, a domain switch variant of rituximab was generated by replacing the 725 

CH2/CH3 (Fc) of hIgG1 with same regions of IgG3. One particular mAb (1133) was 726 

identified that mediated superior CDC in comparison to hIgG1 and 3, and maintained a 727 

similar level of ADCC to hIgG1. Despite a potential benefit of the long hinge of IgG3 in 728 

introducing flexibility into the molecule(152), this finding suggests that the long hinge region 729 

of IgG3 is not responsible for the enhanced CDC (as 1133 contains the CH1 and hinge region 730 

of  IgG1). Indeed, it has previously been suggested that a disulphide bond connecting the 731 

heavy chains, and not a hinge region per se, is required for CDC(152). 732 

 733 

However, due to a loss in protein A binding, a known feature of IgG3 mAbs(146), and 734 

therefore concern about purification of the molecule on an industrial scale, the CH3 domain 735 

of mAb 1133 was further modified with increasing amounts of IgG1 sequence. This resulted 736 

in a molecule (113F) that was capable of binding to protein A and, importantly, maintained 737 

its superior CDC-inducing capabilities. Intriguingly, protein A and FcRn both bind to the 738 

CH2-CH3 interface of IgG(143), and the shorter half-life of IgG3 in comparison to hIgG1 has 739 

been shown to be caused by a single amino acid in this region (R435 in IgG3, H435 in other 740 

isotypes) that reduces the ability of IgG3 to compete with other isotypes of IgG for FcRn 741 

binding at pH 6, and consequently increases degradation(153). This is important to consider 742 

in the design of mAb therapeutics, but as 113F (in addition to binding to protein A) also 743 

contains the H435 site(151), poor pharmacokinetics should not be a limiting factor in this 744 

case. The polymorphic nature of IgG3 should nevertheless be considered if designing an 745 

IgG3 mAb therapy, as the IgG3 G3m(s,t) allotype contains H435 and has a correspondingly 746 

longer half-life(153). 747 

Finally, it was shown that afucosylation improved the ADCC capacity of 113F but did not 748 

affect CDC, and that 113F resulted in more effective and prolonged B-cell depletion in a 749 

cynomolgus monkey model in comparison to IgG1(151). This suggests that 113F may also be 750 

more effective than anti-CD20 hIgG1 in human patients.  751 
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In summary, studies with anti-CD20 mAbs have suggested that IgG3 mAbs may mediate 752 

more CDC in comparison to IgG1. However, this finding is inconsistent with distinct target 753 

antigens, indicating context-dependent rules. FcγR effector mechanisms of IgG3 may also be 754 

limited in comparison to IgG1 in vivo, despite having a half-life enhancing mutation (see 755 

above), as highlighted in a recent study(136), although whether this translates to CD20 mAbs 756 

is unknown. Nevertheless, chimeric IgG1/3 molecules have been developed to combine the 757 

effector mechanisms of both IgG1 and 3.  758 

 759 

Overcoming resistance Immunosuppressive microenvironment 760 

The two decades of study of CD20 and its mAbs have provided us with a wealth of 761 

knowledge for how these reagents work and might be augmented. However, it has become 762 

increasingly clear that in addition to tumour intrinsic factors such as expression level(154, 763 

155), internalisation(36) and trogocytosis(156), that tumour extrinsic factors associated with 764 

the tumour infiltrate are critical for determining mAb efficacy.  A well-recognised hallmark 765 

of tumours is their ability to subvert and suppress the host immune system to facilitate their 766 

growth(157). Haematalogic malignancies exhibit this trend and this may contribute to the 767 

tumour resistance often seen with anti-CD20 therapies. For example, CLL cells have been 768 

reported to produce the anti-inflammatory cytokine IL-10, which is able to reduce 769 

macrophage cytokine production(158), and also to impact upon the gene expression of both 770 

CD4+ and CD8+ T cells and viability of CD4+ T cells through surface expression of Fas 771 

ligand(159, 160). In addition, certain B-cell subsets have also been reported to produce IL-10, 772 

which may contribute to an anti-inflammatory environment within lymphoid organs(161). 773 

Tumour associated macrophages frequently display a pro-tumour phenotype characterised by 774 

reduced phagocytosis and production of angiogenic factors(162). 775 

Anti-CD20 therapy has been shown to be highly effective at rapidly depleting CD20 776 

expressing cells from the circulation(163-165). However, circulating B-cells constitute only 777 

approximately 2% of the total B-cell population, and thus the penetration and efficacy of anti-778 

CD20 mAbs into lymphoid tissues is crucial to their effectiveness(166). Mouse and primate 779 

studies have indicated that increasingly large doses are needed to deplete B-cells from bone 780 

marrow, spleen and lymph nodes(164, 167, 168). As many malignant B-cells reside in 781 

lymphoid organs, if they are not eradicated by anti-CD20 therapy, they can act as disease 782 

reservoirs enabling re-emergence of the tumour leading to relapse and progression(169). 783 

Although next generation mAb such as obinutuzumab that have followed rituximab have 784 
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improved depletion efficacy, it is clear that further improvements in treatment regimens are 785 

still required(90). 786 

 787 

Overcoming resistance to anti-CD20 therapy through combination 788 

As described above, an immunosuppressive microenvironment is one mechanism known to 789 

reduce the efficacy of mAb treatment. As such, attempts to alter the tumour 790 

microenvironment to a more favourable, inflammatory state have been made. Agonists for 791 

toll like receptors (TLRs), known to be important transducers of inflammatory signals in 792 

response to pathogen associated molecular patterns such as LPS, are one group of molecules 793 

that have been tested. The synthetic oligodeoxynucleotide TLR agonist CpG, which activates 794 

TLR9, in combination with low dose radiotherapy has been reported to have a beneficial 795 

impact on B-cell lymphoma patients, inducing a T cell memory response in certain 796 

patients(170). Another TLR 9 agonist, 1018 ISS, has been combined with rituximab in 797 

follicular lymphoma and reported clinical response and tumour infiltration of CD8+ T cells 798 

and macrophages(171). 799 

Another class of immunomodulatory molecules recently developed are STING agonists. 800 

These cyclic dinucleotides are sensed by cytosolic STING receptors(172). Normally involved 801 

in detection of DNA viruses, these agents can induce expression of interferon genes 802 

contributing to increased inflammation(172). In vitro and in vivo experiments using STING 803 

agonists have reported a phenotypic change of macrophages to a more inflammatory 804 

phenotype, increasing expression of activatory FcγRs crucial for antibody mediated 805 

therapy(87). Accordingly, in vivo combination of STING ligands with anti-CD20 mAbs in a 806 

model of B-cell lymphoma overcame tumour-mediated immune suppression and resulted in 807 

curative treatments for 90% of mice(87). 808 

An alternative immunomodulatory compound being assessed in combination with anti-CD20 809 

mAb is lenalidomide. Lenalidomide is thought to act both through inducing tumour cell death 810 

and altering the tumour microenvironment and is approved for use in multiple myeloma(173). 811 

Lenalidomide combined with anti-CD20 mAb resulted in a significantly greater overall and 812 

complete response rates vs lenalidomide alone in a meta-analysis of refractory/relapsed CLL 813 

patients(174). Interestingly, lenalidomide plus anti-CD20 mAb achieved similar complete 814 

response rates to those seen with ibrutinib plus rituximab (see below)(175). Lenalidomide 815 
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plus rituximab has also reported high response rates in untreated indolent NHL(176). The 816 

mechanistic basis for these effects are not yet fully resolved. 817 

An alternative means of achieving immune conversion is by combining anti-CD20 mAbs 818 

with so-called immunomodulatory antibodies. These antibodies differ from direct targeting 819 

mAb in that they bind to cells of the immune system (rather than the tumour target) with the 820 

aim of activating or de-repressing them to elicit T cell responses. These mAb have achieved 821 

remarkable success in the last few years in treating certain patients with melanoma and lung 822 

cancer(6). The possibility of combining these agents with direct targeting anti-CD20 mAbs 823 

has been proposed and tested in clinical trials. One such study combined the anti- 824 

programmed cell death-1 (PD-1) antibody pidilizumab with rituximab in the treatment of 825 

relapsed/refractory follicular lymphoma(177). Albeit for a small sample group, this study 826 

reported an increased complete response rate of 52% as compared to only 11% in patients 827 

receiving rituximab monotherapy. Nivolumab, another anti-PD-1 antibody, has already been 828 

approved for use in refractory Hodgkin’s lymphoma after stem-cell transplant(178). 829 

Following a phase I trial finding ipilimumab was well tolerated in NHL and increased T cell 830 

proliferation, a combination trial involving rituximab and the anti-CTLA-4 antibody 831 

ipilimumab is ongoing(179). 832 

Other strategies for improving anti-CD20 therapy aim to address the results of tumour-833 

mediated immune suppression, rather than reverse them per se. In our own work we have 834 

attempted to counter the above described FcγRIIB-mediated internalisation and inhibitory 835 

signalling which decreases CD20 therapy efficacy. This has been achieved through the use of 836 

an antagonistic anti-FcγRIIB antibody that prevents the cis binding of anti-CD20 antibody to 837 

FcγRIIB on the same cell, preventing internalisation(100). Furthermore, this effect was also 838 

shown for combination of obinutuzumab and alemtuzumab with anti-FcγRIIB, suggesting a 839 

more general mechanism for reducing antibody internalisation and increasing therapeutic 840 

efficacy. This has led to the initiation of a clinical trial for combining rituximab with anti-841 

FcγRIIB in FcγRIIB+ cell malignancies (NCT02933320). 842 

In addition to these immune-related interventions detailed above, recent years have also seen 843 

a rapid increase in drugs targeted at specific molecules thought to be involved in malignancy. 844 

In many cases these have been combined with anti-CD20 mAbs for the treatment of B-cell 845 

malignancies. One such drug, ibrutinib (Ibruvica), an irreversible inhibitor of Bruton’s 846 

tyrosine kinase (Btk) has been approved for the treatment of relapsed/refractory CLL and 847 
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several NHLs owing to high response rates and increased survival(180). Ibrutinib has been 848 

combined with anti-CD20 chemoimmunotherapy and yielded increased response rates in 849 

relapsed/refractory CLL over chemoimmunotherapy alone(175, 181). Ibrutinib has also been 850 

combined with anti-CD20 mAb in, among others, DLBCL and MCL and has achieved high 851 

response rates(182, 183). Further trials are ongoing combining ibrutinib with 852 

chemoimmunotherapy in various disease settings(184). Despite the apparent efficacy of this 853 

combination, ibrutinib has been reported to decrease antibody induced cell mediated effector 854 

mechanisms both in vitro and in cells from patients taking ibrutinib(185). This highlights the 855 

importance of considering drug combination mechanisms of action and appropriate dosing 856 

schedules to get the maximum benefit for patients. 857 

Another small molecule inhibitor, idelalisib (Zydelig), approved for relapsed/refractory CLL 858 

and FL therapy is targeted at the delta isoform of the lipid kinase phosphoinositide-3-kinase 859 

(PI3Kδ) (186, 187). This isoform is preferentially expressed in leukocytes, and expressed in 860 

malignant B-cells(188, 189). Targeting of PI3Kδ has shown to be effective in the treatment of 861 

B-cell malignancies, although toxicity issues have prevented idelalisib from becoming a front 862 

line therapy(190, 191). Combination of idelalisib and rituximab was found to be superior to 863 

idelalisib alone in relapsed/refractory CLL, and addition of idelalisib to bendamustine-864 

rituximab therapy for CLL patients with a poor prognosis has shown to improve progression 865 

free survival(192, 193). Idelalisib has also shown efficacy in several NHLs as monotherapy 866 

and in combination with rituximab and bendamustine(194, 195). Recent work from our group 867 

has revealed the pro-apoptotic BH3-only protein Bim to be key to the in vivo therapeutic 868 

mechanism of PI3Kδ inhibition. Addition of a PI3Kδ inhibitor to anti-CD20 mAb therapy 869 

reduced the accumulation of leukaemia cells in the Eμ-Tcl1 transgenic mouse model, and 870 

also improved survival compared to anti-CD20 mAb or PI3Kδ inhibitor alone, in a Bim-871 

dependent manner(196). Furthermore, combination of a PI3Kδ inhibitor with a BCL-2 872 

inhibitor was more effective than either agent alone, reducing leukemic burden by 95%(196). 873 

Venetoclax (Venclexta) is another small molecule inhibitor that targets BCL-2, and is 874 

approved for the treatment of relapsed/refractory CLL with 17p chromosomal deletions based 875 

on high response rates in heavily pretreated patients(197, 198). This molecule has also been 876 

trialled in combination with rituximab in relapsed/refractory CLL, with high response levels 877 

reported (86% overall response rate)(199). Trials combining venetoclax with obinutuzumab 878 

are also underway, with preliminary data suggesting it is highly efficacious in 879 

relapsed/refractory and untreated CLL in elderly patients(200, 201). Importantly, venetoclax 880 



29 
 

has been reported to be efficacious in CLL patients who have failed previous kinase inhibitor 881 

therapy, such as ibrutinib or idelalisib(202). Another anti-BCL-2 drug, the antisense 882 

oligonucleotide Oblimersen sodium, has been tested in combination with rituximab and found 883 

to be beneficial in patients with relapsed/refractory NHL(203).  884 

Although segregated in this review by mechanism, combinations of multiple drugs with 885 

differing mechanisms of action are being examined alongside anti-CD20 therapy. For 886 

example, TG Therapeutics are currently recruiting patients with relapsed/refractory CLL to a 887 

trial combining ublituximab (a glycoengineered anti-CD20 antibody) with TGR-1202 (a 888 

PI3Kδ inhibitor) and pembrolizumab (anti-PD-1 antibody). Whether such an approach is 889 

efficacious or indeed viable in terms of health economics remains to be seen. 890 

 891 

Bispecific antibodies 892 

A further therapeutic approach that is currently being trialled in the clinic is the use of 893 

bispecific antibodies (bsAbs). Multiple technologies have been developed for producing 894 

bsAbs, incorporating additional Fab domains in various positions and with altered Fc 895 

backbone engineering to ensure appropriate heavy chain pairing(204). A bsAb targeting 896 

CD19 and CD3 has already achieved approval for relapsed/refractory acute lymphoblastic 897 

leukaemia(205). An anti-CD20/CD22 bsAb has shown enhanced preclinical activity over the 898 

combination of the 2 parental antibodies, inducing greater apoptosis in vitro and improved 899 

overall survival and tumour shrinkage in vivo(206). Combination of 2 anti-CD20 mAbs (a 900 

type I and a type II) into a tetravalent bsAb produced a molecule that induced enhanced direct 901 

cell death over the combination of parental Abs and retained equivalent CDC(207). 902 

Furthermore, this molecule had a more potent anti-tumour activity than the combined 903 

parental antibodies in vivo. 904 

Attempts to increase engagement of the target cell with effector cells using bsAbs have also 905 

been made. One example is a CD20(2)xFcγRIIIA tribody that binds target CD20 and effector 906 

FcγRIIIA, irrespective of the V/F158 polymorphism. This construct was superior to 907 

rituximab in terms of cell-line and patient lymphoma cell lysis, NK mediated tumour cell 908 

killing and also B-cell depletion in whole blood, and functioned to deplete human B-cells in a 909 

mouse model reconstituted with a humanised haematopoietic system(208). A CD20/CD3 910 

bsAb tested in multiple in vivo models appeared to act primarily through CD3 expressing 911 
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cells, rather than the antibody Fc region of this bispecific humanised IgG(209). Some of these 912 

bsAbs such as the CD20/CD3 molecules REGN1979(210) and FBTA05(211), have entered 913 

clinical trials for B-cell lymphoma. Despite the termination of the clinical trial for FBTA05, 914 

this antibody has been used on compassionate grounds in children with B-cell malignancies 915 

refractory to conventional therapy, with some positive results(212). 916 

 917 

CD20 mAb in autoimmune settings 918 

In addition to the treatment of B-cell malignancies, many of the same therapeutic principles 919 

learnt from the study of anti-CD20 mAb can be applied to other disease settings, namely 920 

autoimmune disease. The rationale for B-cell depletion in autoimmune diseases such as 921 

rheumatoid arthritis (RA) is based on the (albeit incompletely understood) role of these cells 922 

in disease pathogenesis, namely differentiation into autoantibody-secreting plasma cells and 923 

antigen presentation to T cells, and the consequent expectation that their depletion will 924 

restore self-tolerance, as discussed in depth elsewhere(213). Nevertheless, it was shown in a 925 

double-blind randomized control trial that treating RA patients with rituximab resulted in 926 

both prolonged B-cell depletion and significant improvements in symptoms in comparison to 927 

methotrexate-treated patients (214). Moreover, a combination of rituximab and methotrexate 928 

increased the percentage of patients with improvements in symptoms at 48 weeks post-929 

treatment(214). As a consequence of this (and other studies), rituximab is now FDA-930 

approved for the treatment of RA, as well as the anti-neutrophil cytoplasmic antibody 931 

(ANCA)-associated vasculitides (AAV), Wegener’s Granulomatosis and Microscopic 932 

Polyangiitis (https://www.fda.gov/Drugs/DrugSafety/ucm109106.htm). However, contrary to 933 

indications of efficacy(215), rituximab showed no significant clinical benefit over control 934 

arms in randomized clinical trials of both extrarenal(216) and renal (lupus nephritis)(217) 935 

systemic lupus erythematosus (SLE) patients. Nevertheless, it has been estimated that 936 

rituximab is used off-label in approximately 0.5-1.5% of SLE patients in Europe, seemingly 937 

as a last resort in patients with worse disease(218).  938 

As may be expected, a requirement for FcγRs in the mechanism of action of rituximab in 939 

autoimmune disease (as for B-cell malignancies) has been indicated in studies such as by 940 

Quartuccio et al., whereby clinical responses of RA patients were significantly greater at 6 941 

months post-rituximab in FcγRIIIA V/V patients(219). It is noteworthy that the depletion of 942 

B-cells by rituximab may be variable (between patients) and incomplete in autoimmune 943 

https://www.fda.gov/Drugs/DrugSafety/ucm109106.htm
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disease. In the setting of RA, for example, a sensitive flow cytometry technique was used to 944 

detect remaining B-cells, and patients with complete depletion of B-cells after a single 945 

rituximab infusion had favourable clinical responses in comparison to patients with partial 946 

depletion (220). Similarly, when the same methodology was applied to SLE, all patients with 947 

complete B-cell depletion had a clinical response to rituximab, which contrasts to patients 948 

with incomplete B-cell depletion (221). Intriguingly, a significantly lower depletion of B-949 

cells from SLE patients was observed in comparison to B-cells from RA patients or healthy 950 

donors when treated with anti-CD20 mAb in whole blood assays(222).  951 

Several mechanisms may help to explain the variable and/or incomplete B-cell depletion 952 

observed with rituximab in autoimmune disease. This may be linked to levels of B-cell-953 

activating factor (BAFF), which is known to increase in RA patients treated with rituximab in 954 

periods of B-cell depletion(213). Indeed, a recent retrospective study analysed two cohorts of 955 

AAV patients and showed that a single nucleotide polymorphism in BAFF (TNFSF13B) was 956 

associated with responses to rituximab treatment(223). Although the authors of this study 957 

conceded that further mechanistic studies are required, this indicates that responses to B-cell 958 

depletion may be predicted in advance of rituximab treatment in the future (similarly to FcγR 959 

polymorphisms and degree of B-cell depletion mentioned above), and patients given 960 

alternative therapies instead. Modulation of FcγRIIB/rituximab complexes may, as for 961 

malignant B-cells(36, 89) also be a relevant resistance mechanism in the setting of 962 

autoimmune B-cells, as indicated in in vitro studies (222) (see below). Finally, results from 963 

animal models of SLE have suggested that inefficient depletion in this disease may be due to 964 

the presence of autoantibody ICs(224). Recent studies employing chronic viral infection 965 

models, also characterised by excessive ICs, have lent support to the hypothesis that high 966 

concentrations of ICs may inhibit antibody effector mechanisms(225, 226). Both of these 967 

studies utilized anti-CD20 mAb, and showed that chronically-infected mice were incapable of 968 

depleting CD20+ cells(225, 226). This suggests that high levels of circulating ICs should be a 969 

concern in setting of anti-CD20 therapy, and may result in inefficient B-cell depletion in 970 

patients. 971 

Nevertheless, considering such indications of incomplete B-cell depletion using rituximab in 972 

autoimmune disease, one fundamental question is how the depletion of B-cells can be 973 

improved in the setting of autoimmune disease. Employing next-generation mAbs is an 974 

option. To this end, although a non-glycoengineered type II anti-CD20 mAb induced greater 975 

depletion of B-cells in comparison to rituximab in a whole blood assay(222), suggesting a 976 

role for the type II nature of the mAb rather than a change in glycosylation, depletion was 977 
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further increased with the glycomodified (afucosylated) type II mAb obinutuzumab(227). 978 

The greater depletion mediated by type II anti-CD20 corresponded to less internalization 979 

from the surface of B-cells from healthy donors, and RA/SLE patients(222). In the setting of 980 

SLE, B-cell depletion by rituximab correlated with the level of surface accessible CD20, and 981 

the difference between B-cell cytotoxicity mediated by type I versus type II anti-CD20 mAb 982 

correlated with degree of internalization(222). Internalization mediated by type I anti-CD20 983 

could be partially inhibited by use of blocking anti-FcγRIIB mAb(222). It can therefore be 984 

hypothesised that a combination of rituximab with an anti-FcγRIIB mAb will increase the 985 

efficiency of autoimmune B-cell depletion, for reasons including blockade of such FcγRIIB-986 

mediated modulation, or FcγRIIB-mediated inhibition of activatory signalling on effector 987 

cells(69). Further still, alternative anti-CD20 mAbs have also been/are being developed for 988 

the treatment of other autoimmune diseases; namely the humanized mAb veltuzumab for the 989 

treatment of ITP (in addition to CLL/NHL)(228), which has a single amino acid change in the 990 

complementary determining region (CDR) 3 VH in comparison to rituximab, and framework 991 

regions/Fc domains from the anti-CD22 mAb epratuzumab(229); and ocrelizumab for the 992 

treatment of multiple sclerosis (MS) (Table 1). Notably, ocrelizumab was recently shown to 993 

significantly decrease disease progression in a phase III trial of primary progressive MS when 994 

compared with placebo(230), and was successful in 2 other trials(114), leading to its FDA 995 

approval. Alternatively, the glycoengineered anti-CD20 mAb ublituximab (Table 1) is also in 996 

clinical trials for the treatment of MS(231), for reasons of increased ADCC/potency (see 997 

above). Nevertheless, as with RA(214), the clinical benefit observed following B-cell 998 

depletion with anti-CD20 in MS further emphasises a role of these cells in autoimmune 999 

disease pathogenesis(230). 1000 

A final factor to consider is the existence of serological evidence of autoimmunity that can 1001 

precede the development of overt disease by years, as reviewed elsewhere(232, 233). It has 1002 

therefore been questioned whether the development of autoimmune disease can be 1003 

prevented/delayed. Studies such as PRAIRI(234) have therefore tested this, by infusing 1004 

autoantibody-positive patients that do not yet have overt RA with a single infusion of 1005 

rituximab (1000mg) and prospectively monitoring for disease onset versus placebo controls. 1006 

The early results indicate that this strategy is able to delay disease onset (234).  1007 

 1008 
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Conclusions and Summary 1009 

Anti-CD20 mAbs have now been with us as approved clinical reagents for 20 years. As 1010 

highlighted in Figure 1, their development and study has fostered a large amount of our 1011 

current knowledge of therapeutic mAb mechanisms of action and what makes an effective 1012 

therapeutic target and mAb. In the next 5 years, an increasing number of combination 1013 

strategies will be investigated in order to improve on the current levels of success. Coupled to 1014 

this will be an increasing number of new mAb formats, aiming to take advantage of the 1015 

knowledge gained to date. One important aspect of this development will be an in depth 1016 

understanding of the disease microenvironment in each case. For example, to improve 1017 

responses in CLL may not require the same developments as required for NHL and similarly 1018 

the specific pathologies relating to RA, SLE and MS may not involve similar solutions.  1019 

More widely, we can expect the learnings gleaned from the study of CD20 antibodies will 1020 

flow into developments for other mAb specificities; particularly where target cell deletion is 1021 

required. So, in answer to the question “What have we learnt from targeting CD20 and where 1022 

are we going?”, the response should be “a huge amount” and “to an era of combination and 1023 

advanced antibody engineering leading to improved responses for patients”.  1024 

  1025 
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Table 1. Direct-targeting mAbs currently approved for use in oncology settings. Table 2049 

modified from ‘Approved antibodies’ produced by JM Reichert; The Antibody Society, Last 2050 

updated: 22 May 17. *additional anti-CD20 mAbs in clinical development and/or for clinical 2051 

indications outside of cancer are also shown. Withdrawn mAbs are excluded. Abbreviations: 2052 

NHL – Non-Hodgkin’s lymphoma; CLL – Chronic lymphocytic leukaemia; MS – Multiple sclerosis; ITP – 2053 
Idiopathic thrombocytopenic purpura; FL – Follicular lymphoma; NSCLC – Non-small cell lung cancer; EGFR 2054 
– Epidermal growth factor receptor; HER2 – Human epidermal growth factor receptor 2; GD2 – 2055 
Diasialoganglioside 2; PDGFRɑ - Platelet-derived growth factor receptor alpha. 2056 

 2057 

Generic Name 
Brand 

Name 
Target 

 

Format 
Comments 

(anti-CD20) 
Indication 

FDA (EMA) 

Approval 

date/status 

Reference(s) 

Rituximab 
MabThera; 

Rituxan 
CD20 

Chimeric 

IgG1 
type I NHL 1998 (1997) 

(1-5) 

Ibritumomab 

tiuxetan 
Zevalin CD20 

Mouse 

IgG1 

 

type II, 90Y 

radiolabelled 
NHL 2002 (2004) 

(235, 236) 

Ofatumumab Arzerra CD20 

Human 

IgG1 

type I, binds 

small CD20 

loop 

CLL 2009 (2009) 

(45, 46) 

Obinutuzumab 
Gazvya; 

Gazyvaro 
CD20 

Humanised IgG1 type II, 

glycomodified 
CLL 2013 (2014) 

(56, 77, 90, 227) 

Ocrelizumab* Ocrevus 
CD20 

Humanised hIgG1 type I MS 2017 FDA (under 

review by EMA) 

(114, 230) 

Veltuzumab* N/A 

CD20 

Humanised hIgG1 type I,  

rituximab 

backbone 

Various (i.e. 

NHL;CLL;ITP) 

Clinical trials 

and/or FDA 

orphan drug 

status 

(228, 229) 

Ocaratuzumab* N/A 
CD20 

Humanised hIgG1 type I, Fc-

modified  

FL; CLL As above (125, 126) 

Ublituximab* N/A 
CD20 

Chimeric hIgG1 type I, 

glycoengineered  

Various (i.e. CLL; 

MS; other) 

As above (113, 231) 

Cetuximab Erbitux EGFR 
Chimeric 

IgG1 
 Colorectal cancer 2004 (2004) 

(40) 

Panitumumab Vectibix EGFR 
Human 

IgG2 
 Colorectal cancer 2006 (2007) 

(237, 238) 

Necitumumab Portrazza EGFR 
Human 

IgG1 
 NSCLC 2015 (2015) 

(239) 

Trastuzumab Herceptin HER2 Humanised IgG1  Breast cancer 1998 (2000) (240, 241) 

Pertuzumab Perjeta HER2 Humanised IgG1  Breast cancer 2012 (2013) (242, 243) 

Ado-trastuzumab 

emtansine 
Kadcyla HER2 

Humanised IgG1 
Drug conjugate Breast cancer 2013 (2013) 

(244, 245) 

Brentuximab 

vedotin 
Adcetris CD30 

Chimeric 

IgG1 
Drug conjugate 

NHL; large cell 

lymphoma 
2011 (2012) 

(246, 247) 

Daratumumab Darzalex CD38 
Human 

IgG1 
 

Multiple 

myeloma 
2015 (2016) 

(248, 249) 

Dinutuximab Unituxin GD2 
Chimeric 

IgG1 
 Neuroblastoma 2015 (2015) 

(250, 251) 

Alemtuzumab 
Lemtrada, 

MabCampath 
CD52 

Humanised IgG1 

 CLL; MS 

As Campath – 

2001 (2001) 

As Lemtrada – 

2014 (2013) 

(252, 253) 

Olaratumab Lartruvo PDGFRɑ 
Human 

IgG1 
 

Soft tissue 

sarcoma 
2016 (2016) 

(254, 255) 
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Figure legends 2058 

Figure 1. Timeline of approvals and recent discoveries arising from the study of anti-CD20 2059 

mAb, with proposals of how efficacy may be further augmented. Top left; timeline of notable 2060 

clinical developments of anti-CD20 mAb. Bottom left; recent mechanistic insights gained 2061 

from the study of anti-CD20 mAb. Top right; future strategies required to increase the 2062 

efficacy of anti-CD20 mAb. Bottom right; technical developments and knowledge required to 2063 

further inform therapeutic design. 2064 

 2065 

 2066 

 2067 


