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Abstract

There are two different empirical likelihood approaches for complex sampling de-
signs: the “pseudoempirical likelihood” introduced by Chen and Sitter (1999) and
“unequal probability empirical likelihood” approach proposed by Berger and Torres
(2016). Both approaches are described and reviewed critically. The key difference
is the fact that the self-normalisation property of the pseudoempirical likelihood ap-
proach is limited to unidimensional parameters. This property holds for multidimen-
sional parameters, with the unequal probability empirical likelihood approach. This
is a brief description of the key empirical likelihood approaches for complex sam-
pling. This is not an exhaustive account of all the applications of empirical likelihood
in survey sampling.
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1 Introduction

Consider a finite population U = {1, . . . , N} of N units. For each unit i ∈ U , we have a
vector yi of variables, where yi ∈ Rdy . We consider a “design-based approach”; that is, we
assume that yi are vectors of constants (Neyman, 1938). A random sample S is selected
from U according to a sampling design, which specifies the probability distribution of S.
The sampling distribution is therefore given by the sampling design. The design-based
approach is the core of survey sampling theory. It offers a robust non-parametric approach
for survey data, which does not rely on distributional assumption about yi.

We consider that the population U is split into H non-overlapping strata U1, . . . , Uh, . . . ,
UH such that ∪Hh=1Uh = U . Within each stratum Uh, a sample of nh units is selected with
unequal selection probabilities πi. The overall sample size is the constant n =

∑H
h=1 nh.

With and without replacement sampling will be considered . We shall focus on single-stage
designs.

Empirical likelihood has its origin in survey sampling theory. One of the first attempts
to formulate a likelihood-based approach in survey sampling is due to Godambe (1966) who
showed that under the design-based approach, the likelihood function is flat and cannot be
used for inference. In order to solve this problem, Hartley and Rao (1968) developed the first
application of an empirical likelihood approach under equal probability sampling. Owen
(1988) popularised this approach into the mainstream statistics (see also Owen, 2001).
There have been many recent developments of empirical likelihood based methods in survey
sampling. Most of which can be classified into two categories: the unequal probability
empirical likelihood approach (Berger and Torres, 2016) and the pseudoempirical likelihood
approach (Chen and Sitter, 1999; Wu and Rao, 2006).

2 Parameter and side information

Let θU ∈ Rdθ be an unknown vector of dθ parameters. For example, θU can be the
parameter of a generalised linear regression model. Let ϕU ∈ Rdϕ denote another vector
called “side information” which is assumed known without sampling errors. For example,
ϕU can be population-level means, counts or proportions, from large external censuses or
surveys (see Example 2.1). Side information is often used in survey sampling (e.g. Kott,
2009), but not limited to this field. It can also be found in the empirical likelihood literature
(Owen, 1991, 2001, §3.10) and in the econometric literature (Imbens and Lancaster, 1994).
Taking into account of side information may increase the efficiency (Owen, 1991).

Let ψU = (θ>U ,ϕ
>
U )>. We assume that ψU is the unique solution to the population

multidimensional estimating equation (Godambe, 1960)∑
i∈U

g(yi,θ,ϕ) = 0dg , if and only if θ = θU and ϕ = ϕU ; (1)

where

g(yi,θ,ϕ) :=
{
e(yi,θ,ϕ)>, f(yi,ϕ)>

}> ∈ Rdg (dg > dθ), (2)
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with f(yi,ϕU) ∈ Rdf (df > dϕ) and e(yi,θ,ϕ) ∈ Rde (de > dθ). Here, 0dg denotes a
dg-vector of zeros. The estimating function e(yi,θ,ϕ) defines θU . For example, θU can
be the parameter of a generalised linear regression model (Chen and Van Keilegom, 2009).
Under a design-based approach, the parameter θU is a vector of unknown constants. Note
that the function e(yi,θ,ϕ) may or may not depends on ϕ.

Note that (1) implies that ϕU is such that∑
i∈U

f(yi,ϕU) = 0, (3)

by definition. The f(yi,ϕU) are usually a function of a sub-vector ỹi of yi, with ỹi known
∀i ∈ U . We assume that f(yi,ϕU) are known ∀i ∈ S. The f(yi,ϕU) are called ‘auxiliary
variables ’ in the survey sampling literature (e.g. Deville and Särndal, 1992). We shall treat
ϕU as a vector of constants, not as a parameter to estimate.

The estimating function f(yi,ϕU) cannot be a function of θU , because ϕU is assumed
known and defined by (3). Indeed, if f(yi,ϕ) depends on θU , the vector ϕU cannot be
known, unless θU is known, which is a trivial situation where inference is not necessary.

Example 2.1. Let yi = (x>i , δi)
>, where xi is some covariates and δi is a binary variable:

δi = 1 for a success and δi = 0 for a failure. Suppose that we know the population success
rate ϕU = N−1

∑
i∈U δi, and we wish to fit a binary logistic model with δi as dependent

variable and xi as covariates. The estimating functions are

e(yi,θ,ϕ) = x>i δi − x>i exp(x>i θ)
{

1 + exp(x>i θ)
}−1

,

f(yi,ϕ) = δi −ϕ·

More examples can be found in Imbens and Lancaster (1994), Berger and Torres (2016)
and Oǧuz-Alper and Berger (2016).

3 Unequal probability empirical likelihood

Berger and Torres’s (2016) “empirical log-likelihood function” is defined by

`max(θ,ϕU) := max
p

{
`(p) : pi > 0,

∑
i∈S

pi
πi
g(yi,θ,ϕU) = 0dg ,

∑
i∈S

pizi =
nH

n

}
, (4)

where p = (pi : i ∈ S)> is the n-vector of pi,

`(p) :=
∑
i∈S

log(pi),

zi :=
(
zi1, . . . , zih, . . . , ziH

)>
,

zih :=

{
1 if i ∈ Uh,
0 otherwise,

nH :=
∑
i∈S

zi =
(
n1, . . . , nh, . . . , nH

)>·
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The zi are stratification variables and nH is the strata allocation, and `(p) is Owen’s (1988)
empirical log-likelihood function . Berger and Torres’s (2016) empirical log-likelihood func-
tion is expressed in term of mi := npiπ

−1
i . If we substitute pi within (4) by n−1miπi,

straightforward algebra shows (4) reduces to Berger and Torres’s (2016) empirical log-
likelihood function plus a quantity that does not depend on θ. We prefer expressing (4) in
term of pi in order to ease the comparison with other empirical likelihood approaches.

The constraints within (4) differs from Owen’s (1988) constraints. We have πi within
the first constraint involving the parameter. We also have a second stratification constraint
not motivated by moment conditions. This constraint implies

∑
i∈S pi = 1, since 1>Hzi = 1

and 1>HnH = n, where 1H is the H-vector of 1. Hence, the stratification constraint can be
viewed as a generalisation of Owen’s (1988) leading constraint

∑
i∈S pi = 1.

The “maximum empirical likelihood estimator” θ̂ maximises `max(θ,ϕU) by definition .

Berger and Torres (2016) show that θ̂ is also the solution of the sample estimating equation∑
i∈S

m̂i(ϕU) e(yi,θ,ϕU) = 0dg , (5)

where

m̂i(ϕU) := n p̂i(ϕU)π−1i , (6)

p̂i(ϕU) := n−1
{

1 + η(ϕU)>ci(ϕU)π−1i

}−1
,

ci(ϕU) :=
{
f(yi,ϕU)>, πiz

>
i

}>·
Here, η(ϕU) is a Lagrangian parameter which is such that∑

i∈S

m̂i(ϕU) ci(ϕU) =
(
0>df ,n

>
H

)>·
A modified Newton-Raphson algorithm (e.g. Polyak, 1987) can be used to compute η(ϕU).
We assume that (0>df ,n

>
H)> is an inner point of the convex conical hull of {ci(ϕU) : i ∈ S},

so that a unique solution η(ϕU) exists.
The quantities m̂i(ϕU) are the empirical likelihood weights. If we do not have side

information, f(yi,ϕ) is removed from (2) and m̂i(ϕU) reduces to the standard sampling
weights π−1i . If θU is a population mean, we obtain the Horvitz and Thompson’s (1952) es-
timator with e(yi,θ,ϕU) = yi−θNn−1πi. Note that the calibration property (Deville and
Särndal, 1992) holds because of

∑
i∈S m̂i(ϕU) f(yi,ϕU) = 0df and (3) . We have this prop-

erty because we maximise (4) and ϕU is constant. In survey sampling literature, calibration
is viewed as a weighting procedure, rather than the consequence of the maximisation of
likelihood function.

On the main advantage of this §’s approach is that the function (4) can be used for

testing. Suppose we wish to test H0 : θ
(1)
U = θ

(1)
0 , where θ

(1)
U ∈ Rd

θ(1) is a sub-parameter of

θU ; that is, θU = (θ
(1)>
U ,θ

(2)>
U )>. Oǧuz-Alper and Berger (2016) showed that under H0,

r̂(θ(1),ϕU) := 2
{
`max(θ̂,ϕU)− max

θ
(2)
U ∈Θ

(2)

`max(θ,ϕU)
}

d−−→ χ2
d
θ(1)
, if θ(1) = θ

(1)
0 , (7)
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under with replacement stratified sampling, as n → ∞. Inverse testing can be used to
construct confidence intervals, when θ

(1)
U is unidimensional. The property (7) is also known

as the self-normalisation property. Oǧuz-Alper and Berger (2016) also showed how this
approach can be extended to multi-stage designs.

3.1 Extension for large sampling fractions

It is common practice for business surveys to use non-negligible sampling fractions n/N .
In this case, sampling without-replacement is preferred over sampling with-replacement,
in order to avoid selecting the same units several times. With large sampling fractions
and without-replacement sampling, the maximum empirical likelihood estimator is still the
solution of (5), but the property (7) does not hold. Berger and Torres (2016) proposed
a “penalised empirical likelihood function” as a solution to this problem. This function is
defined by˜̀

max(θ,ϕU) := max
p

{˜̀(p) : pi > 0,
∑
i∈S

(piqi − ψi)
1

πi
g(yi,θ,ϕU) = 0dg ,∑

i∈S

(piqi − ψi)zi =
nH

n

}
, (8)

where ˜̀(p) :=
∑
i∈S

log(pi)− n
∑
i∈S

pi + n,

qi := (1− πi)
1/2 ,

ψi := (qi − 1)n−1, ·
The penalty n

∑
i∈S pi + n is necessary for the pivotal property (9) to hold . The qi are

Hájek’s (1964) finite population corrections .
Under without-replacement stratified sampling design and Hájek’s (1964) asymptotic

framework, Berger and Torres (2016) showed that under H0 : θU = θ0, we have

r̃(θ,ϕU) := 2
{˜̀

max(ϕU)− ˜̀max(θ,ϕU)
}

d−−→ χ2
dθ
, if θ = θ0, (9)

where ˜̀
max(ϕU) := max

p

{˜̀(p) : pi > 0,
∑
i∈S

(piqi − ψi)
1

πi
f(yi,ϕU) = 0df ,∑

i∈S

(piqi − ψi)zi =
nH

n

}
·

In Berger and Torres (2016), the penalised empirical likelihood function uses the
parametrization mi := npiπ

−1
i . Straightforward algebra shows that it indeed reduces

to (8). Note that the constraints within (8) do not imply
∑

i∈S pi = 1. We have˜̀
max(θ,ϕU) = `max(θ,ϕU) if we replace qi by 1, because in this case, ψi = 0 and

∑
i∈S pi = 1.

In fact, qi → 1, as n/N → 0. Thus, with n/N negligible, ˜̀max(θ,ϕU) ≈ `max(θ,ϕU) and
r̃(θ,ϕU) ≈ r̂(θ(1),ϕU). Berger (2016) extended this § ’s approach to Rao et al.’s (1962)
sampling design with large sampling fraction.
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4 Pseudoempirical likelihood

Wu and Rao’s (2006) “pseudoempirical log-likelihood function” (see also Chen and Sitter,
1999) is defined by

Lmax(θ,ϕU) := max
p

{
L(p) : pi > 0,

∑
i∈S

pi g(yi,θ,ϕU) = 0dg ,
∑
i∈S

pizi = 1H

}
, (10)

where

L(p) := n
∑
i∈S

φi

πi
log(pi),

φi :=
1

N

H∑
h=1

Nh

N̂h

zih,

Nh :=
∑
i∈U

zih,

N̂h :=
∑
i∈S

zjh
πj
·

The function (10) clearly differs from (4). In (10), L(p) is different from Owen’s (1988)
empirical log-likelihood function `(p) and

∑
i∈S pi = H. In (4), `(p) is used and

∑
i∈S pi =

1. The main difference between (4) and (10) is the way in which the πi are used. In (4),
the πi appears within the constraint. On the other hand, in (10), the πi only appear within
L(p). The function L(p) is adjusted to take the πi and the stratification into account by
using φi. The constraints involving the stratification variable zi also differ.

Wu and Rao (2006) showed that the “maximum pseudoempirical likelihood estimator”,
which maximises Lmax(θ,ϕU), is also the solution to

Ê(θ,ϕU) :=
∑
i∈S

ŵi(ϕU) e(yi,θ,ϕU) = 0dg , (11)

where

ŵi(ϕU) := nρ̂i(ϕU)π−1i ,

ρ̂i(ϕU) := n−1
{

1 + λ(ϕU)>ui(ϕU)
}−1

φi,

ui(ϕU) :=
{
f(yi,ϕU)>, z

(H−1)>
i −NH−1N

−1}>,
z
(H−1)
i :=

{
zi1, . . . , zih, . . . , zi(H−1)

}>
,

NH−1 :=
(
N1, . . . , Nh, . . . , NH−1

)>·
Here, λ(ϕU) is a Lagrangian parameter which is such that∑

i∈S

ŵi(ϕU)ui(ϕU) = 0df+H−1·

6



We see that the weights ŵi(ϕU) differ from m̂i(ϕU) given by (6), because ρ̂i(ϕU) 6=
p̂i(ϕU) and ui(ϕU) 6= ci(ϕU). Hence maximum pseudoempirical likelihood estimates are
different from maximum empirical likelihood estimates. However, we expect minor numer-
ical differences between them. The main difference between the approaches of §§ 4 and 3
is in the pivotal property of the empirical likelihood ratio statistics.

Suppose that dθ = de = 1; that is, we have a scalar parameter θU . Let θ̂ be the
maximum pseudoempirical likelihood estimator. Wu and Rao (2006) showed that under
H0 : θU = θ0,

r̂(θ,ϕU)PEL := 2
{
Lmax(θ̂,ϕU)− Lmax(θ,ϕU)

}
Deff(θ,ϕU)−1

d−−→ χ2
1, if θ = θ0,

where Deff(θ,ϕU) is called the “design effect” given by

Deff(θ,ϕU) :=
Var{Ê(θ,ϕU)}

VarSRS{Ê(θ,ϕU)}
· (12)

Here, Ê(θ,ϕU) is defined by (11), when de = 1. The quantity Var{Ê(θ,ϕU)} denotes the

variance under the sampling design and VarSRS{Ê(θ,ϕU)} is the variance under simple
random sampling ; that is, a sampling design with equal probability. The design effect
would need to be estimated. We refer to Wu and Rao (2006) for more details about the
estimation of (12).

The advantage of pseudoempirical likelihood is that it can be applied in principle to
any complex sampling designs, because the design effect capture the complexity of any
designs. The properties (7) and (9) are limited to single stage design or multi-stage design
with small sampling fractions (Berger and Torres, 2016; Oǧuz-Alper and Berger, 2016).
The property (9) is valid under Hájek (1964) framework involving maximum entropy. Note
that most designs used in practice have large entropy (Berger, 2011).

The disadvantage of pseudoempirical likelihood is that (12) only holds when the pa-
rameter is scalar (dθ = de = 1). For example, it cannot be used with multidimensional
parameters, because the design effect implicitly assumes that (11) is scalar. Thus, for ex-
ample, we do not a pivotal statistics for regression parameters. The properties (7) and (9)
holds for multidimensional parameters. Thus, the approach of §3 can be used for gener-
alised linear models. In (12), the design effect needs to be estimated, which adds some
additional variability that may compromise to the convergence of r̂(θ,ϕU)PEL towards the
χ2 distribution . Berger and Torres (2016) showed via a series of simulation that coverages
of confidence intervals obtained from (7) and (9) are closer to the nominal value, than cov-
erages obtained from (12). From a computational point of view (12) has the disadvantage
of relying on variance estimates, which can be tedious to compute under complex sampling.
Furthermore, (12) shows that the pseudoempirical likelihood ratio statistics is not pivotal,
because of presence of a design effect.

References

Berger, Y. G. (2011), “Asymptotic consistency under large entropy sampling designs with
unequal probabilities,” Pakistan Journal of Statistics, 27(4), 407–426.

7



Berger, Y. G. (2016), “Empirical Likelihood Inference for the Rao-Hartley-Cochran Sam-
pling Design,” Scandinavian Journal of Statistics, 43, 721–735.

Berger, Y. G., and Torres, O. D. L. R. (2016), “An empirical likelihood approach for
inference under complex sampling design,” Journal of the Royal Statistical Society Series
B, 78(2), 319–341.

Chen, J., and Sitter, R. R. (1999), “A pseudo empirical likelihood approach to the effective
use of auxiliary information in complex surveys,” Statist. Sinica, 9, 385–406.

Chen, S., and Van Keilegom, I. (2009), “A review on empirical likelihood methods for
regression,” Test, 18, 415–447.

Deville, J. C., and Särndal, C.-E. (1992), “Calibration Estimators in Survey Sampling,”
Journal of the American Statistical Association, 87(418), 376–382.

Godambe, V. (1966), “A new approach to sampling from finite population I, II,” Journal
of the Royal Statistical Society Series B, 28, 310–328.

Godambe, V. P. (1960), “An Optimum Property of Regular Maximum Likelihood Estima-
tion,” The Annals of Mathematical Statistics, 31(4), pp. 1208–1211.
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