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Abstract

In this paper we propose a cuboid-based air-tight in-
door room geometry estimation method using combination
of audio-visual sensors. Existing vision-based 3D recon-
struction methods are not applicable for scenes with trans-
parent or reflective objects such as windows and mirrors. In
this work we fuse multi-modal sensory information to over-
come the limitations of purely visual reconstruction for re-
construction of complex scenes including transparent and
mirror surfaces. A full scene is captured by 360◦ cameras
and acoustic room impulse responses (RIRs) recorded by a
loudspeaker and compact microphone array. Depth infor-
mation of the scene is recovered by stereo matching from the
captured images and estimation of major acoustic reflector
locations from the sound. The coordinate systems for audio-
visual sensors are aligned into a unified reference frame and
plane elements are reconstructed from audio-visual data.
Finally cuboid proxies are fitted to the planes to generate a
complete room model. Experimental results show that the
proposed system generates complete representations of the
room structures regardless of transparent windows, feature-
less walls and shiny surfaces.

1. Introduction
3D indoor scene reconstruction has been an important

research topic for practical applications as various sensors
became available in our daily lives. Computer vision tech-
niques using visual sensors such as cameras and RGBD
sensors have played an important role in geometry recon-
struction and various approaches have been proposed in
the 3D vision community. Recovering geometric informa-
tion from a single photograph relies on learnt cues such as
silhouettes, shading and texture [26]. Recent progress in
deep learning has accelerated this field [38, 33], but this
approach still works in very limited environments and re-
lies on large corpuses of training data for similar scenes.
Stereo or multi-view reconstruction from multiple images

is a widely used approach for general scene reconstruction
[29, 31]. However, visual reconstruction does not work
for featureless regions such as white wall or reflective sur-
face where a unique matching pair cannot be defined. In
real world indoor environments, transparent and uniform
surfaces are common resulting in poor performance of vi-
sual reconstruction. Recently, Kinect-like RGBD sensors
provides good depth information for an indoor scene with
featureless regions [5, 6]. However, active depth sensors
are limited and also fail for transparent and mirror surfaces
which are easily observed in common indoor scenes.

In contrast to vision, detection and localisation of geo-
metrical surfaces (reflectors) is a new area of research in
audio processing. The methods that can be found in the lit-
erature were mainly proposed during the last decade. It is
possible to spot an evolution in the state-of-the-art, starting
from older methods which approached the problem from a
2D point of view [8, 2], to arrive to more advanced meth-
ods, where walls, ceiling and floor positions were estimated
as planes in the 3D space [35, 9, 28]. Usually, the acous-
tic signal that is employed to perform the reflector localisa-
tion is the so called room impulse response (RIR). A RIR
characterises the acoustic of an environment with respect to
source and receiver positions [21]. It can be described as
superimposition of Dirac deltas, in the time domain, rep-
resenting the direct sound and reflections that arrive at the
microphone. In [8, 2, 35, 9], the feature extracted from mul-
tiple RIRs, to localise the reflectors, was the times of arrival
(TOAs) of the reflections. However, in [28], it was also
demonstrated that a combination of TOAs and directions of
arrival (DOAs) can improve the results. Previous work also
proposed the combination of TOA with additional features,
for instance, the time differences of arrival (TDOAs) among
microphones [34].

This audio-based approach can provide a solution for ge-
ometry reconstruction of transparent or highly specular mir-
ror surfaces. Audio and vision-based approaches are com-
plementary to each other for scene reconstruction. Vision-
based approaches are strong at recovering dense geometry
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for cluttered scenes with visual and geometrical features but
weak at recovering featureless, transparent or mirror surface
regions. In contrast, audio-based approaches can localise
acoustic reflectors such as glass regardless of their visual
characteristics though they are weak at reconstructing com-
plicated scenes or detailed geometry.

A few researchers have tried to combine audio and vi-
sual sensors to reconstruct 3D scenes, especially in the field
of underwater scene reconstruction. Murino and Fusiello
used sonar and camera to model underwater scenes [24].
Lagudi et al. proposed alignment method for the integra-
tion of stereo cameras and an acoustic camera for under-
water 3D data capture [22]. Recently Ye at al. attached
a ultrasonic sensor to Kinect to reconstruct glasses in nor-
mal indoor scenes [39]. Hussain et al. proposed a room
layout estimation method using a single photo and acoustic
echoes [16]. However, these approaches have the following
limitations. First, sonar or ultrasonic sensors are not com-
mon in our daily lives. Special equipment is required to use
these approaches. Second, normal cameras and ultrasound
sensors have limited field-of-views (FOV) capturing only a
part of the whole scene. For a complete scene estimation,
multiple inputs and fusion technique are required.

In this paper, we propose a cuboid-based complete (air-
tight) room geometry estimation method using an off-the-
shelf 360◦ camera, normal speaker and microphones. The
approach assumes that room interiors are composed of
piece-wise planar surfaces aligned to the main axes (Man-
hattan world). Section 2 introduces related previous works
and Section 3 presents the proposed method. Experimental
results and discussion are given in Section 4, and Section 5
makes conclusions of this work.

2. Related Work
2.1. Visual geometry scene estimation

Simplified scene modelling has been a long-standing
area of research since the FACADE system introduced an
approach for modelling architecture from a number of pho-
tographs [7]. Sinha et al. used feature matching and
Structure-from-Motion methods with line and vanishing
point detection for interactive 3D architectural modelling
from photo collections [32]. To achieve fully automatic re-
construction, various methods have been proposed over the
last decade such as piece-wise planar depth map fusion [15],
axis aligned depth map integration [13], cuboid fitting [25],
inverse constructive solid geometry [37], etc.

As inexpensive off-the-shelf 360◦ cameras become pop-
ular in our daily lives12, various 3D reconstruction meth-
ods for 360◦ images have been proposed [30, 4]. Kim and

1Samsung Gear 360, http://www.samsung.com/global/
galaxy/gear-360/

2Ricoh Theta S, https://theta360.com/en/

Hilton used an industrial spherical camera for simplified
scene modelling [18] and extension with object recognition
[17]. Spherical stereo images are captured and converted
into cubic projection image with façade alignment, then
cuboid-based scene structure is reconstructed using plane
detection. However, it does not work well for walls with
uniform appearance, windows and mirrors which are com-
mon in indoor scenes because it was originally designed for
a large scale outdoor scene where plenty of image features
exist. The vision-based room geometry reconstruction part
in this work has been motivated from these works but modi-
fied for fast indoor scenes reconstruction with a pair of low-
cost consumer 360◦ cameras.

2.2. Major reflector localisation using audio sensors

In audio, the concept of acoustic scene analysis usually
refers to major reflector localisation, such as walls, ceiling
and floor. This is due to the challenging issue of identi-
fying, within an acoustic signal, reflections related to the
sound bouncing off small objects, thus having a low signal-
to-noise ratio (SNR). Reflector localisation methods are cat-
egorised into two groups [28]: “image-source reversion”,
that exploits TOA information to revert the image source
method [1] and determine the reflector position; “direct lo-
calization”, that directly localises the reflector, without es-
timating any other room acoustic element first.

The method in [35] uses the image-source reversion ap-
proach to localise reflectors in 3D, by maximising the prob-
ability of a point in the space to be the image source posi-
tion. However, a large number of putative points needed to
be investigated. The main contribution of [9] was an algo-
rithm to label the reflections from a distributed microphone
array, where the reflector order would otherwise be ambigu-
ous if compared among different microphone recordings.
Nevertheless, the algorithm used for the image source lo-
calisation failed when applied to microphone arrays that are
compact in space. Remaggi et al. proposed three image
source reversion methods in [28]: the image source direc-
tion and ranging (ISDAR), and two variants of it. They ex-
ploited a combination of both TOA and DOA to determine
the image source position. However, only the first reflection
in time was analysed. In this paper, an evolution of ISDAR
is proposed, that is able to localise multiple reflections.

One of the first attempts to employ, instead, the direct
localisation approach was proposed in [20]. The authors
mapped reflections from a linear microphone array to the
related reflecting objects. This method provided an accurate
analysis of the scene, nonetheless, the microphone array
was assumed to be exactly parallel to the reflector. In [28],
Remaggi et al. also proposed a direct localisation method,
that exploited quadratic surfaces constructed by consider-
ing the reflection TOAs. It was demonstrated to provide
high performance in localising reflectors. However, the ap-



Figure 1. Block diagram of the proposed system

proach is limited by the computational complexity

3. Proposed Method

3.1. System overview

Figure 1 shows a pipeline for building a complete room
model with cuboid estimated from 360◦ cameras and audio
sensors. A full surrounding scene is captured as a pair of
vertical stereo images by two 360◦ cameras. The captured
spherical images are mapped to equirectangular images and
aligned to the room coordinate axes (Manhattan world).
Depth information of the scene is retrieved by stereo match-
ing and axis-aligned planar regions are detected. In parallel,
acoustic RIRs are recorded by employing a compact mi-
crophone array. A super-directive array beamformer (SDA)
analyses the acoustic energy arriving at the microphone ar-
ray in time, from every direction, in both azimuth and eleva-
tion. Images representing the energy in the angle-time do-
main are then generated, and a 2D peak-picking algorithm
is employed to detect the reflections. 2D reflector planes are
built on the detected reflections and refined with 2D planes
from the vision sensor. Finally cuboid proxies are fitted to
the planes to generate a complete room model.

3.2. Visual capture and depth estimation

The scene is captured with two Ricoh Theta S cameras
on a bracket as shown in Fig. 2 (a) to recover 3D informa-
tion of the whole surrounding scene at a time instance. The
Theta S camera automatically stitches photos acquired from
two pre-calibrated fish-eye lenses to generate an equirectan-
gular projection image as illustrated in Fig. 2 (b). We use
a vertical stereo setup rather than horizontal stereo because:
(1) Stereo matching for depth estimation can be simplified
to a 1D search in the equirectangular images; (2) the paired
camera occludes less important areas (ceiling or floor); (3)
epipoles where accurate stereo matching is impossible ap-
pear on the ceiling and floor.

To align the coordinates of camera and audio systems

(a) Camera setup (b) Equirectangular projection image

(c) Spherical stereo geometry (d) Disparity map

Figure 2. Spherical stereo camera system

to the room reference frame (Manhattan world coordinate
system), the Façade alignment algorithm [17] using Hough
line detection is applied to the captured images. Depth in-
formation is recovered with spherical stereo geometry as il-
lustrated in Fig. 2 (c) and Eq. (1). Stereo matching can be
carried out for the aligned equirectangular image pairs to
find corresponding pairs of image points (pt) and (pb).

rt = B/

(
sin θt

tan(θt + d)
− cos θt

)
(1)

Any stereo matching algorithm can be utilised. We use a
block matching method incorporating a region-diving tech-
nique which produces reliable disparity fields by detect-
ing occlusion regions and ambiguous regions based on bi-
directional matching and the ordering constraint [19]. Fig-
ure 2 (d) shows the disparity map estimated from Fig. 2 (b).
Black regions indicate occlusion or unmatched areas. 0◦ ≤
θ < 5◦ and 165◦ < θ ≤ 180◦ regions have been cropped
because depth from disparity near the epipole areas (blind
spots) is unreliable. Serious depth errors are observed at
windows, mirror, white table and rear wall behind TV in
the scene. Speakers and microphone array are also ob-
served. The speaker and microphone locations are calcu-
lated from the depth map and delivered to the audio pro-
cessing pipeline with the room coordinate system.
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Figure 3. Schematic representation of a RIR, highlighting its three
component: the direct sound (red), the early reflections (green)
and the late reverberation (blue). Figure modified from [36].

Figure 4. Microphone array (left) and loudspeaker (right).

3.3. Audio capture system and pre-processing

A RIR is an acoustic signal, carrying information about
the environment in which it is recorded. As shown in Fig.
3, it is composed of three elements [21]: the direct sound,
revealing the position of the sound source; the early re-
flections, conveying a sense of the environmental geome-
try; and the late diffuse reverberation, indicating the size of
the environment [36]. Localisation of major acoustic reflec-
tors, such as walls, ceiling and floor, can be achieved by
analysing the early reflection part [28].

A compact microphone array (shown in Fig. 4 left),
that is composed of 48 microphones lying on two concen-
tric circles having radii 85 mm and 106 mm, respectively,
is employed to record RIRs, together with a loudspeaker
(Fig. 4 right). This kind of microphone configuration is cho-
sen to have a high resolution in estimating the azimuth DOA
of the sound. The swept-sine method [11] for a large fre-
quency range is used for sound recording since it is known
to be robust against background noise.

To analyse the room acoustics, the DOA of the acous-
tic energy over time can be visualised by applying beam-
forming algorithms to the recorded multi-channel RIRs. A
visualisation similar to [27] is achieved by steering a SDA
beamformer. In this paper, the SDA proposed in [3], to ob-
serve the azimuth angle only, is improved by allowing the
observation of both azimuth and elevation direction, with
a resolution of one degree. Before being processed by the
SDA, the RIRs are high-pass filtered at 1 kHz, to avoid the
poor directivity factor of the SDA for the low frequencies.

Figure 5. Example of energy analysis in the azimuth DOA-time
domain (background figure). The white crosses are the reflection
DOAs and TOAs detected by the angle-constrained peak-picking
algorithm.
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Figure 6. Example of the beamformed signal power for different
elevations, regarding the reflection at 180 degrees azimuth DOA
of Fig. 5. The red cross is the detected reflection elevation DOA.

The beamformed RIRs, for every azimuth DOA and 0◦ of
elevation, are visualised by positioning them adjacently one
to each others. The obtained image is depicted in Fig. 5.

3.4. Reflector localisation from audio recording

Considering the azimuth DOA-time domain image
shown in Fig. 5, any peak-picking algorithm can be em-
ployed to detect the positions of the energy peaks. Here,
we employed a simple method based on adaptive threshold-
ing [14]. Detecting the energy peaks means to find the az-
imuth DOAs and TOAs of the reflections. To avoid a com-
putationally expensive search, the peak-picking algorithm
is constrained within ranges of the image: the first 25 ms of
the beamformed RIRs; ±5◦ around the loudspeaker and op-
posite directions; a dataset-dependent angular range having
size of 45◦, both on the left and on the right of the frontal
direction. The time constraint can be made since, in a typ-
ical living room-like environment, 25 ms can be considered
as the limit between RIR early reflections and reverbera-
tion [23]. The first angular constraint is made by knowing
the loudspeaker and microphone array positions, estimated
from the vision. The second angular constraint, instead, de-
pends on the position of loudspeaker and microphone ar-
ray with respect to the room geometry. This information is



retrieved from preliminary results given by vision, and by
assuming a shoebox-like environment.

For every estimated reflection azimuth DOA, the RIRs
are then beamformed by steering the SDA towards every el-
evation DOA between 0◦ and 90◦. Observing the energy
at the estimated TOAs, the elevation DOAs are estimated
by calculating the energy maximum position, as illustrated
in Fig. 6. Knowing the sound speed in air, the TOAs are
then converted into distances, and, together with azimuth
and elevation DOAs, they define image sources in the 3D
space, similarly to what was done in the ISDAR algorithm
[28]. An image source is the mirrored position of the sound
source with respect to the reflector [1], hence, the reflec-
tion point is finally localised as the midpoint between the
image source and the centre of the microphone array (in-
stead, in the loudspeaker-image bisection algorithm (LIB)
[28], the midpoint between the image source and the main
source was considered to localise the planar reflector).

The power carried by each reflection is also extracted,
as the peaks of amplitude in the beamformed signals, and
then normalised. By setting a threshold at 0.5, every reflec-
tion having normalised amplitude lower than the threshold
is discarded. In this way, weak reflections that do not arrive
directly from the major reflectors are discarded.

3.5. 3D geometry reconstruction

For 3D geometry reconstruction, the block world recon-
struction method in [18] is modified to accommodate au-
dio and visual data. Piecewise planar elements are recon-
structed from the estimated depth information from visual
capture and estimated reflector locations from audio cap-
ture. The input spherical image is segmented into superpix-
els by the graph-based segmentation method [12], and op-
timised planes with fitted bounding boxes are reconstructed
by the total least squares (orthogonal regression) fitting al-
gorithm [10]. Unreliable or not-aligned (σ2

ni
> 0.2Rad)

planes are eliminated, then close planes are merged into one
plane to simplify the scene. One problem on detecting re-
flection points using a microphone is that it is not possible
to have an accurate estimation of the reflected surface size.
Therefore, the reflection point from the audio sensor is pro-
jected to the segmented superpixel image from the vision
sensor, corresponding segments are then checked that they
can be reconstructed as an aligned plane with more gener-
ous threshold (σ2

ni
< 0.3Rad ). If it passes the alignment

test, a new plane is assigned to the the superpixel region.
If it fails, an arbitrary plane with a size of 50 cm × 50 cm
is generated at the reflection point. The newly generated
planes by the reflection points are merged and refined with
planes from the vision sensor with the same refinement al-
gorithm. Final 3D geometry of the room is reconstructed
by fitting cuboids into the plane elements. In order to get an
air-tight model of the room, the farthest planes in each di-

Figure 7. Ground-truth structure and setup of UR2 in Fig. 2 (b).
Positions are manually measured by a laser measure.

Table 1. Ground-truth and setup for the datasets ((x,y,z) in m )
Data Room size (m) Mic. pos. Loudspeaker pos.
UR2 (5.44,5.57,2.91) (0.1,0.98,-0.42) (0.07,-1.29,-0.42)
LR (5.60,5.00,2.90) (-0.05,-0.01,-0.62) (-0.05,-1.95,-0.62)

MR2 (4.28,5.57,2.32) (2.09,1.11,-0.46) (2.21,-0.75,-0.46)
S1 (14.55,17.08,6.50) (-2.65,0.25,-0.41) (-2.65,2.25,-0.41)

rection are considered as the boundary of the room (walls,
ceiling and floor) and their surface normals are set to the
inside of the room. All other planes are used for cuboid
structure generation by the outward extrusion process from
the camera capture position and occupancy of point cloud
[18], and the surface normals are set outward of the cuboid.

4. Experiments
4.1. System set up and datasets

We used a pair of Ricoh Theta S cameras which have
built-in calibrated fisheye cameras as shown in Fig. 2 (a).
We captured the scene with an inter-camera baseline dis-
tance of 11 - 27 cm according to the room size and image
resolution of 3000 × 1500. We tested the proposed pipeline
on four different indoor rooms. The Usability room 2 (UR2)
in Fig. 2 (b) is similar to a normal living room environment
with furniture, TV and 5.1 channel speakers. One whole
side of the room is glass and there is a big mirror on the
front wall. Figure 7 shows manually measured ground-truth
room structure and camera/microphone setup for UR2. The
origin of world coordinates was set as the location of the
top camera. There are six loudspeakers in the room but we
used only one frontal loudspeaker for audio recording.

Figure 8 shows other three scenes with the top image
of vertical stereo pairs and estimated disparity maps. The
Listening room (LR) is a simple room with a few small ob-
jects and many loudspeakers, the Meeting room2 (MR2) is
a more cluttered scene with various objects, and the Studio1
(S1) is a large hall. The images were captured just before
the audio setup to provided clean room capture for visual
reconstruction. Table 1 gives the ground-truth room dimen-
sions and positions of the audio sensors.



(a) Listening Room (LR)

(b) Meeting Room2 (MR2)

(c) Studio1 (S1)

Figure 8. Other datasets (left: Image, right: Estimated disparity)

(a) Reconstructed planes (b) Localised reflectors

Figure 9. Initial elements detected from audio-visual sensors

4.2. Room geometry reconstruction results

We assume that there is neither a reference nor ground-
truth model for the reconstruction process. The positions
of the microphone and loudspeaker should be calculated for
reflector estimation from the audio recording and registered
to the reference camera coordinate system. Estimated po-
sition of the microphone and loudspeaker of UR2 from the
depth map in Fig. 2 (d) are (0.05, 1.05, -0.45) and (0, -1.12,
-0.43), with errors of (0.05, 0.07, 0.03) and (0.07, 0.17,
0.01), respectively. The estimation of the microphone po-
sition is relatively accurate but the loudspeaker position has
17cm error in the Y direction which is caused by the er-
ror in depth estimation. The reflector localisation would be
affected by this position error.

Figure 9 shows reconstructed planes and reflector po-
sitions for UR2 estimated from visual and audio sensors.
14 planes have been reconstructed from the 360◦ camera
capture in Fig. 9 (a). As expected from the depth map in
Fig. 2 (d), the ceiling saturated by lights, the side wall with

Figure 10. Block-based reconstruction results for UR2 (left: plane
elements from the vision sensor, right: final model)

glass and the featureless rear wall behind the TV could not
be reconstructed from the vision sensor. The front wall with
a big mirror could be reconstructed owing to the surround-
ing regions. 11 reflection points have been detected from
the audio sensors as shown in Fig. 9 (b) (Green and red dots
indicate the loudspeaker and microphone, respectively.) and
Table 2. Comparing with the ground-truth model, locations
of Points 1,2,7,8 and 9 correspond to the walls, and Point
11 to the ceiling. Points 3 and 4 are from the left sofa and
Points 5 and 6 from the right sofa. One of two reflections in
each sofa is the 2nd order reflection because the sofas have
concave joints with the seat and back. Point 10 is from the
shiny table between the loudspeaker and microphone. We
can observe that the ceiling, walls and table which could not
be detected by the vision processing were detected by the
audio sensors. As we assume the ground-truth is unknown,
the reflection points are converted to planes by projecting to
the corresponding superpixels or arbitrary planes, then re-
fined with planes from the vision sensor as proposed in Sec-
tion 3.5. Figure 10 shows snapshots of the original plane el-
ements from the vision sensor (left) and the final 3D cuboid
model reconstructed from the planes with audio-visual in-
puts (right). We can see that all 6 boundaries have been
reconstructed and the missing table was recovered from the
combination of audio-visual sensors. Table 3 shows the er-
rors of estimated object surfaces against the ground-truth
(GT) measurements. Large objects such as walls and sofas
were detected from both audio (A) and visual (V) sensors.
Most objects are with < 10 cm errors to the GT but a few
objects have relatively large (> 20 cm) errors. It is difficult
to say which sensor is more accurate or superior in accuracy,
but it is clear that audio and visual sensors are complemen-
tary in reconstruction.

Figure 11 (a) shows the results of LR. 19 planes were
detected from the 360◦ camera including loudspeakers on
the ceiling. However, the ceiling itself could not be recon-
structed due to the loudspeakers and their frames. The room
size estimated from 4 walls is 4.9 m × 5.71 m, which have



Table 2. Detected reflector positions for UR2
X plane Y plane Z plane

Point 1 2 3 4 5 6 7 8 9 10 11
X -2.57 -2.88 -1.92 -1.54 1.61 2.04 2.99 0.02 0.21 0.12 0.06
Y -0.70 0.29 0.16 -0.13 -0.20 0.12 0.52 3.20 -2.06 -0.17 -0.11
Z 0.10 -0.74 -0.92 -0.45 -0.45 -0.79 -0.47 -0.03 -0.12 -1.20 1.46

Table 3. Evaluation of detected object plane locations in UR2 (Unit
in meter. “GT” is Ground-truth, “A” is from audio and “V” from
visual sensors.)

Dir. Object Source GT Estimated Error
X Right wall A+V 2.83 2.81 0.02

Left wall A+V -2.61 -2.57 0.04
Bookshelf V 2.31 2.38 0.07
Right sofa A+V 1.79 1.53 0.26
Left sofa A -1.45 -1.54 0.09

Y Front wall A+V 3.50 3.48 0.02
Rear wall A -2.07 -2.06 0.01
Monitor V 2.05 1.87 0.18

Left table V 1.82 1.96 0.14
Front sofa V 2.45 2.38 0.07

TV V -1.75 -1.65 0.10
Z Floor V -1.49 -1.53 0.04

Ceiling A 1.42 1.46 0.04
Front sofa V -1.01 -1.11 0.10
Right sofa A+V -1.01 -1.19 0.18
Left sofa V -1.01 -1.11 0.10

Centre table A -0.95 -1.20 0.25

around 60cm error in both direction. On the other hand, 6
reflection points were detected from the audio sensors. The
azimuth-time domain of the beamformed audio signal is re-
ported in Fig. 12 (a). The ceiling that was missed by vision
sensors was detected from the audio sensors. However, two
false reflection points were detected: one in front of the rear
wall, probably corresponding one to a higher order reflec-
tion, the other one to a wrong estimation of one of the loud-
speaker positions. Due to these false reflections, phantom
volumes were generated in the final cuboid model. Object
(1) in the rendered scene is a phantom object from the false
reflector, Object (2) is the plane detected from the vision
sensor which should be a wall but modelled as an object
cuboid due to the false reflection detected behind this wall.
Strong multiple order reflections in a shoebox-like environ-
ment disturbed detection of 1st-order reflections.

In MR2 results illustrated in Fig. 11 (b), 19 planes were
detected from the camera. Most of the objects and walls
were detected but one side wall with windows (object (2))
was misplaces and the cabinets (object(1)) were not recon-
structed due to stereo matching errors. Instead, seven re-
flection points were detected from the audio sensors: three
corresponding to the walls, one each to the ceiling, chair,
cabinet and loudspeaker. The azimuth-time domain of the
beamformed audio signal is reported in Fig. 12 (b). One

of the two missing cabinets (object (1)) in the scene was re-
constructed from audio. the reflection point on the window
(object (3)) could retrieve the right position of the side wall
and the wrong window plane detected from the camera re-
mained as a phantom volume (object (2)). Object (4) looks
like a phantom volume but it is a position of different loud-
speaker used for the audio recording. The estimated room
size was 4.34 m×5.01 m×2.28 m, which was a bit shorter
to the Y direction than the ground-truth because the origi-
nal wall could not be detected due to many cluttered objects
near the wall.

Figure 11 (c) shows the results of S1. 9 planes and 7
points were detected from the 360◦ cameras and audio sen-
sors, respectively. One wall was missing from the vision
sensor. 3 reflection points correspond to the floor plane
detected from the camera, 2 points were from each wall,
1 point from the chair and 1 point is unknown. How-
ever, the audio sensor could not detect the front and real
walls because they were to far, thus, the related signals
were recorded, at the microphone position, with low SNRs.
The azimuth-time domain of the beamformed audio signal
is reported in Fig. 12 (c). One phantom object was gen-
erated in the X direction. The estimated room size was
15.76 m×16.09 m×5.34 m which is close to the ground-
truth (< 1.3m error to each direction) considering the vol-
ume of the scene.

5. Conclusions
We have developed a solution combining acoustic and

visual sensors for the challenging task of room geometry
reconstruction with transparent and mirror surfaces. The
experiments show that the two modalities act in a comple-
mentary way for surface reconstruction. For the objects
which are not correctly detected through existing vision-
based methods, the acoustical information provides reliable
localisation. On the other hands, objects having high acous-
tic absorption coefficients, thus that are not detected by the
audio analysis, are reconstructed through the vision sensors.

This work is still in progress rather than a definitive eval-
uation. Future work may continue within the scene analy-
sis research area, by studying new techniques for object and
material recognition, in order to aid acoustic reflection anal-
ysis. The peak-picking algorithm used for reflector detec-
tion is simple, hence, it introduces false reflectors into the
analysis. Therefore, more sophisticated algorithm to detect
maxima given 2D images is required. Finally, optimal way



(a) LR

(b) MR2

(c) S1

Figure 11. Reconstruction results for other datasets (1st col.: Reconstructed planes from vision sensor, 2nd col.: Localised reflectors from
audio sensor, 3rd and 4th col.: Snapshots of final block models

(a) LR (b) MR2 (c) S1

Figure 12. Energy analysis in the azimuth DOA-time domain for three analysed datasets (background figures). The white crosses are the
reflection DOAs and TOAs detected by the angle-constrained peak-picking algorithm.

to fuse planes from vision sensors and reflectors from audio
sensors based on their reliability will be developed so that
more accurate object localisation can be achieved.
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