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Abstract:
Variability in demand for staffed beds from existing patients and new referrals in intensive 

care units presents a substantial problem to managers. Short term fluctuations in the number 

of patients requiring a bed can result in demand for beds exceeding capacity, or alternatively, 

seemingly inefficient use of an expensive resource. While operational research methods can 

help in capacity planning, there are many barriers to implementing such methods in practice. 

In this paper we describe an entire operational research project cycle encompassing: 

 deriving exact expressions for the probability distribution for the time-varying bed 

demand on an intensive care unit, taking account of occupancy at the point of 

forecast and future planned and emergency admissions  

 applying it to a specific hospital’s intensive care unit using historical data; 

 building easy-to-use software that the hospital staff can use daily to produce 

forecasts of short term bed demand; 

 implementing the software within the hospital and 

 an evaluation of this implementation from both a technical and non-technical 

perspective. 

The major contribution of this paper is in describing the process of implementing an abstract 

mathematical model in a busy intensive care unit and the independent qualitative evaluation 

of the work about how potential barriers to implementation were addressed as part of a 

“modellers in residence” programme. In particular, we conclude by reflecting on how key 

factors in our “modellers in residence” approach resulted in building a software tool that is 

still being used by the hospital more than 4 years after initial implementation.
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1. Introduction
Optimising bed use and staffing in intensive care is incredibly difficult. Utilisation of intensive 

care resources needs to be balanced with the need to accommodate emergency referrals 

and the need to maintain the flow of planned patients through, and the utilisation of, 

operating theatres. Short-term fluctuations in demand for beds, for instance from current 

patient with longer lengths of stay or a surge in emergency referrals, can result in the 

cancellation of elective surgeries or refusals of emergency referrals due to lack of capacity 

[1–4]. One major constraint on capacity is the availability of specialised staff; if managers 

could have an early warning of busy periods, there might be scope to plan ahead [2,4]. It is 

also reasonable to suppose that there may be other, less tangible, benefits associated with 

staff being ‘forewarned’ of busy periods (see also Littig and Isken [5] and Chow [6]). 

Future demand for beds on an intensive care unit in the short term depends on (figure 1): the 

number of patients currently on the unit, the number of elective admissions planned, the 

number of emergency admission requests over the coming period, and the lengths of stay of 

patients currently on the unit and of those yet to be admitted. 

Figure 1 - Representation of sources of demand for beds on an intensive care unit 
over a short period of time.

In this paper we describe the development, parameterisation, implementation and evaluation 

of a mathematical model and an accompanying software tool designed to provide clinical 
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teams with short-term forecasts of bed demand on an intensive care unit that admits 

emergency patients and planned, post-operative patients. 

The mathematical model comprises the exact probability distribution for unfettered demand 

[7,8] for intensive beds for a given time in the (near) future, building on the work of Utley and 

Gallivan [9,10] by including the contribution to demand from current patients. We outlined the 

mathematical approach in conference proceedings [11] but give here the full formulation of 

the model and details of its subsequent implementation and evaluation.  The model 

complements the considerable existing literature on managing bed capacity that focuses on 

‘steady-state’ demand [2,4,10,12–22] or managing bed capacity in the short term but over a 

whole hospital [5,23–27]. Calculating the transient distributions permits use of the model for 

tactical/operational decision making related to staffing and theatre planning rather than the 

strategic capacity planning of the sort informed by steady state models. 

Reviews of operational research methods applied to health care often highlight a lack of 

implementation and evaluation [28–33]. Implementing new information systems within 

hospitals is almost always harder than anticipated by decision makers, clinical teams and 

those designing the software [34–37]. Many of the barriers to success are in the details of 

how a system is implemented, whose work and goodwill are required to make it happen and 

how a system is incorporated into existing workflows [38–42]. Typical barriers are: lack of 

clarity about team roles [43–49]; resistance among senior clinicians and staff [36,44–46,50–

53];  lack of time [44,45,47,50]; and low motivation and high perceived burden [42,44,50,54–

57]. Understanding the ‘soft’ contextual factors that influence how new systems can actually 

be implemented cannot be ignored [34,58–60]. 

Here we describe the full process from developing a mathematical solution to a real-life 

hospital capacity problem, to co-developing software to implement it, to evaluating its use in 

practice. While the mathematical analysis has novel components, we consider the main 

value of this paper lies in our documentation of how we worked to promote adoption and use 

of the tool and the independent qualitative evaluation of the work. 

In the next section we present the mathematical model. In section 3 we introduce the case-

study and discuss how we worked with the hospital and the factors that influenced the 

development and implementation of the software tool. In section 4 we present the statistical 

analysis performed in order to populate the model with length of stay distributions for 

different groups of patients. In section 5 we present the Excel based software tool that was 

co-produced with hospital staff and discuss how it was implemented and subsequently used. 
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In section 6 we present the OR team’s evaluation of technical and non-technical aspects of 

this project and an independent qualitative evaluation of the work of the OR team (CPa, MU) 

conducted by author Pope, to which we add some further reflections in section 7.

2. Mathematical model 

2.1 Setting, intent, assumptions and notation 

Our setting was an intensive care unit that has planned admissions as well as emergency 

admissions. In this context, a planned admission is an elective surgery patient for whom an 

intensive care bed is reserved. Not all such patients contribute to demand for intensive care 

beds as the planned elective surgery may not take place (for reasons other than intensive 

care capacity).

The intent of the model was to provide managers with a forecast of what demand for beds 

would be at some point in the future. To be reflective of true demand, we did not include in 

the model any effects of limited capacity such as cancellations of surgery due to there not 

being an intensive care bed, refusal of emergency referrals, or the discharge of patients 

being influenced by occupancy.     

2.1.1 Length of stay

Our analysis is based on a discrete view of time and it is assumed that, once admitted, a 

patient will occupy a bed for a whole number of time units, in our case study, days. A key 

assumption in our analysis is that the lengths of stay of different patients can be treated as 

independently distributed, in line with our intent to not include effects of occupancy on 

discharge. There is scope for different groups of patients to have different length of stay 

distributions, which may depend on upon parameters known at booking or admission [11].  

Our notation is summarised in Table 1. 

Throughout our analysis, we make use of standard results concerning generating functions, 

which are reproduced in the appendix. In what follows, generating functions are denoted by 

the capitalised letter of their respective random variable. 
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Notation Description
𝑓 An integer number days into the future. In this case study, 0 ≤ 𝑓 ≤ 7

Length of stay
𝑐 Category of patient; 0 ≤ 𝑐 ≤ 𝐶
𝑑 A counter variable for the integer number of days since admission for a 

given patient. 
𝑥𝑐

𝑑 the number of beds that a single patient of category c occupies at time d 
after being admitted to the unit

𝑝𝑐
𝑑 The probability that a patient of category c still occupies a bed, d time 

units after admission
Patients resident on the unit at time f=0

𝑗 The jth patient resident on the unit at time 0, 0 ≤ 𝑗 ≤ 𝐽
𝑐𝑗 The category of the jth patient
𝑢𝑗 the number of time units the jth resident patient has already spent on the 

intensive care unit by time 0
𝑟𝑗,𝑓 the probability that the jth patient resident at time 0 will still require a bed 

at time f >0 . 
𝑤𝑗,𝑓 the number of beds that the jth patient resident at time 0 will require at 

time f >0
Admissions to the unit

𝑛𝑐
𝑓 the number of planned admissions at time f for patients of category c

𝑣𝑐 the probability that a planned patient of category c attends for admission
𝑞𝑖,𝑓 the probability that there are i emergency admissions at time f
𝑎𝑐

𝑓 the number of admissions of patients of category c at time f
Bed demand

𝑦𝑓 the number of patients resident on the unit at time 0 who still require a 
bed at time f >0

ℎ 𝑐
𝑏,𝑓 the number of beds required at time f by patients of category c admitted 

at time b where 0 < 𝑏 ≤ 𝑓
𝑡𝑓 the total demand for beds at time f >0

Table 1  - A summary of notation used

2.2. Analysis
We formulate a mathematical expression that can be used to calculate the exact probability 

distribution for bed demand in the (short-term) future. Our analysis extends previous work by 

Utley et al [9] by taking into account the patients currently resident on the unit in addition to 

new arrivals that stay up to the time of interest. 

A key building block in our analysis is the binary random variable , the number of beds 𝑥𝑐
𝑑

occupied by a patient of category c, d time units after admission. The occupation or 

otherwise of a bed by a patient of type c, a time d after admission, is a single Bernoulli trial 

with probability . That is to say, the generating function for  is given by:𝑝𝑐
𝑑 𝑥𝑐

𝑑

sppsX c
d

c
d

c
d  )1()(                  where we note ,   .        (1)𝑝𝑐

0 = 1 0 ≤ 𝑐 ≤ 𝐶
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2.2.1 Patients currently on the unit

Similarly, the occupancy or otherwise of a bed at time f >0 by the jth patient resident on the 

unit at time 0 is a Bernoulli trial with probability . The generating function for the random 𝑟𝑗,𝑓

variable , the number of beds occupied by the jth patient at time f is given by𝑤𝑗,𝑓

srrsW fjfjfj ,,, )1()(  (2)

where 

(3)𝑟𝑗,𝑓 =
𝑝

𝑐𝑗
𝑢𝑗 + 𝑓

𝑝
𝑐𝑗
𝑢𝑗

If there are J patients resident on the unit at time 0, then the number of beds required by 

these patients at time f is given by the random variable





J

j
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1
, (4)
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2.2.2 Demand due to future arrivals

The generating function  for the number of emergency (c=0) admissions at time f is, by 𝐴0
𝑓(𝑠)

definition, given by
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The admission or otherwise of a planned patient of category c is a single Bernoulli trial with 

probability . The number of planned patients of class c admitted at time f, , is the sum of 𝑣𝑐 𝑎𝑐
𝑓

 such independent trials. The generating function for  is hence given by𝑛𝑐
𝑓 𝑎𝑐

𝑓

  c
fn

cc
c
f svvsA  )1()(                                                                   (7)1 ≤ 𝑐 ≤ 𝐶

The number of beds required at time f by patients of category c admitted at time  ,  0 < 𝑏 ≤ 𝑓

 is the sum of a random number  of independent random variables . Using the ℎ 𝑐
𝑏,𝑓 𝑎𝑐

𝑓 𝑥 𝑐
𝑓,𝑏

standard result given in equation (A2) of the appendix, the generating function for  is ℎ 𝑐
𝑏,𝑓

given by

))(()(, sXAsH c
bf

c
b

c
fb  . (8)

Equations (1), (6) and (7) in (8) give
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2.2.3 Exact solution for total bed demand

The total number of beds, tf, required at time f is the sum the number of beds still occupied 

by patients resident at time 0 and contributions from the admissions up to an including time f. 

That is to say:
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The generating function for tf  is given by 
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Using (5) and (9) in (11) and standard properties of generating functions, the probability of m 

beds being required at time f is given by the coefficient of sm in the polynomial 
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where we recall from (3) that .𝑟𝑗,𝑓 =
𝑝

𝑐𝑗
𝑢𝑗 + 𝑓

𝑝
𝑐𝑗
𝑢𝑗

The expression given in equation (12) is complex and, although calculable, could be difficult 

to enumerate computationally in the general case. However, the current context is that of a 

short-term forecasting tool for a relatively small pool of beds, where we need consider only 

small values of f (<8).  Additionally, although these equations give the probability for any 

possible level of demand, we need only calculate a moderate number (<30) of coefficients in 

equation (12) given that in practice a unit will have a maximum number of beds it could 

possibly staff. In the software tool described in section 5, independent forecasts are 

calculated and presented for successive time points.   

3. The setting and context of the implementation and our ways of working 

Great Ormond Street Hospital for Sick Children (GOSH) is a tertiary paediatric hospital in 

London, UK. The cardiac intensive care unit (CICU) at the hospital admits patients from the 

hospital’s paediatric cardiac surgery programme, emergency cardio-respiratory admissions 

from the North Thames area of the UK (approximately 5-6 million population) and patients 

from other clinical environments within the hospital. In addition to the CICU, the hospital has 

other intensive care facilities dedicated to neonates and other patients not under the care of 

the cardiothoracic team.

The Clinical Operational Research Unit (CORU) at University College London has a 15 year 

working relationship with the cardiothoracic team at Great Ormond Street. The OR team on 

this project (CPa, MU) have worked with GOSH on several collaborative research projects, 

mainly related to clinical outcomes. The work reported here was part of a “Modellers in 

Residence” programme at the hospital launched by MU and CPa with the support of the 

clinical lead for cardiac services (AG) and UK based charity The Health Foundation [59] with 

the aim of strengthening the implementation of OR models. The project arose through 

discussions between MU and AG, who at that time was clinical lead of the unit and very 

concerned with problems of patient flow. 
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Our collaborative work involved the OR team observing multi-disciplinary team meetings and 

case conferences at which discussions of theatre planning and capacity took place, CICU 

nursing meetings where workload and staffing for coming shifts were discussed and a series 

of meetings with the lead analyst for the unit (VB) the unit manager (PW) as well as the 

project sponsor (AG) and one of the senior intensive care doctors (KB).  At two points in the 

project, the OR team presented their progress on the project to the multi-disciplinary team 

and invited feedback. Once the software tool was developed, the OR team sat with the data 

manager in CICU twice a week for 6 weeks and collated the information required as input for 

the model and ran the model – not divulging predictions

 

Once the software was implemented, the OR team maintained contact with the staff using 

the tool and those receiving the model output, asking for feedback and encouraging requests 

for changes that would make the software easier to use or more valuable.

4. Statistical analysis of referrals and length of stay
The model described in section 2 is based on knowing the daily rates of emergency referrals 

for intensive care, the likelihood that a planned surgery is cancelled for reasons unrelated to 

capacity (and so an ICU bed is not required after all) and the length of stay distributions 

among different groups of patients. In this section we discuss the data sets and statistical 

analyses used to parameterise the model for use in the context of the Cardiac Intensive Care 

Unit at Great Ormond Street Hospital.

4.1 Data Sets
We used three local data sets to estimate the parameters used in the model: data collected 

by GOSH for the UK paediatric intensive care audit data set (PICAnet), data collected by 

GOSH for the UK congenital heart audit data set (NCHDA) and a local in-house data set 

used within CICU. We used data on all admissions to CICU from 1 April 2007 to 31 March 

2011, comprising 2833 patient admissions. The datasets were linked using hospital ID 

number and admission date.  

4.2 Analysis of emergency referrals
Our first step was to use historical data to determine the probability distribution for the 

number of beds required for emergency patients on any given day ( ). After discussion with 𝑛0
𝑓

the data manager (VB), emergency referrals were identified using “Unplanned” status from 

the PICAnet dataset. Since emergency referrals had increased since 2007, we only used 

referrals since 2010 to estimate mean current demand for emergency referrals. Daily 
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demand for referrals was calculated using the mean observed emergency admissions by day 

of week added to the mean daily emergency referrals that were refused for capacity reasons 

as genuine demand. Refusals are only recorded weekly and from 2010 to 2011 there were 

on average 0.88 refusals a week. We distributed these refusals evenly throughout the week 

by adding 0.88/7=0.126 to the mean number of emergency admissions for each day of the 

week. We then fitted emergency referrals as a Poisson distribution with the mean given by 

the calculated emergency referral rate by day of week shown in Table 1. We note that, unlike 

a general ICU, there is no seasonal dependence for cardiac emergency referrals. While the 

mathematical model does not rely on distributional assumptions about emergency referrals, 

the equal mean and variance of emergency referrals supported the use of the Poisson 

distribution, our choice of which flowed from a reasonable assumption of independent inter-

arrival times.  

Table 1 - mean emergency demand by day of week for CICU.

Mon Tues Weds Thurs Fri Sat Sun

0.64 0.68 0.84 0.70 0.72 0.66 0.72

4.3 Analysis of cancellations for planned surgical patients
The number of beds required for planned surgical patients depends on the surgical lists for 

that week (known in real time by the intensive care unit) and the likelihood that a planned 

patient actually requires an intensive care bed ( ). To determine this latter parameter, we 𝑣𝑐

considered only cancellations due to the family cancelling (e.g. through patient illness) or 

problems with theatre or ward capacity. After discussion with the clinical team, we also 

counted planned surgeries which were cancelled on the day of surgery due to a more urgent 

emergency case (accounted for under emergency referrals) as a cancellation. All of these 

factors represent reasons that a CICU bed might be available and are not affected by 

changes in CICU capacity. We used hospital collected data on planned surgeries that were 

cancelled between 3 August 2008 and 31 March 2011. Over this period there were 143 

cancellations out of 1306 planned surgeries, giving a cancellation rate of 10.9%. We model 

the number of planned surgical patients of each category being admitted to the ICU on a 

given day as a Binomial distribution with the probability of success set at 89.1%. 

4.4 Grouping patients based on length of stay distributions
We used retrospective data to develop the patient categories c,  , based on length 0 ≤ 𝑐 ≤ 𝐶

of stay characteristics, so that we could use the empirical length of stay distributions to 
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determine . Patients already on the ward were considered separately from elective patient 𝑥𝑐
𝑑

before admission who were in turn considered separately from emergency patients (c=0).

To determine the C groups, we first separated the dataset into a (randomly assigned) 

development set (1957 records, 70% of the data) for the analysis to define length of stay 

groups and a validation set (876 records) in which to test the final allocation. 

We worked with the data manager (VB) and clinical team (PW, KB, AG) to identify which 

information in the datasets was known in real-time for patients on admission to the ward and 

prior to surgery for planned patients. This was important since any allocation to length of stay 

groupings needed to be done while the child was still on CICU or (for future planned arrivals) 

before they arrived on CICU. 

The subset of factors considered are given in Table 2. 

Factor Type
Planned admission Binary

Referring group (proxy for diagnosis) Categorical 

Comorbidity present Binary

Had cardiac surgery? Binary

Patient had had a cardio-pulmonary bypass Binary

Had a major event in theatre? Binary

Neonate (less than one month old) Binary

Admitted from? (e.g. home, clinic, hospital) Categorical

Sex Binary

On Extra-coporeal life support Binary

Had had cardiac arrest Binary

Age Continuous

Weight Continuous

Table 2 - Factors considered for developing length of stay groupings

From this subset of factors we then tested for univariate association with patient length of 

stay (LoS) in the following way:

 for binary factors, we used a t-test for difference in mean LoS and the log rank test for 

difference in LoS persistence distributions to determine association with increased 

LoS
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 for categorical variables with more than two categories, we used analysis of variance 

(ANOVA) to test for significant differences in mean length of stay between categories 

and the log rank test to test for difference in LoS persistence distributions

 for continuous variables (e.g. weight and age), we used linear regression to test for 

significant association with length of stay.

In categorical variables with many categories that showed significant association with LoS, 

we further collapsed categories that were either pairwise not significantly different (using a t-

test for difference in means) or were categories with very few patients. 

4.4.1 Patients currently on the unit

Together with our clinical authors (KB, AG), we chose the final variables from Table 2 

considered for inclusion in LoS groupings for patients on the unit based on univariate 

association with length of stay and clinically relevant criteria (e.g. “neonate”). 

Possible length of stay groupings which discriminated in length of stay based on these 

factors were then generated using Classification and Regression Tree (CART) analysis. This 

resulted in eight length of stay of groupings. The CART analysis was performed using IBM 

SPSS Statistics for Windows, Version 20.0. The maximum number of levels of the tree was 

set to 5, the minimum parent size was 100, the minimum child size was 50. Category splits 

were determined by Gini improvement (minimum improvement set to 0.0001). Generated 

groups were then discussed with the clinical teams and manually adjusted and pruned. 

The final factors determining these groupings were:

 Referring group (proxy for diagnosis: reduced to 4 categories)

 Patient had another health condition (comorbidity) 

 Patient had had a cardio-pulmonary bypass

 Patient had had major event in surgery 

 Patient age

4.4.2 Planned patients pre-arrival to the unit

The only both useful and available factors in this case were age (continuous) and referring 

service. CART analysis (performed as in 4.4.1) produced five groups based on referring 

service and various age bands. 

4.4.3 Final length of stay groups 
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We presented the resulting length of stay groups to the whole CICU clinical team to check for 

face validity and to address any concerns or questions. The team agreed that the developed 

groups had clinical validity. After discussion with clinical team, the age thresholds identified 

from the analysis were adjusted manually to correspond to clinically meaningful age bands 

(for instance 5.2 months became a 6 month threshold and a 32 day threshold became a 28 

day threshold to match the existing threshold between “neonates” and “infants”). We then 

successfully tested the performance of the groupings in the validation set. 

The final grouping algorithms for current CICU patients and pre-arrival planned patients are 

shown in figures 2 and 3. 

Figure 2 - Length of stay groupings for patients currently on the unit. Yellow boxes 
show the final groups. 
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Figure 3 - Length of stay groupings for planned patients before admission to the unit. 
Yellow boxes show the final groups.

The length of stay distributions in the validation set for each set of groupings are shown in 

figures 4 and 5 respectively. 

Figure 4 - length of stay distributions for the eight groupings for patients already on 
the unit in the validation data set.
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Figure 5 - length of stay distributions for the five groupings for planned patients yet to 
arrive on the unit in the validation data set.

The length of stay distributions for each group between the development and validation and 

data sets were not significantly different for all groups except group 3 in figure 2 and group C 

in figure 3 (using the Mann-Whitney U test). 

4.4.4 Emergency patients

Finally, we note that while nothing is known prospectively about emergency patients, 

historical analysis shows that they tend to stay longer on the unit than other patient groups. 

We thus used the historical length of stay distribution for unplanned patients when 

considering the contribution to future demand of future emergency arrivals. Note that we 

made no attempt to distinguish among different groups of emergency admissions as the 

length of stay distribution for emergency patients is only used to model the bed demand 

associated with unplanned patients not yet admitted and, by their very nature, no information 

other than emergency referral rate is available prospectively for this cohort.   

5. Development, implementation and use of software tool
We wrote computer code using Microsoft VBA for Excel 2010 to implement the mathematical 

model described in section 2 as a spreadsheet tool with the parameters from section 4. The 

tool takes as user-input the information necessary to categorise each patient currently on 
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CICU to one of the 8 relevant “length of stay groups”, identified through the CART analysis 

described in section 4.4 and the date and time of each admission, and planned theatre 

activity in terms of the number of patients from each length of stay group planned for 

admission on each day of the forthcoming period (figure 6). Note that the empirical historical 

length of stay distribution (in hours) over the whole of the dataset (development + validation) 

was hard-coded into the tool for each group. 

The historical rates of emergency referrals discussed in section 4 were hard-coded into the 

tool, as were the proportions of planned patients that are not admitted for reasons other than 

CICU capacity. We assume that future arrivals are admitted at 12pm and the output shows 

bed occupancy distribution at 5pm each day. 

Based on the analysis presented in section 2, the probability distribution for the demand for 

CICU beds is calculated for a user-defined number of future days. Since exact distributions 

are calculated explicitly, processing time required us to look ahead in a whole number of 

days and no further than seven days in advance. 

These distributions are then used automatically to produce a graphical display indicating the 

probability that unconstrained demand for beds will be at or above a certain level at each 

respective time (see figure 7).  While there is in reality fluctuation in demand within a day, the 

tool was intended to inform planning decisions such as staffing and theatre listing where 

forecasting at daily intervals was felt by the hospital team to be sufficient. 

Figure 6 – Example input screen for the short-term bed demand tool. In this example 
the forecast is run on a Friday afternoon. Note that the hospital numbers and dates of 
birth have been changed to avoid identification. 
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Figure 7 - Example output screen for the short-term bed demand tool. The colours 
indicate the likelihood that that number of beds will be filled for that day. In this 
example, Friday, and Tuesday to Friday of the following week are likely to be busy 
(normally 16-18 beds on the CICU were staffed). 

5.2 Implementation
Following the 6 week period in which the tool was run by the OR team without the output 

being shared, the team at Great Ormond Street have been using the software tool daily since 

October 2012, with a snapshot of the output screen emailed by the data manager to all 

intensive care doctors and the nursing bed manager each morning. After their early 

experience of using the tool, the hospital made a few requests for modifications in 2013, 

namely

to add a function to highlight those patients on the ward with an estimated chance of 

50% or higher of still being on the unit in a week’s time 

to reduce the number of coloured bands in the model output from 7 to 5

to extend the model to consider 21 beds rather than the original 18 

The first two of these requests were trivial to implement. The third request was challenging 

as it potentially involved implementing over 45 million computations as opposed to 5 million 
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computations. Meeting the request involved two agreed compromises:  switching from (12 

hour) shift to (24 hour) day forecast intervals; and combining demand for at least 20 or at 

least 21 beds into a single output (>19 beds needed).

6. Evaluation

6.1 OR team’s reflections on technical and non-technical aspects of evaluation
6.1.1 Technical challenges

At the outset, we identified three key questions for the technical evaluation of this work: 

whether the CART analysis of length of stay among resident and forthcoming patients would 

yield useful information, whether the run time of the model would be acceptable, and whether 

the predictions of demand would be sufficiently accurate. 

The 8 distinct groups among patients already resident on the unit and the 5 groups among 

planned patients (for example see figure 4) showed considerable variation in length of stay 

with 8 fold and 5 fold differences in median length of stay across groups. The validity of these 

groupings was confirmed in data set aside for testing (see section 4).  

After several initiatives to improve the efficiency of the computer code and some compromise 

on the number of time points at which predictions are made, a run time of 15-30 seconds 

was achieved. 

The model predicts demand in the absence of any cancellations of planned theatre cases or 

refusal of emergency admissions due to shortage of beds on CICU. Once there is a 

cancellation or refusal, the predictions are null and void. To verify the model in these 

circumstances, we isolated the predicted demand associated with patients already resident 

on the unit and checked the series of predicted distributions against the series of 

observations. Given that each observation of demand corresponds to a potentially unique 

predicted distribution of demand, we compared the proportion of observations that fell at or 

below a series of threshold values on the cumulative distribution function of their respective 

predicted distribution to what would be expected if the predicted distributions were correct. 

Since the distributions are discrete, each observation corresponded to a range on the 

relevant cumulate distribution function (CDF) so we did separate assessments using the 

lower limits of these ranges, the mid points and the upper limits.  
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Figure 8 shows the results of this validation exercise, with the observations of demand 

among resident patients 3 days after the point of forecast compared to the model predictions. 

The three comparisons shown correspond to using the lower limits, midpoints and upper-

limits of the range on the CDF corresponding to each observation. The good concurrence 

between observations and the predicted distributions confirmed that our underlying 

assumptions were sound and the computer code a correct implementation of the 

mathematical model.  
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Figure 8 - Comparing the observed demand 3 days after the point of forecast among 
patients resident on the ward model to predictions. Essentially this chart shows good 
agreement between observations and the predicted distributions generated using the 
model and observations.

During the 6 weeks when we ran the model without sharing output with the hospital team, we 

prospectively logged the occasions on which there was predicted to be either a greater than 

60% or a less than 60% chance of demand being at least the (then) notional capacity of 16 

beds over each 7-day forecast period. Results of this exercise are shown in table 3 below. 

Note that not all forecasts could be used due to system cancellations or refusals. Although 

numbers in table 3 are small, there is nothing to suggest that the demand model is not fit for 

purpose. 
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Table 3 - simple validation of forecasting tool from the 6 week blind trial period.
Number of 

days in the 

future

Proportion of time at least 16 beds 

were filled or there was a 

cancellation/refusal when forecast 

suggested >60% chance that at 

least 16 beds would be needed.

Proportion of time fewer than 16 beds 

were filled (and there was no 

cancellation/refusal) when forecast 

suggested <60% chance that at least 

16 beds would be needed.

1 day 5/6 (83%) 4/7 (57%)

2 days 3/5 (60%) 7/9 (78%)

3 days 1/3 (33%) 8/10 (80%)

5 days 3/4 (75%) 6/8 (75%)

6.1.2 Non-technical challenges

    

One non-technical challenge was the differing perceptions of what data were readily 

available for use in real time. To provide data on arrivals, refusals, cancellations and clinical 

features of admitted patients, the data manager needed to interrogate 4 separate databases 

whereas we’d been given the impression by the project sponsor that these data were 

available from a single source.

More problematic was that some fields in a key data source were often only completed or 

validated after discharge. We had not anticipated this since all the fields originally considered 

for use in the length of stay CART analysis concerned features of the patient known on 

admission. It had not occurred to us that features known, or at least knowable at admission 

would not necessarily be recorded until after discharge and this restricted the data we could 

use for the length of stay analysis. Additionally, one important field used for the length of stay 

analysis proved difficult to establish without additional work. Another, related observation is 

that, despite there being talk of “the theatre list”, it became apparent that, at any one time, 

there might be different versions circulating and it is subject to many changes.

6.2 Independent qualitative evaluation
A researcher with 25 years’ experience of evaluating health care and expertise in qualitative 

methods (Pope) evaluated the use of the model. She conducted interviews with 7 individuals: 

members of the CORU team (2), a GOSH data manager (1), consultant medical doctors (3), 

and a nurse manger (1). The GOSH staff interviewed were all closely involved in the project 

and were familiar with the demand forecasting model.  Interviews were conducted face to 

face or by telephone and took between 40-90 minutes. Hand written notes were taken to 
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provide a near verbatim record.  (The decision not to audio-record these interviews helped 

establish rapport and encouraged the interviewees to make negative as well as positive 

comments about the project).

An interview topic guide was iteratively developed from discussions with the CORU team, 

informed by a review of documents and by early interviews. Broadly it covered the history of 

the individual’s engagement with the project, their role and responsibilities, the development 

and use of the modelling software, and views about the utility and design of the software. 

The GOSH respondents were asked to comment on their experiences of working with the 

CORU team, how process of development and implementation of the software could be 

improved and the possibilities for transfer beyond their team – i.e. to other teams in the NHS 

Hospital and beyond this. 

6.2.1 Thematic analysis

 

Given the small scale nature of this work, we have simply presented the data and 

commentary under three broad thematic headings to capture the important features 

associated with the initial adoption and use of the demand forecasting software at GOSH. 

We have used some near verbatim quotes where these articulate respondents’ views well. 

6.2.2 Achieving engagement 

The interviews provided evidence of strong clinical engagement with the project. This had 

been enabled by a clinical champion, a senior clinical manager, who was highly influential in 

initiating the programme at GOSH. This individual had a strong desire to improve services 

and this motivation was echoed in comments by other respondents. As the project 

progressed, another clinician took on the role of ‘implementer’ taking direct responsibility for 

ensuring that the modelling work was used by the clinical team. While this person had not 

been heavily involved in the initiation they proved key to making sure that the software was 

brought into sustained everyday use.  

Personal characteristics of CORU team played an important part in establishing a good 

working relationship. It is clear from the interviews that the CORU team worked hard to 

engage the GOSH team and to respond to requests to adapt the software. There was a 

sense that CORU ‘did their homework’; the CORU director described this as ‘just listening’. 

The clinicians reported that the CORU team spent considerable time, unobtrusively, on the 

ward and with staff and this was key to reducing resistance - such as the nurse manager and 
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data manager - who could have felt threatened by software which potentially deskilled them 

(both appeared to view the software as a resource not a replacement for their expertise). 

Close working with the GOSH team, particularly those involved in data creation and 

collection was crucial in developing the model: for example the CORU team discovered that 

expected or promised data was often not available and adapted the model accordingly. In 

thinking about why the demand forecasting modelling was successfully implemented this 

effort by the team to enrol staff should not be overlooked. Indeed some interviewees noted 

that this effort had been absent in previous external consultancy projects which had not been 

successful.   

6.2.3 Using the Demand Forecasting software 

The CORU team expressed a strong desire to create models and software that would 

actually be used in everyday practice.  This motivated their efforts to build positive 

relationships with the GOSH team. A clinician described the CORU approach as one which 

‘maps things out and relates it to patients in a way that makes sense’; the CORU team were 

seen as providing ways of thinking about problems ‘in a way that goes beyond what the 

clinician is capable of seeing on their own’.  Knowledge of the underpinning mathematical 

models did not appear to be essential to using the software - but it may be worth noting that 

in cardiac care, especially paediatric cardiac care, clinicians may be more familiar with 

predictive modelling and risk measures, perhaps sharing more of an affinity with the kinds of 

operational research and statistical approaches which CORU deploy, than staff in other 

specialties. Nonetheless the GOSH respondents felt that the ‘software can be understood 

without needing to understand the whole modelling process’.

The software was intuitive, quick and easy to use and crucially highly meaningful for all the 

GOSH respondents. The use of coloured rectangles to display the probability scores (figure 

6) meant that this resembled a ward full of beds and this was significant in its successful 

adoption. An earlier version of the software displayed a graph which had not been received 

so well. The current version of the display appeared ‘congruent with how we see things’. One 

clinician explained that it captured the tacit and experiential knowledge they used on the 

ward. The nurse manager explained that it ‘gives a flavour of what is in the unit’ such that if ‘I 

see a lot of red, say up to 16/17 ‘beds’ coloured in red that means we are going to have lots 

of cancellations.’ 

The GOSH interviewees appreciated the responsiveness of the CORU team to requests to 

adapt the visual display - for example changing the colour of the display and adding or 
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removing items. The CORU team exploited the functionality of MS Excel to keep the main 

information required and provided by the software relatively simple; hiding unnecessary 

formulae and providing on screen instructions and memos to help explain how the software 

worked. This functionality, combined with careful adaptation and refinement of the software 

in collaboration with the users, secured buy-in by the GOSH team and appeared to give them 

a sense of co-ownership and therefore interest in the continued use of the software. 

As part of each interview, the GOSH respondents were asked to run the software and ‘think 

aloud’ to explain how they used it. From this it was clear that they were all comfortable with 

using the software, and using the language of probability and risk to interpret what the model 

‘told them’. The software is used in different ways and at different times by members of the 

GOSH team.  The nurse manager and data manager ran the software each morning to 

prepare for the day ahead - for example to inform liaison with nursing staff. They used the 

information provided by the software in conjunction with other information – operating lists, 

Trust targets for waiting lists and the types of cases admitted and planned to inform decision 

making. The software was also used regularly in the daily clinical planning meeting at noon 

to plan and respond to admissions. The work done by the CORU team in validating the 

model and software, notably the shadow modelling and continual review of the forecasts 

meant that the GOSH team were positive about the software and trusted its ability to 

accurately predict demand. While some clinicians felt that the software simply confirmed 

what they instinctively knew about the work flows, they all felt the system had merits in 

providing a formal and numerical model which could be shared with a wider team to 

legitimate decisions.

7. Operational research “modeller in residence” approach: reflections

In this section we reflect on some of the findings from the independent qualitative evaluation 

for the purpose of identifying generalizable learning from this work.

7.1 Understanding context

The interviews with staff highlighted that the model output was not viewed by the hospital 

team as entirely new information on forthcoming demand for beds, but rather as formal 

confirmation of their “gut feel”.  This chimes with our observations from planning meetings, 

where heuristic rules of thumb for planning theatre activity were being promoted by some 

members of the team, such as “we really shouldn’t list more than 12 cases a week because 

we have never managed to get more than 12 through theatres” without these being 
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universally accepted in the room. It became clear to the OR team that some of the hospital 

team felt that decisions regarding who to list when for surgery led to unduly optimistic 

planning. In small group discussions later in the project, this impression was reinforced. 

Another, related issue that arose was the possibility that not all staff groups are exposed 

directly to the impact of short term cancellations on patients and their carers. This led us to 

conclude that model output might be co-opted by some staff as an explicit form of evidence 

in support of their position, and this understanding of context influenced how we talked about 

the tool with different staff groups.

7.2 The value of co-design

The interviews with staff found that including them in the design of the model output did not 

only lead to more useful output, but also gave the hospital staff a sense of ownership over 

the tool. Without this, it is not certain that they would have felt able to ask for the later 

modifications discussed in section 5, or that the model would have been used in practice.

The OR team had initially hesitated before simplifying the output from the model from the 

precise probability distributions to show just 7 bands of probability. The later request for an 

even less refined level of output suggested that the OR team had misjudged the level of 

detail that would be useful to the hospital. That said, we feel the process sharing the full 

detail offered by the analytical model but being willing to simplify had considerable benefits 

for the project as a whole. 

7.3 The importance of trust

The staff interviews display a good level of trust in the model output. We consider that a key 

factor in establishing this trust was getting the data right and this is where close liaison 

between the OR team and the data manager and lead intensivists was crucial, particularly 

during the length of stay analysis described in section 4. In addition to the issue of some data 

not being recorded electronically until patient discharge (see section 6), it was only through 

our frequent discussions with the lead intensivist that we avoided missing a key piece of 

dataset, which was stored in a dataset the OR team didn’t know about. The data manager 

had not mentioned the other data set since we had not asked for it and so in this way it would 

have been very easy to finish the length of stay analysis without this extra information. 

Without this additional data set, we suspect that the length of stay groupings would have had 

less clinical face validity, regardless of their statistical performance. Although this would likely 
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have been picked up when presenting the analysis to the MDT, we would have lost credibility 

and trust

The 6 week pilot discussed in section 6.1 also helped to build trust. The clinical lead had 

wanted to start using the model output immediately the tool was ready. We think our 

insistence on this extra step of validation helped convince the wider team (and especially the 

data manger and bed manager) that we were genuinely committed to the tool being useful 

and genuinely interested in their feedback.  

It is worth noting that while the hospital team took reassurance from the pilot data, they were 

not particularly interested in the technical validation we conducted – part of their trust in the 

tool seemed to flow from a general trust in the OR team built up over a decade. Right or 

wrong, it is not certain that an identical tool developed by a team without that history of 

collaboration would have been trusted and used. This has implications for how academic OR 

groups work in health, and points towards the value of embedded teams or residency models 

[59,61]. 

7.4 Little things make a big difference

The other key factor influencing the use of the tool identified in the interviews was the ease of 

use of the software, and the commitment of the OR team to making the tool easy to use. 

The pilot was incredibly valuable here. The OR team using the tool as it would be used by 

the data manger routinely enabled small modifications to be identified that were simple but 

very effective in streamlining data entry. These included things like: adding the patient 

hospital ID to the input screen, allowing patients to be entered in any order, sorting patients 

by admission date once entered (very useful for iterative data entry on subsequent days), 

and adding various consistency checks to look for inconsistent dates, patient IDs etc. 

These last steps of making the tool easy to use did not feel like “academic research” and nor 

was it particularly interesting. If these last small steps are crucial for successful 

implementation, and we believe they are, this raises the issue of how academic operational 

researchers can be incentivised to take them.

8. Conclusion

This paper describes the complete project cycle of implementing a mathematical model to 

help manage short-term demand for beds within a paediatric intensive care unit. The project 
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was successful, with sustained daily, unsupported, use of the tool in the unit 3.5 years after 

implementation (at time of writing). Leading on from this project, one of the authors (CPa) is 

now working with the critical care units at GOSH 2 days a week as part of a “modellers in 

residence” programme. As part of this work, she is currently updating the parameters used in 

the forecasting tool (e.g. length of stay distributions) and exploring the opportunity for 

expanding this work to the general paediatric intensive care unit.
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Appendix 

Generating functions

Here we give some standard results concerning generating functions.

Let y be a positive integer valued random variable where P(y = i) = ri. The generating function 

that describes the probability distribution of y, Y(s), is defined as
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The parameter s is a dummy variable used only to define the generating function and has no 

physical significance. 

The generating function for the probability distribution of the sum, z, of a random number k of 

independent random variables y is given by 

Z s K Y s( ) ( ( ))  (A2)

where K(s) is the generating function for the probability distribution of k.

The generating function C(s) for c, the sum of two independent random variables a and b 

that have generating functions A(s) and B(s) is given by:

C s A s B s( ) ( ) ( ) . (A3)

For proofs of these standard results see, for example, Grimmett and Stirzaker (1992). 

A1. Grimmet G.R. and Stirzaker, D.R., (1992), Probability and Random Processes, 

Clarendon Press, Oxford
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Figure Captions

Figure 1 - Representation of sources of demand for beds on an intensive care unit over a 

short period of time.

Figure 2 - Length of stay groupings for patients currently on the unit. Yellow boxes show the 

final groups.

Figure 3 - Length of stay groupings for planned patients before admission to the unit. Yellow 

boxes show the final groups.

Figure 4 - length of stay distributions for the eight groupings for patients already on the unit in 

the validation data set.

Figure 5 - length of stay distributions for the five groupings for planned patients yet to arrive 

on the unit in the validation data set.

Figure 6 – Example input screen for the short-term bed demand tool. In this example the 

forecast is run on a Friday afternoon. Note that the hospital numbers and dates of birth have 

been changed to avoid identification.

Figure 7 - Example output screen for the short-term bed demand tool. The colours indicate 

the likelihood that that number of beds will be filled for that day. In this example, Friday, and 

Tuesday to Friday of the following week are likely to be busy (normally 16-18 beds on the 

CICU were staffed).

Figure 8 - Comparing the observed demand 3 days after the point of forecast among patients 

resident on the ward model to predictions. Essentially this chart shows good agreement 

between observations and the predicted distributions generated using the model and 

observations.

Table Captions

Table 1 - A summary of notation used

Table 2 - mean emergency demand by day of week for CICU.

Table 3 - simple validation of forecasting tool from the 6 week blind trial period.
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