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ABSTRACT

The young, fast-spinning, X-ray pulsar J0537−6910 displays an extreme glitch activity,
with large spin-ups interrupting its decelerating rotation every ∼100 days. We present nearly
13 years of timing data from this pulsar, obtained with the Rossi X-ray Timing Explorer. We
discovered 22 new glitches and performed a consistent analysis of all 45 glitches detected
in the complete data span. Our results corroborate the previously reported strong correlation
between glitch spin-up size and the time to the next glitch, a relation that has not been
observed so far in any other pulsar. The spin evolution is dominated by the glitches, which
occur at a rate ∼ 3.5 per year, and the post-glitch recoveries, which prevail the entire interglitch
intervals. This distinctive behaviour provides invaluable insights into the physics of glitches.
The observations can be explained with a multi-component model which accounts for the
dynamics of the neutron superfluid present in the crust and core of neutron stars. We place
limits on the moment of inertia of the component responsible for the spin-up and, ignoring
differential rotation, the velocity difference it can sustain with the crust. Contrary to its rapid
decrease between glitches, the spin-down rate increased over the 13 years, and we find the
long-term braking index nl = −1.22(4), the only negative braking index seen in a young pulsar.
We briefly discuss the plausible interpretations of this result, which is in stark contrast to the
predictions of standard models of pulsar spin-down.
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1 INTRODUCTION

Much of our knowledge on neutron stars comes from pulsar timing
observations, that is, tracking the rotational phase to study their spin
frequency ν and its evolution. The slow down rate | Ûν | of isolated
sources depends mainly on the electromagnetic energy losses and
provides, amongst other information, the test-ground for models of
pulsarmagnetospheres. Its evolution, usually expressed via the brak-
ing index n = ν Üν/ Ûν2, can be used to explore the processes governing
a neutron star’s magnetic field and emission. This quantity, however,
is hard to probe observationally: the effect of Üν is feeble, and usually
masked by timing noise. Furthermore, the internal dynamics (espe-
cially for relatively young pulsars) can have a strong impact on the
spin behaviour. The most notable timing phenomenon associated
with the physics of neutron star interiors is glitches: sudden and fast
increases of the spin frequency. An increase in the spin-down rate
and relaxation (over days to years) towards the pre-glitch rotational
state are often seen following a glitch (Espinoza et al. 2011; Yu et al.
2013).

? E-mail: antonopoulou.danai@gmail.com

Both the glitch spin-up event and the subsequent slow response
to it are linked to the presence of a superfluid component in the star’s
inner crust and core (Anderson & Itoh 1975; Haskell & Melatos
2015). Neutrons in a superfluid state can be weakly coupled to
the rest of the star, and thus store the required angular momentum
to accelerate the crust, to which the magnetosphere and emission
regions are anchored, resulting in the glitch. Vortex lines of quan-
tised circulation carry the angular momentum of the superfluid and
their number density defines its rotation rate. In equilibrium (and
in the absence of spatial inhomogeneities), vortices are distributed
in a rectilinear array and the average superfluid velocity field fol-
lows solid-body rotation, similar to that of the crust and charged
components of the neutron star. As the pulsar slows down due to
the external electromagnetic torque, the excess of vortices is re-
moved via their motion and annihilation at the superfluid boundary.
If such a continuous rearrangement of vortex density is prohibited
(for example as a result of decreased vortex mobility due to their
interaction with the nuclear lattice of the inner crust), differential
rotation builds up and the spin-down of the superfluid happens in
an episodic way, giving rise to glitches.

Weakly coupled superfluid regions will not immediately fol-
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low the glitch spin-up, which can be very abrupt - an upper limit of
40 s has been inferred for a glitch in the Vela pulsar (Dodson et al.
2002). Such regions are then driven out of their equilibrium state (or
further away from it) and decouple, reducing the effective moment
of inertia that the external torque acts upon. The resulting strength-
ening of the spin-down rate decays on timescales characteristic of
the relaxation of these regions and encodes important information
about their properties, such as their temperature and dominant cou-
pling mechanisms. Post-glitch relaxation can dominate the magne-
tospheric contribution to the evolution of the spin-down rate and
be responsible for observed large (> 3) braking indices (Alpar &
Baykal 2006). The conventional glitch model, as described above,
successfully accounts for a large part of glitch phenomenology; how-
ever, several pieces of the picture remain elusive. A non-exhaustive
list includes the exact trigger of vortex unpinning, the extent and lo-
cation of the superfluid that participates in a glitch and the coupling
strength between the various stellar components. These issues need
resolving before we can extract constraints on internal properties
from glitch observations and understand the effects of superfluidity
on the long-term evolution of neutron stars.

Here, we investigate the rotational history of the extraordi-
nary pulsar PSR J0537−6910 as uncovered by the ∼ 13 years of
observations with the Rossi X-ray Timing Explorer (RXTE). This
pulsar holds the record as the fastest non-recycled rotation-powered
pulsar known. Moreover, with the exception of two millisecond
pulsars which displayed one very small glitch each (Cognard &
Backer 2004; McKee et al. 2016), it is the fastest pulsar observed
to glitch. Its spin frequency of ν ' 62 Hz is about twice that of
the Crab pulsar, which is the next fastest spinning and frequently
glitching neutron star. PSR J0537−6910’s strong spin-down rate of
Ûν = −1.992 × 10−10 s−2 is second only to that of the Crab, and its
spin-down energy loss rate ÛE = 4.88 × 1038 erg s−1, the greatest
known to date.

PSR J0537−6910 is a particularly interesting neutron star: it
shows the highest glitch rate of any pulsar, and an atypical long-
term spin-down evolution characterised by a well-defined negative
braking index. Our analysis of the data and rotational parameters
reveals a total of 45 glitches (most of which have absolute sizes
amongst the largest observed in any pulsar), which display a strik-
ing regularity: the size of each spin-up strongly correlates with the
time until the next one. This relation not only has interesting theo-
retical implications, but moreover it can be used to predict the epoch
of future glitches (Middleditch et al. 2006) and –with designated
observations– constrain the spin-up timescale and early response.
We also present a systematic study of the glitch properties and de-
rive limits on the basic ingredients of the glitch mechanism in a
simple multifluid neutron star framework. Finally, we use this long
dataset to explore the overall growth of the spin-down rate and its
plausible physical interpretations.

2 OBSERVATIONS OF PSR J0537−6910

PSR J0537−6910 was discovered by RXTE in the supernova rem-
nant N157B (Marshall et al. 1998). The remnant, located in the
Large Magellanic Cloud, has a kinematic age of < 24 kyr as in-
ferred from Hα measurements (Chu et al. 1992), and a Sedov age,
estimated from its X-ray emission, of ∼ 5 kyr (Wang & Gotthelf
1998), which is in line with the characteristic spin-down age of the
pulsar (τsd = 4.93 kyr). Radio pulsations have not been detected
to date (Crawford et al. 2005), but strongly pulsed X-ray/soft γ-
ray emission is observed from 0.1 to above 50 keV (see Kuiper

& Hermsen 2015, for an overview and the characteristics of the
spectra and pulse profile).

RXTE monitoring of PSR J0537−6910 began on January 19,
1999 and continued until December 31, 2011. The general method
we use to derive the time-of-arrival (TOA) of the pulses is exten-
sively described in section 4.1 of Kuiper & Hermsen (2009). In our
case, however, the template used in the correlation procedure comes
from a 60 bin asymmetric Lorentzian model fit to a high-statistics
pulse profile, which was obtained with the Proportional Counter
Array (PCA). During its ∼16 years operational lifetime, the PCA
experienced several high-voltage breakdowns in all five constituting
detector units, which became more frequent as the instrument aged.
The most stable unit was PCU-2, which was on almost all of the
time. In particular, after ∼2006, typically one (in 50 per cent of the
cases) or two (40 per cent) of the five PCUs were operational during
a standard observation. This significantly reduced the sensitivity to
pulsed flux detection and resulted in larger uncertainties in the re-
constructed TOAs for PCA observations performed during the late
stages of the RXTE mission. In this work, we sometimes had to
combine observations which were closely spaced in time (usually
by a week). The cadence of TOAs and their errors can be seen in the
upper panels of Figure 1. Though observations were sparser in the
period after 2004, typical TOA separation is less than two weeks.
After 2008, TOA errors can be sometimes quite large, complicating
the timing analysis.

3 TIMING ANALYSIS

3.1 Methodology

A preliminary reduction was carried out in order to determine time
intervals (and respective TOA subsets) for which it is possible to
find a phase-coherent timing solutions and to identify the epochs
of candidate glitch events. All medium to large glitches (& 10µHz)
happened at epochswhen coherencewas lost. Some smaller glitches,
however, were found after visual inspection of the timing residuals
with respect to a simple slow-down model for each interval.

We detected a total of 45 glitches in the entire dataset, which are
presented in Table 2. The list comprises 24 events which occurred
during the first ∼ 7 years of data, 23 of which have been previously
reported (Marshall et al. 2004; Middleditch et al. 2006), one small
glitch identified by Kuiper & Hermsen (2015) (glitch 7 in Table 2),
and 21 new glitches in the newly examined data, after MJD 53968.

In general, the TOAs of an inter-glitch time interval were fitted
with a Taylor expansion in phase φ of the form:

φ(t) =φ0 + ν0 · (t − t0) +
Ûν0
2
· (t − t0)

2 +
Üν0
6
· (t − t0)

3 (1)

where φ0, ν0, Ûν0 and Üν0 are the reference phase, frequency and its
first two time derivatives at epoch t0. Such a timingmodel provides a
good fit for all time intervals except the one following the first glitch.
This is due to the presence of an exponentially decaying component
in the post-glitch recovery, as we discuss in section 3.1.1. All fits
were done with the timing package tempo2 (Hobbs et al. 2006).
The results are presented in Table 1.

The last term of Eq. 1 is important, as it describes the gradual
evolution of Ûν between glitches, but its effect is significant only for
the longest inter-glitch intervals. For those intervals less than ∼ 40
days long (or with exceptionally small numbers of TOAs) the quality
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Figure 1. Top panel: TOA separation as a function of time. Middle panel: TOA error. Lower panel: RMS of the residuals and χ2 values of the respective fits
to a timing model (see text for details on the fitting method used for each segment).

of the fit does not significantly improve by including this term1 and
resulting Üν0 values are not accurately determined. The timingmodel
and quoted best-fit parameters for such segments exclude that term.

When Üν was detected, we used it to calculate the inter-glitch
braking index nig. Using the inter-glitch solutions avoids contami-
nation of nig from the techniques used to characterise the glitches
but it should be stressed that quoted values are only indicative of
the overall inter-glitch spin evolution and (weakly) depend on the
choice of t0. Although a model with constant Üν describes the data
rather well (see last two columns in Table 1) with the minimum
required free parameters, some departures from this linear decay of
the spin-down rate are observed (asides the exponential recovery
after the first glitch). For example, the resulting “average" | Üν | is usu-
ally smaller for longer intervals, reflecting the fact that the initial,
fast post-glitch recovery is slowing down at later times.

1 The difference in RMS is typically less than 10µs, the maximum was
30µs for segment nr.41.

3.1.1 Glitches

Typically, glitches are described by additional terms in Eq. 1, that
set in after the glitch epoch tg:

φg(t) =∆φ + ∆νp · (t − tg) +
∆ Ûνp
2
· (t − tg)2 +

∆ Üνp
6
· (t − tg)3

−

(∑
i

∆ν
(i)
d τ
(i)
d e−(t−tg)/τ

(i)
d

)
. (2)

Quantities with index p describe persisting step-like (unresolved in
time) changes in the rotational parameters, while an index d de-
notes exponentially decaying components in the post-glitch timing
residuals. In the following we will drop the index p for simplic-
ity - decaying components will still be denoted with the index d.
The term ∆φ ensures phase coherence between the pre-glitch and
post-glitch TOAs, which is lost if the glitch epoch is not known
precisely.

The determination of tg is difficult and depends mainly on
the TOA coverage and the size of the glitch. With the reasonable
assumption that the rotational phase is continuous across the glitch,
the time of the event can be pinpointed by finding the time at
which ∆φ = 0. Unfortunately, this leads to unique solutions only for
relatively small glitches and/or when the observational gap around
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Table 1. Spin parameters (ephemeris) of PSR J0537-6910, for the glitch-free observational spans. Corresponding inter-glitch braking indices nig are calculated
as ν Üν/Ûν2. The 1σ errors in the last quoted digit are shown between parentheses.

Nr. Start End Nr. TOAs Epoch ν Ûν Üν nig RMS χ2

MJD MJD MJD Hz 10−15 Hz s−1 10−20 Hz s−2 µs

00 51197.1 51262.7 11 51229 62.040383761(4) -199227(2) 1.0(4) 16(6) 89.6 0.8
01 51294.1 51546.7 33 51420 62.037138047(1) -199226.6(1) 0.49(1) 7.6(1) 208.6 3.5
02 51576.6 51705.2 18 51640 62.033378994(2) -199267.5(4) 0.75(4) 12(1) 130.6 1.9
03 51716.0 51817.7 17 51766 62.031229134(2) -199286(1) 1.2(1) 19(1) 155.0 2.4
04 51833.8 51874.6 9 51854 62.029722720(5) -199294(3) 2(1) 32(19) 58.5 0.6
05 51886.9 51954.8 10 51920 62.028594933(6) -199277(2) 3(1) 44(8) 151.5 2.5
06 51964.4 52144.1 26 52054 62.026315878(1) -199279.8(3) 0.70(2) 10.9(3) 204.4 3.5
07 52155.6 52165.3 5 52160 62.02449120(2) -199090(179) – – 84.6 1.2
08 52175.1 52229.5 9 52202 62.023779326(3) -199325(3) 1.7(5) 26(8) 70.0 1.0
09 52252.8 52367.4 21 52310 62.021945863(2) -199307.9(3) 0.6(1) 10(1) 91.1 0.6
10 52389.5 52445.4 10 52417 62.020113717(9) -199332(4) 1(1) 21(17) 175.0 3.5
11 52460.0 52539.0 14 52499 62.018715011(3) -199324(1) 1.2(2) 18(3) 81.1 0.7
12 52551.6 52717.4 29 52634 62.016416116(1) -199314.2(2) 0.72(2) 11.2(3) 138.4 1.4
13 52745.4 52791.9 8 52768 62.014117657(3) -199359(5) – – 83.0 1.0
14 52822.8 52883.7 12 52853 62.012669329(4) -199365(2) 1.8(4) 28(6) 90.7 1.1
15 52889.1 53007.2 20 52948 62.011047480(2) -199342(1) 1.3(1) 21(1) 130.9 1.7
16 53019.8 53121.7 12 53070 62.008967229(1) -199363.5(3) 0.95(4) 15(1) 49.2 0.2
17 53128.1 53142.4 5 53135 62.007848725(6) -199393(45) – – 63.5 0.5
18 53147.0 53284.7 14 53215 62.006494752(2) -199370.1(4) 0.87(4) 14(1) 102.0 1.1
19 53290.9 53443.4 21 53367 62.003900833(3) -199377(1) 1.1(1) 18(1) 252.7 3.5
20 53446.8 53548.7 13 53497 62.001677516(4) -199399(1) 1.7(1) 26(2) 184.4 1.8
21 53552.0 53681.6 15 53616 61.999647307(3) -199395(1) 1.1(1) 17(1) 164.8 1.9
22 53710.6 53859.2 18 53784 61.996778414(2) -199397(1) 0.83(5) 13(1) 188.6 2.0
23 53862.1 53946.7 12 53904 61.994725551(7) -199426(3) 2.2(4) 35(6) 239.5 3.6
24 53952.7 53995.7 8 53974 61.993520808(8) -199349(6) 5(2) 81(26) 102.7 1.0
25 54002.5 54088.4 9 54045 61.992319414(3) -199448(3) – – 248.0 4.6
26 54099.3 54241.5 13 54170 61.990188310(2) -199429(1) 0.73(5) 11(1) 143.7 2.2
27 54245.0 54269.1 7 54255 61.988723956(3) -199360(12) – – 61.6 0.4
28 54273.1 54441.3 17 54357 61.986996441(2) -199445.5(4) 0.80(3) 12(1) 191.6 1.3
29 54455.0 54534.2 9 54494 61.984650498(5) -199471(2) 1.6(3) 25(5) 141.0 0.9
30 54541.8 54573.3 5 54557 61.98357186(1) -199495(22) – – 116.7 1.7
31 54582.5 54637.1 11 54609 61.98268471(1) -199490(4) -2(1) -26(-21) 82.0 0.7
32 54640.3 54710.3 14 54675 61.981555144(5) -199469(3) 1.8(4) 29(7) 207.9 1.8
33 54714.3 54762.5 7 54738 61.98047594(2) -199475(13) 6(3) 98(45) 207.5 2.1
34 54770.7 54885.3 11 54828 61.978947041(2) -199498.4(3) 1.1(1) 16(1) 65.5 0.2
35 54904.1 55040.7 14 54972 61.976486188(1) -199477.1(4) 0.95(3) 15(1) 86.9 0.3
36 55044.8 55181.7 16 55113 61.974069484(3) -199449(1) 2.1(1) 33(1) 193.4 1.9
37 55185.4 55275.4 9 55230 61.972066323(5) -199512(1) 0.7(2) 11(4) 124.7 1.1
38 55284.3 55444.8 16 55364 61.969790480(4) -199503(1) 0.6(1) 9(1) 311.6 4.4
39 55457.8 55516.6 8 55487 61.967680846(7) -199523(2) 2(1) 30(11) 102.0 0.9
40 55520.7 55549.3 7 55535 61.966861019(3) -199528(8) – – 64.8 0.3
41 55562.5 55584.4 7 55573 61.966206683(7) -199412(20) – – 109.5 1.3
42 55589.3 55610.5 6 55599 61.96576392(2) -199574(49) – – 196.9 4.4
43 55619.0 55786.1 16 55702 61.964016055(4) -199529.2(5) 0.88(5) 14(1) 276.3 3.7
44 55794.7 55818.6 5 55806 61.962221550(6) -199428(23) – – 92.3 0.8
45 55823.0 55926.9 11 55872 61.961105096(5) -199549(1) 1.1(2) 16(3) 200.4 2.5

tg is small. It was possible to use the condition ∆φ = 0 to determine
the glitch epoch with higher accuracy only for the six smallest
glitches. For the other glitches, tg is poorly constrained and was
defined as the central point between the pre-glitch and post-glitch
sets of TOAs. The error was calculated as half the distance between
the two datasets, leading to uncertainties of 5 to 10 days.

The glitch parameters were found by fitting the function φ(t)+
φg(t) to the TOAs around the assumed glitch epoch and delimited by
the previous and next glitches. For all glitches but the first one, we
dismiss the last term of Eq. 2 in the model because no evidence for
exponential relaxations are present. We allow instead for a non-zero
jump in Üν, which accounts for the change in gradient of Ûν with one

parameter less than an exponential term. This was found sufficient
to describe the post-glitch datasets. As expected, however, if the
pre- or post-glitch interval is too short, Üν will be poorly detected
over that period of time, compromising the measurement of∆ Üν. The
situation gets worse when both intervals surrounding tg are short.
We based the decision of including or not these terms on the results
of glitch simulations, as described in the next section. The outcome
of the simulations offered also a way to assess the uncertainties on
our derived parameters.
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3.1.2 Simulations

We performed glitch simulations in order to define a consistent
technique, which would enable the recovery of glitch parameters as
accurately as possible for all glitches in PSR J0537−6910. While
∆ν is almost always well constrained, the spin-down changes ∆ Ûν are
much more uncertain and sensitive to the methods and models used
to handle the data, especially if the TOA coverage is poor and the
error bars large. Additionally, although PSR J0537−6910 exhibits
large Üν between glitches, many inter-glitch intervals are too short
to allow its precise determination. Because of this, the presence of
a change ∆ Üν at a glitch is sometimes unclear and hard to quantify.
The inclusion, or not, of Üν and ∆ Üν in the glitch timing model can
significantly vary the measured values of ∆ Ûν and, though to a lesser
extent, ∆ν. We use simulations to examine the output of a range of
timing models in order to optimise the measurement of ∆ν and ∆ Ûν
for this particular pulsar. The investigated models varied mostly on
the treatment of the Üν terms of Eqs. 1 and 2 2.

Simulated sets of TOAs, following the measured rotation of
PSR J0537−6910, were produced with the toasim plugins available
in tempo2. Four different situations were identified in the real data
and reproduced separately in the simulations: cases in which both
pre- and post-glitch intervals are long (& 100 days, which also
ensures that there are more than 10 TOAs in each “long" subset
of data), cases in which only the post-glitch interval is long, cases
in which only the pre-glitch interval is long and cases in which
both intervals are short. The TOA uncertainties and cadence for the
simulated datasets were taken from the real data. For that we used
two representative examples of pre- and post-glitch sets for each of
the four cases described above.

A glitch was introduced at an epoch drawn from a uniform
probability distribution covering 20–30 days around the inferred
glitch epoch of the original data. Glitch parameters ∆ν, ∆ Ûν and
∆ Üν were randomly drawn from representative normal distributions,
whichwere derived frompreliminarymeasurements of these param-
eters for the 45 glitches. For ∆ Üν we considered only measurements
coming from cases in which both the pre- and post-glitch intervals
are long. Exponentially decaying terms, which in general are not
favoured by the data, were not included in the simulations.

The simulated glitches were modelled by global fits, to the pre-
and post-glitch data, of an underlying spin-down timing model plus
the additional glitch terms (Eqs. 1 and 2). The best-fit parameters
were then compared to the original values. The fitting functions
corresponded to all possible combinations between including or not
the terms Üν and ∆ Üν. We also tested models in which Üν was kept
at a constant value, chosen as the average of the observed values
for several inter-glitch TOA sets, or as the value corresponding to
the longest of the pre- and post-glitch intervals. For the cases in
which both intervals are short (< 100 days) we performed extra
simulations of small glitches and tested, in addition, models with
and without the ∆ Ûν term. This was motivated by preliminary results
showing that the detection of this term is hard for small glitches,
which –in the case of this particular pulsar– are always surrounded
by very short datasets.

We found that the inclusion of all terms leads to the most
accurate measurements of ∆ν and ∆ Ûν only when both the pre- and
post-glitch intervals were long (& 90 days). For the other three cases

2 A detailed analysis of the efficacy of glitch measuring techniques, based
on a big sample of simulated data aimed to represent different sources and
monitoring programmes, will be presented elsewhere (Espinoza et al. in
prep.).

however, where one or both intervals are short, the real parameters
are better recovered if we remove the ∆ Üν term and fit for Üν, even
if the latter is not well constrained (i.e. its fractional error is larger
than 1). From the simulations focussed on the small glitches and
short intervals we saw that even if ∆ Ûν is poorly constrained, setting
it to zero negatively affects the accuracy of the measured ∆ν.

The glitch measurements of simulated data serve also as a
method to probe the uncertainties of the glitch parameters. Usually,
standard (1σ) errors from the fitting procedures are reported in
the literature, although they are often underestimates of the true
errors and do not account for the uncertainty in the glitch epoch.
According to the simulations, for the chosen fitting functions used in
this analysis, 1σ errors are underestimated, in general, by a factor of
∼ 2. Consequently, we applied this multiplying factor to all best-fit
standard errors3.

As already mentioned, when tg cannot be uniquely determined
it is set to the mid-point between the pre- and post-glitch datasets.
Our simulations results confirm that this is typically a reasonable
choice, often with little impact on the accuracy of inferred param-
eters. Nonetheless, the errors arising from the uncertainty in tg
should not be ignored. This is particularly important if the gap in
the TOAs around tg is long. We quantified these uncertainties by
performing two additional fits per glitch, setting tg to be the epoch
of the TOAs bracketing the event. The error was then taken as half
of the difference of the measured parameters at the two boundaries
and was compared to the errors of the fitting procedure with tg set
at the mid-point. We quote the largest of the two in Table 2.

3.2 Results

All 45 glitches were analysed according to our findings from mea-
suring simulated glitches (section 3.1.2). That is, it is best to fit for Üν
and set∆ Üν = 0 in all cases in which any, or both, of the datasets prior
and after the glitch are shorter than ∼90 days. Both terms should
be included otherwise, which was the case for 18 glitches in this
sample. The precise choice of 90 days is an empirical one, based on
the outcome of the simulations. It does, however, have some phys-
ical justification as this is approximately the timescale over which
the Üν terms of the fitted equations become comparable to the errors
on the higher order Ûν terms. We note that when ∆ Üν is not used and
set to zero, the Üν value obtained from the fit is contaminated by the
glitch and has no physical meaning. Meaningful measurements of
Üν were performed differently, from fits only to glitch-free intervals
(Table 1). The two smallest glitches required the additional exclu-
sion of the ∆ Ûν term, as explained below. The lower panel of Figure
1 displays the statistics of the fitting procedure (rms and χ2 values
of the residuals).

The glitch parameters are presented in Table 2. Their properties
are described and discussed in section 4. As discussed earlier, Üν, ∆ Ûν
and ∆ Üν are sometimes unconstrained (as reflected by > 1 fractional
errors) but still required in the fit in order to recover correctly the
rest of the parameters. This is the case for 15 glitches, out of which
10 have only ∆ Üν unconstrained.

A decaying term, replacing ∆ Üν, was necessary to produce fea-
tureless (flat) residuals only after the first glitch, where a small
amplitude exponential recovery with timescale τ ∼ 20 days is de-
tected. This is the largest glitch in the data and it is followed by

3 This means that our reported best-fit errors on glitch parameters (e.g. in
Table 2) should be viewed as approximately representing a∼ 68%confidence
interval.
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Table 2. Parameters for the 45 glitches of PSR J0537-6910, the fitted data range (Start/End epoch) and best-fit statistics (RMS and χ2). Details on the methods
used to characterise the glitches and quantifying the parameters’ errors (last digit errors in parentheses) are presented in Section 3.

G. Nr. Start End G. Epoch ∆φ ∆ν ∆ Ûν ∆Üν RMS χ2

MJD MJD MJD µHz 10−15 Hz s−1 10−20 Hz s−2 µs

1 51197.1 51423.0 51278(16) 0.61(3) 42.4(2) -123(12) – 94.2 0.9
2 51423.0 51705.2 51562(15) 0.63(3) 27.9(2) -148(15) 0.3(3) 126.8 1.5
3 51576.6 51817.7 51711(5) -0.06(2) 19.5(1) -123(13) 0.5(2) 142.4 2.1
4 51716.0 51874.6 51826(8) 0.13(2) 8.7(1) -100(16) – 126.0 1.8
5 51833.8 51954.8 51881(6) 0.15(2) 8.7(1) -139(44) – 108.9 1.5
6 51886.9 52144.1 51960(5) 1.1(2) 28.2(3) -156(94) -2(1) 192.0 3.3
7 51997.4 52165.3 52152(1) 0.00(1) 0.15(2) – – 113.2 1.1
8 51997.4 52229.5 52170(5) 0.68(2) 11.4(1) -155(32) 1(1) 98.9 1.0
9 52175.1 52367.4 52241(12) 0.37(2) 26.44(5) -48(12) – 91.8 0.8
10 52252.8 52445.4 52378(11) 0.05(2) 10.4(1) -85(16) – 131.3 1.3
11 52389.5 52539.0 52453(7) -0.06(3) 13.52(5) -76(40) – 128.4 1.6
12 52460.0 52717.4 52545(6) -0.4(1) 26.1(1) -92(40) -0.4(5) 121.0 1.2
13 52551.6 52791.9 52731(14) -0.04(3) 9.0(2) -128(12) – 124.7 1.3
14 52745.4 52883.7 52807(15) -0.1(1) 15.8(2) -125(59) – 91.4 1.1
15 52822.8 53007.2 52886(3) -0.38(1) 14.55(2) -87(9) – 118.8 1.5
16 52889.1 53121.7 53014(6) 0.50(1) 21.0(1) -143(12) -0.4(2) 110.1 1.2
17 53019.8 53142.4 53125.5(1) 0.00(1) 1.0(1) -83(69) – 52.8 0.3
18 53019.8 53284.7 53145(2) 0.29(1) 24.25(1) -38(7) -0.1(1) 81.2 0.6
19 53152.4 53443.4 53288(3) -0.18(2) 24.51(4) -137(15) 0.3(2) 183.9 2.6
20 53290.9 53548.7 53445(2) -0.35(2) 16.09(4) -174(21) 0.6(4) 232.2 2.9
21 53446.8 53681.6 53550(2) 0.00(2) 19.90(4) -134(23) -0.6(3) 172.4 1.9
22 53552.0 53859.2 53696(14) 1.0(1) 25.4(2) -139(19) -0.2(2) 177.1 2.0
23 53710.6 53946.7 53861(1) -0.14(2) 14.56(4) -167(28) 1(1) 209.7 2.6
24 53862.1 53995.7 53951.3(3) 0.00(3) 1.1(1) -59(47) – 202.7 2.7
25 53952.7 54088.4 53999(3) -0.19(3) 21.9(1) -88(54) – 220.8 3.9
26 54002.5 54241.5 54094(5) -0.8(1) 23.0(2) -18(52) 1(1) 179.9 3.2
27 54099.3 54269.1 54243(8) 0.00(1) 0.06(2) – – 126.9 1.6
28 54245.0 54441.3 54271(2) -0.27(2) 30.3(1) -154(41) – 147.2 1.1
29 54273.1 54534.2 54448(7) -0.26(2) 14.8(1) -151(30) 1(1) 176.4 1.2
30 54455.0 54573.3 54538(4) 0.28(2) 7.1(1) -108(51) – 126.3 1.1
31 54541.8 54637.1 54578(5) 0.36(4) 9.1(1) 68(145) – 94.3 0.9
32 54582.5 54710.3 54639(2) -0.39(2) 7.98(3) -84(48) – 155.7 1.5
33 54640.3 54762.5 54712(2) 0.22(4) 6.5(1) -109(58) – 227.3 2.0
34 54714.3 54885.3 54767(4) -0.50(2) 22.4(1) -112(28) – 164.3 1.3
35 54770.7 55040.7 54895(9) 0.31(2) 21.1(1) -103(11) -0.1(1) 77.6 0.3
36 54904.1 55181.7 55043(2) -0.09(2) 13.45(3) -159(16) 1.2(2) 156.8 1.2
37 55044.8 55275.4 55184(2) -0.12(2) 12.94(4) -223(27) -1(1) 170.8 1.6
38 55185.4 55444.8 55280(4) -0.4(1) 34.0(2) -63(58) 0(1) 254.7 3.5
39 55284.3 55516.6 55451(7) 0.23(3) 10.47(4) -79(15) – 258.7 3.6
40 55457.8 55549.3 55519(2) -0.45(1) 7.58(4) -87(53) – 88.6 0.6
41 55520.7 55584.4 55552(2) 0.0(1) 0.5(1) 323(413) – 88.3 0.8
42 55562.5 55610.5 55587(2) -0.3(1) 5.4(1) -242(823) – 154.2 3.0
43 55589.3 55786.1 55615(4) 0.15(4) 28.1(1) -32(91) – 249.1 3.8
44 55619.0 55818.6 55786.06(1) -0.02(3) 0.9(1) 46(39) – 281.9 4.3
45 55794.7 55926.9 55819(2) -0.19(1) 21.4(1) -181(71) – 164.9 1.9

a much longer glitch-free interval (∼ 280 d) compared to all other
glitches (< 180 d). While exponential recoveries could be following
the other glitches too, their smaller magnitude and shorter post-
glitch intervals render them undetectable.

The parameters for the first glitch are presented in Table 3. We
also perform a fit using a smaller post-glitch interval, for which the
exponential term can be omitted, for consistency with the derivation
of parameters for the rest of the glitches; the resulting values of this
fit are the ones presented in Table 2. Note that for the fit of the
following (second) glitch, we use a shortened pre-glitch interval, to
avoid the strong decaying phase.

For glitches 7 and 27, the two smallest glitches (with ∆ν <

1.0 µHz), we were unable to constrain both ∆ν and ∆ Ûν, not only due

to their magnitude but also because they are followed by extremely
short post-glitch intervals. Glitch 27 is the smallest and has a pre-
glitch interval with just 7 TOAs, covering 24 days. In this case,
results could only be obtained from a fit to a model with ∆ν alone.
Glitch 7 happened only 9.6 days before the next glitch, an interval
containing only 5 TOAs. Fitting only for a frequency change results
in the value presented in Table 2. This model gives ∆φ = 0 in
between the established pre- and post-glitch datasets, consistent
with what visual examination of the data suggests. It should be
noted though that the observed departure from the pre-glitch timing
model can be equally well fitted by a change in spin-down rate
alone, taking place (i.e. the time at which ∆φ = 0) before the last
TOA of the pre-glitch dataset. This fit offers a very similar reduced
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Table 3. Glitch parameters for the first glitch (the largest spin-up found in this study), accounting for the presence of an exponential recovery.

Start (MJD) End (MJD) Glitch Epoch (MJD) ∆φ ∆ν (µHz) ∆ Ûν (10−15 Hz s−1) ∆νd (µHz) τd (days) RMS (µs) χ2

51197.1 51546.7 51278(16) -0.5(1) 42.3(2) -70(7) 0.3(1) 21(4) 104.6 0.9

χ2 value as the fit for ∆ν alone and leads to a positive change
∆ Ûν = (100 ± 8) × 10−15 Hz/s, i.e. a “timing noise” kind of event.

While all glitches were fitted individually, without including
other glitches in the pre- or post-glitch datasets, for glitches 8 and
18 it was necessary to break this rule. In both cases the pre-glitch
datasets contain only 5 TOAs (the fewest of any inter-glitch in-
tervals), hence it was necessary to include TOAs from before the
previous glitch to create new, longer datasets. The parameters of the
previous glitches were kept fixed to their respective best-fit values
during the new fits. Both cases concern very small events, unlikely
to contaminate significantly the measurements of glitches 8 and 18,
which are large ones. We note, nonetheless, that their reported sizes
are measured mainly with respect to the timing solutions valid prior
to glitches 7 and 17, respectively.

The sequence of glitches in time, as well as their magnitude
in spin frequency4 are shown in the lower panel of Figure 2, while
the upper panel displays the cumulative increase in frequency due
to the glitches. The average inter-glitch time interval is ∼ 103 days,
leading to a glitching rate of ∼ 3.5 per year, the highest observed so
far in any pulsar. We do not find evidence for significant variations
of the glitch activity with time.

Finally, the history of the spin-down rate is presented in Figure
5. As can be seen in this plot, the effect of glitches in the spin-
down evolution is rather dramatic. A quasi-linear decay of | Ûν | is
clearly seen after each glitch (or, in the case of the first glitch, once
the exponential recovery no longer dominates), implying inter-glitch
braking indices well above 3; on the other hand, overall, there is a net
increase in the spin-down rate over the course of the observations.
This, in turn, can be associated with a negative long-term “braking
index”. We will discuss the physical interpretation of these results
in the following.

4 GLITCH PROPERTIES AND INTERPRETATION

In the previous section we identified and parameterized, as con-
sistently as possible, 45 glitches contained in the RXTE data of
PSR J0537−6910. Figure 3 presents these glitches in a ∆ Ûν − ∆ν
diagram, together with detectability limits for recovering (∆ Ûν < 0)
glitches derived according to Equation 2 in Espinoza et al. (2014).
We use a value of 300 µs as the maximum between TOA error and
the RMS of the (inter-glitch) phase residuals, and two different ob-
servation cadences of 10 and 30 days. The values for these three
parameters were chosen in order to obtain a very conservative esti-
mate of the detection limits. As can be seen in figure 1, typically the
TOA error and RMS are much smaller than 300 µs, and observa-
tions are usually separated by no more than two weeks. This gives
us confidence that our glitch sample is complete above, at least,
∆ν ' 1 µHz. Most likely all glitches in the examined dataset that
had ∆ν & 0.3 µHz have been detected, unless they had an excep-
tionally large ∆ Ûν and occurred in the few observing periods with

4 For the first glitch, the displayed size is the sum of the persisting and
decaying component.
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Figure 2. Glitches in PSR J0537−6910. Top panel: The cumulative increase
in spin frequency over time due to the abrupt changes at glitches. The glitch
activity parameter (see Section 4.1) can be extracted by a linear fit in this
plot. Lower panel: The sizes and distribution of the 45 glitches in time.

TOA separation > 20 − 30 days. We will now examine the proper-
ties of the glitch population of PSR J0537−6910, and discuss their
implications in a simple superfluid glitch model framework.

4.1 The frequency changes

The spin-ups, ∆ν, span about two orders of magnitude. In other
pulsars with such a broad range of glitch sizes, a power-law provides
a good description of the distribution (Melatos et al. 2008; Espinoza
et al. 2014). In the case of PSR J0537−6910 however, glitch sizes
appear to be normally distributed, with a mean ' 15.9 µHz and
standard deviation ' 10.8 µHz (probability 85% and 89% using
the Cramer von Mises or K–S test respectively). The glitch “waiting
times" ∆T are consistent with a Weibull distribution (Cramer von
Mises probability 94%), with shape and scale parameters 1.74 and
118.4 days respectively (with a mode of 72.5 days and mean 105.5
days).

The regularity in glitch size and recurrence times (Figure 2)
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Figure 3. The time interval to the next glitch versus the spin-up size
of the preceding one. The dashed line goes through the origin (slope ⇠
6.44 days/µHz) and is the best fit to the data.
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(between the first and second glitch) leads to a very similar minimum
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of 3.1⇥10�2 rad/s, but relies on the uncertain extrapolation
of the inter-glitch timing solution to the glitch epochs.

If we were to relax our assumptions, the limits for the critical
lag would change. For example, a partial coupling of region G
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< 0) would reduce the inferred !
cr

and require a realistic
treatment of the superfluid’s di�erential rotation. On the other hand,
if the region where vortices are immobilised is not disconnected
from superfluid regions closer to the rotational axis that allow vortex
currents, vortices could accumulate there and the real critical lag
could even be higher than our estimate.

4.2 The spin-down rate changes

A negative change of the spin-down €⌦
c

= 2⇡ €⌫, unresolved in time,
accompanies the majority of glitches. The post-glitch €⌫ evolution
is well approximated by a linear increase (decreasing magnitude of
spin-down rate), untill the epoch of the next glitch. The only excep-
tion to this nearly linear behaviour is the first (and largest) glitch, for
which the inclusion of a short-term (⇠ 20 days) exponential recov-
ery in the timing model significantly improves the residuals. The
inter-glitch evolution is characterised by a positive ‹⌫ of the order
10�20 Hz/s2, and large braking indices (n

ig

⇠ 22 on average, see
Table 1).

The measurements of � €⌫ are less accurate than those of �⌫,
hindering a robust statistical analysis. Using only those glitches (37
out of 45) that have a clear detection of � €⌫ < 0, the best-fit distri-
bution is normal with mean ' �118.4 ⇥ 10�15 Hz/s and standard
deviation' 44.4⇥10�15 Hz/s (Cramer von Mises probability 94%).
We do not observe a hard upper limit of |� €⌫ | ' 150⇥10�15 Hz/s as
suggested by Middleditch et al. (2006), but according to the above
distribution the probability for |� €⌫ | > 200 ⇥ 10�15 Hz/s is indeed
very low.

The changes � €⌫ for all glitches do not appear to correlate
with �⌫. Furthermore, we do not find evidence for the correlation
between the time interval preceding a glitch and the change � €⌫
which was reported by Middleditch et al.. We noted though that the
smallest glitches of our sample (�⌫ > 1 µHz) do not demonstrate the
same behaviour as the rest, that is, none of them has a clear negative
change in €⌫. Instead, glitches 7, 27 and 41 have � €⌫ consistent with
being zero, and the timing solution for glitch 44 gave a positive
� €⌫ but with a large fractional error (0.85) thus potentially also
had no e�ect on €⌫. Assuming that these small spin-ups do not act
to “reset" the clock for the spin-down rate changes, we calculated
“waiting times" only between glitches with�⌫ > 1 µHz (41 events).
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Figure 3. The time interval to the next glitch versus the spin-up size
of the preceding one. The dashed line goes through the origin (slope ⇠
6.44 days/µHz) and is the best fit to the data.
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We do not observe a hard upper limit of |� €⌫ | ' 150⇥10�15 Hz/s as
suggested by Middleditch et al. (2006), but according to the above
distribution the probability for |� €⌫ | > 200 ⇥ 10�15 Hz/s is indeed
very low.

The changes � €⌫ for all glitches do not appear to correlate
with �⌫. Furthermore, we do not find evidence for the correlation
between the time interval preceding a glitch and the change � €⌫
which was reported by Middleditch et al.. We noted though that the
smallest glitches of our sample (�⌫ > 1 µHz) do not demonstrate the
same behaviour as the rest, that is, none of them has a clear negative
change in €⌫. Instead, glitches 7, 27 and 41 have � €⌫ consistent with
being zero, and the timing solution for glitch 44 gave a positive
� €⌫ but with a large fractional error (0.85) thus potentially also
had no e�ect on €⌫. Assuming that these small spin-ups do not act
to “reset" the clock for the spin-down rate changes, we calculated
“waiting times" only between glitches with�⌫ > 1 µHz (41 events).
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Figure 3. Conservative glitch detection limits and the changes in frequency,
∆ν, and spin-down rate, |∆ Ûν |, for the 40 glitches with ∆ Ûν < 0 (blue dia-
monds). Only the change ∆ν is shown for the 3 glitches with ∆ Ûν > 0 (black
circles) and the two glitches for which ∆ Ûν was not fitted for (black crosses).
The solid line represents the detection limit for phase residuals or TOA
error of 300µs, while the two dashed lines correspond to the limits due to
TOA separation greater than 10 and 30 days. Glitches with (∆ν, ∆ Ûν < 0)
above these lines would not have been identified in observations with such
respective parameters.

suggests a common underlying mechanism and trigger for the large
glitches in PSR J0537−6910. This is further confirmed by a corre-
lation between the size ∆ν of a glitch to the time ∆T until the next
one, as can be seen in Figure 4. Instead of simply using the time
between glitches, however, it is more natural to compare the amount
by which the star span down before the next glitch, Ûν∆T , with the
size ∆ν of the preceding one. These two quantities are indeed also
correlated.

For the first 23 glitches, Middleditch et al. (2006) report a
correlation coefficient 0.94 between ∆ν and ∆T . We verify the
existence of a strong and significant correlation using our twofold
sample (45 glitches): the linear correlation coefficient (Pearson’s
coefficient) for our sample is ∼ 0.95 (with probability pP ∼ 3 ×
10−22) and the Spearman’s rank correlation one is rsr = 0.95 (pS ∼
5× 10−23). Almost identical results are obtained for the correlation
between ∆ν and Ûν∆T (with the latter calculated as the integral of
Ûν(t) over∆T using the inter-glitch solutions of Table 1). This implies
that glitches are triggered when some critical threshold is reached
due to the spin-down, and their sizes are related to the departure
from this threshold at each event.

There are two main candidates for the quantity that builds up
to its critical value: stresses in the crust, and the rotational lag ω be-
tween the superfluid and “normal" stellar component. Crustquakes,
however, cannot be solely responsible for the observed spin-up since
such large events are expected to be far less common than the ob-
served glitch rate. Most, if not all, of the increase in spin must be the
result of angular momentum transfer from the internal superfluid.
We will thus assume in the following that glitches originate from
the same superfluid region that rapidly transfers angular momen-
tum to the crust when its critical rotational lagωcr is exceeded. This
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Figure 4. The time interval to the next glitch versus the spin-up at a glitch.
The best linear fit description of the data is ∆T = 5.17(8)∆ν + 22.8(1.1)
(solid line), while a physically motivated fit imposing the line to go through
the origin returns a slope ∼ 6.4(1) daysµHz−1 (dashed line).

naturally gives rise to the observed correlation as the glitch size
∆ν = ∆Ωc/2π will be proportional to the the local drop in ω (offset
from ωcr). On the other hand, the size of a glitch does not correlate
with the time since the last one, as could perhaps be expected if, for
example, bigger glitches were driven by a larger superfluid region
that had time to reach its critical lag.

Let us assume that neutron vortices in the glitch-driving re-
gion are strongly pinned (completely immobilised) whilst ω < ωcr.
At the glitch, vortices catastrophically unpin, move (and possibly
re-pin) on a much shorter timescale compared to the inter-glitch
evolution. Therefore, the spin-down rate for this superfluid compo-
nent (hereafter denoted G) is zero, ÛΩG = 0, between glitches. At
the same time, the crust and all stellar components tightly coupled
to it - summing up to a moment of inertia Ic - spin down at a rate
ÛΩc(t) = 2π Ûνc(t), where Ûνc(t) can be calculated from the inter-glitch
timing model. The rotational lag ωG(t) = ΩG −Ωc(t) after a glitch
at epoch tg thus evolves as

ωG(t > tg) − ωG(tg) =
∫
− ÛΩc(t)dt . (3)

Excess angular momentum in the component G builds at a
rate ≤ IG | ÛΩc |, which should be compared to its transfer rate to the
observed component, Ic A, where

A =
1

Tobs

∑
∆Ω

is the activity parameter. For this pulsar A is very well defined
due to the high glitch rate and regularity, as illustrated in Figure 2.
A linear fit suggests that the moment of inertia of the component
G, IG, accounts for ≥ 0.873 ± 0.005% of the moment of inertia
that follows the spin-up, Ic. Even if the latter comprises most of
the stellar moment of inertia, Ic ∼ Itot, and there is strong crustal
entrainment, the inferred IG can be accommodated by the inner
crust for a reasonable range of neutron star masses (Chamel 2013,
see however Ho et al. 2015 for the possible core contribution).

The spread of glitch sizes could arise either from differences
in the fractional moment of inertia participating in each glitch, or
incomplete transfer of the excess angular momentum (the decrease
in lag |δωG | , ωcr), or both. Let us examine the second possibility in
more detail. If corotation between region G and the crust is restored
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at a glitch (ωG(tg) = 0), Eq. 3 becomesωG(t > tg) = Ωc(tg)−Ωc(t).
By extrapolating the inter-glitch timing solutions to the epochs of
consecutive glitches, we find that the maximum possible lag that is
built up can vary even by an order of magnitude. This discrepancy,
unlikely to be due to a large change ofωcr on such a short timescale,
indicates that ωG does not always drop to zero at a glitch and the
observed range of glitch sizes can be explained by differences in
δωG alone. We are thus justified to assume, for simplicity, that IG
is the same for each glitch.

Adopting IG/Ic = 8.73 × 10−3, an estimate for a lower limit
of the critical lag follows from the size ∆Ωc of the largest observed
glitch. By angular momentum conservation, IG |∆ΩG | = Ic∆Ωc,

δωG = −
Ic + IG

IG
∆Ωc

where δωG is the drop in ωG. For ΩG ≥ Ωc, |δωG | must not be in
excess of ωcr, thus

ωcr ≥
Ic + IG

IG
∆Ωc ' 3 × 10−2 rad s−1. (4)

The lag increase during the longest observed inter-glitch interval
(between the first and second glitch) leads to a very similarminimum
forωcr of 3.1×10−2 rad s−1, but relies on the uncertain extrapolation
of the inter-glitch timing solution to the glitch epochs.

If we were to relax our assumptions, the limits for the critical
lag would change. For example, a partial coupling of region G
( ÛΩG < 0) would reduce the inferred ωcr and require a realistic
treatment of the superfluid’s differential rotation. On the other hand,
if the region where vortices are immobilised is not disconnected
from superfluid regions closer to the rotational axis that allow vortex
currents, vortices could accumulate there and the real critical lag
could even be higher than our estimate.

4.2 The spin-down rate changes

A negative change of the spin-down ÛΩc = 2π Ûν, unresolved in time,
accompanies the majority of glitches. The post-glitch Ûν evolution
is well approximated by a linear increase (decreasing magnitude of
spin-down rate), until the epoch of the next glitch. The only excep-
tion to this nearly linear behaviour is the first (and largest) glitch, for
which the inclusion of a short-term (∼ 20 days) exponential recov-
ery in the timing model significantly improves the residuals. The
inter-glitch evolution is characterised by a positive Üν of the order
10−20 Hz s−2, and large braking indices (nig ∼ 22 on average, see
Table 1).

The measurements of ∆ Ûν are less accurate than those of ∆ν,
hindering a robust statistical analysis. Using only those glitches
(37 out of 45) that have a clear detection of ∆ Ûν < 0, the best-
fit distribution is normal with mean ' −118.4 × 10−15 Hz s−1

and standard deviation ' 44.4 × 10−15 Hz s−1 (Cramer von Mises
probability 94%). We do not observe a hard upper limit of |∆ Ûν | '
150 × 10−15 Hz s−1 as suggested by Middleditch et al. (2006), but
according to the above distribution the probability for |∆ Ûν | > 200×
10−15 Hz s−1 is indeed very low.

The changes ∆ Ûν for all glitches do not appear to correlate
with ∆ν. Furthermore, we do not find evidence for the correlation
between the time interval preceding a glitch and the change ∆ Ûν
which was reported by Middleditch et al.. We noted though that the
smallest glitches of our sample (∆ν < 1 µHz) do not demonstrate the
same behaviour as the rest, that is, none of them has a clear negative
change in Ûν. Instead, glitches 7, 27 and 41 have ∆ Ûν consistent with
being zero, and the timing solution for glitch 44 gave a positive

∆ Ûν but with a large fractional error (0.85) thus potentially also
had no effect on Ûν. Assuming that these small spin-ups do not act
to “reset" the clock for the spin-down rate changes5, we calculated
“waiting times" only between glitches with∆ν > 1 µHz (41 events).
Then a somewhat weak but significant correlation (rsr = 0.57,
pS ∼ 2 × 10−4) emerges.

In the simplest case, the neutron star comprises of three
components, Ic, IG and In such that the total moment of in-
ertia is Itot = Ic + IG + In and the total angular momentum
Ltot = IcΩc + IGΩG + InΩn. The component In consists of any
superfluid region that is loosely coupled to Ic: if vortices are not
immobilised due to pinning (as in the region G), their outwards mo-
tion allows for a non-zero | ÛΩn | ≤ | ÛΩc |, with the equality defining
an “equilibrium" lag ωs. Since ÛΩG(t , tg) = 0, IG is decoupled
before and after the glitch and does not contribute to the observed
inter-glitch spin-down, which is described by

Ic ÛΩc + In ÛΩn = Next . (5)

For standard dipole braking, the external torque is

Next = −
B2
⊥R6

?

6c3 Ω
3
c, (6)

where B⊥ = Bp sinα, Bp the polar dipole magnetic field compo-
nent, α its angle to the rotational axis, and R? the stellar radius. At
any given moment, the observed magnitude of the spin-down rate
is therefore bound between a maximum of | ÛΩc |max = |Next |/Ic, and
a minimum | ÛΩc |min = |Next |/(Ic + In) when the “equilibrium" lag
is reached. When a glitch occurs, any loosely coupled superfluid
region will be driven out (or further away) of its equilibrium lag,
which results in the observed abrupt increase in spin-down rate.

The change in ÛΩc provides a lower limit for the component In
that can decouple at the glitch. Assuming a torque as in Equation
6 and that on short timescales it changes only due to the varying
Ωc(t), then

In
Ic
≥
ÛΩ

post
c − ÛΩ

pre
c

ÛΩ
pre
c

, (7)

where ÛΩpre
c is the spin-down rate immediately before the glitch and

ÛΩ
post
c is at time t > tg such thatΩ

post
c < Ω

pre
c . We evaluate this using

the epochs of the TOAs surrounding each glitch as tpre and tpost.
Although an earlier tpost would lead to tighter constraints, we prefer
to avoid a less accurate extrapolation of the timing model closer to
the (unknown) glitch epoch. The obtained constraint is
In
Ic
≥ 1.4 × 10−3 .

While observed ∆ ÛΩc/ ÛΩc is usually 10−4 − 10−3, immediately
after the glitch the decoupled fraction of the superfluid can be
much higher, as has been inferred for other pulsars (Lyne et al.
2000; Dodson et al. 2002). Usually such large changes recover
quickly, often in an exponential manner with various characteristic
timescales, from few hours to several days. If present, such a strong
relaxation would have been easily missed for PSR J0537−6910: its
very fast rotation compared to other pulsars shortens considerably
the re-coupling timescales, while the monitoring cadence was not
very high. Both glitch parameters∆Ω and∆ ÛΩ should then be viewed
as lower limits of their counterparts at the glitch epoch.

5 For example, this could be the case if the inferred spin-up was gradual,
rather than abrupt as in larger glitches. Excluding these small irregularities
from the glitch sample has little impact on the ∆ν analysis and does not alter
the main conclusions.

MNRAS 000, 1–13 (2017)



10 D. Antonopoulou et al.

52000 53000 54000 55000 56000

-199600

-199500

-199400

-199300

-199200

-199100

MJD [days]

⌫̇
[1
0�

1
5
H
z/
s]

Figure 5. The spin-down rate evolution of PSR J0537−6910. These points have been calculated only for illustrative purposes, by fitting Eq.1 on overlapping
subsets of minimum 5 TOAs (and minimum 30 days long, when possible) – fitting over glitch epochs was avoided. In these timing models, Üν values were held
fixed to their best-fit value for the entire inter-glitch interval (as presented in Table 1) or, when such a measurement was not available, to a weighted average
value of 0.6 × 10−20 Hz s−2. The values at the epochs of the first and last TOA of each inter-glitch interval were calculated via fits to the entire interval.

4.3 Comparison to other pulsars

PSR J0537−6910 is often compared to another very energetic pul-
sar located in the Large Magellanic Cloud, J0540−6919, and to
the Crab pulsar (J0534+2200). These three neutron stars have the
highest | Ûν | and ÛE amongst all rotation-powered pulsars, but their
glitch activities are very different. Only two small glitches have
been observed in PSR J0540-6919 in ∼ 16 years (Ferdman et al.
2015), while the Crab had 24 glitches in 45 years, of small to inter-
mediate sizes that follow a power-law distribution (Espinoza et al.
2014). Due to this low activity, neither their glitch rate nor their
average spin increase per time due to glitches follow the general
positive correlation with | Ûν | observed in glitching pulsars, while
PSR J0537−6910 just about does (Espinoza et al. 2011; Fuentes
et al. 2017). The cumulative glitch increase of ν over time for the
Crab is far from linear, unlike that of PSR J0537−6910 (Figure 2).
These differences can be attributed to the age of J0537−6910 (& 4
times older than the Crab according to the SNR estimates and the –
less reliable – characteristic τsd) and/or to a likely smaller internal
temperature, if a connected glitch-driving region IG able to sustain
a large ω is not yet formed in the other two pulsars. Their glitches
could then be due to local vortex avalanches that do not have a natu-
ral length- and time-scale (see for example Haskell 2016). Another
notable difference with J0537−6910 is that the Crab displays a low
inter-glitch braking index (nig ' 2.5), which is very close to its
long-term value of 2.3 (Lyne et al. 2015).

In fact, the glitch activity of J0537−6910 resembles much
more that of the Vela pulsar and the Vela-like pulsars J1803-2137
and J1826-1334. Glitches in Vela have usually large ∆ν, close to
normally distributed, and are rather regular (every ∼ 3− 3.5 years).
The cumulative glitch increase of ν over time is also linear, with an
inferred IG of about 1.62(3)% (Ho et al. 2015). The much smaller
glitch rate of Vela (∼ 0.5 events per year) compared to that of
J0537−6910 can be explained by the difference in their spin-down
rate: the increase in the lag ωG between Vela glitches is ∼ 3 times

smaller than that for J0537−6910. We do not see a correlation
between glitch size and the time to the next glitch in Vela. However,
its glitch sample found in the literature is not complete - small
glitches often stay unreported. Although these small events have
little impact on the measurement of IG, they affect the waiting times
distribution. Besides, the presence of strong exponentially relaxing
components perplexes the measurements of ∆ν in a consistent way
for all Vela glitches. Similarly to PSR J0537−6910, the average
inter-glitch braking index for Vela is very high (∼ 40) while the
long-term one is rather low (= 1.7 ± 0.2); this is also the case for
the other two Vela-like pulsars (Espinoza et al. 2017).

5 THE LONG-TERM EVOLUTION OF THE SPIN-DOWN
RATE

Opposite to the inter-glitch behaviour, which is characterised by a
large, positive Üν, the overall change in Ûν is negative and corresponds
to a decrease of ∼ 3.2 × 10−13 Hz s−1 over the ∼ 13 years of data
(see Figure 5). This implies a negative long-term braking index and
decreasing characteristic age, as already noted by Marshall et al.
(2004). Phase-coherent timing and a direct fit for the braking index
of a power-law spin-down model is not possible due to the frequent
glitches. A simple quadratic fit, however, of derived spin frequency
data over the entire timespan leads to nl = ν Üν/ Ûν

2 = −1.2(1). This
method is inaccurate, mostly due to the presence of glitches, but
demonstrates the clear detection of an enhancement of the spin-
down rate in time. We use two ways to quantify this behaviour in
terms of a “braking index" nl. Firstly, we perform a linear fit to two
different sets of Ûν data. One set consists of the measurements Ûν0 for
the fit epoch of the inter-glitch timing solutions (Table 1), while for
the second set we use Ûν values extrapolated at an epoch immediately
before the next glitch. The results of the fit are consistent with each
other and give Üν = −7.6(7) × 10−22 Hz s−2. Secondly, we use the
techniques described inEspinoza et al. (2017) formeasuring braking
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indices in pulsars with large and regular glitches. The method is
based on constructing a Ûν-template which is used to calculate the
relative Ûν shifts of each inter-glitch interval. Together with the glitch
epochs, these define a set of ( Ûν, t) points that follow a straight line
(linear correlation coefficient 0.976) fromwhich the long-term Üν can
be inferred. For PSR J0537−6910, we use the 39 largest glitches
and a 160-days long template constructed from their post-glitch
curves. In line with our previous estimates, we obtain a long-term
Üν = −7.7(3) × 10−22 Hz s−2 and a corresponding braking index
nl = −1.22(4).

Identifying the possible mechanism behind the unusual in-
crease in spin-down rate depends on whether this change is con-
tinuous, or happens in discrete steps (for example in relation to the
glitches), or a combination of both. Unfortunately we were not able
to confidently discriminate between these options from the data at
hand. We outline some possibilities below and give quantitative es-
timates under the assumption that - for the time interval of interest -
the actual braking index n is constant. To obtain numerical results we
often assume an underlying power-law braking with n = 3, however
various mechanisms contribute to the evolution of Ûν, some of which
might not even have a power-law form (one such example could
be the internal torque due to the superfluid dynamics). Moreover,
there is a wide range of reported long-term braking indices for other
young pulsars, the majority of which is under 3 (see for example
Lyne et al. (2015); Espinoza et al. (2017) and references therein).
Although some of the same physical processes might be responsible
for all observed low (< 3) braking indices, PSR J0537−6910 is the
only rotationally-powered pulsar with a net increase in | Ûν | over so
many years.

A decreasing effective moment of inertia Ic could result in
braking indices less than three. Ho & Andersson (2012) modelled a
decreasing Ic as the result of an ongoing formation of new superfluid
regions as they cool below the critical temperature for superfluidity.
An increasing fraction of the interior then decouples, leaving a
smaller moment of inertia to respond to the (nearly constant) spin-
down torque (which we take here as the standard dipole braking,
Eq. 6). If the two fluids are completely decoupled ( ÛΩs = 0) and
(Ωs −Ωc)/Ωc � 1 then

nl ' 3 − 2
ÛI
I
Ωc
ÛΩc
⇒ ÛI ' 2 × 1041

(
I

1045g cm2

)
g cm2 yr−1

is required to explain the observed braking index of−1.2. One of the
main challenges of this model is to accommodate the low braking
index of the - relatively old and cool - Vela pulsar consistently with
the constraints for the (de)coupled superfluid moment of inertia
that come from glitch observations6. A similar, also short-lived
compared to τsd, effect of decreasing Ic will arise if the coupling in
some, already superfluid, regions becomes weaker; this can be done
also in discrete steps, for example if small crustquakes leave the
nuclei lattice deformed in such a way that vortex pinning becomes
stronger (Alpar et al. 1996).

Accumulated offsets∆ Ûν < 0, due to the frequent glitcheswhich
decouple the internal superfluid, could mimic a negative long-term
Üν. After all, the very high nig up to the time of a following glitch
means that the recoupling of the superfluid still carries on. This
mechanism requires the progressive decoupling of a superfluid ef-
fective moment of inertia Is additional to In that does not recouple
on observable timescales. If the persisting offsets arose only from

6 ÛΩs = 0 cannot hold in the bulk of the star if the post-glitch relaxation is
of superfluid origin.

parts of the In component that did not have the time to recover till the
next glitch, then | ÛΩc |min would change but | ÛΩc |max would remain
limited at |Next |/Ic. Instead, as clearly seen in Figure 5, | ÛΩc |max

also follows an increasing trend; moreover, measurements of ∆ Ûν/ Ûν
show no convincing evidence for a decreasing In/Ic over time. In
this scenario, the Is that needs to have decoupled during the RXTE
observations needs to be of the order 10−3I.

It is worth noting that glitches in at least two pulsars left long-
lasting decreases in their braking indices (Livingstone et al. 2011;
Antonopoulou et al. 2015), mainly due to a drop in Üν after the initial
post-glitch recovery stages were over. A period of higher glitch
activity of the Crab pulsar is also associated with a decrease of its
braking index, even after some persisting glitch offsets have been
corrected for (Lyne et al. 2015), and 9 out of the 12 pulsars with
a measured long-term n < 3 have known glitches (Espinoza et al.
2017, and references therein). It is perhaps then not surprising that
PSR J0537−6910, with its unprecedented high rate of large glitches,
has the smallest braking index of all.

Another possibility is an increasing torque as a result of mag-
netic field evolution. We consider a spin-down that is governed by

ÛΩc = − f (?)B2
?Ω

n
c

which makes the assumption that the superfluid is either completely
decoupled ( ÛΩs = 0) or in equilibrium with the normal component
( ÛΩs = ÛΩc). Here, f (?) is a function of stellar parameters that will
be taken constant in time, B? = g(α)Bp with g(α) a trigonometric
function of α, and n is the real, underlying braking index. Allowing
for a changing B? means that the observed braking index will be

nl = n + 2
Ωc
ÛΩc

ÛB?
B?

(8)

which implies, for nl = −1.2, n = 3 and constant g(α):

ÛBp ' 6.8
(

| Ûνc |

2 × 10−10Hz s−1

) ( ν

62Hz

)−1
(

Bp

1012G

)
G s−1 .

It has been suggested that such a ÛBp could be due to field reemer-
gence from the crust following an initial mass accretion (see for
example Muslimov & Page 1996; Pons et al. 2012), although it
is unclear whether PSR J0537−6910 could have accreted enough
material for the required field burial because it has a large inferred
kick velocity (Ng & Romani 2007, but see also Güneydaş & Ekşi
2013). An amplification of the dipole component due to Hall drift
at early timescales has been also proposed (Gourgouliatos & Cum-
ming 2015), but requires an exceptionally strong magnetic field in
the crust.

Alternatively, ÛB? can be due to an increasing misalignment of
the magnetic and rotational axes, while the magnetic field strength
remains almost constant ( ÛBp = 0). Middleditch et al. (2006) ex-
plored this idea in detail, taking α to be a linear function of time
and the intrinsic braking index n to be less than 3, to track the
birth values of α and ν. Discrete shifts ∆α in the inclination angle
have been invoked to explain persisting changes of the rotational
parameters after glitches, seen in several pulsars (Link et al. 1992;
Link & Epstein 1997; Akbal et al. 2015). In the case of the Crab
pulsar, however, the sum of possible glitch-associated ∆α over the
total observing time does not suffice to explain the deviation of its
braking index from 3 (Lyne et al. 2015), nor the recently reported
evidence for increasing phase separation between its main pulse
and interpulse (Lyne et al. 2013) which suggests a non-zero inter-
glitch Ûα. From Equation 8, for g(α) = sinα(t), Bp = const we get
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cotα Ûα = (nl − n) Ûν/(2ν) or, for n = 3 and nl = −1.2:

Ûα

tanα
= 6.8 × 10−12

(
| Ûν |

2 × 10−10Hz s−1

) ( ν

62Hz

)−1
rad s−1 . (9)

For a moderate α = 30◦ we get Ûα ' 0.7 degrees per century,
remarkably close to the slow migration rate inferred for the Crab
pulsar (Lyne et al. 2013).

6 SUMMARY AND CONCLUSIONS

We analysed all RXTE observations of the pulsar J0537−6910 with
the aim of reconstructing its rotational history and studying its
glitching activity. Twenty-one new glitches were identified, raising
their total number for this pulsar at 45 in nearly 13 years. Most
spin-ups are large and follow a broad Gaussian distribution with
mean ∆ν ∼ 16 µHz. The first glitch in the data remains the largest
and the only one for which some exponential decay of the spin-up
is seen, on a characteristic timescale of ∼ 20 days. The rest were
adequately described by a model with step-like changes in the spin
ν, spin-down Ûν and sometimes Üν. The mean waiting time between
glitches is 105.5 days and is strongly correlated to the size ∆ν of
the preceding glitch. This fact can be used to predict the epoch of
the subsequent spin-up.

Almost all glitches display an abrupt spin-down rate change,
∆ Ûν < 0, with mean ∆ Ûν ∼ −120 × 10−12 Hz s−1. A correlation be-
tween the waiting time and the size |∆ Ûν | of the following glitch,
with a saturation at |∆ Ûν | ' 150× 10−12 Hz s−1 was noticed by Mid-
dleditch et al. (2006). Such a finding would provide extra support
for superfluid models of post-glitch relaxation but unfortunately its
concrete confirmation was not possible using our results.

In a simple 3-component model of a neutron star, the observed
glitch phenomenology can be explained as follows: A part of the su-
perfluid, bearing less than 0.8% of the total moment of inertia, does
not spin down at all in between glitches. Once its rotational veloc-
ity exceeds that of the crust by & 0.03 rad s−1, it rapidly transfers
some angular momentum to the non-superfluid (normal) compo-
nent, causing a glitch. The rest of the superfluid follows the spin-up
of the normal component on timescales that depend on coupling
strength between the two; an effective& 0.15% of the total moment
of inertia remains decoupled on long enough timescales so that the
observed spin-down rate is higher post-glitch. The slow recoupling
of this component is most likely responsible for the large inter-glitch
braking indices (nig ∼ 22).

Over the time span of the observations, the spin-down rate
increased by ∼ 0.15%, equivalent to a well-defined negative long-
term Üν = −7.5(3) × 10−22 Hz s−2, unlike what is seen in any other
young pulsars. The inferred braking index for this behaviour is nl =
−1.22(4) and could be attributed to the progressive decoupling of a
superfluid component (of ∼ 10−3 fractional moment of inertia), or
an increasing external spin-down torque, e.g. as the pulsar becomes
more of an orthogonal rotator. The pulsar’s evolutionary path on the
P − ÛP diagram points in the direction of the Crab pulsar (Espinoza
et al. 2017). Clearly though, the duration of the phase with this low
braking index cannot be very long compared to τsd . Although we
were unable to resolve a significant time variation of nl, it is not
impossible –albeit optimistic– to imagine that a measurable change
could be revealed in the coming years, given a good observational
coverage.

PSR J0537−6910 has the highest spin frequency and spin-
down luminosity of all known rotational-powered pulsars and a
remarkable rotational evolution, vastly dominated by large glitches.

The high glitch rate of ∼ 3.5 per year and the predictability of the
time for a next glitch, given a firm measurement of the preced-
ing one, makes this pulsar an ideal target for close observations of
a glitch’s rise, early recovery and possible emission changes with
missions like NICER, which are crucial for the advances of our the-
oretical understanding of the phenomenon. Furthermore, long-term
monitoring might shed light to the mechanism behind the excep-
tional negative long-term braking index observed for this pulsar.
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