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Carter and Lichnerowicz have established that barotropic fluid flows are conformally geodesic and
obey Hamilton’s principle. This variational approach can accommodate neutral, or charged and
poorly conducting, fluids. We show that, unlike what has been previously thought, this approach
can also accommodate perfectly conducting magnetofluids, via the Bekenstein-Oron description of
ideal magnetohydrodynamics. When Noether symmetries associated with Killing vectors or tensors
are present in geodesic flows, they lead to constants of motion polynomial in the momenta. We
generalize these concepts to hydrodynamic flows. Moreover, the Hamiltonian descriptions of ideal
magnetohydrodynamics allow one to cast the evolution equations into a hyperbolic form useful for
evolving rotating or binary compact objects with magnetic fields in numerical general relativity.
Conserved circulation laws, such as those of Kelvin, Alfvén and Bekenstein-Oron, emerge simply
as special cases of the Poincaré-Cartan integral invariant of Hamiltonian systems. We use this
approach to obtain an extension of Kelvin’s theorem to baroclinic (non-isentropic) fluids, based
on a temperature-dependent time parameter. We further extend this result to perfectly or poorly
conducting baroclinic magnetoflows. Finally, in the barotropic case, such magnetoflows are shown
to also be geodesic, albeit in a Finsler (rather than Riemann) space.

PACS numbers: 04.40.Nr, 47.10.ab, 47.10.Df, 47.10.A-

I. INTRODUCTION

nomena. General relativistic magnetohydrodynamics

A wide variety of compact stellar objects where gen-
eral relativistic effects are important is currently known.
Black holes and neutron stars are involved in many as-
trophysical phenomena, including binary mergers and
gamma ray bursts, which have observable imprints in the
electromagnetic and gravitational wave spectrum. Many
of these phenomena can be explained by means of gen-
eral relativistic hydrodynamics. In addition, there is a
growing number of observed phenomena where electro-
magnetic effects play a major role. These include ob-
servations of accretion disks around black holes [1], jets
in active galactic nuclei or microquasars [2, 3], gamma
ray bursts, hypernovae, pulsars [4] and magnetars [5-
9]. Magnetohydrodynamics (MHD) provides a macro-
scopic continuum approximation to studying such phe-
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(GRMHD) originates in the works of Lichnerowicz [10]
and is a rapidly developing field of modern astrophysics
[4, 11, 12]. Departures from MHD are discussed in [13—
15] and references therein. Compact objects such as mag-
netars or the differentially rotating supramassive rem-
nants of binary neutron-star mergers can have magnetic
fields of the order of 10'® — 10'7 G which can affect the
dynamics and stability [16] of these objects. A fully rel-
ativistic description of magnetized neutron stars is thus
desirable.

In this article, we develop a geometric treatment of
ideal GRMHD. To this aim, we use Cartan’s exterior
calculus, relying on the nature of the electromagnetic
field as a 2-form and the well known formulation of
Maxwell’s equations by means of the exterior derivative
operator. We also employ the formulation of hydrody-
namics in terms of the fluid vorticity 2-form, following
Synge [17] and Lichnerowicz [18]. This enables us to for-
mulate GRMHD entirely in terms of exterior forms. Such
an approach is not only elegant and fully covariant, but
also simplifies some calculations which are tedious in the
component approach. In addition, we obtain particle-like
Lagrangian and Hamiltonian descriptions of ideal MHD,
in Newtonian and relativistic contexts, with several the-
oretical and practical advantages. For example, schemes
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for evolution in numerical relativity are straightforward
to obtain, and conserved quantities whose origin seems
ad hoc in the component approach, emerge immediately
as Noether-related quantities in this canonical approach.

In particular, Synge and Lichnerowicz have shown that
barotropic fluid flows may be described via simple vari-
ational principles as geodesic flows in a manifold con-
formally related to the spacetime manifold. Arnol’d de-
scribed the nonrelativistic Euler equation as the geodesic
equation on the group of volume-preserving diffeomor-
phisms [19]. This allowed him to apply geometric and
group-theoretical methods to the study of this equation,
and to develop the now called Arnol’d stability method
[20—26].

Carter [27] has used this powerful canonical approach
to efficiently derive conservation laws for neutral or
charged poorly conducting fluids in general relativity.
Markakis [28] has obtained an Euler-Lagrange and a
Hamiltonian description of a barotropic fluid valid in
Newtonian gravity as well as 341 general relativity. In
this article, we extend Carter’s framework to perfectly
conducting fluids with the aid of the Bekenstein-Oron
(hereafter BO) formulation of ideal MHD [29-31]. In the
canonical approach, conserved circulation integrals, such
as those of Alfvén, Kelvin and Bekenstein-Oron, emerge
simply as special cases of the Poincaré-Cartan integral
invariant of Hamiltonian systems. We further show that
the BO description can describe an arbitrary ideal MHD
flow without loss of generality and allows one to cast the
ideal MHD equations into a circulation-preserving hyper-
bolic form, which may be useful in numerical simulations
of oscillating stars or radiating binaries with magnetic
fields in numerical relativity. We generalize the Synge—
Lichnerowicz result to perfectly conducting magnetoflu-
ids by showing that ideal MHD flows can be described as
geodesic flows in a Finsler space.

Finally, Kelvin’s circulation theorem has been thought
to hold only for barotropic flows. It has been thought
not to hold for baroclinic (non-isentropic) flows, except
in a weak form (i.e. if the circulation is initially com-
puted along rings of constant temperature or specific en-
tropy [32]). However, using a temperature-dependent
time parameter, we obtain a Hamiltonian action prin-
ciple describing inviscid baroclinic flows within Carter’s
framework. Moreover, a Poincaré-Cartan integral invari-
ant exists iff a system is Hamiltonian. We thus infer that,
contrary to common belief, a generalization of Kelvin’s
theorem to baroclinic flows does exist in the strong form
(i.e. the circulation can be initially computed along an
arbitrary fluid ring). Remarkably, this result can be fur-
ther extended to perfectly or poorly conducting baro-
clinic magnetoflows.

Symmetries and conservation laws are very useful be-
cause they can provide valuable insight of complicated
(magneto)hydrodynamic phenomena; the relevant con-
served quantities can be extremely useful in constructing
initial data in numerical relativity, or significantly sim-
plify solving for the motion. The examples considered

below are applicable, among others, to the mathemat-
ical study and numerical simulation of fluid motions in
rotating or binary relativistic stars [33-42] and their mag-
netospheres [43, 44], neutron-star or black-hole accretion
rings [27, 45-47] and cosmological dynamics [48-56].

II. CLASSICAL DYNAMICS IN COVARIANT
LANGUAGE

A. Notation

We consider a spacetime (Z,g), ie. a four-
dimensional real manifold .# endowed with a Lorentzian
metric g of signature (— 4+ ++). We assume that .#
is orientable, so that we have at our disposal the Levi-
Civita tensor € (also called volume element) associated
with the metric g. Let V be the covariant derivative
associated with g: Vg = 0 and Ve = 0. The star op-
erator * denotes the Hodge dual of a differential form.
For example, the Hodge dual of the 1-form w is a 3-form
denoted by *w:

*WaBy = €a575w5 (2.1)

Similarly, the Hodge-dual of the 2-form €2 is a 2-form
denoted by *€2:
1
*Qa@ = 56043,75975, (2.2)
More details on these definitions may be found e.g. in
Appendix B of Ref. [57].
We shall often use an index-free notation, denoting vec-
tors and tensors on .# by boldface symbols. As in [27],

given a linear form w, we denote by & the vector associ-
ated to it by the metric tensor:

w=:g(d, _). (2.3)

In a given vector basis (e, ), the components of g, & and
w are gog, w* = g‘wwg and w, = gagwﬂ respectively.

Given a vector ¥ and a tensor T of type (0,n) (n > 1),
i.e. a n-linear form (a linear form for n = 1, a bilinear
form for n = 2, etc.), we denote by ¢ - T (resp. T - ¥)
the (n—1)-linear form obtained by setting the first (resp.
last) argument of T to ¥:

9-T:=T, -, ... , )
T v:=T(_,

(2.4a)

.-, 9). (2.4b)

Thanks to the above conventions, we may write the scalar
product of two vectors 4 and U as

g(u,9)=tu-v=u-v. (2.5)

We denote by V- the covariant divergence, with contrac-
tion taken on the adjacent index. For instance, for a
tensor field T of type (2,0), V- T is the vector field
defined by

V. -T:=VgT"e,, (2.6)



where {e,} is the vector basis with respect to which the
components VT of VT are taken. (Note that the
convention for the divergence does not follow the rule for
the contraction with a vector: in (2.4a) the contraction
is performed on the first index.)

We use Greek letters «,(3,7,9,... for abstract and
W, v, K,y A, ... for concrete spacetime indices. We also use
English letters a, b, ¢, ... for abstract and i, 7, k, ... for con-
crete spatial indices. We use geometrized Heaviside-
Lorentz units throughout the paper. We use V. or 0,
to denote the (Eulerian) covariant or partial derivative
compatible with a curved or flat metric respectively, and
0/0x* to denote the (Lagrangian) partial derivative of a
function f(x,v) with respect to « for fixed v. We make
extensive use of Lie and exterior derivatives: for a peda-
gogical introduction to using these concepts in relativistic
hydrodynamics, the reader is referred to [58, 59]

B. Hamiltonian flows

It is often thought that continuum systems necessar-
ily require an infinite dimensional manifold for their de-
scription, and one often resorts to a classical field-theory
approach, based on an action integral over a Lagrangian
density in a spacetime 4-volume. This complicates the
derivation of conservation laws from symmetries of the
action — one of the main reasons for using an action func-
tional in the first place. In many cases, however, the very
definition of a perfect fluid allows one to treat each fluid
element as an individual particle interacting with other
fluid elements through pressure terms (in addition to
electromagnetic or gravitational field terms). If the pres-
sure terms are derivable from a potential, then a particle-
like action principle can be found. This approach has
been utilized by Carter [27] to derive particle-like con-
servation laws for neutral perfect fluids and for charged
poorly conducting fluids. Here, we review Carter’s frame-
work and extend it to baroclinic fluids and perfectly con-
ducting magnetofluids.

1. Lagrangian dynamics

The results derived in this section will apply to any
classical motion obeying a Lagrangian variation prin-
ciple. That is, for any particular (particle, fluid or
magneto-fluid) flow, there exists a Lagrangian function
L(z,v) of the spacetime coordinates 2* and canonical 4-
velocity v®, evaluated at () and v*(\) where A € R is
a canonical time parameter (which need not necessarily
coincide with proper time 7) in terms of which the (not
necessarily unit) vector

_di
CdA

is defined. The equations of the (particle or fluid-
element) worldlines ®(\) can be obtained from the ac-

(03

v (2.7)

tion functional
A2
S= L(z,v)dA.
A1

(2.8)

Extremizing the action keeping the endpoints fixed yields
the Euler-Lagrange equations of motion

dpo  OL
I Do (2.9a)
oL
o —_ — 2» b
Pa =53 (2.9b)

where p,, is the canonical momentum 1-form conjugate to
x®. In the context of fluid theory, it is preferable to write
the above equations in the (Eulerian) covariant form [27]

£gpa = VoL
or, in exterior calculus notation,

£gp =dL, (2.10)

where £ is the Lie derivative along the vector v and d is
the exterior derivative [58-60]. The canonical momentum
one-form p = p,dz" is also known as the tautological
one-form, the Liouville one-form, the Poincaré one-form
the symplectic potential or simply the canonical one-form
[61]. Using the definition of the Lie derivative and the
chain rule, the above equation' can be expressed as:

ap P OL 9L P
o o B P —~ EW Iy
'£‘Upa vaL . v 8"1,‘5 +pﬁ axa (61,& + 8'Uﬁ axa>
_dp. 0L IL \ dvs
S e ( aﬁ) e (41

This quantity vanishes iff the Euler-Lagrange equations
(2.9) are satisfied; the latter are thus equivalent to the
covariant equation (2.10).

2. Hamiltonian dynamics

The Legendre transformation
H=v%p, — L (2.12)

defines the super-Hamiltonian H(x,p). Then, the equa-
tions of motion take the form of Hamilton’s equations

dp ~ OH

D o (2.132)
dz® o0H

—_— = — 2.13b
dX Opa (2.13b)

1 In Eq. (2.9b), the Lagrangian L and canonical momentum p are
regarded functions of the time parameter A, through #&(\) and
¥(A), and characterize a single fluid element. In Eq. (2.10), the
Lagrangian and canonical momentum are regarded functions on
spacetime through @ and ¥(x). They amount to the Lagrangian
and canonical momentum of the fluid element located at &, and
changing the argument & generally changes the fluid element
which L and p refer to.



The above equations can be written covariantly as [27]
V2 (Vpa — Vapg) = —Vo H
or, in exterior calculus notation,

§-dp=—dH (2.14)

One may obtain Eq. (2.14) using the Cartan identity
-£17poz = vﬁ(vﬂpa - Vapﬂ) + Va (vﬁpﬁ)
or

Legp=v-dp+d(v-p) (2.15)
and the Legendre transformation (2.12) to write the co-

variant Euler-Lagrange equations (2.10) as

£4p—dL =% -dp+dH = 0. (2.16)
Alternatively, one may prove the equivalence of Eq. (2.14)
to the Hamilton equations (2.13a) by proceeding anal-
ogously to Eq. (2.11), that is, by using the chain rule
to rewrite the (Eulerian) covariant derivative V,H =
O0H/0x® + Op/0x* OH/Ops in terms of (Lagrangian)
partial derivatives.

C. Conservation laws
1. Poincaré-Cartan integral invariant

The 2-form
Qaﬁ = Vﬁpa - vapﬁ
or, equivalently,

Q :=dp =dp, Ndz" (2.17)
is the canonical symplectic form, also known as the
Poincaré two-form [61]. Its physical content depends on
the action (2.8). In § IIT it will be shown that, if the
action describes a perfect fluid, then € is Khalatnikov’s
canonical vorticity tensor; if the action describes a purely
magnetic field, then € is the Faraday tensor. Neverthe-
less, the results of § II apply to any generic Hamiltonian
flow; no assumptions on the physical content of the action
(2.8) will be made prior to § IIIL.

Taking the exterior derivative of (2.10), commuting
the exterior derivative d with the Lie derivative £z and
using the identity d? = 0, we immediately deduce that
the canonical symplectic form (2.17) is advected by the
flow:

£ =0. (2.18)
The above equation also follows directly from the Hamil-
ton equations (2.14) and the Cartan identity

£:0=5-dQ+d(5- Q). (2.19)

The conservation equation (2.18) is tied to an impor-
tant integral invariant: Consider? the family ¥ of diffeo-
morphisms generated by canonical velocity ¥, with \Il;1
its inverse. Let ¢ be a ring in the flow, bounding a 2-
surface S; let ¢y = Uy(c) be the family of rings dragged
along by the flow, bounding the 2-surfaces Sy = ¥, (S).
That is, each point of S is obtained by moving each
point of S an affine time A along the flow through that
point. The closed line integral of p around Cy can then
be written as

I::f p:/ n:/\y;lﬂ
[N S S

where we used the Stokes theorem (relating the
circulation integral fCA padz® with the integral

(2.20)

S5, Qapdaty duly of Q@ on Sy, where da)) and dxl, are
infinitesimal vectors tangent to .S spanning the tangent
space at each point) and the diffeomorphism invariance
of an integral (i.e. the identity f%(s) U\Q = [ Q, with
Q replaced by ¥, ', cf. Eq. (A.81) in [60]). Eq. (2.18)
implies that the above integral is conserved:

7 d
—_— = — (U0 = =0 = 0.
5 [t [ =0

The closed line integral (2.20) is known in analytical dy-
namics as the Poincaré-Cartan integral invariant asso-
ciated with Hamiltonian systems [62-64]. Its existence
emerges from the Hamiltonian structure of Eq. (2.14).
In particular, a dynamical system possesses a Poincaré-
Cartan integral invariant if and only if it is Hamiltonian
[65].

Although this result is well-known in analytical dy-
namics, to our knowledge, its applicability to (mag-
neto)hydrodynamics was only recognized by Carter [27]
Some classical mechanics texts mention that the integral
(2.20) corresponds to a conserved circulation in phase
space, analogous to Kelvin’s circulation integral in a
barotropic fluid. In fact, this is more than a mere anal-
ogy, albeit in the converse direction: Kelvin’s circulation
equals the integral (2.20) if the Lagrangian is chosen to
be that of a perfect barotropic fluid element, Eq. (3.20)
[27, 66]. Similarly, Alfvén’s magnetic flux theorem, and
the generalizations of Kelvin’s theorem to poorly [27] or
perfectly conducting [29-31] magnetofluids, emerge also
as special cases of the Poincaré-Cartan integral invariant
(2.20). This will be shown in § III by constructing the
appropriate Lagrangians.

(2.21)

2 This derivation follows and generalizes Friedman & Stergioulas’
[60] proof of conservation of circulation.



2. Irrotational flows

In general, a flow will be called irrotational iff the
canonical vorticity 2-form vanishes:

Q=dp=0. (2.22)

Then, if the domain D is simply connected, the Poincaré
lemma implies the local existence of a single-valued scalar
field S such that

p=dS (2.23)

or, equivalently,
Pa = VaS.

The invariance of the Poincaré-Cartan integral (2.20)
guarantees that initially irrotational flows remain irro-
tational®. This is very useful when solving the Cauchy
problem with irrotational initial data (cf. [66] for a 3+1
evolution scheme exploiting this property in barotropic
fluids). For an irrotational flow, substituting Eq. (2.23)
into the equations of motion (2.10), (2.14), we find that
the latter have first integrals:

£5S—L=0
H=0

(2.24)
(2.25)

respectively. In general, a system with constant H is
called uniformly canonical. This is the case for irrota-
tional flow, and, more generally, for a perfect fluid that
is homentropic or barotropic, as will be shown below.

We note that the above first integrals hold through-
out the flow. Indeed, taking the exterior derivative of
the above equations and commuting the operator d with
£ leads back to the equations of motion (2.10), (2.14).
In the above integrals, we have dropped an additive inte-
gration constant by absorbing it into the definition of the
potential S. Note that Eq. (2.24) follows directly from
Eq. (2.25) with the aid of Egs. (2.12) and (2.23) and the
definition of the Lie derivative.

Egs. (2.24) and (2.25) were derived for an irrotational
flow. More generally, the same equations can be shown to
hold for helicity-free flows which are representable in the
Clebsch form p = dS+a df. This follows by substituting
the latter expression into the equations of motion (2.10),
(2.14) and using the fact that the Clebsch potentials «, 3
are advected by the flow, that is £3a =0, £38 = 0.

3. Poincaré two-form

Let u® = v®(—vv3)~'/2 be the unit vector along v®.
In light of Eq. (2.14), we can decompose the 2-form (2.17)

3 In the context of barotropic fluids, this is known as Helmholtz’s
third theorem, which is a corollary of Kelvin’s circulation theo-
rem.

into ‘electric’ and ‘magnetic’ parts with respect to u® as

Qap = (—vﬁvg)_lﬂ(uanH —ugVoH) + u‘;egamw”

or
Q= (-7 -v) V2uANdH +x(uAw) (2.26a)
* Q= (—F-v) 2% (uAdH) —uAw, (2.26b)
where
_ L5 By _ .8
Wo 1= §u €508y = u° x Qsq
or

w =1 -+ (2.27)

From the antisymmetry properties of € it follows that

@-dH =0, @ -w=0 (2.28)

and that the scalar invariants of the 2-form 2 are
1
iQO‘BQag = W, — (—0Pvp) IV HV L H (2.29)

1

5(*(2@5)9&5 = (—vPug) V2wV, H. (2.30)
By the definition (2.17), €2 is an exact 2-form. Because
d? = 0, any exact 2-form is also closed:

dQ=0s V,(xQ) =0 (2.31)

Given a scalar field ¢(z) on .#, one can construct an
exact 1-form

1=dg (2.32)

which is also, by virtue of the identity d? = 0, closed:

dl =0 V,lg — Vgl =0. (2.33)
Given a closed 2-form €2 and a closed 1-form I, one can
construct a current j¢ := lg x Q5 or

ji=1-+9. (2.34)

which, by virtue of Eqgs. (2.31) and (2.33), is conserved:

Vai® = Va(Vspx Q) =0. (2.35)
This conservation law implies a corresponding global con-
servation of the integrated flux of j* across a hypersur-
face.

An infinite number of (not necessarily independent)
conservation laws stem from Eq. (2.35) since, in general,
¢(x) can be any differentiable function of the coordi-
nates. For example, in a chart {z#} = {t,z'}, if ¢ is
chosen to be the spatial coordinate !, the above equa-
tion reduces to the x!'-component of Eq. (2.31). If ¢ co-
incides with coordinate time ¢, Eq. (2.35) yields a spatial
constraint equation. Other combinations of the coordi-
nates give different projections Eq. (2.31). Choosing ¢



to be the super-Hamiltonian H gives rise to a conserved
current

§% = VzH QP (2.36)
For a baroclinic fluid, the time component of this current
is the potential vorticity, as shown in § III. The corre-
sponding conservation law, known as Ertel’s theorem, is
simply a special case of Eq. (2.35).

As mentioned earlier, a system with spatially constant
super-Hamiltonian H is uniformly canonical. If the uni-
formity condition dH = 0 holds on an initial hypersur-
face, then Eq. (2.28) guarantees that the condition is pre-
served in time. For such systems, Egs. (2.26a) and (2.31)
yield the conservation law

dx (uAw) =0 Vy(uw’ —ulw®) =0 (2.37)

In 341 dimensions, this equation is the curl of Eq. (2.18).

4. Generalized Helicity

Egs. (2.17), (2.31) and (2.30) imply that, for uniformly
canonical systems, the generalized helicity current

hi=p +Q (2.38)

is conserved:

1
Vah® = 5Qag * 0 = W'V, H = 0. (2.39)
This conservation law also implies a corresponding global
conservation of the integrated flux of h® across a hyper-
surface. Specific examples are given in § IIT [67-69].

5. Noether’s theorem

Noether’s theorem states that each continuous sym-
metry of the action implies a quantity conserved by the
motion. In particular, the generalized Noether theorem
may be stated as follows [70]. Consider the e-family of
infinitesimal coordinate transformations

& — & = & + e k(z,v) (2.40)
generated by the vector field E(x, v), which can depend
on position and velocity, for a small parameter . If
these transformations leave the action (2.8) unchanged
or, equivalently, change the Lagrangian L(x,v) by a total
derivative of some scalar K(x),

dK

L >L.—L—e%
e SN

(2.41)

then the quantity

Clz,v) = a—Lka + K

UO&

(2.42)

is a constant of motion:

dC
L=
Y =0

(2.43)
If k depends on velocity, then the family (2.40) of trans-
formations is not generally considered a family of dif-
feomorphisms. It is, however, a generalized symmetry
of the action and Noether-related to an invariant of the
form (2.42).

Conversely, the inverse Noether theorem [70] may be
stated as follows: if the quantity C(z,v) is a constant of
motion, then the e-family of infinitesimal transformations
generated by the vector field k(x,v), obtained by solving
the linear system

L 5 o

v T Gu’ (2.44)

is a generalized symmetry of the action.

In the Hamiltonian picture, a scalar quantity C(z,p),
which does not explicitly depend on the time param-
eter A, is conserved if it commutes with the super-
Hamiltonian, in the sense of a vanishing Poisson bracket:

dc oCc OH  0C OH

dX

Conserved quantities polynomial in the momenta are as-
sociated with Killing vectors or tensors and are Noether-
related to symmetries of the action, as discussed below.
The super-Hamiltonian H does not explicitly depend on
the affine parameter A and is itself a constant of motion,
in agreement with Eq. (2.28) (this symmetry is Noether-
related to the metric tensor being a Killing tensor, as
discussed in § III).

For barotropic fluids, Eqgs. (2.42) and (2.43) or (2.45)
give rise to Bernoulli’s law, as shown in the next section.

III. EXAMPLES OF HAMILTONIAN FLOWS
A. Perfect fluids

We assume that a part D C .# of spacetime is oc-
cupied by a perfect fluid, characterized by the energy-
momentum tensor

T" = (e +p)u®u+pg, (3.1)
where € is the proper energy density, p is the fluid pres-
sure and u® = dxz®/dr is the fluid 4-velocity. Moreover,
we neglect effects of viscosity or heat conduction and we
assume that the fluid is a simple fluid, that is, all thermo-
dynamic quantities depend only on the entropy density
s and proper baryon number density n. In particular,

e =€(s,n). (3.2)



The above relation is called the equation of state (EOS)
of the fluid. The temperature T and the baryon chemical
potential p are then defined by

Oe
T:=—
Os

. Oe
=

Then, the first law of thermodynamics can be written as

and (3.3)

de = pdn +Tds (3.4)

As a consequence, p is a function of (s,n) entirely deter-
mined by (3.2):

p=—c+Ts+pun. (3.5)
Let us introduce the specific enthalpy,
he=P_ gy (3.6)
p
where p is the rest-mass density
pi=mn, (3.7
g is the specific Gibbs free energy
I
= — 3.8
9= (3-8)

m = 1.66 x 10727 kg is the baryon rest-mass, and S is
the specific entropy, or entropy per particle:

S = —.

; (3.9)

The second equality in (3.6) is an immediate consequence
of (3.5). From Eqgs. (3.4)—(3.9), we obtain the thermo-

dynamic relations

de = hdp + pTdS, dp = p(dh —TdS) (3.10)
A simple perfect fluid is barotropic if the energy density
depends only on the pressure, € = ¢(p). This is the case
for a cold or a homentropic fluid.

With the aid of Eqgs. (3.4)—(3.10), the divergence of the
fluid energy-momentum tensor (3.1) can be decomposed
as

V- T = hulV- (p@)] + pld - d(hu) — TdS]. (3.11)
Conservation of rest mass
V- (pt) =0, (3.12)

and the vanishing of (3.11) yield the relativistic Euler

equation for baroclinic fluids, in the canonical form:
£g(hu)+dh =4 -d(hu) =TdS (3.13)

where the first equality follows from the Cartan identity
(2.15) and the normalization condition

Goputu’ = —1. (3.14)

For barotropic fluids, the Euler equation (3.13) simplifies
to

£a(hu) + dh =@ - d(hu) = 0. (3.15)

Eq. (3.15) was obtained in special relativity by Synge
(1937) [17] and in general relativity by Lichnerowicz
(1941) [18]. The extension (3.13) to baroclinic (non-
isentropic) fluids was obtained by Taub (1959) [71] (see
also [27, 58, 72]). Both of these relativistic hydrodynamic
equations are canonical and can be described within the
framework of § II, which provides a very efficient ap-
proach to the derivation of conservation laws.

B. Barotropic flows
1. Hamilton’s principle for a barotropic-fluid element

The Euler equation (3.15) for a barotropic fluid is read-
ily in the canonical form (2.14). Thus, a particle varia-
tional principle in the form described in § IT can be found.
Indeed the motions of fluid elements in a barotropic fluid
are conformally geodesic, that is, they are geodesics of
a manifold with metric h%g,s [17, 18, 73]. This follows
from the fact that Eq. (3.15) is the Euler-Lagrange equa-
tion of the action functional

2 2 dz® dxzP
S=- hdr = — b —Gag—— —— 3.16
/7'1 T /T1 9ab dr ar " ( )
The Lagrangian
L(z,u) = —hy/ —gapu®u’ (3.17)

is associated with the canonical momentum 1-form

p = hu, (3.18)
and the canonical vorticity 2-form
Q =d(hu). (3.19)

On-shell, the condition (3.14) is satisfied, and the La-
grangian (3.17) takes the value L = —h. Carter [27]
introduced a slightly modified Lagrangian

L(z,u) = %hgaguo‘uﬁ — %h, (3.20)
that is associated with the same equations of motion
and has the same on-shell value, but its action is not
reparametrization invariant. Thus, if one wishes, for
instance, to use reparametrization invariance to replace
proper time 7 by coordinate time ¢, in order to obtain a
constrained Hamiltonian via 341 decomposition, as done
n [66], then the action (3.16) is the appropriate start-
ing point. If, on the other hand, one is interested in a
super-Hamiltonian that describes the dynamics in a 4-
dimensional spacetime, then Carter’s Lagrangian (3.20)



is more suitable. Substituting the latter into the Legen-
dre transformation (2.12) yields the super- Hamiltonian

1 1
H(z,p) = =9 paps + 3h (3.21)

2h
which vanishes on-shell (whence Eq. (3.14) holds). Sub-
stituting Egs. (3.18) and (3.21) into the Hamilton equa-
tion (2.14) yields the barotropic Euler equation (3.15).

2. Conservation of circulation in barotropic flows

For this system, Eq. (2.18) yields a relativistic gener-
alization of Helmholtz’s vorticity conservation equation:

£4d(hu) =0 (3.22)

and the Poincaré-Cartan integral invariant (2.20)-(2.21)
gives rise a relativistic generalization of Kelvin circulation
theorem: the circulation along a fluid ring ¢, dragged
along by the flow is conserved:

d
— ¢ hu=0.
dr }{T v

Conservation of circulation for the nonrelativistic Euler
equations was discovered by Cauchy (1815) [74, 75] and
independently rediscovered by Kelvin (1869) [76]. The
extension of this theorem to relativistic barotropic flu-
ids was obtained by Lichnerowicz and [77] Taub [71].
The most interesting feature of the above conservation
law is that its derivation does not depend on the space-
time metric or spacetime symmetries. Thus, it is exact
in time-dependent spacetimes, with gravitational waves
carrying energy and angular momentum away from a sys-
tem. Oscillating stars and radiating binaries, if mod-
eled as barotropic fluids with no viscosity or dissipation
other than gravitational waves, exactly conserve circula-
tion [60].

(3.23)

3. Fluid helicity

Since the super-Hamiltonian (3.21) is constant, the
system is uniformly canonical, and helicity is conserved.
If we we substitute Eq. (3.18) into Eq. (2.38), then
Egs. (2.27) and (2.39) imply that the fluid helicity cur-
rent [27, 78, 79]

hy = hii - xQ = hw (3.24)

is conserved:

Vo (hug x Q%) = V5(ho?) = 0. (3.25)

This implies a corresponding global conservation of the
integrated flux of hg, across a spatial hypersurface. In a

chart {¢,z'}, the volume integral of the time component
of ’_iﬁ:

Bl = hg - Vit = ho' = hu; Q% = —hw'u; /u;  (3.26)

is the relativistic generalization of Moffat’s fluid helicity
[32, 68, 69]. The last equality follows from Eq. (2.28). If
the vorticity w’ has sufficient decay, then the total volume
integral of the above quantity is conserved by the flow.

4. Killing vector fields € Bernoulli’s law

If there exists a vector field k(x), that generates a
family of diffeomorphisms (2.40) leaving the Langrangian
(3.17) unchanged, then Noether’s theorem implies the
existence of a streamline invariant linear in the momenta,
given by Eq. (2.42) (with K set to zero):

E(x,p) = ko = hug k™. (3.27)
As stated by Eq. (2.43), this quantity is conserved along
a streamline (i.e. the trajectory of a fluid element):

g:‘,Eﬁ(‘,’:lTVS:O.

- (3.28)

The above statement is a generalization of Bernoulli’s
law to relativistic barotropic fluids. In light of the above,
each Bernoulli-type conservation law is Noether-related
to a continuous symmetry of the flow.

Given the super-Hamiltonian (3.21), one may directly
verify when a quantity of the form (3.27) is conserved by
computing the Poisson bracket (2.45):

dé 1
R —— apB 1y
o ={E.H} = 7paps VR’ —K7V,h - (3.29)
1 «
= o uu’ £5(hgas)

which vanishes for all timelike streamlines iff

Lz(h*g) =0. (3.30)
That is, the necessary and sufficient condition for £ to be
a streamline invariant is that k be a Killing vector of a
manifold with metric h?g. This result is intuitive given
the fact that, as mentioned earlier, the fluid streamlines
are geodesics of this conformal metric, cf. Eq. (3.16).
We remark that the vanishing of both £3g and £h, as
indicated by the first line of Eq. (3.29), is a sufficient but
not necessary condition for £ to be conserved.

When the pressure vanishes, i.e. when A = 1, the
condition (3.30) reduces to the Killing equation V(,kg) =
0, which is Noether-related to the existence of conserved
quantities linear in the momenta for geodesic motion [80—
82].

As an example, let us consider a helically symmetric,
rigidly rotating fluid equilibrium, such as a rigidly ro-
tating star (that may be triaxially deformed [83]), or a
tidally-locked binary on circular orbits. The flow field
may then be written as

@=u'k, (3.31)



where

k=t+Q3 (3.32)
is a helical Killing vector field which Lie-derives the met-
ric: £zg = 0. Here, €2 is the rotation frequency, t =20,
is the generator of time translations and ¢ = 0, is the
generator of rotations about the rotation axis.

Let us assume that the fluid configuration is helically
symmetric, that is, the Lie derivatives of all fluid vari-
ables (such as p, h, u) along k vanish. Since, by virtue of
Eq. (3.30), the system is stationary in a rotating frame,
Noether’s theorem guarantees that the energy in a rotat-
ing frame, given by Eq. (3.27):

E =kpa = pe + Qpy (3.33)

is conserved along streamlines.

In general, this quantity can differ from one stream-
line to the next. However, a stronger result follows from
Eq. (3.31) and the Cartan identity (2.15), which allow
one to write the Euler equation (3.15) as

k-dp=£;p—d(k-p)=0. (3.34)
Because £ p = 0, the first integral (3.27) of the Euler
equation is constant throughout the fluid:

VE=0. (3.35)
This stronger conservation law is a relativistc generaliza-
tion of von Zeipel’s law [60]. The energy (3.27) is also a
first integral to the Euler equation if a helically symmet-
ric system is irrotational [57, 84-91]. Such first integrals
are valuable for solving for obtaining fluid equilibria via
the self-consistent field method [92]. Generalizations of
these first integrals have been used to construct equilibria
for spinning [93-96] or eccentric [97, 98] compact binaries
in numerical relativity.

5. Killing tensor fields & the Carter constant

Geodesic motion of test particles in Kerr (or Kerr-de
Sitter) spacetimes is known to admit a fourth constant of
motion (in addition to energy, angular momentum, and
four-velocity magnitude), known as the Carter constant,
which is quadratic in the momenta and is Noether-related
to the existence of a Killing tensor field [80].

To our knowledge, the concept of a Killing tensor for
fluid flows has not been defined before, but the frame-
work outlined § II provides the means to do so. Consider
a tensor field K% (x) associated with a streamline invari-
ant quadratic in the momenta,

E=K"paps + K, (3.36)
where the scalar K(z) is a function of position. This
invariant can be considered a special case of the invariant
(2.42) and follows from the generalized Noether theorem,

with k%(z,p) = K*’(z)ps being the generator of the
symmetry transformations [99]. For the barotropic fluid
super-Hamiltonian (3.21), the Poisson bracket (2.45) is

(&, H}Y = (W*V, K op5+2hgas K5V h—g*? V7 K )u®uPu’.

(3.37)
The above bracket vanishes for all timelike streamlines
if

B2V (K op) + 20905 K5 VR — g0V K =0 (3.38)

That is, the quantity (3.36) is conserved along stream-
liges iff K is a Killing tensor of the conformal metric
h-g.

In the case of a reducible Killing tensor of the form
K = k*EB where k® is a Killing vector satisfying
Eq. (3.30), the condition (3.38) is automatically satisfied
while K again vanishes.

When the pressure vanishes, h = 1, the scalar K
must vanish and the above condition reduces to the
Killing equation V(,Kgy) = 0, which is the necessary
and sufficient condition K“’p,ps being conserved along
a geodesic of g,g. This is the condition satisfied by the
Killing tensor in the Kerr spacetime, which is Noether-
related to the Carter constant [80, 81]. In light of this,
Egs. (3.36)-(3.38) generalize the concept of a Carter con-
stant to test fluids in Kerr spacetime. Note, however,
that the fluid configuration must satisfy a generalized
symmetry (in particular, the Hamilton-Jacobi equation
describing the flow [66] must be separable in Boyer-
Lindquist coordinates) in order for this constant to exist.

A geodesic flow can be described by the super-
Hamiltonian H = %gaﬁpapg, with p, = u4, which is
conserved by virtue of the normalization condition (3.14).
This conserved quantity arises from ¢g®? being covariantly
constant and thus a Killing tensor, and is Noether-related
to the super-Hamiltonian being independent of the affine
parameter 7. For barotropic flow, however, g®? is not a
Killing tensor, as it does not satisfy the condition (3.38)
except in the geodesic limit. (If g*? were a Killing tensor,
then ¢g®? paps = —h? would be a streamline constant, but
this is not true unless A = 1). However, K* = g% /h
is a Killing tensor, since it satisfies the condition (3.38)
provided that K = h. The quadratic streamline con-
stant (3.36) associated with this Killing tensor is simply
the super-Hamiltonian (3.21).

C. Baroclinic flows
1. Hamilton’s principle for a baroclinic-fluid element

The possibility of expressing the equations of baroclinic
(non-isentropic) fluid flows in canonical form has been
demonstrated by Carter [27]. An intuitively simple ac-
tion principle (different from but equivalent to Carter’s)
may be obtained as follows.

A free test particle of rest mass m, moving along
a geodesic of spacetime, extremizes the action § =



—m f:f dr [100]. For barotropic flows, as indicated by
Eq. (3.16), the pressure force on a fluid element can be
accounted for by replacing rest mass by the specific en-
thalpy Am. For baroclinic flows, in light of Egs. (3.6),
(3.8) and (3.10), the natural generalization is to replace
rest mass in the above action by the chemical potential
1= gm or, equivalently, the specific Gibbs free energy g
(the rest mass can be dropped without affecting the equa-
tions of motion). Upon inspection, it becomes immedi-
ately clear that Eq. (3.13) is indeed the Euler-Lagrange
equation of the action functional

T2 /\2
s——["gar— | (h
T1 A1
(3.39)

provided that the (non-affine) canonical time parameter

dze dzP

Py R PO
9o~ Tan O

(3.40)

is used to parametrize the action. Note that en-
tropy breaks time-parametrization invariance: unlike the
barotropic fluid action (3.16), the baroclinic fluid action
(3.39) is not parametrization invariant. Consequently,
parameter choices other than (3.40), such as proper time
T or coordinate time ¢, lead to incorrect equations of mo-
tion. The Lagrangian

L(z,v) = —hy/ —gapv®vP + S

is associated, by virtue of Eqgs. (2.7) and (2.9b), with the
canonical velocity and canonical momentum

(3.41)

o« dz®  1ldz* 1

Do = STLQ =T hv, = hug. (3.42b)

On-shell, by virtue of Eq. (3.14), one has v®v, = —T 2
and the Lagrangian takes the value L = —g/T = —h/T+
S and, by virtue of Eq. (2.12), the super-Hamiltonian
takes the value H = —S. Then, the Euler-Lagrange
equation (2.10) becomes

Lgr(hu) = d(S —h/T) (3.43)
and the Hamilton equation (2.14) becomes
U
T -d(hu) =dS. (3.44)

Both of these equations are equivalent expressions of the
relativistic Euler equation (3.13) for baroclinic fluids.

Carter [27] introduced a different Lagrangiananalogous
to Eq. (3.20)

1 1
L(z,v) = §Thgaﬁv°‘vﬁ —3 (g - S) ,

7 (3.45)
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that is associated with the same canonical velocity and
momentum (3.42), has the same on-shell value as our La-
grangian (3.41), and leads to the same equation of mo-
tion (3.43). The Legendre transformation (2.12) yields
the super-Hamiltonian

1 h
H($7p) = 79%610041% + amr S7

2Th 2T (346)

which has the same on-shell value and leads to the canon-
ical equation of motion (3.44).

2. Conservation of circulation in baroclinic flows

The canonical momentum and canonical vorticity are
given by the same expressions (3.18) and (3.19) as for
barotropic flows. However, the vorticity is no longer Lie-
dragged by the fluid four-velocity u: the exterior deriva-
tive of Eq. (3.13) reads

£gd(hu) =dT A dS. (3.47)
Thus, the circulation around a fluid ring ¢, = ¥, (c¢)
dragged along by the flow (where ¥, is the family of dif-
feomorphisms generated by fluid four-velocity 4) is not
generally conserved:

d d
ch‘i_r hu = E s, d(hU)
:/i?,;d(hu):/dT/\dS. (3.48)
S S

Hence, Kelvin’s theorem has been commonly thought to
not hold for baroclinic flows, except in a weaker form:
the circulation computed initially along a fluid ring of
constant temperature or specific entropy is conserved [32,
101].

In lieu of a conserved circulation law, one may intro-
duce the potential vorticity, defined in general relativity
by selecting the scalar field in Eq. (2.34), or the nega-
tive Hamiltonian in Eq. (2.36), to coincide with specific
entropy S (i.e. setting I = d.S), to obtain a flux conserva-
tion law of the form (2.35). This law can also be written
in terms of a Lie derivative along fluid velocity, and is the
relativistic generalization of Ertel’s theorem obtained by
Friedman [101] (see also Katz [102]).

Here, we take a different route, and show that Carter’s
framework [103] implies the existence of a strong circu-
lation law. We have just shown above that an inviscid
baroclinic fluid is a Hamiltonian system and, as such,
must possess a Poincaré-Cartan integral invariant. In-
deed, the exterior derivative of Eq. (3.43) implies that the
canonical vorticity (3.19) is Lie-dragged by the canonical
fluid wvelocity (2.7):

£ﬁ/T d(hu) =0 (3.49)
as dictated by Eq. (2.18). Hence, the circulation around
a fluid ring ¢\ = ¥y (c), obtained by moving each point of
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c a thermal time A (cf. Eq. (3.40)) along the flow through
that point, is indeed conserved:

d d
AL =2 aow) = [ L0 d(hu) =
dxfi u=a fy, /s a/r d(hu) =0

(3.50)
as dictated by Eqgs. (2.20)-(2.21). Here, the circulation
can be initially computed along an arbitrary fluid ring
c. Thus, unlike the previous weak form, this circulation
theorem is a strong form of Kelvin’s theorem, applicable
to baroclinic fluids.

It will be shown below that this circulation theorem
can be further extended to barotropic or baroclinic, per-
fectly or poorly conducting, magnetofluids. These (new
and old) circulation theorems are again special cases of
the Poincaré-Cartan integral invariant (2.20). The fluid
helicity, on the other hand, is not conserved for baroclinic
fluids, as these systems are not uniformly canonical.

D. Ideal magnetoflows
1.  Mazxwell equations

Consider an electromagnetic field in .#, described
by the electromagnetic 2-form F', known as the Fara-
day tensor, satisfying the Maxwell equations which, in

natural Heaviside-Lorentz units, read V,(xF*%) = 0,
Vo F*8 = JP or

dF =0 (3.51a)

d+xF =%J, (3.51b)

where xF' is the 2-form Hodge-dual of F', namely #F, 3 :=
$€apysF7°, and *J is the 3-form Hodge-dual of the 1-
form J associated with the electric 4-current J, namely
*Ja[gw = eag.y(s[]‘s.

The electric 4-current may be decomposed as J =
eu + ; where ¢ = —u - J is the proper charge density,
et is the convection current and _; is the conduction cur-
rent, satisfying w - ; = 0. For an isotropically conducting
medium, Ohm’s law can be written as

j=oFE (3.52)

where o is the conductivity of the medium and F is the
electric field measured by an observer comoving with the
fluid, given by Eq. (3.59) below. In the perfect conduc-
tivity limit, o — oo, the electric field vanishes, E — 0.
In the poor conductivity limit, ¢ — 0, the conduction
current vanishes, 7 — 0.

2. Magnetohydrodynamic Euler equation
The relativistic MHD-Euler equation can be obtained
from the conservation law of energy-momentum,

V(T + 1) =0, (3.53)
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where T°™ is the energy-momentum tensor of the elec-
tromagnetic field:
1
o = FyoFy — i L6 F 0 Gog. (3.54)
This tensor is trace-free: ¢*°T o5 = 0. Taking the di-
vergence of Eq. (3.54) and using the Maxwell equations
(3.51), one obtains the well known relation
V-T" = —F.J. (3.55)
Substituting Egs. (3.11) and (3.55) into the conservation
law (3.53) yields the MHD-FEuler equation for baroclinic
magnetofluids:
1 -
4-d(hu)=TdS+-F - J. (3.56)
p
As shown in Ref. [57], the specific form (3.56) is well
adapted to the cases where the spacetime exhibits some
symmetries. Projecting the MHD-Euler equation along
u yields T£5 S = %E - J. The right hand side of this
equation, which represents Joule heating, vanishes in the
limit of perfect conductivity, whence the flow is adiabatic:

£5S =1 VS =0. (3.57)

For barotropic magnetofluids, the above equation simpli-
fies to

1 -
4-d(hu)=—-F-J.
p
In the abscence of pressure and currents (h — 1 and
J — 0), this equation reduces to the geodesic equation,
4 -du = 0, as expected.

(3.58)

8. Perfectly conducting magnetoflows

The electric field 1-form E and the magnetic field vec-

tor B measured in the fluid rest-frame, by an observer of
4-velocity u, are given in terms of F by

E=—w4-F, B=i +F (3.59)

and satisfy

E-4=0, B-di=0. (3.60)

Equivalently, we can decompose F' into electric and mag-
netic parts with respect to the rest frame defined by the
vector U, as

F=uAE+x*(uAB) (3.61a)
*F =+x(uANE)—uANB. (3.61b)
The scalar invariants of the field are given by
1 . -
iF‘*ﬁFaﬁ =B-B-E-E (3.62)
1 ~
5(*F“B)Fa5 =B -E. (3.63)
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In ideal MHD, one assumes that the fluid occupying
the part D C . of spacetime is a perfect conductor. By
this, we mean that the observers comoving with the fluid
measure a vanishing electric field. By virtue of Ohm’s law
(3.52), this expresses the infinite conductivity condition.
From (3.59), this condition amounts to

E=F -u=0. (3.64)
The electromagnetic field then reduces to

F = x(u A B) (3.65a)

«F'=—-uAB (3.65b)

and the Maxwell equation (3.51a) simplifies to
dx(uAB)=0%x V,(u*B’ —u’B*) = 0. (3.66)

This equation is a special case of Eq. (2.37), for reasons
that will become clear below. In ideal MHD, one only
has to evolve the magnetic field equation (3.66). The cur-
rent has no dynamical degrees of freedom and is merely
defined in terms of the magnetic field via Eq. (3.65a)
and the Maxwell equation (3.51b). One then evolves the
MHD-Euler equation (3.56) after evaluating the Lorentz
force term in its right-hand side.
Alternatively, by writing F' in terms of the electromag-
netic potential 1-form A,
F=dA, (3.67)
one automatically satisfies the Maxwell equation (3.51a).
The perfect conductivity condition (3.64) is then used to
evolve the electromagnetic potential [104, 105]:
u-dA=0<u"(VaAg — VgA,) =0 (3.68)
In 3+1 dimensions, Eq. (3.66) is the curl of Eq. (3.68),
as shown in § IITD 11.

4. Action of a magnetic field frozen into the flow

A magnetic field frozen into the fluid, as defined by the
perfect conductivity condition (3.64), is characterized by
the action functional

T2 d.]?a
= Ay, —
S /T1 o dr

where the electromagnetic potential A is considered a
function of = only. From the Lagrangian [27]

(3.69)

L(z,u) = u®A, (3.70)
we finds that the canonical momentum 1-form (2.9b) is
the electromagnetic potential

oL

=9 _a, 71
Suo (3.71)

Pao
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and the canonical vorticity 2-form (2.17) is simply the
Faraday tensor

F =dA. (3.72)
Because the super-Hamiltonian (2.12) vanishes,
H =0, (3.73)

the canonical equation of motion (2.14) takes the form of
the perfect conductivity condition (3.68).

5. Alfvén’s theorem: conservation of magnetic fluz

If we express the Lie derivative of F along # via the
Cartan identity,

£qF =i -dF +d(i- F), (3.74)

and take into account the Maxwell equation (3.51a) and
the perfect conductivity condition (3.64), we get

£LaF =0. (3.75)

This result, which also follows from Eq. (2.18), is the
geometrical expression of Alfvén’s magnetic fluz theorem:
the magnetic flux through a fluid ring ¢, dragged along
by the flow is conserved

i A:i/ F:/£ﬂ‘F:O.
dr J.. dr Js. s

This follows directly from Eq. (2.21) for the Lagrangian
(3.70) and is therefore simply a special case of the
Poincaré-Cartan integral invariant (2.20). Intuitively,
Alfvén’s theorem is a consequence of perfect conductivity.
If one attempts to change the magnetic field and thus the
magnetic flux through the ring ¢, of fluid, then, in accor-
dance with Lenz’s law, induced currents will generate a
compensatory magnetic field in an attempt to cancel the
change of flux. In the limit of perfect conductivity, this
cancellation is perfect and the flux is exactly conserved.

(3.76)

6. Magnetic helicity

Since the super-Hamiltonian (3.73) is constant, the
system is uniformly canonical, and the magnetic helic-

ity,

hewm := A - +F, (3.77)

obtained by substituting Eqgs. (3.71) and (3.72) into
(2.38), is conserved

Vohen, =0

em

(3.78)

by virtue of Eq. (2.39). This implies a corresponding
global conservation of the integrated flux of hS, across
a spatial hypersurface, which amounts to the relativistic
generalization of Woltjer’s magnetic helicity [32, 67, 69].



7. Einstein-Maxwell-Euler spacetimes

The classical action describing an Einstein-Maxwell-
Euler spacetime (., g), coupled with a perfect fluid car-
rying an electric current, is given by [60]

A= /d4x\/ e+ —R — fFaf,FaﬁjLAaJ“),

4

(3.79)
where R is the Ricci scalar. By writing F' in terms of a
1-form potential A, Eq. (3.67), one satisfies the Maxwell
equation (3.51a). Varying the action with respect to
the metric g yields the Einstein equations; varying with
respect to the electromagnetic 4-potential A yields the
Maxwell equations (3.51b); and varying with respect to
the fluid variables yields the MHD Euler equation (3.56).
Instead of imposing the perfect MHD condition after
varying the action, one may incorporate it into the action.

This can be done by replacing the action (3.79) with

= [ d'zsv/—g| —e+ — lp.Be
A /dm e—|—16R 5 Ba

+aa V(B u” — BPu®™) | (3.80)
where the 1-form a is a Lagrange multiplier used to
enforce the flux freezing condition (3.66). In writing
the action functional above, we have taken into account
Eq. (3.62) in order to evaluate the magnetic energy term.
This action functional differs by a surface term from that

of Bekenstein-Oron [29] which, in our notation, reads
A :/d4xw/ (—eJr—R fB B® 44 Fopu’ ).

Here, the Lagrange multiplier b is used to enforce the
perfect conductivity condition (3.64) and is shown to be
the curl of a as indicated by Eq. (3.84) below. Our ac-
tion (3.80) closely resembles the non-relativistic action
of Bekenstein-Oron [29], which is a more natural starting
point and simplifies the discussion below. Variation of
the action (3.80) with respect to the multiplier a yields
the Maxwell equation (3.66), while variation with respect
to the magnetic field B and integration by parts yields
the equation
4 -da = —B. (3.81)
The multiplier a may thus be thought of as an auxiliary
field, with B the electric part of the 2-form
f=da (3.82)
[compare Eq. (3.81) with (3.59)]. Note that the above
equation automatically satisfies the orthogonality condi-
tion (3.60). Comparing Eqgs. (3.81) and (3.59), we infer
that the Faraday tensor F' must be related to the 2-form
f via a relation xF = —f + w where w is some 2-form
satisfying 4 - w = 0. Since w has no electric part, it can
be written in terms of its magnetic part, b = u - xw, as
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w = x(u A b). Taking Eq. (3.65b) into account, we infer
that
f=x(-F+uAb)=uAB+x*x(uAb) (3.83)
That is, the 2-form (3.82) has an electric part given by
Eq. (3.81) and a magnetic part given by the 1-form
b=wu-*da. (3.84)
As pointed out by Bekenstein and Oron [29], the theory
has a U(1)xU(1) symmetry, since the observable field
B remains invariant under gauge transformations A —
A +dA and a — a + dA.
Taking the exterior derivative of Eq. (3.83) yields the
Maxwell equation (3.51b), with the Faraday tensor given
by Eq. (3.65a) and the current ‘defined’ by

J = V5(ud? — ufp®) (3.85)

or

J =xd* (uAb). (3.86)
This expression has been obtained in [29] via a lengthy
route and will be referred to as the Bekenstein-Oron cur-
rent. Note that the above expression automatically sat-
isfies the continuity equation

V- J=—xdxJ =0 (3.87)
regardless of any assumption about uw and b. Physically,
the above equation expresses the conservation of electric
charge. The operator xdx is the codifferential and has
been expressed as the divergence taken with the V con-
nection. For convenience, let us introduce an auxiliary
vector ¢ and an auxiliary 1-form 1 defined by

qa = ba/pv No = aﬁqﬁ

or

g:=b/p, n:=F-q. (3.88)
One may then use the continuity equation (3.12) to write
the Bekenstein-Oron current (3.86) as

J = £4(pw) + pu(V- ). (3.89)

This expression can be used to write the Lorentz force
term in (3.103b) as

lp.jzlp.,{jq(pﬁ
p

)=—u-dn.
p

(3.90)

The last equality follows from projecting the Cartan iden-
tity, £gF = q-dF +d(q - F), along the vector p 4 and
using Eq. (3.64). By virtue of the above equality, the
MHD-Euler equation (3.56) takes the canonical form
£a(hu + =TdS

n)+dh =14 -d(hu + n) (3.91)



which is valid for baroclinic magnetofluids. For barotropic
magnetofluids, the above equation simplifies to

La(hu+ n)+dh=a-d(hu + 1) =0.  (3.92)

The last equality was obtained by Bekenstein et al. [29,
31].

The tensor or vector calculus-based derivations in
Ref. [29, 31] did not clarify the generality of this ap-
proach. In particular, one may question whether the
Bekenstein-Oron ansatz (3.86) for the current is generic
enough to accommodate any given ideal MHD flow. This
question boils down to whether Eq. (3.81) can be solved
for any given magnetofluid configuration with magnetic
field B and 4-velocity @. The answer may be obtained
by using the Cartan identity to write Eq. (3.81) as
£ga —d(u-a) = —B and using the gauge freedom in a
to set @-a = 0 (this gauge condition can be shown to be
preserved by the flow if satisfied initially). The result-
ing differential equation, £3a = —B, is always solvable
along the integral curves of ©. We have thus shown that
no loss of generality is entailed in the Bekenstein-Oron
description of ideal MHD flows. For perfectly conducting
magnetofluids, the Einstein-Maxwell-Euler action (3.79)
may always be replaced by the action (3.80), and the
MHD-Euler equation (3.56) may always be replaced by
Eq. (3.91).

8. Hamilton’s principle for a barotropic magnetofluid
element

Carter [27] has allowed the possibility that the perfect
fluid be charged. His approach is valid for poorly con-
ducting fluids, but has been considered inapplicable to
conducting magnetofluids [30]. Nevertheless, it is shown
below that Carter’s framework can in fact accommodate
perfectly conducting fluids in the context of Bekenstein-
Oron magnetohydrodynamics. For a barotropic, per-
fectly conducting magnetofluid, we generalize the action
(3.16) as follows:

2 / dz® dzP dz®

with Lagrangian

L(JZ,U) = _h\/ _gaﬁuauﬁ + ’r/(xua

and with i given by Eq. (3.88). The canonical velocity
and momentum of a magnetofluid element are given by

_dz®

(3.94)

OL
Do = o hug + Ng.- (3.95b)

Alternatively, one may introduce a Lagrangian which
generalizes that of Carter, Eq. (3.20):

1 1
L(z,u) = 5hgaﬂu%ﬁ =+ nau®. (3.96)
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The associated Hamiltonian,

1, 1
H(z,m) = 59" (pa = na) (s = 115) + 5h, (3.97)
vanishes on-shell, so the Hamilton equation (2.14) yields
the MHD-FEuler equation in the Bekenstein-Oron form,
Eq. (3.92).

9. Conservation of circulation in barotropic magnetoflows

The canonical momentum 1-form of a barotropic ideal
magnetofluid-element is given by Eq. (3.95b). Then, the
Poincaré 2-form (2.17) amounts to the canonical vorticity
2-form:

Q = d(hu + 7). (3.98)

Then, the Cartan identity, combined with Eq. (3.91) and
the identity d* = 0, yields

£aQ=0. (3.99)

This equation implies that the canonical vorticity of
a barotropic, perfectly conducting magnetofluid is pre-
served by the flow. This leads to a generalization of
Kelvin’s theorem to magnetized fluids.

Indeed, for the system (3.93), the Poincaré-Cartan the-
orem (2.21) implies that the circulation through a ring
cr dragged along by the flow is conserved:

% j{T(hu +1n)=0. (3.100)

This law follows directly from Eq. (3.99) and was first ob-
tained by Bekenstein and Oron [29, 30]. It is a generaliza-
tion of the relativistic Kelvin circulation theorem (3.48)
(which is recovered in the non-magnetic limit 17 = 0) to
ideal MHD. The most interesting feature of this conser-
vation law is that it is ezact in time-dependent space-
times, with gravitational and electromagnetic waves car-
rying energy and angular momentum away from a sys-
tem. In particular, oscillating stars and radiating bina-
ries, if modeled as barotropic magnetofluids with no vis-
cosity, resistivity or other dissipation, exactly conserve
circulation.

10. Ideal magnetofluid helicity

Since the super-Hamiltonian (3.97) is constant (zero),
the system is uniformly canonical, and helicity is con-
served: Substituting Eq. (3.95b) into Eq. (2.38) yields
the magnetolfuid helicity

hug = (hd + 1) - xQ (3.101)
which, by virtue of Eq. (2.39), is conserved:
Val(hug + na) * 2] = 0. (3.102)



This implies a corresponding global conservation of the
integrated flux of h{ 4 across a spatial hypersurface. One
may proceed analogously to Eq. (3.26) to obtain a con-
served volume integral, which amounts to the gener-
alization of Moffat’s fluid helicity [32, 68, 69] to ideal
GRMHD.

11. A canonical evolution scheme for ideal MHD

In binary neutron-star inspiral, the temperature is
much lower than the Fermi temperature, and heat con-
duction, viscosity and resistivity can be neglected [60].
The fluid may then be approximated as barotropic, adia-
batic, inviscid and perfectly conducting. In general rela-
tivity, such fluids are described by the ideal MHD equa-
tions (3.68) and (3.58):

u”‘(VaAB - VgAa) =0 (3.103&)
1
u”‘[Va(hug) - Vg(hua)] = ;Fﬁw]a. (3.103b)

coupled to the continuity equation (3.12). One can evolve
Eq. (3.68) for the electromagnetic potential and compute
the Faraday tensor via Eq. (3.67). In ideal MHD, as
mentioned earlier, the current lacks dynamical degrees
of freedom and is merely ‘defined’ in terms of the elec-
tromagnetic potential via the Maxwell equation (3.51Db).
One then evolves the MHD-Euler equation (3.103b) after
evaluating the Lorentz force term in its right-hand side.

In a chart {t, 2%}, the above system can be written in
3+1 hyperbolic form as

O A; — 0; A + ’Uj(ain — &AJ) =0

Oy — Oymy + 07 (0jm; — Oimj) = fi

(3.104a)
(3.104b)

where v = u'/u? = dz’/dt is the fluid velocity measured
in local coordinates, m, = hu, denotes a (non-canonical)
momentum 1-form and f, = (pu')~1F,5J” denotes the
Lorentz force per particle. The curl of the evolution equa-
tion (3.104a) is an evolution equation for the magnetic
field. In particular, the exterior derivatives of the system
(3.104) yield an evolution system for the spatial parts of
the 2-forms F = dA and W = dx. In flux-conservative
form, this system reads:

(3.105a)

O Fjk + 010" 0™ Fry) = 0
=0  (3.105b)

Wik + 0; [5jkil(vm mi — f1)]

where 5jkil = ej;me”” = 6;-65@ — 5,@5; is the generalized
Kronecker delta. Eq. (3.105a) is an evolution equation,
equivalent? to Eq. (3.66), for the magnetic field. Numer-
ical evolution of the latter typically requires techniques

4 Unlike Eq. (3.66) which contains the metric and its connection,
Eq. (3.105a) contains no such dependence, yet both equations
are equivalent and exact in curved spacetime.
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such as hyperbolic divergence cleaning or constrained
transport to avoid error accumulation from a finite mag-
netic divergence [106]. Such numerical schemes can also
be applied to evolving the system (3.105) [as well as the
system (3.109) below|. Etienne et al. [104, 105] have
performed GRMHD simulations that directly evolve the
electromagnetic potential A by means of Eq. (3.104a) [or
Eq. (3.108a)]. The magnetic field is then computed from
the curl of the vector potential and has zero divergence by
construction. This numerical scheme can also be applied
to evolving the system (3.108) below, which is based on
the Bekenstein-Oron formulation.

Egs. (3.103)-(3.105) constitute the usual formulation
of ideal MHD for barotropic magnetofluids. As shown
earlier, the Bekenstein-Oron description of ideal MHD
allows one to replace the MHD-Euler equation (3.58) by
the system of equations (3.81) and (3.92), namely

u(VoAp —VpAs) =0 (3.106a)
u*(Vaas — Vgas) = —Bg (3.106b)
u*(Vaps — Vgpa) =0 (3.106¢)
where
p=hu+n (3.107)

is the canonical momentum 1-form of a magnetofluid el-
ement, as shown in the next section.

In a chart {t,z'}, the above system can be written in
341 canonical hyperbolic form as

DA — Ay + 07 (9;A; — i A;)) =0 (3.108a)
dra; — diar + 07 (d;a; — Bza;) = —B; (3.108b)

atpi — O;Pt + v’ (8jp,» — (%pj) =0 (3.1080)
This system may be evolved analogously to the system
(3.103). Ome evolves the first equation for A and com-
putes the magnetic field B = ©-xdA. With this source,
one evolves the second equation for a and computes the
auxiliary field b = 4 - xda. Finally, one solves the last
equation of the above system, taking Eqs. (3.88) and
(3.107) into account, to evolve the hydromagnetic flow.

The spatial exterior derivatives of the system (3.108)
yield an evolution system for the spatial parts of the 2-
forms (3.72), (3.82) and (3.98). In flux-conservative form,
this system reads:

atij + 8i(5jkilUanLl) =0 (3109&)
Oufik + 0; [5jkil(vmfml +B)]=0 (3.109b)
9 Qjr + 8¢(5jkilvm9mz) =0 (3.109¢)

As mentioned above, the numerical schemes developed
for the systems (3.104) or (3.105) can also be applied
to evolving the systems (3.108) or (3.109). Note that
these systems were obtained from equations involving
only exterior derivatives, and thus do not involve the
spacetime metric or its connection. Thus, these sys-
tems are independent of gravity theory and they can be
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shown to be walid as written® even in the Newtonian
limit. This is generally true for equations of motion writ-
ten in Euler-Lagrange or in Hamiltonian form, cf. [66]
for details. For nonmagnetic fluids, Eq. (3.108c) was ob-
tained from a 3+1 constrained Hamiltonian formulation
of the Euler equation in Ref. [66], where it was shown
to be strongly hyperbolic. Other strongly hyperbolic for-
mulations of the relativistic Euler equation include the
Valencia formulation [11] and the symmetric hyperbolic
Fraudendiner-Walton formulation [107-110]. The hyper-
bolicity of the evolution system (3.108) is the subject of
future work. A notable feature of the canonical evolution
system (3.106) is that it manifestly preserves magnetic
flux and circulation, owing to its symplecic structure.
Eq. (3.108a) can also be obtained from a constrained
Hamiltonian. Symplectic evolution schemes based on the
Hamiltonians of Eqgs. (3.108a) and (3.108¢) are expected
to numerically preserve such properties. Moreover, if the
system admits a Noether symmetry, this canonical form
quickly gives rise to first integrals as discussed below.

12.  Magnetars with helical symmetry

As an example, let us consider a helically symmetric
rigidly rotating system, such as a rigidly rotating mag-
netar triaxially deformed by its off-axis frozen magnetic
field. The flow field may then be written in the form of
Eq. (3.31). Let us assume that all observable fields (such
as h,u, B, F, g) are helically symmetric, that is, their
Lie derivatives along the helical Killing vector E, given
by Eq. (3.32), vanish.

Using gauge freedom, one can always find a gauge class
for which the electromagnetic potential A inherits the
Killing symmetries of F = dA [57,111-113]. Then, using
Eq. (3.31) and the Cartan identity, £; A = k-dA+d(k-
A) =0, we find that Eq. (3.106a) has the first integral

A-k=A+ QA, = constant. (3.110)

Similarly, using £ a = k-da+d(k-a) and imposing the
gauge condition k-a = 0 allows one to write Eq. (3.106b)
as £ya=—B/ ut. This equation has the simple solution

a=-Bt/u, (3.111)

where the scalar field ¢ satisfies t*V ¢ = 1, so that £t =
(0r + Q0,)t = 1. Note that the auxiliary fields a and
b = u-xda are not observable and need not satisfy helical
symmetry (cf. Appendix B). Finally, Eq. (3.31) and the
Cartan identity allow one to write Eq. (3.106¢) in the
form of Eq. (3.34), which has the first integral

p-k+ f=—h/u’ + f = constant. (3.112)

5 With —p; replaced by the constrained Hamiltonian H(p;,z7),
and similarly for —A; and —a¢, Eqgs. (3.108) are formally valid
in both 341 general relativity and in newtonian gravity.
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The first integrals (3.110) and (3.112) are consequences
of stationarity in an inertial (2 = 0) or rotating (2 > 0)
frame and, like Eq. (3.35), can be considered general-
izations of von Zeipel’s law to relativistic magnetoflows.
The scalar f is such that df = —£p or, by virtue of
Eq. (3.107),

df = 7£ET].

The right-hand side of this equation is proportional to
the Lorentz force. One way to see this is to act with £y
on Eq. (3.88),

(3.113)

n=dA-b/p=(B*/p)u—da - B/p, (3.114)
and use Eq. (3.111), yielding
Lin=d(B/u') - B/p. (3.115)

Eq. (3.113) then implies that the Lorentz force must be
the gradient of a scalar potential f in order for helically
symmetric corotating configurations solutions to exist.
This equation is subject to the integrability condition
dfgn=-d’f=0. (3.116)

which constitutes a restriction on the magnetic field B
on which 17 depends. By virtue of Eq. (3.115), the above
condition becomes

d(B/u') Ad(B/p) = 0. (3.117)
For corotating helically symmetric magnetoflows, the sys-
tem of nonlinear partial differential equations (3.106)
has been reduced to the system of algebraic equa-
tions (3.110)—(3.112) and the partial differential equation
(3.113). The Newtonian analogue of Eq. (3.116) has been
considered in Ref. [114]. A full description of a triaxial
magnetar requires specifying boundary (or junction) con-
ditions at the stellar surface for the electromagnetic field,
as well as an induced surface current (associated with the
fact that the condition (3.110) applies inside the star but
not in the vacuum outside the surface). This is beyond
the scope of this paper and a subject of future work.

13.  Hamilton’s principle for a baroclinic magnetofiuid
element

For a baroclinic, perfectly conducting magnetofluid, we
consider the action

A
2 dze dxP dz®
- —hA/ —gog—— —— + Ny —— dX (3.11
S N ( \/ —9ap o + o +S> (3.118)

with 1 given by Eq. (3.88). Like its non-magnetic limit
(3.39), the above functional is parametrized in terms of
thermal time A, cf. Eq. (3.40). The Lagrangian of a mag-
netofluid element

L(z,v) = —hy/—gapv®v? + nov* + S

(3.119)



is associated with a canonical velocity and canonical mo-
mentum

_dz® ldl‘a 1

a _ e 12
VST T T T (8.120a)
oL
Do = 78,Ua = Th’Ua + Na = hua + Mo (3120b)

On-shell, by virtue of Egs. (3.14), (3.64) and (3.88), the
Lagrangian takes the value L = —g/T = —h/T + S and,
by virtue of Eq. (2.12), the super-Hamiltonian takes the
value H = —S. The Euler-Lagrange equation (2.10) thus
becomes

Lg/r(hu+mn) =d(S —h/T) (3.121)
and the Hamilton equation (2.14) becomes
U
T d(hu+n) =dS. (3.122)

These equations are related via the Cartan identity and
are equivalent expressions of the MHD-Euler equation
(3.91).

Alternatively, one may generalize Carter’s Lagrangian
(3.45) to perfectly conducting baroclinic magnetofluids:
the resulting Lagrangian

1 1
L(@,v) = 5Thgapv™v” + 550" = 3 (% - S) (3.123)
is associated with the same canonical velocity and mo-
mentum (3.95) and leads also to the equation of motion
(3.121). The Legendre transformation (2.12) yields the
super-Hamiltonian

1 h
H(z,p) = ﬂg‘w(pa —na)(ps—1p) + 55— S, (3.124)

2T
which leads to the canonical equation of motion (3.122).
Note that the 1-form 5, defined by Eq. (3.88) or (3.114),
is consider independent of the four-velocity .

14. Conservation of circulation in baroclinic magnetoflows

Like their nonmagnetic counterparts, baroclinic mag-
netoflows do not Lie-drag the vorticity (3.98): the exte-
rior derivative of Eq. (3.91) reads

£ad(hu+n)=dT AdS. (3.125)
Thus, as in Eq. (3.48), the circulation around a mag-
netofluid ring dragged along by the flow is not generally
conserved, except in a weak sense, i.e. for rings of con-
stant specific entropy or temperature.

Nevertheless, like their nonmagnetic counterparts,
ideal baroclinic magnetoflows are Lie-dragged by the
canonical fluid velocity (3.95a):

fﬁ/T d(hu + 77) =0 (3126)
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as dictated by Eq. (3.121), and this leades to a strong
conservation law. In particular, the circulation around a
magnetofluid ring ¢y = ¥(c¢), obtained by moving each
point of ¢ a thermal time A (cf. Eq. (3.40)) along the flow
through that point, is indeed conserved:

d d
A hurn=2[ anm
d)\yi utn =y, At

S

Here, the circulation can be initially computed along
an arbitrary fluid ring ¢. This conservation of circula-
tion law generalizes the Bekenstein-Oron law (3.100) to
baroclinic magnetofluids. The conserved circulation is
the Poincaré-Cartan integral invariant of the Hamilto-
nian system described by the action (3.118). Although it
has not appeared in the literature before, it is a special
case of Egs. (2.20) and (2.21), like all circulation integrals
presented earlier.

A very similar conservation of circulation law can be
obtained for a poorly conducting fluid, simply by replac-
ing 1, with eA,, where e is the net charge per fluid ele-
ment, in the action (3.118) and all equations that follow
from it (cf. [27] for poorly conducting barotropic flu-
ids). Although conservation of circulation holds in the
limits of infinite or zero conductivity, we have not been
able to obtain such a law for finite conductivity. This
may be attributed to the fact that, for finite conduc-
tivity, the MHD-Euler equation (3.56) does not follow
from a Hamiltonian and, equivalently, does not possess a
Poincaré-Cartan integral invariant.

E. The geometry of barotropic flows
1.  Hydrodynamic flows as geodesics in a Riemann space

In Riemann geometry, the line element is given by the
quadratic expression

dS? = —ap(x)dz®dz”. (3.128)

where v,5(z) is a Lorentzian metric on a Riemannian
manifold M. The distance between two points (or
events) 1 and 2 is then given by the integral

2 T2
1 T1
)

(3.129
where ©¢ = dxz®/dr is the velocity. This functional is
independent of the parameter 7.

It was demonstrated above that if a perfect fluid is
barotropic, then the motion of a fluid element is confor-
mally geodesic. In particular, Synge [17] and Lichnerow-
icz [18] have shown that the motions of fluid elements
in a barotropic fluid are geodesics of a manifold M with
metric

Yap(x) = h(x)?gap(z) (3.130)



conformally related to the spacetime metric gog(z). As
shown earlier, such fluid motions can indeed be obtained
from the action (3.16), which represents the arc length
(3.129) between two events, and is independent of the
parameter 7.

2.  Magnetohydrodynamic flows as geodesics in a Finsler
space

One may think that the above result of Synge and Lich-
nerowicz ceases to apply in MHD, due to the highly com-
plicated nature of the MHD-Euler equation (3.56). Sur-
prisingly, however, the above results can be extended to
magnetofluids that are barotropic and perfectly conduct-
ing. Such flows are described by the action (3.93), which
is independent of the parameter 7, and are geodesic in a
Finsler (rather than Riemann) space [115-117]. In par-
ticular, in the context of Finsler spaces, Eq. (3.93) has
similarities with the Randers metric [118, 119].

As pointed out by Chern [115], Finsler geometry is sim-
ply Riemann geometry without the quadratic restriction
(3.128). In Finsler geometry, the line-element is replaced
by the general expression

dS = L(z,dx). (3.131)

where I : R? — R is an arbitrary function that can
be identified with the Lagrangian. Then, the distance
between two points is given by
2 T2
3:/ L@,d@:/ L(z,@)dr (3.132)
1 T1

where the last equality holds iff the function L(z,z) is
homogeneous of degree 1 in the velocity ©* = dx®/dr:

L(z,k%) = kL(x,%) Vk>0. (3.133)

Lagrangians with this homogeneity property give rise to
a parametrization-independent action functional, and lay
at the foundation of Finsler geometry.

The Lagrangian in the perfect magnetofluid action
functional (3.93) satisfies the above homogeneity prop-
erty and can thus be expressed in the form of arc length
in a Finsler space. To show this explicitly, we proceed
as follows. Following Chern [115], we consider the pro-
jectivized tangent bundle P7 M (i.e. the bundle of line
elements) of the manifold M. All geometric quantities
constructed from the Lagrangian L are homogeneous of
degree zero in £® and thus naturally live on P7 M, al-
though L itself does not. Let {z*} be local coordinates on
M. Express tangent vectors as &#0,, so that {z#, "} can
be used as local coordinates of 7 M and, with * homo-
geneous, as local coordinates on P7 M. Euler’s theorem
of homogeneous functions (c.f. Appendix A) can be used
to show that

Lz, &) = (3.134)

272
B o (LI )
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The Hessian

1 0°L?
T, L) = —— s 3.135
Yo (@, 2) 2 02201 ( )
plays the role of a metric on P7 M. This is a metric in
a Finsler (rather than Riemann) space, as it depends on
velocity in addition to position. A Finslerian metric is
homogeneous of degree zero in the velocity:

Yap (T, KE) = Yap(x, &) VK >0, (3.136)

as implied by Egs. (3.133) and (3.135). That is, the Fins-
lerian metric y,8(x, &) depends on the direction, but not
magnitude, of the velocity . The line element (3.131)
can then be written as

dS? = —ap(x, &)dzda’. (3.137)

and the functional (3.132) becomes
2
S= —/ —Yap(z, &)dz*dzP
Ve

&
:—/ \/ —Yap(x, &)z*EPdr (3.138)
™

For our particular application, substituting the ideal
MHD Lagrangian (3.94) into the definition (3.135) yields

Yo (2, &) = h*gap = Mans — h(Naus + Ngtia)
—hgagnyu”, (3.139)

where u® = io‘(ﬁqﬁ,y:'cﬁi”)fl/2 is the unit vector along
%, qap = gas + Uqug is the projection tensor orthog-
onal to that vector, and g,g is the Riemannian metric
in the spacetime .#. As required by the homogeneity
condition (3.136), the expression (3.139) gives a metric
that depends on the direction, but not the magnitude,
of the velocity. Eq. (3.139) may be compactly written as
YaB = —DPaPs—hqas Pyu” where po = htiq+14. On shell,
we have u® = % and, by virtue of Egs. (3.64) and (3.88),
Nau® = 0, i.e. the last term in Eq. (3.139) vanishes. The
Finsler metric v,3 plays the role of an effective metric
felt by a magnetofluid element. Note that the 1-form 7,
defined by Eq. (3.88) or (3.114), is consider independent
of £¢. Therefore, the Lagrangian is linear in the velocity
2% and the relevant Finsler space is of the Randers type
[118, 119].

With the aid of Eqgs. (3.134) and (3.139), the action
functional (3.93) takes the form of the length (3.138).
This functional is independent of 7 and represents the
arc length between events 1 and 2. That is, the motions
of fluid elements in a barotropic, perfectly conducting flow
are geodesics in a Finsler space with metric given by Eq.
(3.139).

The geodesic equation is obtained by minimizing the
functional (3.138) and using Egs. (A7)-(A10). This
yields

d?a? x dat dx”
dr? B odr dr

=0, (3.140)



where

I‘A - 17)\/{ 8’}%# 5’sz . (9’)/;“,
T g ozv T ouh  oxr

denote the Finslerian Christoffel symbols [116]. Al
though the above equations are identical to those of Rie-
mannian geometry, the transformation law of the sym-
bols Ffw is more complicated since it involves the Cartan
torsion tensor:

10V 3h
2 97

(3.141)

Oozﬁ’Y = )1/2 Q(aﬁq'y)67]5' (3142)

(_geC‘j:Ej"C

By extending the notion of a metric in M to allow
for Finsler geometry, the problem of ideal MHD becomes
one of pure geometry. We note that the geometry of the
spacetime .# remains Riemannian: no deviation from
general relativity has been assumed. In the limit 7, —
0, the Cartan torsion tensor vanishes, the geometry of
M also becomes Riemannian, and we recover the Synge-
Lichnerowicz result on barotropic fluids.

We note that a similar approach may be used for poorly
conducting fluids, by replacing 7, with eA, in the equa-
tions above, where e is the net charge per fluid ele-
ment [27]. Furthermore, with the replacements h — 1,
Na — €Aq, we recover the motion of a charged particle
under the influence of an electromagnetic field in curved
spacetime [118, 120-123]. We note, however, that for
baroclinic fluids, the action is not parametrization in-
variant, and thus cannot be described within Riemann
or Finsler geometry.

IV. DISCUSSION

We have illustrated that barotropic flows and mag-
netoflows without viscosity, resistivity or other dissipa-
tion can be described via simple variational principles.
These action principles can be written in terms of a
Lagrangian density integrated over spacetime, as done
traditionally for fluids, or in terms of a particle-like La-
grangian integrated over a proper-time or affine param-
eter. The latter approach paves the way for deriving
simple Lagrangian and Hamiltonian descriptions of ideal
MHD, in Newtonian and relativistic contexts. These de-
scriptions are as valuable for fluids as they have been for
classical mechanics and carry the same advantages over
approaches focused on the equation-of-motion level.

For instance, certain conserved quantities — whose ori-
gin seems ad hoc when obtained by tedious algebraic ma-
nipulation of the equations of motion — emerge directly
from the action in this geometric canonical approach. In
particular, when the ideal MHD Lagrangians (3.70) and
(3.119) admit continuous symmetries, Noether’s theo-
rem immediately yields the associated quantity conserved
along streamlines [73]. As shown by Carter and Lich-
nerowicz, the relativistic hydrodynamics and magneto-
hydrodynamics are most naturally expressed in the lan-
guage of differential forms. Cartan’s identity can then
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be used to simplify calculations tremendously compared
to the usual tensor or vector calculus, as demonstrated
above. This approaches to MHD is not yet very widely
known, but this has been changing in recent years, and
it is being used to obtain new results [8, 124-133]. For
stationary and irrotational or corotating magnetoflows,
Cartan’s identity implies that these quantities, given by
Egs. (3.110) and (3.112), are constant throughout the
fluid. These equations represent relativistic, magnetized
generalizations of Bernoulli’s principle and provide a way
to construct equilibrium solutions via iterative methods
[92, 134]. Such results can be extended to the case of gen-
eralized Noether symmetries generated by Killing tensors
(cf. [73] for details) and applied to the theory of black
hole accretion rings [27, 47].

Several theoretical insights arise from this formulation.
The symplectic geometry of phase space gives rise to var-
ious circulation theorems that stem from the Poincaré-
Cartan integral invariant. The symplectic structure of
the perfect MHD equations can be exploited in numeri-
cal simulations that use smoothed-particle hydrodynamic
(SPH) methods [135]. For instance, symplectic or time-
symetric methods can be used to conserve phase-space
volume, circulation, and energy.

Geometric considerations have led to deeper under-
standing of magnetic phenomena in fluids in curved
soacetime. Exploring the similarities of geodesic motion
to hydrodynamic and magnetohydrodynamic motion, La-
sota et al. [136] generalized the Penrose process [137]
from point particles to fluid particles and jets. Moreover,
the Finsler geometry described by the metric (3.139) al-
lows one to represent ideal MHD flows as purely geodesic
flows with no loss of generality. A notable feature of both
pictures is that they are exact in time-dependent space-
times, with gravitational and electromagnetic waves car-
rying energy and angular momentum away from the sys-
tem. Although such geometrical insights have been some-
times used to construct first integrals for non-magnetized
initial data [134], they have not so far been used for mag-
netized initial data or for evolving hydrodynamic and
magnetohydrodynamic flows in numerical general rela-
tivity. The integrals (3.110), (3.112) and the evolution
system (3.106) provide avenues for exploiting such geo-
metric properties in the future.

ACKNOWLEDGMENTS

We thank Brandon Carter for pointing out the second
line of Eq. (3.29). We thank Theocharis Apostolatos,
Jacob Bekenstein, Brandon Carter, Greg Comer, John
Friedman, Roland Haas, David Hilditch, Darryl Holm,
David Kaplan, Alan Kostelecky and Panagiotis Stavri-
nos for very fruitful discussions. This work was sup-
ported by JSPS Grant-in-Aid for Scientific Research(C)
20540275, MEXT Grant-in-Aid for Scientific Research
on Innovative Area 20105004, the Greek State Schol-
arships Foundation (IKY), NSF Grant PHY1001515,


Charalampos Markakis


DFG grant SFB/Transregio 7 “Gravitational Wave As-
tronomy’, STFC grant PP/E001025/1 and ANR grant
06-2-134423 Méthodes mathématiques pour la relativité
générale. KU and EG acknowledge support from a JSPS
Invitation Fellowship for Research in Japan (Short-term)
and the invitation program of foreign researchers at the
Paris observatory. CM and JPN thank the Paris Obser-
vatory for hospitality during the course of this work.

Appendix A: Finsler geometry and Euler’s theorem

The homogeneity property (3.133) plays a fundamen-
tal role in Finsler geometry. This property gives rise to
many important relations by means of Fuler’s homoge-
neous function theorem: Consider a function Z(z,v) that
is positively homogeneous of degree r with respect to v,
that is,

Z(x,kv) =K "Z(z,v) Yk >0. (A1)

Differentiating with respect to x and setting x = 1 yields
o 0Z(z,v)
ov®

This is the mathematical statement of Euler’s theorem.
Applying the above theorem to the case of the La-
grangian (3.133) yields

=rZ(z,v). (A2)

Lo OL(@, )

) (A3)

Differentiating this expression with respect to ¢ yields

O*L(x, )
L =. A4
dia0is " (AD)
Then, differentiating the relation
10L%(z, %) OL(x,)
el S RV Ol N R A
2 oie (@ 2) =55 (A3)

with respect to &7, contracting with #“4° and using Eqgs.
(A3) and (A4) yields

10%L%(z, @)
2 93*0iP
—

—YapB

L% (z, &) = PP, (A6)

Equations (A3) and (A6) reproduce (3.134). From Egs.
(3.133) and (A6) we infer that the metric vy,g(x, %) is
homogeneous of degree zero in the velocity, Eq. (3.136).
Then, applying Euler’s theorem (A2) for v,3 with r =0
yields

27Capy =0, (AT)
where
1 6%[3 1 83L2
a : — A
Cotr = 5557 = 105205500 (A8)
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is the Cartan torsion tensor. The last equality, which
follows from Eq. (3.135), implies that the above tensor is
fully symmetric. From the above definition we infer that
Cup~ is homogeneous of degree r = —1 in the velocity.
Then, Euler’s theorem (A2) yields

&°Cagys = —Capr, (A9)
where
) OCup~ (2, %
Caprolar, i) = 2020BT) (A10)

The geodesic equation in Finsler space can be obtained
with the same variational methods as in a Riemann space,
with additional use of Egs. (A7)-(A10). Finsler geome-
try reduces to Riemann geometry iff the Cartan torsion
tensor and its derivatives vanish, whence the metric v,
is independent of velocity [116].

Appendix B: Beckenstein-Oron current with one
symmetry

Assuming that the system obeys a Killing symmetry,
i.e. that there exists a vector field k such that

f:,;g:(), £,;u:0, .,6;;‘7:0, (Bl)
fEFZO, JE)Eh:O, f,;;p:(), (B2)
a natural question is whether or not one can impose

the same symmetry on the auxiliary quantities a and
b. First, note that

Lgb= £ (d-+da) (B3)
=14 - £y (xda) (B4)
=1 -x£L (da) (since k is Killing) (B5)

= -xd(£;a) (since d and £ commute) (B6)

In addition, using equation (3.83), as well as the symme-
tries (B1), (B2),

Lgda= Lg[uNB+*x(uNb)]=x(uNLgb). (B7)

We have therefore that
Lgb=0% £pda =0« £;a closed (B8)

and of course £z a = 0 implies £3b = 0. So in effect,
assuming that the auxiliary quantities a and b satisfy the
same symmetry as the physical quantities is equivalent
to assuming merely £;a = 0. If on the other hand we
are ready to sacrifice £z a = 0 and to assume only that
L5 b =0, we must still impose that £ a is closed.

We first notice that £za = 0 is not systematically
compatible with the gauge condition % - a = 0. Indeed,
let us consider the case where @ and k are parallel, i.e.

= fk. (B9)
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The question is whether we can impose consistently the
three equations

u-a=0, (B10)
£ga=—-B, (B11)
£za=0. (B12)

Using the Cartan identity, we have
~B=£f4a=ffpa+(k-a)df = (k-a)df =0 (B13)

since @ -a = 0 implies k - @ = 0. This is in general
inconsistent.

Giving up the gauge condition 4 - a = 0 does not im-
prove things. Let us put ¢ = - a and still assume that 4
and k are colinear. Now we have £5a = @-da+d(@-a)
and instead of (B10)-(B12) we must consider

U-a=q, (B14)
£ga=—-B+do, (B15)
£za=0. (B16)
Then
£ga=¢d(logf)=—-B+do, (B17)
ie.
B=¢d|l ¢
= og 7l (B18)

This forces the magnetic field B to be exact modulo mul-
tiplication by a scalar function, which is not a generic
property. Indeed consider the 1-form on R*

a=—ydzr+zdy (B19)
whose divergence vanishes. Can we find a globally de-

fined smooth function % such that ¥« be closed? This
amounts to

2 + 209 + YOy =0, (B20)

which imposes that ¥ be homogeneous of degree —2
and contradicts the fact that ¢ be globally defined and
smooth.

We conclude that we cannot in all generality assume
that the auxiliary fields a and b satisfy the same symme-
try as the physical quantities.

Appendix C: Fluid super-Hamiltonians

The canonical form of the Euler equation (3.13) in-
volves only the thermodynamic variables T, .S, h. We thus
assert that the super-Hamiltonian for this equation has
the general form

H=H(h S T,N), (C1)
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where N := go‘ﬁpapg is the norm of the (generally non-
normalized) canonical momenta p,, whose nature is to
be determined. Furthermore, we assume that the Hamil-
tonian generates a reparametrization with respect to the
proper time of the fluid which we denote by a parameter
d\ = d7/A, where A is some function of the variables
involved.

Computing Hamilton’s equations and comparing them
with the Euler equation we deduce that we are ‘on-shell’
only if p, = hu, and thus N = —h?. Additionally, the
following equalities must be satisfied by the Hamiltonian
on-shell in order to reproduce the Euler equation:

o _, -
o _,, 0 o5
g—g = fT%—IZ - 2Thg—§ (C4)
A= zh% (C5)

One way to satisfy this set of constraints on the form of
the Hamiltonian is via the expression

()

5Th (9*Ppaps + h?) —C(S),

(C6)

where C(S) is an arbitrary function of the specific en-
tropy with C'(S) # 0 for S > 0. The on-shell value
of the conserved super-Hamiltonian is then —C(S) and
the canonical time parameter A satisfies d\ = T'dr/C’.
Carter’s baroclinic Hamiltonian (3.124) is obtained sim-
ply by setting C(S) = S.

For barotropic fluids one can use a similar approach to
obtain a set of Hamiltonians of the form

D(n)

= ——2(9""paps + h?)

on (C7)

where D(h) is an arbitrary function of h, and the
parametrization corresponding to this Hamiltonian is
d\ = d7/D. The transition between the Hamiltonians
(C6) and (C7) for baroclinic and barotropic fluids de-
pends on the form of temperature expressed as a function
of entropy and enthalpy T = T'(h, S).

For baroclinic magnetofluids, we see from Eq. (3.92)
that the streamlines of a perfectly conducting fluid be-
have as if under the influence of a vector potential 7.
We thus assume that there is a canonical momentum
Do such that the Hamiltonian depends only on the nor-
malization N = ¢*%(p, — ka)(ps — kp) With k, some
vector. In that case, we obtain the on-shell values
Pa = hg + Nas ke = Na N = —h? and the same set
of constraints as in (C2)-(C5). This means that one class
of super-Hamiltonians which reproduce the ideal MHD-
Euler equation (3.92) is

_C(5)

H = 5 [9°7 (o — 110) (s — 115) + h*] = C(S), (C8)



where the on-shell value of the super-Hamiltonian is
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again —C(S) and the canonical time parameter A satisfies

d\ = Tdr/C'.
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