

Understanding the effects of tooth brushing using an abrasive dentifrice on the wear of enamel

Professor Robert Wood, Dr. Richard Cook, Dr. Simon Dennington
national Centre for Advanced Tribology (nCATS)

GlaxoSmithKline (Dr. Jonathan Pratten), NPL (Professor Mark Gee)

Mahdiyyah Baig
BSODR 2017

What is Tribology?

- The study of **friction, wear and lubrication**.
- The science of interacting surfaces in relative motion.
- The UK economy loses £24billion every year because of problems with friction, wear and lubrication.
- Tribology looks at ways of reducing this damage in transport, manufacturing and healthcare sciences.

Introduction

- Most common method to clean teeth is using a toothbrush with a dentifrice
- Toothpastes contain abrasive particles that are harmful to the delicate tissues of the teeth
- During tooth brushing, these hard particles can cause the tooth surface to wear

Previous studies

- Dentine wear ^(1,2)
- Reciprocating rig
- Calcite and perlite abrasive particles ⁽³⁾

Proposed study

- Enamel wear
- Novel head design of rig
- Alumina and silica abrasive particles

1. Addy, M., Tooth Brushing, Tooth Wear and Dentine Hypersensitivity - Are They Associated? *Journal of the Irish Dental Association*, 2006. 51(5): p. 226 -231.
2. Ganss, C., et al., Effects of Toothbrushing on Eroded Dentine. *European Journal of Oral Sciences*, 2007. 115: p. 390 - 396.
3. Lewis, R., S.C. Barber, and R.S. Dwyer-Joyce, Particle Motion and Stain Removal During Simulated Abrasive Tooth Cleaning. *Wear*, 2007. 263: p. 188 - 197.

Aim

Obtain an understanding of the **tribology** behind the interface of the tooth and toothbrush lubricated by toothpaste slurry

Methodology

Test Materials

- Bovine teeth
- GSK mounted in epoxy resin
- Polished
- Hydrated

Toothbrush

- Tek Pro® firm
- Bristle diameter – 110 μm

Angular abrasive particles

- **Alumina** (HV = 2500)
Mean particle size alumina - 9 μm

- **Silica** (HV = 1200)
Mean particle size silica - 19 μm

Reciprocating rig

Test conditions	Quantities
Load (N)	5
Frequency (Hertz)	4
Stroke length (mm)	4.9
Slurry concentration (g/cm ³) BS EN ISO 11609:2010 Dentistry — Dentifrices — Requirements, test methods and marking	0.5% CMC + 10% Glycerine (base) + 20% abrasive
Counterface material	Enamel disk

Friction results

Alumina

Silica

Saliva

Mean friction = 0.071
stdev ± 0.0054

Mean friction = 0.066
stdev ± 0.0030

Mean friction = 0.078
stdev ± 0.0042

- Nylon alone cannot damage enamel
- Particles embedded on the nylon bristle roughen the enamel.
 - Friction between wet nylon and enamel = high
 - Friction between particle and enamel = low

Talysurf profiles

Saliva

UNIVERSITY OF
Southampton

Alumina

Wear process

Stage 1

2 - body grooving

Material removal

V1 = wear volume

Stage 2

Overall roughening effect

Increase in roughness

Bovine disk: Wear analysis

1. Particle pressed against enamel by the deflected bristle
2. Loaded particle acts in a 2-body way
3. Bristles with entrained abrasives are causing 2-body abrasion
 - Large grooves = bristles
 - Smaller grooves = individual particles
4. Results in a rough surface and change of profile

Alumina

Silica

Saliva

Summary

- Alumina generates more wear on enamel compared to silica
- Both particles roughen the teeth overtime
- A significant difference in friction between the particle and control slurry group
- Future work will explore lower loads of 1N and 2N on the multi-station rig

Acknowledgements

Supervisory team:

Professor Robert Wood

Dr. Simon Dennington

Dr. Richard Cook

Rig/technical help :

Dr. Terry Harvey

Sponsors:

**GlaxoSmithKline Oral
Healthcare**

Dr. Jonathan Pratten

National Physical Laboratory

Professor Mark Gee

