Understanding the effects of tooth brushing using an abrasive dentifrice on the wear of enamel

Professor Robert Wood, Dr. Richard Cook, Dr. Simon Dennington
National Centre for Advanced Tribology (nCATS)

GlaxoSmithKline (Dr. Jonathan Pratten), NPL (Professor Mark Gee)

Mahdiyyah Baig
BSODR 2017
What is Tribology?

• The study of friction, wear and lubrication.

• The science of interacting surfaces in relative motion.

• The UK economy loses £24 billion every year because of problems with friction, wear and lubrication.

• Tribology looks at ways of reducing this damage in transport, manufacturing and healthcare sciences.
Introduction

• Most common method to clean teeth is using a toothbrush with a dentifrice
• Toothpastes contain abrasive particles that are harmful to the delicate tissues of the teeth
• During tooth brushing, these hard particles can cause the tooth surface to wear

Previous studies

• Dentine wear (1,2)
• Reciprocating rig
• Calcite and perlite abrasive particles (3)

Proposed study

• Enamel wear
• Novel head design of rig
• Alumina and silica abrasive particles

Aim

Obtain an understanding of the **tribology** behind the interface of the tooth and toothbrush lubricated by toothpaste slurry.
Methodology

Test Materials

- Bovine teeth
- GSK mounted in epoxy resin
- Polished
- Hydrated

Toothbrush

- Tek Pro® firm
- Bristle diameter – 110 µm

Angular abrasive particles

- **Alumina** (HV = 2500)
 Mean particle size alumina - 9µm

- **Silica** (HV = 1200)
 Mean particle size silica – 19µm
Reciprocating rig

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load (N)</td>
<td>5</td>
</tr>
<tr>
<td>Frequency (Hertz)</td>
<td>4</td>
</tr>
<tr>
<td>Stroke length (mm)</td>
<td>4.9</td>
</tr>
<tr>
<td>Slurry concentration (g/cm³)</td>
<td>0.5% CMC + 10% Glycerine (base) + 20% abrasive</td>
</tr>
<tr>
<td>BS EN ISO 11609:2010 Dentistry — Dentifrices — Requirements, test methods and marking</td>
<td>0.5% CMC + 10% Glycerine (base) + 20% abrasive</td>
</tr>
<tr>
<td>Counterface material</td>
<td>Enamel disk</td>
</tr>
</tbody>
</table>

Diagram

- **Slurry feed**
- **Novel TE-77 head**
- **Load**
- **Reciprocating arm**
- **Translation arm**
- **Cam housing**
- **Sample bath**
- **Bovine disk**
- **Toothbrush**
- **Friction transducer**
- **Enamel disk**
- **Epoxy resin**

- Stroke length 4.9 mm
Friction results

Mean friction = 0.071
stdev ±0.0054

Mean friction = 0.066
stdev ±0.0030

Mean friction = 0.078
stdev ±0.0042

- Nylon alone cannot damage enamel
- Particles embedded on the nylon bristle roughen the enamel.
- Friction between wet nylon and enamel = high
- Friction between particle and enamel = low
Talysurf profiles

Saliva

Alumina

0 hours

2 hours

4 hours

6 hours
Wear process

Stage 1

2 - body grooving
Material removal

$V_1 = \text{wear volume}$

Stage 2
Overall roughening effect
Increase in roughness

V_1
Bovine disk: Wear analysis

1. Particle pressed against enamel by the deflected bristle

2. Loaded particle acts in a 2-body way

3. Bristles with entrained abrasives are causing 2-body abrasion
 - Large grooves = bristles
 - Smaller grooves = individual particles

4. Results in a rough surface and change of profile
Summary

- Alumina generates more wear on enamel compared to silica
- Both particles roughen the teeth overtime
- A significant difference in friction between the particle and control slurry group
- Future work will explore lower loads of 1N and 2N on the multi-station rig
Acknowledgements

Supervisory team:
- Professor Robert Wood
- Dr. Simon Dennington
- Dr. Richard Cook

Rig/technical help:
- Dr. Terry Harvey

Sponsors:
- GlaxoSmithKline Oral Healthcare
- Dr. Jonathan Pratten
- National Physical Laboratory
- Professor Mark Gee