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Abstract. We apply the statistical technique of graphical lasso for in-
verse covariance estimation of asset price returns in Markowitz portfolio
optimisation. Graphical lasso induces sparsity in the inverse covariance
matrix, thereby capturing conditional independences between different
assets. We show empirical results that not only the resulting minimum
risk portfolio is robust, in that the variation in expected returns is re-
duced when a fraction of the data is assumed missing, but also enables
the construction of a financial network in which groups of assets belong-
ing to the same financial sector are linked.
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1 Introduction

Portfolio optimisation and its variants have been of interest in empirical finance
for decades, following the pioneering work of Markowitz [17]. This mean-variance
optimisation problem defines a Pareto optimal frontier in the space of expected
returns and the corresponding risks (variances) of a portfolio under the assump-
tion that returns on the assets follow a multivariate Gaussian density. The for-
mulation of such a model, under assumptions of no short selling, is given as
follows:

minimize
w

wTΣw

subject to

i=N∑
i=1

wi = 1

wi ≥ 0

wT m ≤ ρ

(1)

where, w represents the portfolio weights [w1, w2 ... wN ]
T

, m and Σ the pa-
rameters of the Gaussian distributed asset returns, and ρ, the expected returns.
Solving the above quadratic programming problem at different values of ρ yields
the well known efficient frontier.
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In practice, however, m and Σ are not known and have to be estimated from
data with the maximum likelihood estimates of

m̂ =
1

T

T∑
t=1

xt (2)

Σ̂ =
1

T

T∑
t=1

(xt − m) (xt − m)
T

(3)

being the common choice. Here, T is the time window of data and xt ∈ RN

represents returns on the assets at time t.

In finance, these estimates from data are known to suffer robustness issues
[18], [14], [4]. Financial data consists of occasional outliers to which maximum
likelihood estimates are notoriously sensitive. Further, to estimate covariance
matrices reliably we need a long enough window (T ) of data, though due to non-
stationarity in the markets, we may choose a small window. This (particularly
when T and N are of similar values) can lead to the covariance matrix Σ being
singular and non-invertible. The consequence of poor estimation of parameters
is that the resulting portfolio can be unstable and produce poor out-of-sample
performance, with extreme weights that are liable to have large changes over time
[4]. In many cases these portfolios perform worse than a 1/N naive portfolio [8].
These issues are often addressed by regularisation, of which shrinkage estimation
is a classic tool (e.g. [14]). Brodie et al. address this issue by regularisation using
the l1 (or lasso) penalty in an index tracking setting, deriving stable portfolios
which are also sparse. Takeda et al. [19] use a combination of l1 and l2 regularisers
to simultaneously induce sparsity and improve out-of-sample performance.

Estimation of covariance matrices with some desirable structure imposed on
them falls under the field of structured matrix approximation (e.g. [7], [16]). In
the financial domain, Fan et al. [10] involve 3-factor model in the estimation of
a covariance matrix. They find the factor model improves the estimation of the
precision matrix, but affects errors in the estimation of the covariance matrix
less. In this setting, Friedman et al. [11], introduced the graphical lasso (glasso)
as a way of inducing structure into covariance matrices. Specifically, they argued
that a sparse inverse covariance matrix of Gaussian distributed data captures
conditional independences between the variables. From this algorithm, a well-
conditioned covariance matrix and a sparse precision matrix are produced even
when T is approaching N . From this sparse precision matrix, a network can be
extracted, with a zero in the matrix indicating a conditional independence and
a non-zero value indicating a relationship. We make use of the well-conditioned
covariance matrix and the precision matrix in this paper.

To start, we assume the asset returns follow a multivariate Gaussian distri-
bution. A multivariate Gaussian distribution can be written as

f(x,m, Σ) =
1

(2π)
T
2 |Σ| 12

exp(−1

2
(x−m)TΣ−1(x−m)). (4)
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Suppose we have T measurements of N assets, denoted as X = (x1 . . .xN )T where
each x is a T dimensional vector. The log-likelihood this set of measurements
belongs to a Gaussian distribution with Σ and m is

logL(m, Σ|X) = −TN
2

log(2π)− 1

2
log |Σ|− 1

2

T∑
t=1

(xt−m)TΣ−1(xt−m). (5)

Substituting the maximum likelihood covariance estimators from (2) and (3) and
discarding the constant gives

logL(m, Σ|X) = log |Θ| − tr(Σ̂Θ) (6)

where Θ = Σ−1.
Following Banerjee et al. [2], we add a L1 penalty term to impose sparsity on
the precision matrix:

log detΘ − tr(Σ̂Θ)− λ ||Θ||1 (7)

with λ as a regularising parameter.
Friedman et al. [11] propose the glasso to maximise this function using block
coordinate gradient descent. Pseudo-code for the glasso algorithm is shown in
Figure 1.

We are not alone in looking for applications for the glasso. Goto et al. [12]
use the glasso to construct a sparse precision matrix for portfolio hedging. Ex-
ploiting the sparsity allows for lower turnover in the portfolio hedging and gives
a more predictable out-of-sample risk and return. Awoye [1] uses the glasso to
estimate a covariance matrix for mean-variance portfolio optimisation, and com-
pares its performance to existing covariance estimators with various constraints.
Their portfolios designed using the glasso perform well when compared to other
estimators, achieving a lower realised risk. We hope to exploit the lowered risk
and increased robustness the glasso provides.

We are also not the first to construct networks on financial data. Mantegna
[15] constructed a network from stock prices using a correlation matrix. Defin-
ing a distance metric using correlation coefficients, they construct a minimum
spanning tree from the companies used to construct the Dow Jones Industrial
Average. Companies in similar sectors are clustered in this minimum spanning
tree. Boginski et al. [5] also use a correlation matrix to create a network. Using
a threshold on the correlation coefficient to decide whether two companies are
linked, they build a graph. They find the produced graph follows a power law
rule when the threshold is set at a large enough value, and look at how varying
the threshold changes the clusters in the graph. Huang et al. [13] follow a similar
path, instead concentrating on the Chinese stock market. They use their network
to classify the stocks and to test the stability of the market. We also wish to see
how our constructed network can classify companies.
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Input : Empirical Covariance Matrix Σ̂
Convergence Tuning Parameter t
Regularisation Parameter λ

Output: Covariance Matrix W
W = Σ̂ + λI;

while ave (|Wprev −W |) > t ave(|offdiag(Σ̂)|) do
for i=1...p do

// Partition the matrix into all but the ith row and column

and the ith row and column without the ith value

W11 ← W[1...p 6= i][1...p 6= i];
w12 ← W[1...p 6= i];

s12 ← Σ̂[1...p 6= i];

// Run coordinate descent to calculate β̂

while norm(β̂prev − β̂) > t do
for j=1...p do

β̂prev ← β̂;
V ←W11;
u← s12;

β̂j ←
St(uj−

∑
k 6=j Vkj β̂k,λ)

Vjj
;

end

end
Wprev ←W ;
// Update W

W[1...p 6= i] ← W11.β̂;

end

end

offdiag(M) = offdiagonal elements of matrix M
St(x, t) = sign(x)(|x| − t)+
|M | = absolute values of M
ave(M) = average of M
norm(M) = L2 norm of M

Fig. 1. Pseudo-code for the Graphical Lasso
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2 Methods and Data

In this work, instead of the general Markowitz frontier, we focus on the minimum
variance portfolio, unconstrained by the expected return (i.e. one corner of the
frontier curve). This allows us to negate the errors from mean estimation in
constructing our portfolios.

minimize
w

wTΣw

subject to

i=N∑
i=1

wi = 1

wi ≥ 0

(8)

The covariance (Σ) is estimated using the empirical covariance and the glasso,
with the convergence threshold (t) set to 0.001 and the regularisation parameter
(λ) varied with the dataset, due to the differences in the means and variances
of the datasets (monthly returns will in general have larger absolute values than
daily returns). We use an implementation of the glasso written using Cython [3],
and CVXPY [9] to solve the optimisation problem.

Two datasets are used to test our methods, with different sizes and time
periods. The first is taken from Center for Research in Security Prices (CRSP)
database from the 30th November 1982 until the 31st December 1990. We use
the monthly percentage returns. Any assets with incomplete data are removed,
leaving us with 92 observations from 26 companies. The company sectors are
shown in Table 1. We set λ to 0.01 for this dataset. Our second dataset is the
S&P500 daily percentage returns from 2nd January 2003 until 25th January
2007. Again, assets with incomplete data are removed, leaving us with 1259
observations from 409 companies. We set λ to 0.0002 for this dataset. Both are
split into 2 equally sized sets, a training set to calculate the optimal portfolio
from and a test set to evaluate the out of sample performance.

To test the robustness of the covariance estimation, we remove a number of
samples randomly from the training data and calculate the mean and covariance
from this corrupted data set. For the CRSP data we remove 4, and for the
S&P500 data we remove 60, due to the much larger size of this dataset. We
then solve the unconstrained risk minimization problem to get a set of portfolio
weights. These weights are used to calculate a mean risk and return from the
unseen data. This is run 25 times, although similar results are obtained when the
number of runs is set to 10, 15 and 20. We can then compare how the corruption
of the data affects the risks and returns of the portfolios produced on both seen
and unseen data.

Following this we construct a network from the sparse precision matrix pro-
duced by the glasso. Focusing on the CRSP data due to the smaller number of
companies, λ is set to 0.005. A link between companies implies their stocks are
correlated in some way. Increasing the value of λ increases the sparsity of the
precision matrix and will result in fewer links.



6 Tristan Millington & Mahesan Niranjan

Table 1. Number of companies in each sector from the CRSP database. The colouring
and number represents the sector they belong to in Figure 6

Sector Number of Companies Colour Number

Agriculture 1 Brown 1

Communications 2 Cyan 2

Cyclical Consumer Goods & Services 5 Green 3

Energy 2 Red 4

Financials 2 Light Green 5

Industrials 1 Navy Blue 6

Insurance 2 Purple 7

Non-Cyclical Consumer Goods & Services 1 Grey 8

Technology 9 Yellow 9

Utilities 1 Orange 10

3 Results

In this section we test the portfolios constructed using the glasso covariance
against those constructed using the empirical covariance and explore why they
perform differently. Firstly we look at the CRSP data.

Figure 2 shows boxplots of the risk and return for the risk minimized port-
folios using the CRSP data. We can see the portfolios produced using the glasso
covariance have a comparable or slightly smaller variance and fewer outliers in
their risk and returns on the training set, and a much smaller variance in their
test set than those produced with the empirical covariance.

Figure 3 shows boxplots of the risks and returns for the S&P500 data. Again,
we can see the significant reduction in variance of the risks and returns from using
the glasso covariance. Due to room constraints, we do not show the training set
boxplots, although these are similar to the results on the training set of CRSP
data.

The results in Figure 2 are generated using a λ of 0.01. What happens if we
change our choice of λ? Figure 4 shows the portfolio weights chosen as we vary
lambda. As λ is increased, the portfolio weights become more evenly distributed
throughout the companies. We would expect this to reduce the variance of risks
and returns of the portfolios produced.

Now we explore relationships between the CRSP companies and how this
affects our risk minimized portfolios. Figure 5 shows the generated network.
Companies are tagged according to the sector the company belongs to. Sector
colours and numbers are shown in Table 1. There is a general trend towards
companies in the same sector being linked and unrelated companies being un-
linked. Note in particular how 2 out of the 3 companies with no links are also
the only members of their sector.

Relating this back to the optimal portfolios, we colour the nodes according
to the weight put upon the company in Figure 6. The darker the node, the
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(a) (b)

Fig. 2. Variation in risks (a) and returns (b) of portfolios on monthly returns of 26
companies using the empirical and glasso covariance. 4 samples are randomly removed
each time (11.5% of the data) for 25 runs. The top row is the training set and the
bottom row the test set. The portfolios produced using the glasso covariance have a
slightly smaller variance and fewer outliers in their training risks and returns, and a
much smaller variance in their test risks and returns.

(a) (b)

Fig. 3. Variation in risks (a) and returns (b) of portfolios on unseen daily returns of
S&P500 comapanies. 60 samples (9.5% of the data) are removed each time. Again we
can see the reduction in variance the glasso covariance provides
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Fig. 4. Weights produced by the minimum risk unconstrained optimisation using em-
pirical and glasso covariance. As we increase the regularization parameter for the graph-
ical lasso, the weights tend to spread out to a 1/n portfolio.

Fig. 5. Links between companies produced by the graphical lasso with λ set to 0.005.
Companies are tagged according to the sector that they belong to - the number at the
start of the label and the node colour indicate this (Colours and numbers are shown in
Table 1). Note how companies in the same sectors are linked, particularly the cluster
of technology companies.
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larger the weight upon it. We can see that companies linked together have lower
weights than those not linked. This should reduce the risk by diversifying the
portfolio and avoiding companies who have correlated stocks.

Fig. 6. Links between companies produced by the graphical lasso. The darker the node,
the larger the weight on that company in the portfolio. The companies who are linked
are lighter than those without links. This provides diversification away from correlated
stocks and so should reduce the risk of the portfolio.

4 Conclusion

In this paper we have shown that using the graphical lasso to estimate covariance
matrices can improve the robustness of portfolio optimization. The portfolios
constructed using the graphical lasso have a lower variance of risks and returns
than those constructed using the empirical covariance, particularly in their un-
seen data. We demonstrate this by removing data from the training set and
comparing the risks and returns of the portfolios produced with both monthly
and daily data. Finally we construct a network using the precision matrix esti-
mated by the glasso to explore relationships between companies and how this
affects the choice of assets to buy, with the minimum risk portfolios preferring
to reduce their purchases of correlated stocks.
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