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Abstract

We provide a new test for equality of two symmetric positive-definite matrices that leads to a conve-
nient mechanism for testing specification using the information matrix equality or the sandwich asymp-
totic covariance matrix of the GMM estimator. The test relies on a new characterization of equality
between two k dimensional symmetric positive-definite matrices A and B: the traces of AB−1 and
BA−1 are equal to k if and only if A = B. Using this simple criterion, we introduce a class of omnibus
test statistics for equality and examine their null and local alternative approximations under some mild
regularity conditions. A preferred test in the class with good omni-directional power is recommended
for practical work. Monte Carlo experiments are conducted to explore performance characteristics under
the null and local as well as fixed alternatives. The test is applicable in many settings, including GMM
estimation, SVAR models and high dimensional variance matrix settings.
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1 Introduction

Comparing covariance matrices and testing the equivalence of two symmetric positive-definite matrices

have attracted substantial past attention in both multivariate analysis and econometrics. For example, the

asymptotic distribution of the maximum likelihood (ML) estimator is characterized by the usual information

matrix equality. On the other hand, the information matrix equality does not hold for the quasi-ML (QML)

estimator. As another example, least squares (LS) and generalized method of moments (GMM) estimators

have relatively simple covariance matrix structures except when heteroskedasticity, model misspecification,

or autocorrelation is present. The simple covariance matrix structure is then delivered by the proportional

equality of two symmetric positive-definite matrices (viz.,X ′X andX ′ΣX in the usual regression notation).

These material econometric concerns have led to much literature on covariance matrix equality testing,

with special attention being given to the information matrix equality (e.g., White, 1982; Hall, 1987; Orme,

1988; Chesher and Spady, 1991; Horowitz 1994; Dhaene and Hoorelbeke, 2004; and Golden, Henley, White,

and Kashner, 2013), although work is not limited to that setting alone (e.g., Bera and Hall, 1991). Much of

this past work arises from the desire for an omnibus test without level distortion and with high power. The

problem in size control is simply stated. For two general k × k symmetric positive-definite matrices A and

B say, testing every pair of corresponding elements in A and B generates enormous level distortions for the

tests even with moderately sized k.

The primary goals of the current study are to develop simple and straightforward omnibus tests for the

equality of two symmetric positive-definite matrices and to broaden their implications for applied research.

The approach that we use here has an antecedent in Cho and White (2014; CW, henceforth). CW provided

omnibus tests of matrix equality by using the fact that the conditions tr[BA−1] = k and det[BA−1] = 1

are necessary and sufficient for A = B. Our starting point is to replace this condition with another, even

simpler, characterization of equality that enables a new class of omnibus tests for equality that have little

size distortion and comparable powers to other tests. The tests given in CW then become special cases of

our approach. We also seek to clarify the interrelationships among the many tests that are now available and

those that are developed in the current study. The paper therefore contributes by (i) introducing a class of

easily implemented new tests that have good size and power properties, and (ii) providing a comprehensive

study of the properties and performance characteristics of an extensive range of tests for covariance matrix

equality.

These goals are achieved by evolving the CW approach using a new necessary and sufficient condition

for the matrix equality. First, we examine a number of omnibus test statistics for equality of two symmetric
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positive-definite matrices by the Pythagorean characterization. We show that the simple dual conditions

tr[AB−1] = k and tr[BA−1] = k are also necessary and sufficient forA = B. This characterization is made

by noting that k−1tr[BA−1] and ktr[AB−1]−1 are the arithmetic and harmonic means of the eigenvalues

of BA−1, respectively, and that these means are equal if and only if all eigenvalues are identical. Under

the given conditions, all eigenvalues are unity, implying that BA−1 = I . Note that this characterization is

additional to that given in CW, viz. tr[AB−1] = k and det[BA−1] = 1 if and only if A = B, and a number

of new testing factors can be obtained from this new characterization, which are additional to those in CW.

Further, an even wider range of test factors can be obtained by pairing the arithmetic and geometric means

or combining all of the Pythagorean means. More tests again are obtained by reversing the roles of A and

B in the relations k−1tr[AB−1], det[AB−1]1/k, and ktr[BA−1]−1. All these test factors form a class, and

we can apply continuous distance functions to the class to yield omnibus test statistics. Within this general

framework, the tests given in CW become special cases of those developed here.

Second, we examine the performance characteristics of the various tests under the null, local, and fixed

alternative hypotheses, and derive their asymptotic approximations. This examination broadens the analysis

commenced in CW as it transpires that the null and alternative approximations given in CW continue to

apply for our test statistics. All test statistics given in the current study are asymptotically governed by a

single distribution under the null and local alternative, and they exhibit different behaviors under the fixed

alternative. We single out the factors leading to test consistency and analyze the power relationships of

the tests under the fixed alternative. When the fixed alternative hypothesis is partitioned into a number of

explicit regions, the tests developed here are designed to estimate the dominant characteristic of each region,

and estimating this factor delivers a test with respectable omni-directional power. This process of selection

reduces the class size of the omnibus test statistics by considering only test statistics with distinctive power

features under fixed alternatives.

Finally, the practical applicability of our test extends to a wide range of estimation methodologies.

CW specifically focus on the application of their tests in the context of QML estimation, and for practical

implementation they use Horowitz’s (1994) parametric bootstrap to test information matrix equality. Our

approach achieves wider applicability through implementation in the GMM context and by using the null

limit distribution provided for the test and the residual bootstrap. Specifically, we show that our test statistic

is useful in practical work for testing the optimal weight matrix condition in GMM estimation. Monte Carlo

simulations are conducted, and we evaluate the performance of our test by the null limit distribution and

residual bootstrapping. The simulations assist in confirming the relevance of the asymptotic theory and

asymptotic comparisons in finite samples.
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There are many potential uses of our approach in empirical applications beyond the work mentioned

above for motivation. First, many structural models are specified using covariance matrix properties. For

example, full information maximum likelihood (FIML) estimation is popular in structural vector autore-

gressions (SVARs), and model over-identification is often tested by the likelihood ratio (LR) test on the

covariance matrix condition. As detailed below, the LR test for model over-identification turns out to be

equivalent to the test statistics we consider here under the local alternative. As another example, multi-

factor models are often specified for portfolio risk analysis, and hypotheses on factors are also often tested

by the LR test using the conditions on the covariance matrix. The LR test can be analyzed similar to the

SVAR analysis provided here. Second, there is vast, growing literature on testing high-dimensional covari-

ance matrix conditions, and our test approach can also be adapted to this case. As the dimension of the

covariance matrix increases, the typical testing problem becomes nonstandard because the number of esti-

mates also increases. Our approach can be easily adapted to testing a large covariance matrix as we illustrate

below using the example in Bai, Ziang, Yao, and Zheng (2009). Third, Hong, Linton, and and Zhang (2017)

recently examine a multivariate version of the variance ratio test. The test statistics they consider can be

easily adapted to the test bases we are using, thereby broadening the relevance of their methodology. In ad-

dition to these examples, there are many other aspects of covariance matrix equivalence that are well-suited

to the test procedure developed here.

The plan of this paper is as follows. Section 2 provides a fundamental result characterizing the equality

between two symmetric positive-definite matrices. Section 3 motivates and defines the test statistics em-

ployed, and develops asymptotic theory under the null, alternative, and local alternative hypotheses. Section

4 examines the application of our tests to FIML estimation in the SVAR context. Simulation results are

reported in Section 5. Concluding remarks are provided in Section 6. Mathematical proofs are collected in

the online Supplement to this paper.

Before proceeding, we provide some notation. A function mapping f : X 7→ Y is denoted by f(·), eval-

uated derivatives such as f ′(x)|x=x∗ are written simply as f ′(x∗), and ∂xf(x) := (∂/∂x)f(x), ∂2
x,yf(x, y)

:= (∂2/∂x∂y)f(x, y).

2 A Basic Lemma and Its Testing Implications

Our starting point is the following fundamental lemma that characterizes the equality of two symmetric

positive-definite matrices.

Lemma 1. Let A and B be real symmetric positive-definite k×k matrices with k ∈ N. Then, A = B if and
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only if (i) tr[D] = tr[D−1] = k, where D := BA−1; or (ii) det[D] = 1 and tr[D−1] = k . �

To our knowledge and somewhat surprisingly given its simplicity, Lemma 1 is new to the literature and

is proved in the Supplement. Briefly, part (i) follows because the arithmetic mean of positive numbers is

identical to their harmonic mean, if and only if all of the positive numbers are identical. Since k−1tr[D] is

the arithmetic mean of the eigenvalues of D, and k−1tr[D−1] is the inverse of the harmonic mean of the

same eigenvalues, we have D = I , if and only if all the eigenvalues are identical to unity, which implies

that A = B. Notably, and most conveniently for practical work, the criteria in (i) and (ii) involve only the

leading elementary symmetric functions of the matrices D and D−1.

As pointed out by a reviewer, the characterization in Lemma 1(i) can be generalized by associating the

eigenvalues of D with a strictly Schur-convex function of them (e.g., Marshall, Olkin, and Arnold, 1979).

Thus, if f(·) and λ are a Schur-convex function and the vector of the eigenvalues of D, respectively, we

have the equivalence D = I if and only if tr[D] = k and f(λ) = f(ι), where ι is the vector of ones. Note

that tr[D−1] =
∑k

i=1 λ
−1
i , and 1/x is a Schur-convex function, so that tr[D−1] is a convex function of the

eigenvalues. This proves Lemma 1(i). In addition, we can apply D−1 to the criterion instead of D: if we

let ρ be the vector of the eigenvalues of D−1, tr[D−1] = k and det[D] = exp(−
∑k

i=1 log(ρi)). Here,

we note that − log(x) is a Schur-convex function, so that det[D] is a strictly Schur-convex function of ρ.

Therefore, D−1 = I if and only if tr[D−1] = k and det[D] = 1, proving Lemma 1(ii). In another way,

the characterization in Lemma 1(i) can also be associated with a convexity property of the trace operator.

Note that φ(·) := tr[(·)−1] + tr[·] is a convex function on the space of k × k symmetric positive-definite

matrices (e.g., Bernstein, 2005, p. 283) and is also bounded from below by 2k (e.g., Abadir and Magnus,

2005, p.338). The lower bound is achieved if and only if the argument of φ(·) is I .

The characterization in Lemma 1 is different from that used in CW, in which the equality of two equal

symmetric positive-definite matrices is characterized by both det[D] and tr[D]. Note that det[D]1/k is

the geometric mean of the eigenvalues of D. Furthermore, the geometric mean of positive numbers is

identical to the arithmetic mean, if and only if the positive numbers are identical. Using this simple fact,

CW characterized two equal symmetric positive-definite matrices by the condition that det[D] = 1 and

tr[D] = k. Lemma 1(ii) is then a corollary of Lemma 1(i) and the CW characterization.

Both Lemma 1 and the characterization in CW rely on fundamental properties of the Pythagorean (har-

monic, geometric, and arithmetic) means of positive numbers: Harmonic mean≤ Geometric mean≤ Arith-

metic mean. All three means are identical if the positive numbers are identical. Lemma 1(i) is obtained by

interrelating the harmonic mean with the arithmetic mean, and CW links the geometric mean to the arith-

metic mean for their characterization. Lemma 1(ii) also associates the harmonic and geometric means for
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the equality.

There are solid grounds to use the trace and determinant-based test statistics for the equality of two

symmetric positive-definite matrices. First, as mentioned above, these invariant polynomials are the leading

elementary symmetric functions of the positive semi-definite matrices, and are simple and straightforward

for practical implementation. Our Monte Carlo simulations also show that the test statistics defined below

exhibit quality finite sample performance. Second, the theory of model selection information criteria has

been developed by replacing Akaike’s penalty term with the trace and/or determinant of the asymptotic

covariance of an estimator (e.g., Takeuchi, 1976; Bozdogan 2000), particularly when models are possibly

misspecified. This motivates testing the equal covariance matrix hypothesis using the trace and determinant.

Third, if the eigenvalues are explicitly involved in the test statistics (as distinct from only an implicit in-

volvement via the elementary symmetric functions), it is challenging to obtain the null limit approximations

of the test statistics. If we let Tn := f(λ̂n) for testing D = I , where λ̂n = λ(D̂n) and D̂n is a consistent

estimator for D, it is necessary to approximate Tn using the differential of λ(·) around I , which does not

exist, e.g. Magnus (1985). Under the null D = I , λ(D) is not simple, making it challenging to obtain

the null limit approximation of Tn particularly when D̂n involves parameter estimation. James (1964) and

Onatski, Moreira, and Hallin (2013) provide distributional properties of λ̂n for normally associated sam-

ples, although not for a general case that involves parameter estimation. Hence, testing equality of two

symmetric positive definite matrices without explicitly involving the eigenvalues leads directly to the use of

the elementary symmetric functions, thereby motivating the choice of tr[D̂n] and det[D̂n] as vehicles for

testing D = I . Finally, as will be demonstrated below, our proposed tests are asymptotically equivalent to

the likelihood ratio test statistic under a local alternative in a prototypical structural model context, implying

that these statistics are locally optimal and can therefore be expected to have good power properties.

We now exploit Lemma 1 to test the equality of two symmetric positive-definite matrices. Lemma 1(i) is

our first focus. Let τ := k−1tr[D]−1, η := ktr[D−1]−1−1, and ξ := k−1tr[D]−ktr[D−1]−1 for notational

simplicity. Note that if any two of τ , η, and ξ equal zero, the remaining one is also zero. Therefore, Lemma

1(i) holds if and only if any two of τ , η, and ξ equal zero. This implies that the equality of two symmetric

positive-definite matrices can be tested by testing one of the following base hypotheses:

H(1)
0 : τ = 0 and η = 0 vs. H(1)

1 : τ 6= 0 or η 6= 0;

H(2)
0 : τ = 0 and ξ = 0 vs. H(2)

1 : τ 6= 0 or ξ 6= 0;

H(3)
0 : η = 0 and ξ = 0 vs. H(3)

1 : η 6= 0 or ξ 6= 0.

Similarly, we can exploit Lemma 1(ii) and for this, let δ := det[D]1/k−1 and γ := det[D]1/k−ktr[D−1]−1.
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If any two of δ, η, and γ are zero, the remaining one is zero, so that Lemma 1(ii) holds if and only if any

two of them are zero. Hence, we construct the corresponding hypotheses as

H(4)
0 : δ = 0 and η = 0 vs. H(4)

1 : δ 6= 0 or η 6= 0;

H(5)
0 : δ = 0 and γ = 0 vs. H(5)

1 : δ 6= 0 or γ 6= 0;

H(6)
0 : η = 0 and γ = 0 vs. H(6)

1 : η 6= 0 or γ 6= 0.

The following hypotheses correspond to those considered in CW. They let σ := k−1tr[D]− det[D]1/k and

test whether any two of τ , δ, and σ are zero by considering the following hypotheses:

H(7)
0 : τ = 0 and δ = 0 vs. H(7)

1 : τ 6= 0 or δ 6= 0;

H(8)
0 : τ = 0 and σ = 0 vs. H(8)

1 : τ 6= 0 or σ 6= 0;

H(9)
0 : δ = 0 and σ = 0 vs. H(9)

1 : δ 6= 0 or σ 6= 0.

Furthermore, the prior hypotheses can be extended to involve τ , δ, and η at the same time, yielding

H(10)
0 : τ = 0 and δ − η = 0 vs. H(10)

1 : τ 6= 0 or δ − η 6= 0;

H(11)
0 : δ = 0 and τ − η = 0 vs. H(11)

1 : δ 6= 0 or τ − η 6= 0;

H(12)
0 : η = 0 and τ − δ = 0 vs. H(12)

1 : η 6= 0 or τ − δ 6= 0.

All these 12 hypothesis systems are equivalent systems of hypotheses to the simple nullH0 : A = B versus

the alternativeH1 : A 6= B.

Several remarks are warranted regarding this testing methodology. First, note that the testing factors τ ,

δ, and η are invariant to linear transformations of the nullH0 : A = B. Thus, for any invertible matrix H , if

τ †, δ†, and η† are computed using AH and BH , it easily follows that τ † = τ , δ† = δ, and η† = η because

BH(AH)−1 = D. Therefore, τ , δ, and η are invariant to linear transformations. The other factors ξ, γ, and

σ share the same property. Second, the roles of A and B can be reversed when computing the testing factors

τ , δ and η.

We introduce testing environments by supposing that the previously defined matrices A and B are in

fact parameterized as A ≡ A(θ∗) and B ≡ B(θ∗), respectively, where both A(·) and B(·) are defined

on Θ ∈ R`, and θ∗ ∈ Θ is an unknown parameter. This dependence is motivated by the fact that most

covariance estimators are obtained as second-stage outputs after estimating the unknown parameter. For

example, the asymptotic covariance matrix of the (Q)ML estimator is the sandwich covariance matrix that is

often consistently obtained through the vehicle of heteroskedastic and autocorrelation consistent estimation
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in the typical limit theory
√
n(θ̂n− θ∗)

A∼ N(0, A(θ∗)
−1B(θ∗)A(θ∗)

−1). If A(θ∗) = B(θ∗), the asymptotic

covariance of θ̂n becomes identical to that of ML estimator, so that testingA(θ∗) = B(θ∗) can be associated

with model specification testing. When proceeding with this association, we further suppose that An :=

An(θ∗) and Bn := Bn(θ∗) estimate A(θ∗) and B(θ∗) consistently, where An(·) and Bn(·) are consistent

forA(·) andB(·) uniformly on Θ and are uniformly positive definite almost surely on Θ for large enough n.

That is, for any x ∈ Rk \ {0}, P(limn→∞ infθ∈Θ x
′An(θ)x > 0) = 1 and P(limn→∞ infθ∈Θ x

′Bn(θ)x >

0) = 1. Therefore, Dn := BnA
−1
n and D−1

n consistently estimate D and D−1, respectively. Here, D

is estimated by a two-step estimation procedure. Specifically, the unknown parameter θ∗ is consistently

estimated by an estimator θ̂n, so that Ân := An(θ̂n) and B̂n := Bn(θ̂n) are consistent for A(θ∗) and B(θ∗),

respectively. Therefore, D̂n := B̂nÂ
−1
n and D̂−1

n = ÂnB̂
−1
n are also consistent forD andD−1, respectively.

To reduce notational clutter, we simply indicate the influence of θ∗ on these matrices by lettingA∗ := A(θ∗)

B∗ := B(θ∗),D∗ := B∗A
−1
∗ . Similarly, let τ∗ := k−1tr[D∗]−1, η∗ := k/tr[D−1

∗ ]−1, δ∗ := det[D∗]
1/k−1,

ξ∗ := τ∗ − η∗, γ∗ := δ∗ − η∗, and σ∗ := τ∗ − δ∗. When these matrices are estimated using Ân and B̂n,

we denote the resulting statistics as τ̂n := k−1tr[D̂n] − 1, η̂n := k/tr[D̂−1
n ] − 1, δ̂n := det[D̂n]1/k − 1,

ξ̂n := τ̂n − η̂n , γ̂n := δ̂n − η̂n, and σ̂n := τ̂n − δ̂n. All these statistics, which form the base elements

of the tests given below, are dependent upon θ̂n. For notational simplicity, we also let D̃∗ := A∗B
−1
∗ and

D̃n := ÂnB̂
−1
n . Therefore, D̃∗ = D−1

∗ and D̃n := D̂−1
n .

With this discussion in hand, we now define the first group of tests

B̂(1)
n :=

nk

2

(
τ̂2
n + 2σ̂n

)
and B̂(2)

n :=
nk

2

(
δ̂2
n + 2σ̂n

)
,

which modify the tests in CW. These tests exploit the discriminatory properties of the statistics τ̂n and δ̂n,

which embody elements of the Wald (1943) test principle and correspond with H(8) and H(9), respectively.

The coefficients of these statistics differ from those in CW by the scale factor 1/2. As detailed below, this

modification is useful to achieve a direct comparison of the leading terms that are obtained as approximations

of the tests under the alternative.

We define a second group of tests as follows:

D̂(1)
n :=

nk

2

(
τ̂2
n + ξ̂n

)
, D̂(2)

n :=
nk

2

(
η̂2
n + ξ̂n

)
, Ŝ(1)

n :=
nk

2

(
δ̂2
n + 2γ̂n

)
, Ŝ(2)

n :=
nk

2

(
η̂2
n + 2γ̂n

)
.

Note that D̂(1)
n and D̂

(2)
n are defined by associating the arithmetic mean with the harmonic mean, whereas

Ŝ
(1)
n and Ŝ

(2)
n are defined by associating the geometric mean with the harmonic mean. As before, τ̂n, δ̂n,

and η̂n are empowered with discriminatory capability.
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In addition, other omnibus test statistics may be defined by reversing the roles of A∗ and B∗ or by

combining all the test base elements. If we let τ̃∗ := k−1tr[D̃∗] − 1, η̃∗ := k/tr[D̃−1
∗ ] − 1, and δ̃∗ :=

det[D̃∗]
1/k − 1, the only difference between D̃∗ and D∗ lies in the fact that the roles of A∗ and B∗ are

reversed. Using these testing factors, we may be able to define additional test statistics as before. Neverthe-

less, note that τ̃∗+ 1 = 1/(1 +η∗), δ̃∗+ 1 = 1/(1 + δ∗) and η̃∗+ 1 = 1/(1 + τ∗). That is, the testing factors

obtained from D̃∗ are inversely associated with the testing factors using D∗, so that the test procedure via

D̃∗ can be constructed equivalently to that usingD∗. We therefore eliminate them from consideration. Next,

we also consider the following test statistics:

Ê(1)
n :=

nk

2

(
τ̂2
n + 2γ̂n

)
, Ê(2)

n :=
nk

2

(
η̂2
n + 2σ̂n

)
, and Ê(3)

n :=
nk

2

(
δ̂2
n + ξ̂n

)
to test H(10)

0 , H(11)
0 , and H(12)

0 , respectively. The motivations of these tests are the same as for the earlier

test statistics. Indeed, the test statistics are linear combinations of the previous six test statistics, viz.,

Ê(1)
n ≡ 2D̂(1)

n − B̂(1)
n , Ê(2)

n ≡ 2D̂(2)
n − Ŝ(2)

n , and Ê(3)
n ≡

1

2
B̂(2)
n +

1

2
Ŝ(1)
n , (1)

which implies that the asymptotic behaviors of Ê(1)
n , Ê(2)

n , and Ê
(3)
n are determined by those of B̂(i)

n , D̂(i)
n ,

and Ŝ
(i)
n (i = 1, 2). Below we show that these additional test statistics are equivalent to (B̂

(i)
n , D̂

(i)
n , Ŝ

(i)
n )

(i = 1, 2) under the null and local alternative.

Finally, we consider the maximal statistic

M̂n := max
j∈{1,2}

[B̂(j)
n , Ŝ(j)

n , Ê(j)
n ].

As we show in Section 3, the fixed alternative is partitioned in a way that one of B̂(i)
n , Ŝ(i)

n , and Ê
(i)
n (i = 1, 2)

has a dominant leading term over those of other tests that diverge as n tends to infinity, implying that

asymptotic power of a test is warranted by consistently estimating the dominant leading terms. Converting

this idea into a test statistic gives rise to M̂n as our final test statistic. Note that a number of distance

functions can be used to define tests, and the uniform norm is popularly applied to continuous Gaussian

processes in the field of specification testing for the conditional mean (e.g., Cho and White, 2011; Baek,

Cho, and Phillips, 2015) to detect the worst test base. By the same motivation, we can also justify use of

the uniform norm for M̂n. As it turns out, all tests constituting M̂n are asymptotically equivalent under

the null and local alternative, so that M̂n also turns out to have the same null limit distribution as the other

test statistics, implying that the asymptotic power of M̂n is greater than the other tests. On the other hand,
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by virtue of its construction as a maximal statistic M̂n is expected to possess finite sample level distortion

bigger than the other tests. Finite sample size distortion may be corrected by bootstrapping and below we

examine the relative performance of the tests by simulation.

Before moving to the next section, we add some remarks about these tests. First, the nine test statistics

B̂
(i)
n , D̂(i)

n , Ŝ(i)
n (i = 1, 2) and Ê

(j)
n (j = 1, 2, 3) do not specifically test any of the base hypotheses H(1)

0 ,

H(4)
0 , and H(7)

0 . Tests involving the sum of any two of τ2
∗ , δ2
∗ , and η2

∗ are inferior to the nine test statistics

mainly because their leading terms are asymptotically dominated by the maximum leading term of the nine

test statistics considered here. Hence, we focus on the above nine test statistics as the primary tests leading to

a single preferred maximal statistic. Second, as we show more specifically below, the space of the alternative

hypothesis can be partitioned into 6 regions such that on each region, the dominant term estimated by one of

the six test statistics that form M̂n is bigger than or equal to the dominant terms estimated by the other test

statistics. Correspondingly, M̂n is defined without using D̂
(i)
n (i = 1, 2) and Ê

(3)
n . Third, Hong, Linton, and

Zhang (2017) recently examined a multivariate version of the variance ratio test. Their matrix normalized

multivariate variance ratio statistic is designed to estimate a quantity of the form A
−1/2
∗ B∗A

−1/2
∗ in our

notation. In that case, testing A−1/2
∗ B∗A

−1/2
∗ = I corresponds to the same hypothesis as that considered in

Lemma 1. Our test bases can then be easily adapted to this specific testing environment.

3 Asymptotic Expansions of the Test Statistics

This section examines asymptotic expansions of the test statistics under the null, local, and fixed alternative

hypotheses. We also supplement the test statistics considered in CW. Before examining these asymptotic ap-

proximations, we provide the following regularity conditions, some of which have already been mentioned.

Assumption A (Cho and White, 2014). (i) (Ω,F ,P) is a complete probability space;

(ii) Θ ⊂ R` is a compact convex set with non-empty interior and ` ∈ N;

(iii) a sequence of measurable mappings {θ̂n : Ω 7→ Θ} is consistent for a unique θ∗ ∈ int(Θ);

(iv) A : Θ 7→ Rk×k and B : Θ 7→ Rk×k are in C(2)(Θ), and A∗ and B∗ are positive definite;

(v) An(·) and Bn(·) are consistent for A(·) and B(·), respectively, uniformly on Θ, viz., supθ∈Θ ‖An(θ) −

A(θ)‖∞ = oP(1) and supθ∈Θ ‖Bn(θ)−B(θ)‖∞ = oP(1), where ‖ · ‖∞ is the matrix maximum norm;

(vi)
√
n[(θ̂n − θ∗)′, vech[An −A∗]′, vech[Bn −B∗]′]′ = OP(1);

(vii) for j = 1, . . . , `, ∂jAn(·) and ∂jBn(·) are consistent for ∂jA(·) and ∂jB(·), uniformly on Θ; and

(viii) for j = 1, . . . , `, Hj,n = OP(n−1/2) and Gj,n = OP(n−1/2), where Hj,n := A−1
∗ ∂j(An − A∗) and

Gj,n := B−1
∗ ∂j(Bn −B∗). �

9



These conditions hold for most standard estimators based on (Q)MLE, LS, or (G)MM procedures when

applied in standard environments. The same framework was employed in CW and facilitates comparison of

our tests and findings with theirs under the same conditions.

Our omnibus tests are motivated by testing whether the critical quantities τ∗, δ∗, η∗, σ∗ ξ∗, and γ∗,

which we call the test base elements, equal zero. The stochastic asymptotic representations of consistent

estimates of these quantities are functions of Ln := Pn+
∑`

j=1(θ̂j,n− θj,∗)Rj,∗, where Pn := Wn−Un :=

B−1
∗ (Bn − B∗) − A−1

∗ (An − A∗), and for j = 1, 2, . . . , `, Rj,∗ := B−1
∗ ∂jB∗ − A−1

∗ ∂jA∗. Note that

under Assumption A this is a consequence of the fact that Ln is an asymptotic approximation of D̂n around

D∗ such that Pn is an approximation of Dn around D∗, and the remainder on the right side denotes the

uncertainty from parameter estimation. We therefore have Ln = OP(n−1/2), Pn = OP(n−1/2), and for

j = 1, 2, . . . , `, Rj,∗ = O(1). These correspond with the definitions in CW.

We now develop null approximations for each of the tests. The null approximations are obtained by

higher order approximations of the tests. As noticed by CW in the case of τ̂n and δ̂n, τ̂n, δ̂n, and η̂n are

asymptotically equivalent under the null, so that σ̂n, ξ̂n, and γ̂n have a convergence rate n−1 that is faster

than τ̂n, δ̂n and η̂n. In consequence, the desired asymptotic null approximations involve the study of higher

order approximants for τ̂n, δ̂n , and η̂n, which are provided in the Supplement. From these approximations,

we now straightforwardly deliver the asymptotic null approximations of the tests. We collect the results

together in the following theorem which characterizes the relationships between the test statistics. For

notational simplicity, let Kn := A−1
∗ {Bn − An +

∑`
j=1 ∂j(B∗ − A∗)(θ̂j,n − θj,∗)}, which follows by

imposing the null A∗ = B∗ on the linearization Ln.

Theorem 1. Given Assumption A and H0, all of the test statistics B̂(i)
n , D̂(i)

n , Ŝ(i)
n , Ê(j)

n , and M̂n have the

asymptotic form n
2 tr[K2

n] + oP(1) (i = 1, 2; j = 1, 2, 3). �

Remarks

(a) Theorem 1 is proved sequentially . The approach is to demonstrate initially that B̂(1)
n , B̂(2)

n , D̂(1)
n , D̂(2)

n ,

Ŝ
(1)
n , and Ŝ

(2)
n are asymptotically equivalent underH0, implying that the asymptotic approximations

of Ê
(1)
n , Ê(2)

n , and Ê
(3)
n are obtained as n

2 tr[K2
n] + oP(1) under H0 by (1), so that all of these are

asymptotically equivalent under H0. It then follows that M̂n = n
2 tr[K2

n] + oP(1) under H0 since all

components that constitute the maximal statistic are asymptotically equivalent underH0.

(b) The test base Ln is not new to the literature. It reduces to Kn underH0 and is the same as the test base

used for the information matrix equality test in White (1982).
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(c) The null limit distribution of the test follows from the limit distribution of
√
nKn. Given Assump-

tion A(vi), the limit distribution of (θ̂n, An, Bn) is often characterized by the central limit theo-

rem, so that if we suppose that
√
n[(θ̂n − θ∗), An − A∗, Bn − B∗] ⇒ (Zθ, ZA, ZB) such that

[Z ′θ, vech(ZA)′, vech(ZB)′]′ ∼ N(0,Σ∗), then we can expect that
√
nKn ⇒ A−1

∗ (ZB −ZA + (Z ′θ ⊗

Ik)Q∗), whereQ∗ := [∂1(B∗−A∗)′, . . . , ∂`(B∗−A∗)′]′, so that the null limit distribution of the tests

in Theorem 1 is obtained as 1
2tr[A−2

∗ (ZB − ZA + (Z ′θ ⊗ I)Q∗)
2] using the fact that Kn is symmet-

ric. We further note that this null limit distribution is a weighted sum of chi-squared distributions as

reported in the following result.

Corollary 1. Given Assumption A and H0, if it further holds that for some positive-semi definite Σ∗,
√
n[(θ̂n− θ∗), An−A∗, Bn−B∗]⇒ (Zθ, ZA, ZB) such that [Z ′θ, vech(ZA)′, vech(ZB)′]′ ∼ N(0,Σ∗), all

of B̂(i)
n , D̂(i)

n , Ŝ(i)
n , Ê(j)

n , and M̂n (i = 1, 2; j = 1, 2, 3) are asymptotically distributed as Z ′Ω∗Z , where

Z :=

 vec(ZB − ZA)

vec(Z ′θ ⊗ Ik)

 and Ω∗ :=
1

2

 A−1
∗ ⊗A−1

∗ A−1
∗ Q′∗ ⊗A−1

∗

A−1
∗ ⊗Q∗A−1

∗ A−1
∗ Q′∗ ⊗Q∗A−1

∗

 .
The null limit critical values of the tests can be obtained by estimating Σ∗ and Ω∗ consistently.

Next we examine asymptotic approximations of the tests under sequences of local alternatives. For some

symmetric positive-definite Ā∗ and B̄∗ with Ā∗ 6= B̄∗, we consider the local alternatives

H` : A∗,n = A∗ + n−1/2Ā∗, B∗,n = B∗ + n−1/2B̄∗, and A∗ = B∗.

As the sample size n → ∞, A∗,n and B∗,n converge to A∗ and B∗ at the rate n−1/2. H` reduces to H0 if

Ā∗ = B̄∗ and the local alternatives differ from the null by requiring that Ā∗ 6= B̄∗. This local alternative

generalizes the one used in CW where it is assumed that Ā∗ = 0.

The following separate conditions are imposed for the local approximations.

Assumption B (Local Alternative). (i) (Ω,F ,P) is a complete probability space;

(ii) Θ ⊂ R` is a compact convex set with non-empty interior and k ∈ N;

(iii) a sequence of measurable mappings {θ̂n : Ω 7→ Θ} is consistent for a unique θ∗ ∈ int(Θ);

(iv) A : Θ 7→ Rk×k and B : Θ 7→ Rk×k are in C(2)(Θ), and A∗ and B∗ are symmetric and positive definite;

(v) Ā : Θ 7→ Rk×k and B̄ : Θ 7→ Rk×k are in C(1)(Θ) and such that Ā∗ := Ā(θ∗) and B̄∗ := B̄(θ∗) are

symmetric and positive definite, and Ā∗ 6= B̄∗;

(vi) An(·) and Bn(·) are consistent for A(·) and B(·), respectively, uniformly on Θ;

(vii)
√
n[(θ̂n − θ∗)′, vech[An −A∗,n]′, vech[Bn −B∗,n]′]′ = OP(1);
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(viii) for j = 1, . . . , `, ∂jAn(·) and ∂jBn(·) are consistent for ∂jA(·) and ∂jB(·), uniformly on Θ; and

(ix) for j = 1, . . . , `, Hj,o,n = OP(n−1/2) and Gj,o,n = OP(n−1/2), where Hj,o,n := A−1
∗ ∂j(An − A∗,n)

and Gj,o,n := B−1
∗ ∂j(Bn −B∗,n). �

The major differences between Assumptions A and B are in B(v, vii, and ix). The localizing coefficient

matrices Ā∗ and B̄∗ are formally introduced in Assumption B(v), and the other two conditions modify

the corresponding conditions in Assumption A to accommodate the presence of the localizing parameters.

We define Mo,n := B−1
∗ (Bn − An − B∗,n + A∗,n) and Ko,n := Mo,n +

∑`
j=1(θ̂j,n − θj,∗)Sj,∗, where

Sj∗ := A−1
∗ (∂jB∗ − ∂jA∗). These statistics are defined to highlight the asymptotic roles of the localizing

parameters. Using this notation, we provide the asymptotic approximations under H` in the following

theorem.

Theorem 2. Given Assumption B and H`, all of the statistics B̂
(i)
n , D̂(i)

n , Ŝ(i)
n , Ê(j)

n , and M̂n have the

asymptotic form 1
2tr[(V∗+

√
nKo,n)2] +oP(1) (i = 1, 2; j = 1, 2, 3), where V∗ := F∗−C∗, F∗ := B−1

∗ B̄∗,

and C∗ := A−1
∗ Ā∗. �

Remarks

(a) Theorem 2 naturally extends Theorem 1. Thus, if V∗ = 0, the implications given below Theorem

1 apply, which implies that the asymptotic approximations of the tests are obtained by shifting the

location parameter of tr[Ko,n] by n−1/2tr[V∗], from which the local power of the tests derives.

(b) If tr[V 2
∗ ] = 0, then B̂

(1)
n , B̂(2)

n , D̂(1)
n , D̂(2)

n , Ŝ(1)
n , and Ŝ

(2)
n all have location parameters that are the same

as those under the null hypothesis, and local powers are correspondingly affected. Thus, tr[V 2
∗ ] 6= 0

is necessary for these tests to have non-trivial local powers.

(c) Note that even when An,∗ = A∗ + n−1/2Ā∗ + o(n−1/2) or Bn,∗ = B∗ + n−1/2B̄∗ + o(n−1/2), the

results stated in Theorem 2 still hold. For brevity, the o(n−1/2) remainders from An,∗ and Bn,∗ in the

local alternative hypothesis are omitted.

(d) The asymptotic expansion of M̂n is also equal to 1
2tr[(V∗ +

√
nKo,n)2] + oP(1) under H` due to the

fact that all components constituting the maximal test are equivalent underH`.

(e) If
√
nKo,n obeys a central limit theorem as in Corollary 1, the local limit distributions of all tests in

Theorem 2 turn out to be identical to a weighted sum of chi-squared distributions with zero locality

parameter.
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We now examine asymptotic approximations of the tests under a fixed alternative. The nine equivalent

test statistics B̂(i)
n , D̂(i)

n , Ŝ(i)
n (i = 1, 2) and Ê

(j)
n (j = 1, 2, 3) under Assumption B motivate to examine them

under a fixed alternative. As it turns out, the nine test statistics are approximated by the sum of a leading term

estimated by the test statistic, a linear combination of tr[D∗
′Ln], tr[D̃∗

′Ln], and tr[Ln], and a remainder

that isOP(1). As an example, B̂(1)
n = nk

2 (τ2
∗ +2σ∗)+n{(τ∗+1)tr[D∗

′Ln]−(δ∗+1)tr[Ln]}+OP(1). Note

that the leading term of B̂(1)
n , given as nk

2 (τ2
∗ + 2σ∗), is what B̂(1)

n estimates. If this term differs from zero,

the test has consistent power, and omnibus power is derived from this property and Lemma 1, although the

discriminatory powers of the test statistics are also affected by the second-order terms given by tr[D′∗Ln],

tr[D̃′∗Ln] and tr[Ln]. Expansions for the other statistics are similar, are obtained in the same way, and are

provided in the Supplement.

As each test has a different leading term, its power pattern differs from the other tests. The following

theorem states the interrelationships among the leading terms in B̂
(i)
n , D̂(i)

n , Ŝ(i)
n , and Ê

(j)
n (i = 1, 2; j =

1, 2, 3). Here, we let µ∗ be the maximum of the leading terms in B̂
(i)
n , D̂(i)

n , Ŝ(i)
n , and Ê

(j)
n (i = 1, 2;

j = 1, 2, 3). The results are collected in the following theorem.

Theorem 3. Given Assumption A andH1,

(i) if for all d > 0, B∗ 6= dA∗,

(i.a) the leading term of B̂(1)
n is equal to µ∗ if and only if τ2

∗ > max[δ2
∗ , η

2
∗] and σ∗ > γ∗;

(i.b) the leading term of B̂(2)
n is equal to µ∗ if and only if δ2

∗ > max[τ2
∗ , η

2
∗] and σ∗ > γ∗;

(i.c) if the leading term of D̂(1)
n is equal to µ∗, τ2

∗ > max[δ2
∗ , η

2
∗] and σ∗ = γ∗, and if τ2

∗ > max[δ2
∗ , η

2
∗]

and σ∗ = γ∗, the leading terms of B̂(1)
n , D̂(1)

n , and Ê
(1)
n are equal to µ∗;

(i.d) if the leading term of D̂(2)
n is equal to µ∗, η2

∗ > max[δ2
∗ , τ

2
∗ ] and σ∗ = γ∗, and if η2

∗ > max[δ2
∗ , τ

2
∗ ]

and σ∗ = γ∗, the leading terms of D̂(2)
n , Ŝ(2)

n , and Ê
(2)
n are equal to µ∗;

(i.e) the leading term of Ŝ(1)
n is equal to µ∗ if and only if δ2

∗ > max[η2
∗, τ

2
∗ ] and γ∗ > σ∗;

(i.f) the leading term of Ŝ(2)
n is equal to µ∗ if and only if η2

∗ > max[τ2
∗ , δ

2
∗ ] and γ∗ > σ∗;

(i.g) the leading term of Ê(1)
n is equal to µ∗ if and only if τ2

∗ > max[δ2
∗ , η

2
∗] and γ∗ > σ∗;

(i.h) if the leading term of Ê(3)
n is equal to µ∗, δ2

∗ > max[τ2
∗ , η

2
∗] and σ∗ = γ∗, and if δ2

∗ > max[τ2
∗ , η

2
∗]

and σ∗ = γ∗, the leading terms of B̂(2)
n , Ê(3)

n , and Ŝ
(1)
n are equal to µ∗; and

(i.i) the leading term of Ê(2)
n is equal to µ∗ if and only if η2

∗ > max[τ2
∗ , δ

2
∗ ] and σ∗ > γ∗;

(ii) if for some d∗ > 0, B∗ = d∗A∗, for i = 1, 2 and j = 1, 2, 3, then B̂
(i)
n , D̂(i)

n , Ŝ(i)
n , Ê(j)

n , and M̂n are

equal to nk
2 (d∗ − 1)2 + nd∗(d∗ − 1)tr[Ln] +OP(1). �

Remarks
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(a) The conditions in Theorem 3 are summarized into two dimensional conditions, viz. the maximum

condition between σ∗ and γ∗ and that among τ2
∗ , δ2

∗ , and η2
∗ . Table 1 describes these relations in

tabular format and provides the test statistics with the maximum leading term under each condition.

According to Table 1, D̂(1)
n , D̂(2)

n , and Ê
(3)
n cannot have the maximum leading term alone, although

the other tests can do so, as indicated in Theorem 3. We note that each cell of Table 1 is occupied by

at least one of the nine test statistics B̂(i)
n , D̂(i)

n , Ŝ(i)
n (i = 1, 2) and Ê

(j)
n (j = 1, 2, 3), implying that

the nine test statistics have the greatest leading term under each region, whose union is the alternative

parameter space.

(b) If k = 2, it follows that σ∗ ≥ γ∗ from the fact that (δ∗+ 1)2 = (τ∗+ 1)(η∗+ 1). Therefore, the leading

terms of Ŝ(1)
n , Ŝ(2)

n , and Ê
(3)
n cannot produce the maximum leading term.

(c) Theorem 3(ii) implies that all the tests are asymptotically equivalent even underH1 if for some d∗ > 0,

B∗ = d∗A∗.

(d) The conditions in Theorems 3(i.a–i.i) can be consistently selected by estimating τ∗, δ∗, σ∗ and by

comparing the conditions in Theorem 3. For example, if τ̂2
n > δ̂2

n, τ̂2
n > η̂2

n, and σ̂n ≥ γ̂n and the

sample size is reasonably large, then testing the hypotheses by relying on B̂
(1)
n should give higher

power than the other tests. This feature motivates the use of a maximal test statistic as a desirable

test in terms of power. But rather than take the maximum of the nine test statistics, we construct the

maximal test statistic M̂n based on the six statistics B̂(i)
n , Ŝ(i)

n , and Ê
(i)
n (i = 1, 2) for the reason given

above, that their leading terms are always dominated by the leading terms of the tests in Theorem 3.

Finally, we do not need to testH(1)
0 ,H(4)

0 , andH(7)
0 as mentioned earlier.

Additional Remarks

(e) Mauchly (1940), John (1971), Muirhead (1982), and Anderson (2003) test the sphericity condition:

for some d∗, B∗ = d∗A∗, and theorem 7 of CW implies that the LR test that is obtained under the

same distributional condition as above is locally equivalent to the tests defined by τ̂n, δ̂n and η̂n. In

particular, John (1971) shows that the test statistic defined by the test base ntr[(kΣ̂n/tr(Σ̂n)− Ik)2]

is locally optimal, where Σ̂n is the k-dimensional sample covariance matrix of normally distributed

data. Our results in Theorem 2 can be viewed as an extension of this. Note that if kΣ̂n/tr(Σ̂n) of

the test base is viewed as a particular form of B̂nÂ−1
n , then from the fact that ntr[(B̂nÂ

−1
n − Ik)2] =

tr[(V∗ +
√
nKo,n)2] + oP(1) under H`, the test statistics here become locally optimal under the

conditions in John (1971) by Theorem 2. We extend this discussion further below under the structural
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model condition in Section 4 and also examine specific examples of testing the sphericity condition

in Section 5.

(f) The local asymptotic approximations are equivalent to that of the likelihood ratio test under certain

conditions. Nagao (1967), Nagarsenker and Pillai (1973), Muirhead (1982), and Anderson (2003)

examine the LR statistic that tests equality of a covariance matrix to a certain matrix. We compare our

test statistic by simulation in Section 5.

(g) The same test bases used here can be adapted even when high-dimensional matrices are estimated.

When deriving Theorem 1, the dimension k is assumed invariant to n. If this condition is relaxed so

that the dimension kn increases such that cn := kn/n→ c ∈ (0, 1), we obtain a result different from

the earlier case. For example, for normally and independently distributed kn-dimensional data, if we

let B̂n and Ân be the covariance matrix estimator and Ikn , respectively, it follows that

nT̂n − µc
A∼ N

 0

0

 ,
 2/c 2/c

2/c −2 log(1− c)/c2


under the null hypothesis that the population covariance matrix is Ikn , where Tn := [τ̂n, (log(δ̂n +

1) −mn)]′, µc := (0, log(1 − c)/(2c))′, and mn := ((1 − 1/cn) log(1 − cn) − 1). Thus, if we let

Ŵn := (nT̂n − µ̂cn)′Σ̂−1
n (nT̂n − µ̂cn) to test τ∗ = 0 and δ∗ = 0, then it follows from theorem 3.1 of

Bai, Jiang, Yao, and Zheng (2009) that Ŵn
A∼ X 2

2 under the null, where

µ̂cn :=

 0

log(1− cn)/(2cn)

 , and Σ̂n :=

 2/cn 2/cn

2/cn −2 log(1− cn)/c2
n

 .

Although the test statistic Ŵn is defined in a form different from the standard tests, it is defined using

the same test factors τ̂n and δ̂n as before. This shows that our test bases can be adapted to estimating

and testing high-dimensional matrices. The corrected version of the likelihood ratio test defined by

Bai, Jiang, Yao, and Zheng (2009) is also indeed a linear function of T̂n.

4 Application to SVAR Model Estimation

In this section, we examine the LR test statistic using FIML estimation in the SVAR model context where

tests for over-identification serve as a prototypical example of testing two equal symmetric positive-definite

matrices. The example is motivated by the fact that the LR test statistic turns out to be a locally most pow-
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erful test since FIML estimation is conducted using a correctly specified distributional model assumption.

Hence, we can compare the local power properties of the tests in the current study with that of the LR test

statistic.

Specifically, we work with the AB-SVAR model in Amisano and Giannini (1997) which is a synthetic

generalization of popular SVAR models: for k × k invertible matrices Hn,∗ and Nn,∗, Hn,∗φ∗(L)Yn,t =

Hn,∗Un,t and Hn,∗Un,t = Nn,∗Wn,t such that E[Wn,t] = 0 and E[Wn,tW
′
n,t] = I , where Un,t ∼ IID

N(0, Bn,∗), φ∗(L) := I − φ1,∗L − φ2,∗L
2 − . . . − φp,∗L

p, and L is the lag operator. The structural

parameter matrix Hn,∗ and Nn,∗ are estimated by maximizing the log-likelihood function

Ln(A) := −nk
2

log(2π)− n

2
log(det(A))− n

2
tr(A−1B̂n)

with respect to H and N such that A = H−1NN ′H ′−1, where B̂n := 1
n

∑n
t=1 ÛnÛ

′
t , Ût := φ̂n(L)Yt, and

φ̂n(L) is the LS estimator obtained by regressing Yt on (Yt−1, Yt−2, . . . , Yt−p). Note that Ln(·) is under-

identified: there are 2k2 unknowns in Hn,∗ and Nn,∗, whereas there are k(k+ 1)/2 first-order equations, so

that there are 2k2−k(k+1)/2 free parameters. Thus, the structural parametersHn,∗ andNn,∗ are estimated

by re-parameterizing them as functions of another parameter ψ that satisfies order and rank conditions for

identification (e.g., Sargan, 1988), so that (Hn,∗, Nn,∗) can be represented as (Hn(ψ∗), Nn(ψ∗)) for some

Hn(·) and Nn(·), and ψ∗ is instead estimated by maximizing the log-likelihood function with respect to

ψ. We denote the SVAR estimator obtained in this way as (Ĥn, N̂n) := (Hn(ψ̂n), Nn(ψ̂n)) and Ân :=

Ĥ−1
n N̂nN̂

′
nĤ

′−1
n to estimate An,∗ := H−1

n,∗Nn,∗N
′
n,∗H

′−1
n,∗ , where ψ̂n is the argument maximizing the log-

likelihood function with respect to ψ.

Model over-identification is often tested using the LR test statistic. If the model is exactly identified, the

log-likelihood is

Ln(B̂n) = −nk
2

log(2π)− n

2
log(det(B̂n))− nk

2
,

so that the LR test statistic for over-identification is obtained as LRn := 2(Ln(B̂n)−Ln(Ân)) = nk(τ̂n −

λ̂n), where λ̂n := 1
k log(det[D̂n]). That is, the LR test statistic measures the distance between τ̂n and

λ̂n, which is a function of det(D̂n), were D̂n = B̂nÂ
−1
n as before, and thereby statistically tests equality

between An,∗ and Bn,∗.

We provide the following set of assumptions to formalize conditions.

Assumption C (SVAR). (i) For every n ∈ N, φ∗(L)Yn,t = Un,t ∼ IID N(0, Bn,∗) such that the roots of

det(φ∗(L)) = 0 lie outside of the unit circle, and Bn,∗ = B∗ + n−1/2B̄∗, where B∗ and B̄∗ are symmetric

positive-definite matrices in Rk×k;
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(ii) For every n ∈ N, Hn,∗ and Nn,∗ are invertible such that An,∗ := H−1
n,∗Nn,∗N

′
n,∗H

′−1
n,∗ = A∗ + n−1/2Ā∗

with Ā∗ 6= B̄∗, where A∗ and Ā∗ are symmetric and positive definite;

(iii) A : Θ 7→ Rk×k is in C(2)(Θ) and A∗ := A(θ∗), where Θ(∈ R`) is a compact and convex parameter

space of θ := (ψ′, vec(φ1, . . . , φp)
′)′ that contains θ∗ := (ψ′∗, vec(φ1∗, . . . , φp∗)

′)′ as an interior element;

(iv) Ā : Θ 7→ Rk×k and B̄ : Θ 7→ Rk×k are in C(1)(Θ), Ā∗ := Ā(θ∗), and B̄∗ := B̄(θ∗);

(v) Hn : Θ 7→ Rk×k and Nn : Θ 7→ Rk×k are in C(2)(Θ), An(·) := Hn(·)−1Nn(·)Nn(·)′Hn(·)′−1 is

consistent for A(·) uniformly on Θ, Hn,∗ = Hn(θ∗), and Nn,∗ = Nn(θ∗);

(vi)
√
n[(θ̂n − θ∗)′, vech[An −A∗,n]′]′ = OP(1);

(vii) for j = 1, . . . , `, ∂jAn(·) is consistent for ∂jA(·) uniformly on Θ; and

(viii) for j = 1, . . . , `, Hj,o,n := A−1
∗ ∂j(An −A∗,n) = OP(n−1/2). �

Remarks

(a) Assumption C is obtained from Assumption B by accommodating the SVAR features, so that the defi-

nitions of φ̂n(L), Bn,∗, and B̂n correspond with this and the conditions in Assumption B for φ̂n(L),

Bn,∗, and B̂n are easily affirmed by these definitions. On the other hand, An,∗ and Ân cannot be

uniformly defined. They are differently defined, depending on the order and rank conditions. Hence,

Assumption C focuses on the regularity conditions for Ân(·) and An,∗.

(b) The roots of det(φ∗(L)) = 0 lying outside the unit circle ensures stationarity of Yt.

(c) Even when An,∗ = A∗ + n−1/2Ā∗ + o(n−1/2) or Bn,∗ = B∗ + n−1/2B̄∗ + o(n−1/2), the results stated

below still hold. For brevity, we omit the o(n−1/2) remainders from An,∗ and Bn,∗.

(d) The specific roles of the order and rank conditions given implicitly in Hn(·) and Nn(·) are not high-

lighted as our interests relate to testing for over-identification using An,∗. Instead, we directly impose

the regularity conditions for A(·) and Ā(·) in Assumption C(iii and iv).

(e) Although A(·) and Ā(·) are functions of only ψ, we treat them as functions of θ to comply with the

theory of the previous section. For the same reason, B̄(·) is also treated as a function of θ, although it

is a function of only vec(φ1, . . . , φp).

(f) Most SVAR models suppose the model is locally identified, and linear re-parameterizations of ψ with

deterministic coefficients are assumed for Hn(·) and Nn(·). For such cases, Assumptions C(v and vi)

trivially hold, although Hn(·) and Nn(·) do not necessarily have to be linear transformations of ψ.
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Finally, Assumption C is obtained by modifying Assumption B to fit the features of the SVAR model,

so that the consequences in Theorem 2 are also valid for Ân and B̂n of this section.

(g) The given likelihood function can be related to contiguity between the distributions generated by Bn,∗

and An,∗. If we let B̂n := n−1
∑n

t=1 Un,tU
′
n,t and A∗ = B∗, Ln(Bn,∗)− Ln(An,∗)

A∼ N(−1
4tr[V 2

∗ ],

1
2tr[V 2

∗ ]) under Un,t ∼ IID N(0, An,∗), implying that the probability distributions generated by Bn,∗

and An,∗ are mutually contiguous and Ln(Bn,∗) − Ln(An,∗)
A∼ N(1

4tr[V 2
∗ ], 1

2tr[V 2
∗ ]) under Un,t ∼

IID N(0, Bn,∗) by Le Cam’s first and third lemmas. We show this property in the Supplement. If we

further suppose that Ā∗ = 0 and test B∗ = A∗ at a 5% significance level using two-sided testing, the

power envelope Pe is obtained as P(Z > 1.96−
√

tr[F 2
∗ ]/2) + P(Z < −1.96−

√
tr[F 2

∗ ]/2), where

Z ∼ N(0, 1). Below, we below conduct Monte Carlo simulations using this feature to explore the

power envelope.

The following theorem gives the local limit approximation of the LR test statistic.

Theorem 4. Given Assumptions C andH`, LRn = 1
2tr[(V∗ +

√
nKo,n)2] + oP(1). �

Remarks

(a) The asymptotic result in Theorem 4 corresponds to that of Theorem 2, so that the LR test statistic is

asymptotically equivalent to B̂
(i)
n , D̂(i)

n , Ŝ(i)
n , Ê(i)

n (i = 1, 2), and M̂n under the local alternative.

Thus, if the LR test statistic turns out locally asymptotically optimal, as for the standard case where

a correct distributional condition applies along with minor regularity conditions, the test statistics of

this study must be also be locally asymptotically optimal.

(b) Theorem 4 is shown by noting that δ̂n and λ̂n posit similar asymptotic behavior, although their difference

is not exactly zero but rather δ̂n − λ̂n = (2k2)−1tr[(Ko,n + n−1/2V∗)]
2 + oP(n−1), so that δ̂n is

asymptotically greater than λ̂n.

(c) V∗ = 0 under H0, and all of B̂(i)
n , D̂(i)

n , Ŝ(i)
n (i = 1, 2), Ê(i)

n (i = 1, 2, 3), and M̂n are asymptotically

chi-squared underH0, just as LRn is chi-squared underH0.

Before moving to the next section, we add comments about extensions. The analysis given in this section

can be easily adapted to other structural models. As Bartlett (1954, IIIa) shows, testing a hypothetical

covariance matrix often involves testing the difference between τ̂n and λ̂n, as for the LR test statistic in

Theorem 4. Therefore, if the structural assumption is embedded through the covariance matrix hypothesis,
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this implies that the structural assumption can be tested in a similar way to the LR test statistic under the

local alternative as in Theorem 4. For example, the standard multi-factor model often tests the number of

factors by means of a structural model that assumes a normal distribution. If we let Ân and B̂n be the ML

estimators obtained under the null of a factor model constraint and an alternative, respectively, the standard

LR test is written as nk(τ̂n − λ̂n) (e.g., Geweke and Singleton, 1980), so that we can analyze its local limit

distribution in a similar way to Theorem 4. It is also possible to test the factor model hypothesis without

imposing the normal distribution assumption using the test statistics of the current study.

5 Monte Carlo Experiments

This section reports Monte Carlo experiments examining the performance of the tests analyzed in the pre-

vious section. We examine two applications. First, we assume a correctly specified model for the data

generating process (DGP) and compare the performance of our tests with the power envelope of the LR

test. Second, we consider application of residual bootstrapping to linear two stage least squares (TSLS)

estimation (e.g. Efron and Tibshirani, 1993). Residual bootstrapping can also be applied to other GMM

estimators.

5.1 Testing Using the Null Limit Distribution

Suppose we have the following DGP Yt := (y1t, y2t)
′ ∼ IID N(0, Bn,∗), where Bn,∗ := I2 + n−1/2B̄∗.

This simple DGP is assumed to enable comparison of the power of the tests in this paper with the power

envelope. The Neyman-Pearson lemma implies that the LR test statistic is the most powerful test statistic for

the following simple hypotheses: H†0 : B̄∗ = 0 versus H†1 : B̄∗ = Ω∗, thereby yielding the power envelope,

where

Ω∗ :=

 a∗ d∗

d∗ c∗

 .
We compare the powers of the test statistics in the current study with this power envelope.

Our test comparison is conducted as follows. First, we obtain the asymptotic power envelope by approx-

imating the LR test statistic that tests the simple hypotheses:

LR†n := 2(Ln(Bn,∗)−Ln(I2)) =
1√
n

[
a∗

n∑
t=1

(y2
1t − 1) + 2d∗

n∑
t=1

y1ty2t + c∗

n∑
t=1

(y2
2t − 1)

]
−1

2
γ∗+oP(1),

where Bn,∗ = I2 + n−1/2Ω∗ and γ∗ := a2
∗ + c2

∗ + 2d2
∗. Here, Ln(·) is the same as above, based on B̂n :=
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n−1
∑
YtY

′
t . Note that LR†n is asymptotically constructed from the sufficient statistics (

∑
y2

1t,
∑
y1ty2t,∑

y2
2t). Given this approximation, LR†n

A∼ N(−0.5γ∗, 2γ∗) under H†0 , and LR†n
A∼ N(0.5γ∗, 2γ∗) under

H†1 by Le Cam’s first lemma, and the power envelope Pe is obtained as P(Z > 1.96 −
√
γ∗/2) + P(Z <

−1.96 −
√
γ∗/2) by two-sided testing at the significance level 5%, where Z ∼ N(0, 1). Second, we

apply the LR test statistic to test H‡0 : B̄∗ = 0 against the composite hypothesis H‡1 : B̄∗ 6= 0, leading

to LR‡n := 2(Ln(B̂n) − Ln(I2)), which follows a X 2
3 distribution under H‡0 . Note that LR‡n differs from

LR†n since nuisance parameters are estimated under the alternative. For this case, LR‡n is asymptotically

equivalent to a locally optimal test statistic. Finally, we implement our tests using D̂n = B̂nÂ
−1
n and

Ân = I2. All of B̂(1)
n , B̂(2)

n , Ŝ(1)
n , Ŝ(2)

n , Ê(1)
n , Ê(2)

n , and M̂n asymptotically follow a X 2
3 distribution under

H‡0 by Corollary 1, and they are asymptotically equivalent under H‡1 by Theorem 2. Furthermore, Theorem

4 implies that LR‡n is equivalent to all of B̂(1)
n , B̂(2)

n , Ŝ(1)
n , Ŝ(2)

n , Ê(1)
n , Ê(2)

n , and M̂n under both H‡0 and

H‡1 .

For our simulation, we let a∗ = −h, d∗ = h, and c∗ = −h and generate DGPs close to or remote

from the null DGP by letting h ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. Using these DGPs, the powers of the test

statistics are compared by repeating independent experiments 10,000 times with 5,000 observations. Table

2 collects the empirical levels and powers of the test statistics when the level of significance is 5%. We

summarize the simulation results as follows.

1. All test statistics exhibit empirical levels close to the level of significance under H‡0 , affirming Corol-

lary 1.

2. All of B̂(1)
n , B̂(2)

n , Ŝ(1)
n , Ŝ(2)

n , Ê(1)
n , Ê(2)

n , and M̂n show similar empirical rejection rates under both

H‡0 and H‡1 , affirming Theorem 2.

3. The power pattern of LR‡n exhibits a pattern similar to M̂n, affirming Theorem 4. But the finite

sample power of M̂n is superior to LR‡n, which shows its practical advantage over LR‡n.

4. Finally, the power pattern of M̂n is lower than than the asymptotic power envelope, although its power

curve is closer to the power envelope than the other tests.

We next modify the distributional assumption and conduct another simulation. That is, we let Yt :=

B
1/2
∗ Ct and B∗ := I2 + B̄∗, where Ct := (w2

1t − 1, w2
2t − 1)′/

√
2 and Wt := (w1t, w2t)

′ ∼ IID N(0, I2).

We test H‡0 versus H‡1 and also assume that this distributional assumption is unknown to the researcher, so

that the LR test statistic cannot be used here and the parameter Σ∗ in Corollary 1 must be estimated to obtain

the null limit distribution of the test statistics in this study. We estimate it by the method of moments and
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include the power patterns in Table 3 for h ∈ {0.0, 0.02, 0.04, 0.06, 0.08, 0.10}. The other conditions are

the same as for Table 2. We summarize the simulation results as follows.

1. All test statistics exhibit empirical levels close to the level of significance under H‡0 , affirming Corol-

lary 1.

2. The empirical powers of all tests approach unity as h increases, as implied by the omnibus power

feature of the test statistics.

3. The power of M̂n always exceeds that of the other tests, which is implied by the fact that M̂n is the

most powerful test statistic.

5.2 Residual Bootstrapping

As Horowitz (1994) noted, asymptotic theory may encounter difficulty in testing the equality of two positive-

definite matrices because many tests suffer from size distortions. The information matrix equality test is a

typical example. Horowitz (1994) showed that many such equality test methodologies can be implemented

with little size distortion if the parametric bootstrap is applied. Accordingly, CW applied their test statistics

for information matrix equality using the parametric bootstrap. This section extends the applicability of our

tests by using the residual bootstrap, which does not require distributional information on the observations

like the parametric bootstrap.

To illustrate suppose that the object is to estimate an unknown parameter using an asymptotically op-

timal weight matrix in GMM to ensure that the GMM estimator is asymptotically efficient. We propose

a test to determine whether the weight matrix selected by the researcher is asymptotically optimal. If

the selected weight matrix is optimal, the sandwich asymptotic covariance matrix of the GMM estima-

tor simplifies, and we can test this feature directly using the testing methodology of the present study.

Specifically, when θ̂n is the GMM estimator obtained by minimizing gn(·)′Wngn(·) under the standard

model and the DGP assumption (e.g., Hamilton, 1994, chap. 14), it is well known that
√
n(θ̂n − θ∗)

A∼

N [0, (G′WG)−1(G′WSWG)(G′WG)−1], where θ∗ is the probability limit of the GMM estimator, W

is the probability limit of Wn, S is the asymptotic covariance matrix of
√
ngn(θ∗), and G is the prob-

ability limit of ∇θgn(θ∗). The researcher wishes to select Wn to estimate S−1 asymptotically, so that
√
n(θ̂n − θ∗)

A∼ N [0, (G′S−1G)−1].

In this general set up, we further suppose that the researcher assumes conditional homoskedasticity and

we proceed with simulations on this basis: viz., for some σ2
∗ > 0 and positive-definite matrix Q, S =

σ2
∗Q. The conditional homoskedasticity assumption is violated if the error distribution is not conditionally
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homoskedastic, the model assumption is incorrect, or the error is serially correlated. We therefore test

the proportionality condition between the two matrices and use the testing outcome as a diagnostic for

conditional heteroskedasticity, model misspecification, or autocorrelation. This hypothesis is a specific

example of the sphericity condition.

As a particular example of this GMM framework, we consider TSLS estimation. Specifically, for the lin-

ear model yt = Xt
′β+ ut, where Xt := (1, xt)

′, we obtain the TSLS estimator β̃n := (X ′PX)−1 (X ′PY )

and residual ũt := yt −Xt
′β̃n, where Zt := (1, zt)

′ is the instrument, P := Z(Z ′Z)−1Z ′ is the projection

matrix onto the space of the instrument matrix Z ′ = [z1, ..., zn], and X ′ = [X1, ..., Xn]. The (conditionally

homoskedastic) variance σ2
∗ is estimated by σ̃2

n := n−1
∑n

t=1 ũ
2
t . The following residual bootstrap algorithm

is implemented.

1. Step 1: Let Ân := σ̃2
n(n−1

∑n
t=1 ZtZt

′) and B̂n be a heteroskedasticity autocorrelation consistent

(HAC) covariance estimator of the asymptotic variance matrix of n−1/2
∑
utZt. Using Ân and B̂n,

we compute the test statistics.

2. Step 2: We randomly draw {ũbt : t = 1, 2, . . . , n} from {ũt : t = 1, 2, . . . , n} with replacement and

let B̂b
n be the corresponding HAC estimator (constructed in the same fashion as B̂n) for the asymptotic

covariance of n−1/2
∑
ũbtZt. Using Ân and B̂b

n, we compute the test statistics.

3. Step 3: Replicate Step 2 many times and compute the percentage of bootstrapped test statistics greater

than the tests. If this percentage is less than the significance level, we reject the null.

Note that if the independent draws of Step 2 {ũbt} are conditionally homoskedastic given {Z1, . . . , Zn},

the sphericity condition holds between the probability limits Ân and B̂b
n, and the null distribution of the test

statistic is accordingly obtained. For our Monte Carlo simulations, the commonly used Bartlett-Newey-West

HAC estimator is used in B̂n and B̂b
n.

Our Monte Carlo experiments are conducted under null, local, and alternative DGPs. The following is

the null DGP.

• Null: yt = 1
2xt + ut, xt := ut + zt, and (zt, ut)

′ ∼ IID N(0, I2).

Note that the TSLS estimator is consistent for the true parameter vector (0, 1
2)′ because the model is correctly

specified. Furthermore, the error is conditionally homoskedastic and serially uncorrelated. Therefore, the

asymptotic limits of Ân and B̂n are identical. Next, we consider three alternative DGPs.

• ALT1: yt = 1
2xt + (1 + exp(xt))ut, xt := ut + zt, and (zt, ut)

′ ∼ IID N(0, I2);
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• ALT2: yt = 1
2x

4
t + ut, xt := ut + zt, and (zt, ut)

′ ∼ IID N(0, I2); and

• ALT3: yt = 1
2xt + ut, xt := zt + εt , ut := 1

10ut−1 + 1
10ut−2 + εt + 1

10εt−1, and (zt, εt)
′ ∼ IID

N(0, I2).

Note that ALT1, ALT2, and ALT3 possess conditional heteroskedasticity, model misspecification, and seri-

ally correlated errors, respectively, so that the estimates Ân and B̂n have different asymptotic limits. Finally,

we modify the given alternative DGPs into the following local alternative DGPs.

• LOC1: yt = 1
2xt + (1 + n−1/2 exp(xt)/2)ut, xt := ut + zt, and (zt, ut)

′ ∼ IID N(0, I2);

• LOC2: yt = 1
10n
−1/2x4

t + ut, xt := ut + zt, and (zt, ut)
′ ∼ IID N(0, I2); and

• LOC3: yt = 1
2xt+ut, xt := zt+εt, ut := ρn(ut−1 +ut−2 +εt−1)+εt, ρn := 3

4n
−1/2, and (zt, εt)

′ ∼

IID N(0, I2).

The simulation results are given in Tables 4 to 10 and we summarize as follows. First, the null simulation

results are reported in Table 4. As n increases, the empirical rejection rates converge to the nominal level.

If n is small, say 50, the empirical rejection rates undervalue the nominal level for the seven test statistics.

These discrepancies quickly disappear as n increases. The power and local power simulation results are

reported in Tables 5 to 7 and Tables 8 to 10, respectively. We summarize the power results as follows.

1. When n increases, the empirical rejection rates converge to unity.

2. The most powerful test depends on the DGP and no test is uniformly most powerful.

3. The M̂n test possesses very respectable power overall.

The local power simulation results are summarized as follows.

1. As n increases, the empirical rejection rates converge to levels greater than 5%. This shows that the

tests have nontrivial local powers.

2. B̂
(i)
n , Ŝ(i)

n , Ê(i)
n (i = 1, 2), and M̂n exhibit approximately similar local powers as Theorem 4 predicts.

The simulations confirm theory, showing the tests of this study have nontrivial local discriminatory

power against conditional heteroskedasticity, model misspecification, and autocorrelation.

One final comment. In addition to the simulations provided in this study, we also conducted many

test procedures under numerous alternative environments and found that: (i) the test statistics obtained
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by reversing the roles of A∗ and B∗ show similar or lower power patterns than those considered for the

simulations reported above; (ii) the power patterns of D̂(i)
n (i = 1, 2) and Ê

(3)
n are similar to one of the test

statistics we consider under the fixed alternative, as expected from earlier discussion in view of Table 1.

6 Conclusion

The information matrix equality is a fundamental feature of correct specification in likelihood-based econo-

metric work, and in GMM estimation the asymptotic variance matrix of the estimator takes a simple form if

the models are correct and the errors are conditionally homoskedastic and serially uncorrelated. Our results

provide a new methodology for testing such equalities in empirical applications. The approach is embed-

ded in the general framework of testing the equality of two symmetric positive-definite matrices. The new

approach improves earlier analytic attempts to control size in information matrix equality testing and pro-

vides tests for optimal weight matrix conditions in GMM estimation, delivering a class of test procedures

that are easily implemented in practical work. The test mechanism extends earlier test statistics developed

in the literature by exploiting a simple characterization of equality between two k dimensional symmetric

positive-definite matrices A and B involving only the traces of the two matrices AB−1 and BA−1, leading

to a group of useful new omnibus test statistics and a recommended new procedure for testing the equality

of covariance matrices.

Asymptotic theory for these tests under null, local, and alternatives are obtained under mild regular-

ity conditions that support wide use of these procedures in empirical work including structural economet-

ric models such as SVAR and multi-factor models. Our test factors can also be adapted even to high-

dimensional matrix estimation settings. Simulation evidence shows that good size control is obtained and

test power in testing optimal GMM estimation against various alternatives is generally strong.
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τ2∗ > max[δ2∗, η
2
∗] δ2∗ > max[τ2∗ , η

2
∗] η2∗ > max[τ2∗ , δ

2
∗]

σ∗ > γ∗ B̂
(1)
n B̂

(2)
n Ê

(2)
n

σ∗ = γ∗ B̂
(1)
n , D̂(1)

n , Ê(1)
n B̂

(2)
n , Ê(3)

n , Ŝ(1)
n Ê

(2)
n , D̂(2)

n , Ŝ(2)
n

σ∗ < γ∗ Ê
(1)
n Ŝ

(1)
n Ŝ

(2)
n

Table 1: Test Statistics with the Greatest Leading Terms under the Fixed Alternative. The Test statistics
in each cell indicates those with the greatest leading term under the fixed alternative hypothesis and the
condition for each cell.
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Statistics \ h 0.0 0.5 1.0 1.5 2.0 2.5 3.0
B̂

(1)
n 4.64 9.16 21.85 44.45 70.99 89.77 97.68

B̂
(2)
n 4.57 8.91 21.32 43.67 70.46 86.45 97.61

Ŝ
(1)
n 4.63 9.15 21.85 44.42 70.99 89.77 97.67

Ŝ
(2)
n 4.61 8.81 20.93 43.00 69.89 89.17 97.67

Ê
(1)
n 4.63 9.15 21.85 44.40 70.98 89.77 97.67

Ê
(2)
n 4.61 8.81 20.94 43.00 69.89 89.19 97.47

M̂n 4.74 9.33 21.90 44.47 70.99 89.77 97.68
LR‡n 4.55 8.14 19.88 41.22 68.26 88.17 97.22

Power Envelope (Pe) 4.99 10.89 29.29 56.41 80.74 94.24 98.87

Table 2: Empirical Levels of the Test Statistics (Level of Significance: 5%). Repetitions: 10,000. Sample
Size: 5,000. Model for the test statistics: Yt ∼ IID N(0, Bn,∗), where Bn,∗ = I2 + n−1/2B̄∗. H

‡
0 : B̄∗ = 0

versus H‡0 : B̄∗ 6= 0.

Statistics \ h 0.0 0.02 0.04 0.06 0.08 0.10
B̂

(1)
n 5.71 12.59 31.98 64.86 91.41 99.41

B̂
(2)
n 5.60 12.02 30.92 63.24 90.50 99.30

Ŝ
(1)
n 5.69 12.59 31.95 64.80 91.39 99.39

Ŝ
(2)
n 5.44 11.61 29.82 61.54 89.64 99.17

Ê
(1)
n 5.68 12.59 31.92 64.75 91.37 99.39

Ê
(2)
n 5.44 11.63 29.82 61.56 89.72 99.18

M̂n 5.88 12.67 31.99 64.93 91.42 99.41

Table 3: Empirical Levels of the Test Statistics (Level of Significance: 5%). Repetitions: 10,000. Sample
Size: 5,000. Model for the test statistics: Yt := B

1/2
∗ Ct, where Ct := (w2

1t − 1, w2
2t − 1)′/

√
2, Wt :=

(w1t, w2t)
′ ∼ IID N(0, I2), where B∗ = I2 + B̄∗. H

‡
0 : B̄∗ = 0 versus H‡0 : B̄∗ 6= 0.

Statistics \ n 50 100 200 300 400 500
B̂

(1)
n 3.14 3.56 4.90 4.70 4.28 4.38

B̂
(2)
n 3.70 4.10 5.16 5.02 4.20 4.60

Ŝ
(1)
n 3.22 3.96 5.12 5.06 4.22 4.50

Ŝ
(2)
n 4.78 5.20 5.62 5.36 4.46 4.76

Ê
(1)
n 2.68 3.30 4.80 4.60 4.24 4.34

Ê
(2)
n 4.72 5.18 5.56 5.30 4.56 4.76

M̂n 3.64 3.88 5.10 5.12 4.32 4.48

Table 4: Empirical Levels of the Test Statistics (Level of Significance: 5%). Repetitions: 5,000. Bootstrap
Repetitions: 500. Model for TSLS: Xt

′β∗ with Xt = (1, xt)
′ and IVs: (1, zt)

′. DGP: yt = 1
2xt + ut,

xt := ut + zt, and (zt, ut)
′ ∼ IID N(0, I2).
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Statistics \ n 100 500 1,000 1,500 2,000 2,500
B̂

(1)
n 49.55 89.85 95.70 98.00 98.80 99.10

B̂
(2)
n 63.55 94.55 97.70 99.00 99.45 99.40

Ŝ
(1)
n 51.80 92.05 96.60 98.50 99.10 99.05

Ŝ
(2)
n 68.15 94.75 97.50 99.20 99.20 99.45

Ê
(1)
n 36.55 77.40 89.70 94.20 95.80 97.30

Ê
(2)
n 68.75 95.40 98.00 99.45 99.55 99.40

M̂n 58.55 93.55 97.30 98.70 99.25 99.40

Table 5: Empirical Powers of the Test Statistics (Level of Significance: 5%). Repetitions: 2,000. Bootstrap
Repetitions: 500. Model for TSLS: Xt

′β∗ with Xt = (1, xt)
′ and IVs: (1, zt)

′. DGP: yt = 1
2xt + (1 +

exp(xt))ut, xt := ut + zt, and (zt, ut)
′ ∼ IID N(0, I2).

Statistics \ n 100 200 400 600 800 1,000
B̂

(1)
n 64.00 83.70 95.95 98.70 99.50 99.90

B̂
(2)
n 59.85 80.70 94.60 98.10 99.45 99.90

Ŝ
(1)
n 65.65 85.00 95.85 98.70 99.50 99.95

Ŝ
(2)
n 50.85 72.15 91.05 96.90 98.85 99.60

Ê
(1)
n 66.95 86.10 96.65 99.00 99.60 99.95

Ê
(2)
n 48.45 69.35 90.00 96.60 98.50 99.45

M̂n 62.80 82.50 95.35 98.40 99.50 99.90

Table 6: Empirical Powers of the Test Statistics (Level of Significance: 5%). Repetitions: 2,000. Bootstrap
Repetitions: 500. Model for TSLS: Xt

′β∗ with Xt = (1, xt)
′ and IVs: (1, zt)

′. DGP: yt = 1
2x

4
t + ut,

xt := ut + zt and (zt, ut)
′ ∼ IID N(0, I2).

Statistics \ n 50 100 300 500 700 900
B̂

(1)
n 13.30 29.00 72.45 92.25 96.45 99.20

B̂
(2)
n 13.15 27.40 69.15 90.85 96.05 99.00

Ŝ
(1)
n 13.25 27.55 69.40 91.05 96.10 99.00

Ŝ
(2)
n 12.65 24.00 63.95 89.15 95.05 98.60

Ê
(1)
n 13.20 29.45 72.95 92.50 96.45 99.20

Ê
(2)
n 13.00 24.20 63.35 89.10 95.00 98.50

M̂n 13.05 26.70 69.45 91.10 96.15 98.95

Table 7: Empirical Powers of the Test Statistics (Level of Significance: 5%). Repetitions: 2,000. Bootstrap
Repetitions: 500. Model for TSLS: Xt

′β∗ with Xt = (1, xt)
′ and IVs: (1, zt)

′. DGP: yt = 1
2xt + ut,

xt := zt + εt, ut = 1
10ut−1 + 1

10ut−2 + εt + 1
10εt−1, and (zt, εt)

′ ∼ IID N(0, I2).
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Statistics \ n 1,000 1,100 1,200 1,300 1,400 1,500
B̂

(1)
n 50.73 53.00 54.37 51.53 51.33 52.40

B̂
(2)
n 49.93 52.07 53.23 51.07 51.07 51.40

Ŝ
(1)
n 49.60 51.90 53.07 50.83 50.77 51.17

Ŝ
(2)
n 48.70 51.50 52.10 49.63 49.83 50.27

Ê
(1)
n 50.57 52.97 54.17 51.53 51.33 52.33

Ê
(2)
n 48.90 51.83 52.13 49.77 49.93 50.40

M̂n 49.70 51.83 53.10 50.63 50.80 51.53

Table 8: Empirical Local Powers of the Test Statistics (Level of Significance: 5%). Repetitions: 3,000.
Bootstrap Repetitions: 500. Model for TSLS: Xt

′β∗ with Xt = (1, xt)
′ and IVs: (1, zt)

′. DGP: yt =
1
2xt + (1 + n−1/2 exp(xt)/2)ut, xt := ut + zt, and (zt, ut)

′ ∼ IID N(0, I2).

Statistics \ n 500 600 700 800 900 1,000
B̂

(1)
n 37.27 39.57 37.97 36.60 35.77 36.57

B̂
(2)
n 37.40 39.63 37.93 37.33 36.20 37.10

Ŝ
(1)
n 37.07 39.30 37.47 37.03 36.00 36.83

Ŝ
(2)
n 36.70 39.80 37.50 37.03 36.30 37.10

Ê
(1)
n 36.73 39.07 37.73 36.33 35.50 36.53

Ê
(2)
n 37.10 40.10 37.80 37.27 36.50 37.53

M̂n 37.10 39.33 37.50 37.10 35.73 36.80

Table 9: Empirical Local Powers of the Test Statistics (Level of Significance: 5%). Repetitions: 3,000.
Bootstrap Repetitions: 500. Model for TSLS: (1, zt)

′. DGP: yt = 1
10n
−1/2x4

t + ut, xt := ut + zt, and
(zt, ut)

′ ∼ IID N(0, I2).

Statistics \ n 200 300 400 500 600 700
B̂

(1)
n 16.40 16.23 16.57 16.03 16.67 15.23

B̂
(2)
n 15.67 15.17 15.53 14.83 15.40 13.87

Ŝ
(1)
n 15.87 15.40 15.53 14.83 15.47 14.07

Ŝ
(2)
n 14.00 13.37 14.23 13.90 14.10 13.00

Ê
(1)
n 16.57 16.27 16.70 16.10 16.60 15.23

Ê
(2)
n 14.10 13.33 14.20 13.73 14.10 13.10

M̂n 15.37 15.10 15.43 14.77 15.00 13.97

Table 10: Empirical Local Powers of the Test Statistics (Level of Significance: 5%). Repetitions: 3,000.
Bootstrap Repetitions: 500. Model for TSLS: Xt

′β∗ with Xt = (1, xt)
′ and IVs: (1, zt)

′. DGP: yt =
1
2xt + ut, xt := zt + εt, ut = 3

4n
−1/2ut−1 + 3

4n
−1/2ut−2 + εt + 3

4n
−1/2εt−1, and (zt, εt)

′ ∼ IID N(0, I2).
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