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The emergence of a predominant phenotype within a cell population is often triggered by a rare
accumulation of DNA mutations in a single cell. For example, tumors may be initiated by a single
cell in which multiple mutations cooperate to bypass a cell’s defense mechanisms. The risk of
such an event is thus determined by the extremal accumulation of mutations across tissue cells.
To address this risk, we study the statistics of the maximum mutation numbers in a generic, but
tested, model of a renewing cell population. By drawing an analogy between the genealogy of
a cell population and the theory of branching random walks, we obtain analytical estimates for
the probability of exceeding a threshold number of mutations and determine how the statistical
distribution of maximum mutation numbers scales with age and cell population size.

PACS numbers: x

Over the lifetime of an organism, its constituent cells
continuously accumulate DNA mutations, which can af-
fect the pathways that control cell proliferation and sur-
vival. Yet, due to gene multiplicity or functional redun-
dancy [1–5], disruptions of such pathways may often be
tolerated within a homeostatic tissue cell population. Ev-
idence from studies of the cancer genome [2, 6, 7] sug-
gest that the accumulation of a critical number of in-
dividually “neutral” or “near-neutral” mutations may, in
many cases, be necessary to trigger a selective survival
advantage on cycling cells – a process called “genetic” or
“epistatic buffering” [2–4, 8–10]. The resulting prolifera-
tive advantage of mutated cells confers clonal dominance
[11, 12] which, if sustained long-term [13], constitutes a
potential tumour-initiating event. Crucially, since one
cell within a tissue cell population is sufficient to trigger
such an event [14], the risk of this occurring is naturally
dominated by the statistics of rare events – in this case
the extreme accumulation of a multiplicity of mutations
within a cell, rather than by the cell population averages
reaching some level of mutational burden. The statistics
of extreme mutation accumulation represents, therefore,
a question of both academic and practical interest.

The normal maintenance of adult renewing tissue, such
as the skin epidermis or the gut epithelium, relies on the
activity of stem cells, which divide to replenish functional
differentiated cells lost through exhaustion or cell death
[15, 16]. In addition to asymmetric divisions, which leave
the stem cell population unchanged [17], in most of these
tissues the frequent, stochastic loss of stem cells is com-
pensated be replacement via neighbors that divide sym-
metrically [18, 19]. It is on this background, that these
long-lived cells acquire mutations that may lead, in turn,
to a selective growth advantage.

Historically, efforts to model how the serial acquisition
of mutations can drive tumor progression have focused
predominantly on population means or have neglected
the potential for epistatic buffering [20–23]. The im-
pact of stochastic cell fate dynamics on the statistics of
rare mutational signatures has remained under-explored.
However, recently, numerical studies have shown how
maintenance mechanisms reliant on stochastic stem cell
self-renewal can protect cell populations from extreme
mutational acquisition events [24]. These findings have
been reinforced by analytical studies based on a specific
model of tumor-initiation involving a “double-hit” [25].
However, the statistical basis of cancer risk on rare event
phenomena in renewing tissues remains poorly defined.
Here, we present a generic theory for how properties of
the extreme mutation number distribution scale with age
and cell number, and how this determines the risk of ac-
cumulating a critical number of mutations. In partic-
ular, we elucidate how drift dynamics of the renewing
cell population moderates the strength of fluctuations,
diminishing the frequency of rare events. Besides its rel-
evance for assessing the risk of tumor initiation, this the-
ory also generically elucidates how a predominant pheno-
type can emerge in a cell population (e.g. bacteria) via
the epistatic cooperation of individually (near-)neutral
mutations.

To model the long-term accumulation of mutations in
a renewing cell population we consider a stochastic model
closely related to the Moran process in population genet-
ics [26]. In this model, cells replicate through division, ac-
quire mutations and are lost stochastically while the total
number of cells N is maintained constant (the condition
of homeostasis). Therefore, we assign a fixed number of
’sites’ i = 1, ..., N to the cells, where a cell at site i is char-
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acterized by mutation number, mi. When a cell at site i
is lost, at rate λ, another cell at a random site j simul-
taneously divides symmetrically, producing a copy with
the same mutational signature, to replace the lost cell on
site i. In addition, any cell i with mi mutations can ac-
quire stochastically an additional mutation at a constant
rate µ. Note that in stem cell populations, asymmetric
cell divisions, where one of the daughter cells commits to
terminal differentiation and loss, leave the configuration
of mutations across cells invariant, and so need not to
be considered explicitly. Their potential to effect addi-
tional mutations through division is incorporated as the
mutation rates are decoupled from the loss/replacement
rate. For simplicity, we do not distinguish between the
loci of mutations in the genome, an approximation that
is valid for low net mutational burden. Furthermore, we
consider the scenario before transformation into a hyper-
proliferative state, in which the mutations’ effect on pro-
liferation is neutral. The model dynamics can be written
as the process

mi
λ−→ mj , (1)

mi
µ−→ mi + 1 , (2)

where sites i and j are chosen randomly.
In the following, we will address the risk P̄N (mc, T )

that at least one cell in a population of N cells ac-
quires a critical number of mutations mc after time
t = T . This corresponds to the probability that
the maximal mutation number across the population,
m∗ := max(m1, ...,mN ), reaches mc, which is related
to the cumulative distribution function (CDF) of m∗,
P ∗N (mc, T ) := Prob(m∗(T ) ≤ mc) = 1 − P̄N (mc, T ). In
particular, we will study the dependence of the CDF’s
median and mean on N and T .

Before addressing the dynamics of mutation ac-
cumulation on the background of stochastic cell
loss/replacement, as a benchmark, we first consider the
case λ = 0 in which cells accumulate mutations inde-
pendently. In this case, the model describes N inde-
pendently distributed Poisson processes and an expres-
sion for the extreme mutation number distribution can
be determined straightforwardly. Although this expres-
sion does not admit a simple scaling form [27], the de-
pendence on N can be well-approximated for large µT
by normally distributed random variables with a mean
and variance µT (see Supplemental Material). From this
correspondence it follows that, at large N and µT , the
difference between maximum mutation number m∗ and
the population mean, ∆m∗ := m∗ − 〈mi〉 has a CDF
P ∗N (∆mc) = Prob(∆m∗ < ∆mc) which follows a Gum-
bel distribution,

P ∗N (∆mc) = e−e
−X

with X =
∆mc − m̃

σN
− ln ln 2 , (3)
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Figure 1. The genealogy and its implications. (a) Illus-
tration of the history of mutation accumulation. Vertical
lines represent mutational paths. Horizontal arrows mark
loss/replacement events by which one cell copies its muta-
tional configuration, in the direction of the arrow. Dashed
lines are mutational paths that are lost, while bold lines are
paths which survive until time t = T , constituting the ge-
nealogy. If T is large enough, the genealogy possesses a sin-
gle root, the last common ancestor (LCA). (b) Mean differ-
ence between maximum mutation number and the population
mean, 〈∆m∗〉 = 〈m∗〉 − 〈mi〉, as a function of µT , for fixed
N = 10, 000, with λ = µ. Points are results from Monte Carlo
simulations; the dashed black line illustrates the saturation
constant. The blue dashed line marks the scaling prediction
for λ = 0, 〈∆m∗〉 ∼ (µT )1/2.

with median m̃ and scaling width σN given by [28]

m̃ ≈
√

2µT lnN, σN ≈
√

µT

2 lnN
. (4)

The scaling estimate for the mean value 〈∆m∗〉 coincides
with that of m̃ (see Supplemental Material). Thus, the
CDF becomes narrowly peaked for large T and N around
∆m∗ ∼ (2µT lnN)1/2.

In the case of a non-zero cell loss/replacement rate,
λ > 0, any two cells may have a common ancestor and
thus do not accumulate mutations independently. It is
then instructive to consider the genealogy of the cell pop-
ulation, as illustrated in Fig. 1a. The genealogy describes
the mutational history of all ancestors of cells at time
t = T and has the form of a binary tree, where branches
connect daughter cells with their mothers [29]. It con-
tains all mutational paths that start at t = 0 and reach
the present. In considering the mutational statistics at
time t = T , it is therefore sufficient to consider only mu-
tations that occur on the genealogy [29, 30].

The tree structure of the genealogy is characterized
by its branching times tk, at which the branch number
changes from k− 1 to k (see Fig. 1a), i.e. during the pe-
riod tk < t < tk+1, the genealogy consists of k branches.
The branching times can be determined by following the
genealogy backwards in time t̂ = T − t; a coalescent pro-
cess [30–32]. This results in branching times whose inter-
vals ∆tk := tk+1 − tk are exponentially distributed, with
Prob(∆tk) = 〈∆tk〉−1e−∆tk/〈∆tk〉 and mean branching
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times (see Supplemental Material)

〈∆tk〉 =
N

k (k − 1)

1

λ
. (5)

Importantly, the accumulation of mutations along a sin-
gle branch follows a simple, independent Poisson pro-
cess [30] and thus the mean mutation number is simply
〈mi〉(T ) = µT .

For times T large enough, if one follows the coalescent
process far backwards in time t̂, the number of branches
reduces until t̂ = T̂LCA := T − t2, beyond which there is
only a single one left, the last common ancestor (LCA)
(see Fig. 1a). Thus, an LCA exists whenever T > T̂LCA,
which is on average 〈T̂LCA〉 =

∑N
k=2〈∆tk〉 ≈ N/λ (for

N � 1). In that case, before the time TLCA = T −
T̂LCA = t2, the genealogy corresponds to the mutational
path of a single cell for which the maximumm∗ equals the
mutation number m. Hence, it follows that ∆m∗ = m∗−
〈mi〉 > 0 only for times larger than TLCA, such that the
statistics of ∆m∗ does not explicitly depend on the total
time T if T > T̂LCA. Indeed, Monte Carlo simulations
of the model confirm this conjecture for 〈∆m∗〉(T ), as is
illustrated in Fig. 1b for a high mutation rate µ = λ,
where a plateau is reached around T ∼ 〈T̂LCA〉. Note
that this is in contrast to the case of purely asymmetric
divisions, λ = 0, for which 〈∆m∗〉 ∼ (µT )1/2.

To support this finding for T > T̂LCA quantitatively,
we note that the branching times are random and ex-
ponentially distributed. Thus, the branching of the ge-
nealogy corresponds to a Markov process, a branching
process with initially two branches at time TLCA with
branching rate per branch νk := 1/〈∆tk〉k. By approxi-
mating the random accumulation of mutations along each
branch (Poisson process) by diffusive random walks in the
variables mi−µT (valid for µT � 1), the mutation accu-
mulation of the genealogy becomes an unbiased branch-
ing random walk (BRW). For unit branching rate, it has
been shown [33] that the CDF of the maximum ∆m∗ of
the BRW, P ∗N (∆mc, τ) = Prob(∆m∗(τ) ≤ ∆mc), follows
a Fisher-KPP-type equation [34, 35]

∂τP
∗
N = D

∂2P ∗N
∂∆m2

c

− P ∗N [1− P ∗N ] , (6)

with the dimensionless time τ = νt measured in units
of the constant branching time ν−1, and D, the diffu-
sion constant of the random walk. The solution of this
equation has the form

P ∗N (∆mc, τ) = f(∆mc − m̃(τ)) (7)

with the median of P ∗N , m̃(τ) = 2
√
D τ +O(ln τ) [33].

Here, the branching rate νk is not constant. By a
step-wise rescaling of time in units of branching times
as τ(t) := νk(t − tk) + τk, with τk =

∑k−1
k′=2 νk′∆tk′ for

the largest tk < t, k > 2, the corresponding BRW in the
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Figure 2. Mean maximum mutation number ahead of the
mean, 〈∆m∗〉 as a function of N , for T = 10N/λ such that
T > T̂LCA. Shown are the results of Monte Carlo simula-
tions (pluses), and theoretical predictions from the BRW ap-
proximation, Eq. (8), for fitted numerical constant Cfit

m̃ (blue
dashed line) and theoretically estimated value (solid red line),
Cth
m̃ = 1.79 for (a) µ = λ (Cfit

m̃ = 1.43) and (b) µ = 0.001λ
(Cfit
m̃ = 1.63) .

time scale τ has unit branching rate and effective diffu-
sion constant Dk := µ/2νk. While Dk does not explicitly
depend on time, we can take the ensemble average over
the branch numbers k, D(τ) := 〈Dk〉k|τ = µN/(2λ) ×
〈(k − 1)−1〉k|τ , to get an effective time-dependent dif-
fusion constant. According to Ref. [36] (see also Sup-
plemental Material), for a diffusion constant D(τ ′) that
decreases over time τ ′ < τ = τ(T ), the CDF of the max-
imum of a BRW has the form of a Fisher-KPP wave,
according to (7), but with

m̃(τ) =

[∫ τ

0

2
√
D(τ ′) dτ ′

]
(1−O(τ−

2
3 )) ≈ Cm̃

√
µN

λ
,

(8)

where Cm̃ =
∫∞

0

√
2〈(k − 1)−1〉k|τ ′ dτ ′ is independent of

the model parameters N,T, λ and µ. Here, we took the
limit τ(T ) → ∞, which is valid for large N , as this is a
unit rate branching process with branch number k(T ) =

N ≈ eτ . Thereby, terms of O(τ−
2
3 ) are omitted, and

the integral becomes independent of N . A numerical
evaluation (see Supplemental Material) yields Cm̃ ≈ 1.79.

As expected, m̃ becomes independent of T if an LCA
exists. The mean, 〈∆m∗〉, follows the same scaling in N
and T , since due to the wave property of the CDF it only
differs by a constant. This confirms our previous conjec-
ture and the simulation results for 〈∆m∗〉(T ) (Fig. 1b).
In Fig. 2, we compare the theoretical results from Eq. (8)
with results for 〈∆m∗〉 from Monte Carlo simulations, as
a function ofN . Here, T was scaled withN (T = 10N/λ)
to assure that T > T̂LCA. The theory with fitted numer-
ical constant Cm̃ (Cfit

m̃ , blue dashed line) shows excellent
agreement with simulations, while the calculated value
(Cth
m̃ = 1.79, red line) shows some deviation. These devi-

ations are expected due to contributions with small τ ′ in
Cm̃ (whose approximation is valid for large τ ′). Remark-
ably, the predictions of the approximation are also valid
for µT ∼ 1 as shown in Fig. 2b for µ = 0.001λ.

While the nonlinear form of the Fisher-KPP equation
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does not admit an exact solution, the CDF’s tail with
P̄N = 1−P ∗N (∆mc, τ)� 1 can be mapped onto a simple
diffusion equation with time-varying diffusion constant
(see Supplemental Material). Since variances add linearly
in this case, for T > T̂LCA and ∆mc � m̃, the CDFs tail
is that of a non-normalized Gaussian function,

P ∗N (∆mc) ∼ 1− Nσeff e
−∆m2

c
2σ2

eff

√
2π∆mc

, (9)

with

σeff(τ) = 2

√∫ τ

0

D(τ ′) dτ ′ ≈ Cσ

√
µN

λ
, (10)

where Cσ ≈
√∫∞

0
2〈(k − 1)〉k|τ ′ dτ ′ ≈ 0.76 (see Supple-

mental Material).
For T < T̂LCA the population may not possess an

LCA. In this case the genealogy fragments into k sub-
genealogies l = 1, ..., k, each representing a subpopula-
tion of nl cells, while N =

∑k
l=1 nl. Each sub-genealogy,

however, can again be approximated by a branching ran-
dom walk, with a CDF Pl(∆mc) having a Gaussian tail
according to Eq. (9). Therefore, and since the subpop-
ulations accumulate mutations independently from each
other, the CDF of the whole population, P ∗N (∆mc), is
approximated for large N by a Gumbel distribution ac-
cording to Eq. (3) [28], scaled by σeff , and with effective
number of independently distributed random variables,
k ≈ N/λT (see Supplemental Material). This CDF has
then median and scaling width,

m̃ ≈ Cσ

√
2 ln

(
N

λT

)
µT , σN ≈ Cσ

√
µT

2 ln
(
N
λT

) , (11)

where Cσ is according to Eq. (10). The same scaling
applies to 〈∆m∗〉.

Thus, we expect the scaling ∆m∗ ∼
√

lnN , as for λ =
0, but with a negative offset −2C2

σ ln(λT )µT under the
square root. Figure 3 shows Monte Carlo simulations of
〈∆m∗〉 together with the theory, with fitted Cfit

σ , which
shows a good agreement in the shown range of N , for
both large and small mutation rates, µ = λ and µ =
0.001λ. Deviations from the theoretically approximated
value Cth

σ = 0.76 are expected, for the same reasons as
for Cm̃ before, and furthermore for very large N , since
the extreme value distribution of Poisson variables differs
from the Gaussian approximation in this limit.

Finally, we consider the risk of accumulating a critical
mutation number mc, P̄N (mc, T ) = 1 − P ∗N (mc, T ). In
Figure 4, results from stochastic simulations for P̄N (T )
are shown for mc = 6 [20, 37] with parameters chosen to
match physiological conditions of human epidermal stem
cells [6, 7] (see figure caption), comparing a model of
stochastic stem cell loss and replacement, λ > 0, with
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Figure 3. Squared mean maximum mutation number ahead
of the population mean, 〈∆m∗〉2 as a function of N , for fixed
T = 1000/λ. Shown are the results of Monte Carlo simula-
tions (pluses) and the theory, Eq. (11), with fit parameter Cfit

σ

(dashed line) for (a) µ = λ (Cfit
σ = 1.13) and (b) µ = 0.001λ

(Cfit
σ = 1.59).

the hypothetical case of asymmetric stem cell divisions,
λ = 0. As the front of P ∗N (mc) moves with a speed
µ + ∂tm̃, which is larger for λ = 0 (see Figure 1b), it
reaches the critical value mc = 6 earlier than for λ > 0,
resulting in an earlier increase of P̄N (mc, T ) in Figure
4a. Remarkably, the threshold of mc = 6 mutations is
already frequently exceeded for mean mutation numbers
µT < 1, which demonstrates that the acquisition of a
critical number of mutations is indeed dominated by ex-
treme values. In Figure 4b, the risk ratio between the
risk P̄N |λ=0 for asymmetric divisions and that for sym-
metric divisions, P̄N |λ>0, is shown. One observes a non-
monotonic behavior: for intermediate times the ratio is
large, while it approaches one for large times. The ini-
tial growth of the ratio is due to the smaller slope in the
tail for λ > 0, 1/σλ>0

N ∼
√

ln(N/(λT )) compared to the
slope 1/σλ=0

N ∼
√

ln(N) for λ = 0. Once P̄N |λ=0 has
saturated, however, P̄N |λ>0 catches up with the latter
until both approach P̄N = 1. This provides a theoretical
foundation for claims that the risk of tumor initiation
is decreased by stochastic stem cell loss and replacement
[24, 25], yet this advantage is limited to intermediate time
scales.

Until now, we have considered an “infinite-
dimensional” process in which any cell may replace
another. However, the majority of biological tissues are
low-dimensional, where stem cell loss and replacement
occur between neighboring cells in tubular (one-
dimensional), epithelial (two-dimensional) or volumnar
(three-dimensional) settings. Such situations can be
modeled by embedding cells on a d-dimensional regular
lattice, allowing replacement only between neighboring
cells [38, 39]. In this case, our general theory remains
valid, based on the mapping of the genealogy on a
BRW; only the distribution of branching times, ∆tk,
differs (see Supplemental Material). Nonetheless, only
for d = 1 and T > T̂LCA, a significantly different
scaling with m̃ ∼ N

√
µ/λ is observed, compared to the

infinite-dimensional case.
In summary, we have studied the asymptotic behav-
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Figure 4. Probability P̄N (T ) of accumulating a critical num-
ber of mc = 6 mutations in an area of 0.1 cm2, corresponding
to 105 cells. (a) P̄N as function of time for physiological pa-
rameters of human eyelid [6, 7], with µ = 0.27/(63 years) and
λ = 0.5/week, corresponding to λ ≈ 6000µ (black points),
and for the hypothetical case λ = 0 (red points). (b) The risk
ratio (P̄N )λ=0/(P̄N )λ>0 for the two scenarios from (a).

ior, with time T and cell number N , of the maximum
mutation number statistics in a renewing cell popula-
tion, in which cells may be stochastically lost and re-
placed (Moran process). This is of importance if mul-
tiple neutral or near-neutral mutations can cooperate
through epistasis to trigger hyper-proliferation, a poten-
tial tumor initiating event. We showed that, for a non-
zero cell replacement rate, λ > 0, the difference between
the average maximum mutation number and the popu-
lation mean, 〈∆m∗〉, saturates to a constant value when
scaled with T . Using an analogy to branching random
walks, we showed that the value of this constant scales
as (µN/λ)1/2 for λ > 0, while in the absence of sym-
metric loss/replacement, λ = 0 (e.g. for asymmetric
stem cell divisions only), 〈∆m∗〉 scales with time and cell
number as (µT ln(N))1/2. If T is fixed, 〈∆m∗〉 scales as
(µT ln(N/(λT )))1/2 for λ > 0 and large N � λT . From
this result, it follows that at intermediate time scales, the
risk of triggering hyper-proliferation is higher for asym-
metric than for symmetric stem cell divisions, yet these
probabilities converge for large times. Crucially, our the-
ory also applies in a low-dimensional setting, where cell
loss and replacement occurs between neighbors, albeit
with a different scaling dependence for one-dimensional
structures.
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