Towards single molecule shape determination with laser generated soft x-rays

Jeremy Frey
School of Chemistry, University of Southampton
Talk

- Towards Ultra-fast x-ray single molecule studies
- Single molecule shape
- Development of a High Harmonic Source
- Initial Scattering Studies
- Future Experiments
Current ways to find protein structure

- X-ray crystallography
 - Needs a crystal
 - Crystal may influence structure
- Cryo-electron microscopy
 - 2D crystal, but can be small
- NMR
 - No crystals, but size limitations
Avoiding the crystal problem....
Many groups looking at this for work with FELs.

- **single** molecule
- Crystal

Huge advantages, huge problems!

- No need to crystallize
- No averaging
- Damage to molecule from X-rays
- Signal / noise issues
Molecular Cluster → Shape → Structure

X-ray scattering

X-ray diffraction of crystals

Molecular dynamics simulation
Small Angle Solution X-Ray Scattering
Using Molecular Shape to Characterise Protein Complexes

The molecular envelope of the 2:1 complex formed between Mo and Fe component proteins of nitrogenase, derived from solution x-ray scattering.

Docking Model of the complex using the crystal structures of the individual proteins: not in agreement with the molecular envelope.

The significant structural changes predicted using solution x-ray scattering are confirmed by the subsequent crystal structure of the complex.

http://srs.dl.ac.uk/mbg/saxstech.html
Synchrotron & FEL technology does not fit in the laboratory

“Sure, it’s an eyesore, but we get better time than anyone else.”

But recent developments may change this
Soft x-rays

- Wavelength of a few nm
- Ideal for probe nm shape of protein complexes, biological machines
- Nanomaterials
- Soft x-rays can be manipulated quite readily
- Absorption is a problem
Damage limitation

- Conventional damage threshold: 200 ph/Å²

Damage process
- inelastic scattering of electrons out of molecule
- Coulomb repulsion of remainder
- Timescale? fs

HHG - the simple model

- Electron tunnels out of atom as field increases
- Electron accelerates in laser field as free particle
- Electrons which come back to the atom can recombine and emit an energetic photon
HHG - the simple model

- Electron tunnels out of atom as field increases
- Electron accelerates in laser field as free particle
- Electrons which come back to the atom can recombine and emit an energetic photon
HHG - the simple model

- Electron tunnels out of atom as field increases
- Electron accelerates in laser field as free particle
- Electrons which come back to the atom can recombine and emit an energetic photon
HHG - the simple model

- Electron tunnels out of atom as field increases
- Electron accelerates in laser field as free particle
- Electrons which come back to the atom can recombine and emit an energetic photon

\[E = h\nu = I_p + 3U_p \]
Observed spectrum mainly due to Phase Matching

The theoretical cutoff is not reached

With modified capillaries we can reach in to the water window
Practical aspects of HHG

- Capillary tube holds Ar gas at low pressure (also Ne, N₂ and N₂O)
- Need very high laser powers, Peak intensity $\sim 10^{15} \text{ W/cm}^2$ & Peak E-field $\sim 100 \text{ GV/m}$
- Laser focused into capillary, guided along bore
- X-rays generated as a coherent beam along capillary
X-ray throughput for high harmonic generation

- Ultrafast amplified laser:
 - 4mJ, 20fs, 1kHz, 800nm

- X-ray photons:
 - 10^7 X-ray photons, detection 50%
 - <30th harmonic=27nm, 10^-5 efficiency

- Aperture:
 - 10nm
 - 10^10 X-ray photons

- 1% transmission

- Argon 50 Torr, 150μm capillary, 3cm

- CCD:
 - 10nm aperture
 - 1% scattering

Original estimates
Square Grid Diffraction

- Record x-ray diffraction by filter support grid.
- 340µm square apertures, 18µm bars.
- 50cm source to grid, 100cm grid to camera.
- Observe spatial variation of diffraction patterns.
- Can we extract x-ray spectrum?
Characterize and to control the wavelength and spatial profile of the x-ray beam.
Taper mounted inside a holding capillary

50 µm
Tapered Capillary Focussing

- Grazing incidence reflection.
- Parabolic or elliptical profile.
- Not a true focus but x-ray beam is intensified by a factor of
- Study individual objects or small part of larger objects.
200 nm

2D lattice of 200 nm latex spheres

It is the gaps that transmit the x-rays
Scattering close to the direct beam

Camera-taper distance 10.2 cm, direct beam

Camera-sample distance: 10 cm, sample X: 5.8 mm

Direct beam
Scattering image showing the location of the CCD image.
Scattering with diffraction circles for the different harmonics superimposed
Scanning X-ray nanoprobe

- SNOM like system, but not in the near field for the x-rays
- X-ray focusing – parabolic tapered capillary
- ultrafast laser system
- Capillary-based X-ray generation

Metallized particles

Scanning substrate

CCD
Capillary-based X-ray generation

ultrafast laser system

Electrospray or laser desorption

Fluorescence

X-ray focusing – parabolic tapered capillary

Capillary-based X-ray generation

CCD
Enable NEXAFS/XANES

Pressure tuning, &
tune by using the
Dazzler to change the
fundamental
dispersion altering
Absorption

Scattering
Non-linear x-ray spectroscopy

- Focussed fs beam of attosecond pulse train
- Very high peak power
- Non-linear spectroscopy and microscopy should be possible
- Extend the range of resonances that can be probed using our wavelength range

Data from: www-cxro.lbl.gov
Detectors

- Need highly efficient detector
- Xray photon counting
- Single pulse
- 3D detector
- Use conventional and innovative designs
 - Nanoscale lithography?
Yb fibre CPA system

Ti:sapphire replacement to provide a more compact source requiring less maintenance

On track for 30fs, 0.1mJ/pulse, with high average power (100's Watts)
HHG vs Other Sources

- Tabletop source
- Short pulse duration
- Well defined time structure
- Good coherence
- Relatively inexpensive
- BUT
- Lower energy
- Lower flux
Nanoscale X-Ray Basic Technology Group

School of Chemistry
School of Physics
ORC
CCLRC-RAL
Credits:

Funding
Basic Technology Programme (Research Councils UK)

People
Chris Froud, Matthew Praeger, Edward Rogers, Ana de Paula, Jonathan Price, Jeremy Frey, Bill Brocklesby, Dave Hanna, Jeremy Baumberg, David Richardson, John Evans, Mike Hursthouse, Graeme Hirst, Gareth Derbyshire, John Dyke

Places
School of Chemistry
School of Physics & Astronomy
Optoelectronics Research Centre
CCLRC RAL