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Abstract 

Next generation sequencing is transforming clinical medicine and genome research, providing a powerful 

route to establishing molecular diagnoses for genetic conditions; however, challenges remain given the 

volume and complexity of genetic variation. A number of methods integrate patient phenotype and genotypic 

data to prioritise variants as potentially causal. Some methods have a clinical focus while others are more 

research-oriented. With clinical applications in mind we compare results from alternative methods using 21 

exomes for which the disease causal variant has been previously established through traditional clinical 

evaluation. In this case series we find that the PhenIX program is the most effective ranking the true causal 

variant at between 1 and 10 in 85% of these cases. This is a significantly higher proportion than the combined 

results from five alternative methods tested (P=0.003). The next best method is Exomiser (hiPHIVE), in 

which the causal variant is ranked 1-10 in 25% of cases. The widely different targets of these methods (more 

clinical focus, considering known Mendelian genes, in PhenIX, versus gene discovery in Exomiser) is perhaps 

not fully appreciated but may impact strongly on their utility for molecular diagnosis using clinical exome 

data.  

  



Introduction 

Next generation sequencing (NGS) of patient genomes is revolutionising research and medical genetics by 

establishing molecular diagnoses and identifying novel disease: gene relationships. Whole- exome sequencing 

(WES), which covers only the protein coding sequence of the genome, is particularly cost-effective and has 

identified many novel disease genes underlying mostly Mendelian and other monogenic conditions. However 

WES typically recovers ~30,000 variants of which ~10,000 are predicted to result in nonsynonymous changes, 

alter conserved splice sites, or represent small insertions or deletions (indels) [1]. The variant set includes 

many that are potentially deleterious and therefore detailed and careful analysis is required to identify the 

most likely candidate variant(s) which best match the clinical phenotypes. 

In order to reduce the complexity of WES data, methods exist to filter variant lists. Filters discard variants 

which fail to meet a set of criteria based on, for example, the predicted functional impact of the variant 

through changes to the protein or whether a variant has been observed in a disease-free control data set. 

Examples of variant-based prediction tools include SIFT (Sorting Intolerant From Tolerant) [2] and 

PolyPhen2 (Polymorphism Phenotyping) [3], which are concerned with the impact of an amino acid 

substitution on the structure and function of a protein; GERP++ (Genomic Evolutionary Rate Profiling, [4] ) 

which is concerned with evolutionary conservation of sites; VAAST 2.0 (Variant Annotation, Analysis Search 

tool, [5] ) which incorporates information about phylogenetic conservation and amino acid substitution and 

CADD (Combined Annotation-Dependent Depletion, [6] ) which integrates information from various 

functional annotations into a single score. Further reduction in the number of candidate variants might be 

achieved through ‘intersection filtering’ [7] which considers whether a significant proportion of individuals 

with a shared phenotype carry a predicted damaging variant in the same gene and whether such a variant is a 

strong candidate for disease causality. However, each genome contains ~100 loss-of-function variants and has 

~20 genes completely inactivated [8]. Therefore ‘variant based’ methods based only on predicted 

pathogenicity, combined with intersection filtering, may be insufficient to separate disease mutations from 

variants with deleterious biochemical effects which are not related to the disease in question. The difficulty is 

exemplified by the recent whole genome sequencing of 217 Mendelian disease cases with a broad range of 

disorders for which disease causal variants were, after comprehensive analysis, confirmed in only 34% of 

cases [9]. The development and implementation of more powerful strategies which can accelerate the 

establishment of molecular diagnoses is pressing. Such strategies underlie successful interpretation of cases 

from the UK 100,000 genomes project (https://www.genomicsengland.co.uk/the-100000-genomes-project/) 

which is applying NGS to transform patient diagnosis and treatment and rare disease (along with cancer and 

infectious disease).  

Given the difficulty in establishing molecular diagnoses, even for Mendelian forms of disease, a number of 

tools have been developed which are designed to determine or support the identification of causal variants 

(Table 1). These methods integrate diverse database information including, for example, phenotypic 



ontologies, variant pathogenicity scores, insights from model organisms and protein:protein interaction data, 

with patient phenotypic and genotypic NGS data. To evaluate the utility of these tools for establishing clinical 

molecular diagnoses we compare results from a range of methods through rank positions for the causal 

variants in a panel of clinical exomes which have firmly established molecular diagnoses. The tools produce 

ranked lists of variants but do not report exclusions (i.e. where the causal variant is not within the NGS data 

file). We compare methods through the ranked position of the causal variant in each case, in particular where 

a method achieves a rank of 1 for the causal variant or the variant is ranked in the range 1-10. The cases 

chosen (Supplementary Table 1) form part of a clinical service evaluation of routine NGS diagnostic testing 

and might be considered representative of cases encountered in a clinical genetics environment.  

Overview of current tools 

We consider tools which integrate patient phenotypic information (usually represented in the form of Human 

Phenotype Ontology, HPO terms http://human-phenotype-ontology.github.io/about.html ) with NGS-derived 

genotypic data in the form of a VCF file [22]. Several of the tools are relatively easy to use through online 

web servers where HPO terms and VCF files containing patient exome data may be uploaded (Table 1). The 

methods may have a primarily clinical focus, in which known disease genes are targeted, or have a gene 

discovery emphasis in which novel genes, showing some relationship to known disease associations, are 

highlighted. The methods include PhenIX [20] which ranks candidate genes in NGS data with a focus on 

known disease-associated Mendelian genes. Ranking is based on integration of predicted variant pathogenicity 

with phenotypic similarity of diseases associated with these genes. Exomiser (hiPHIVE) [1] uses the same 

software framework but also includes multi-species (human, Zebrafish, mouse) ontologies and protein-protein 

interaction network data. It has a gene discovery focus employing random-walk analyses of multi-species 

protein interaction networks. Human data come from OMIM and Orphanet [23] and the human phenotype 

comparison considers known disease-gene associations while integration of mouse and zebrafish data targets 

novel candidate genes. Where genes have no known phenotype associations a random-walk-with-restart 

algorithm scores proximity to other genes in protein-protein association networks which are implicated in 

patient phenotypes.  

eXtasy [13] employs genomic data fusion to quantify the deleteriousness of nonsynonymous variants which 

are prioritised dependent on disease phenotypes. eXtasy evaluates patient data against ten measures of variant 

deleteriousness and a haploinsufficiency prediction score for given gene. The gene prioritisation approach 

scores genes with mutations according to their similarity with known disease genes. Disease genes previously 

associated with a HPO term are identified using the Phenomizer algorithm [18]. Genes containing variants are 

scored for similarity with this set of genes using Endeavour [24], which recognises the high proportion of 

shared annotations in gene ontology databases. Random Forest learning is used for data integration with the 

model trained on the Human Gene Mutation Database [12] compared to (non-disease) control datasets of 

common polymorphisms and rare variants. 



OMIM Explorer [14] is strongly focussed towards clinical diagnostics by applying transitive prioritization 

which links phenotypes to variants through medically recognised intermediates. The tool quantifies semantic 

similarity to compare patient phenotypes with known diseases or syndromes using OMIM as a basis for 

calculations. Semantic similarity scores and HPO annotations are used to identify similarities of an input 

query to the set of OMIM-described diseases defined by HPO phenotypes. The interactive user interface 

guides user input to gradually improve the diagnostic process. Innovative features include an interface for 

translating clinical notes into HPO terms.  

OVA [17] considers genotype and predicted effect on protein sequence to reduce the number of potential 

candidate variants. OVA firstly excludes likely benign variants (such as synonymous and intronic variants) 

and then evaluates remaining variants against a multi-ontology annotation. Different ontologies are considered 

which integrate human and model organism data including: Gene Ontology [25], HPO [18], Uberon [26] , 

Disease Ontology [27] and The Pathway Ontology [28]. Experimental interaction data from mentha [15] are 

also considered. For scoring semantic similarity the query phenotypic descriptors and variant data are 

evaluated against known phenotype-genotype associations, phenotypes and links across ontologies with the 

target being the prioritisation of known and novel disease genes. Gene scores are optimised using a Random 

Forest model to classify each candidate gene and obtain final ranks for candidate genes.  

Phen-Gen [19] predicts the damaging impact of coding mutations (nonsynonymous, splice site, and indels) 

enabling a quantitative comparison between them. Phen-Gen determines potential disease impacts at a locus 

level (including consideration of non-coding variation) using evolutionary conservation, ENCODE predictions, 

and proximity to coding sequence. Phenomizer is used for matching patient HPO terms to known disease-gene 

associations. Novel candidate genes are assessed as functionally related genes using a random-walk-with-

restart algorithm searching gene interaction networks. A Bayesian approach is used to evaluate deleterious 

variants in the exome to known disease-gene associations.  

Phevor [21] integrates phenotype, gene function, and disease information with genomic data targeting both 

known variation and disease causing alleles not previously implicated in disease. Phevor combines data from 

biomedical ontologies with variant prioritization scores. The tool propagates information across and between 

ontologies to re-prioritize potentially damaging variants given gene function and disease, and phenotype 

knowledge. Outputs from the NGS annotation tools ANNOVAR [30] and VAAST [5] are used to rank exome 

variants. Input patient phenotypes are mapped against a series of ontologies, such as HPO and the Mammalian 

Phenotype Ontology [31], to produce a list of genes known to be associated with these terms. In effect entries 

in different ontologies are brought together through different annotations of the same gene. Each gene 

receives a score which is combined with the variant annotation data to produce a final rank.  

Results 



We examined a total of 21 clinical exomes. In the case of Patient 6, with ‘epileptic encephalopathy, early 

infantile, 4’ secondary to a mutation in the ARX gene, the known causal variant was not captured by the 

TruSight One panel, and was therefore not present in the genotype data for this individual. We have therefore 

excluded this case from the comparison of methods. 

Table 2 shows the rank position of the known causal mutation in the set of variants scored by each method. 

The known pathogenic variant was correctly assigned a rank of 1 in 40% of cases by PhenIX (Table 2, Figure 

1, Figure 2), 20% of cases by Exomiser and 10% of cases by eXtasy (using combined order statistics). OVA 

and eXtasy (using the maximum score) did not identify the correct variant as rank 1 in any case. Considering 

the identification of the correct causal variant within a rank of 1-10 the proportion of cases resolved by 

PhenIX rises to 85% but the proportion remains at 20% for Exomiser and increases slightly to 25% using 

Exomiser with CADD scores. eXtasy, with combined order statistics, identifies the causal variant with rank 1-

10 in 20% of cases. PhenIX places the known causal variant at rank=1 in 8 cases whereas the five other 

methods combined (Table 2) identify the known variant at rank=1 in 5 cases, however, this difference is not 

significant (P=0.50, by Fisher’s exact test). Considering the placement of the known causal variant as rank=1-

10, PhenIX achieves this in 17 cases whereas taking the highest rank achieved by any method from the set of 

five other methods ranks the causal variant as 1-10 for 7 cases (P=0.003).  

For eXtasy the superiority of the combined order statistics over the maximum score is clear (Table 2). The 

performance of eXtasy using combined order statistics might have improved if a complete set of HPO terms 

could have been used.  

The superiority of PhenIX for this small case series of clinical exomes is clear although it is worth noting that 

improved prioritisation was achieved by alternative methods for two of the cases. For the mental retardation 

case involving the gene MED13L (patient 4) PhenIX only achieves a rank of 106 for the causal variant 

compared to a much improved ranking of 10 using Exomiser with CADD. Although it is not possible to draw 

firm conclusions from one case it is conceivable that in, for example, mental retardation phenotypes where 

there is extreme phenotypic and genotypic heterogeneity, the integrated phenotypic and interactome analysis 

provided by Exomiser is more powerful. The other case where there is apparent superiority over PhenIX is for 

Costello syndrome (patient 16) for which the causal variant achieves a rank of 7 under PhenIX but ranked 1 

by Exomiser and eXtasy using combined order statistics. The reason for this difference is not understood.  

Discussion 

Matching by semantic similarity of patient phenotypes with resources such as the Online Mendelian 

Inheritance in Man (OMIM) disease catalogue is widely employed. A straightforward analysis strategy might 

filter variant lists by limiting the search for causal variants to genes already known to contain variants 

associated with a set of phenotypes, for example using lists of genes generated from OMIM. This seems most 

likely to be effective for conditions with more limited phenotypic and genotypic heterogeneity but, in other 



cases, using tools such as PhenIX which allows for phenotypic ambiguity through distance measures in the 

HPO network, as opposed to using semantic absolutes using OMIM, might be advantageous.  

Tools which integrate knowledge of existing clinical phenotype and genotype relationships might give 

misleading results where these relationships are poorly understood. James et al, [14] argue that the procedure 

employed in PhenIX (in which phenotypes are collapsed across the diseases to which a gene’s variants have 

been associated), can result in overestimation and underestimation of semantic similarity matches of candidate 

genes to patient phenotypes and limited reporting of ruled-out diseases from further consideration. There is 

therefore a risk of incorrect phenotypic interpretation given the limitations of current knowledge and over-

reliance on this form of matching. However, as we have shown here for cases in a clinical setting, tools which 

have a gene discovery rather than diagnostic emphasis may give misleading results.  

Most tools (eXtasy, Phevor, Phen-Gen, OVA and Exomiser hiPHIVE) integrate human and non-human 

genomic data which underlies their gene discovery focus. Our analyses, which utilise clinical exome data with 

known molecular causes, suggest that these tools may not reliably identify known disease:gene relationships. 

The most striking example is in the comparison of PhenIX and Exomiser (hiPHIVE) which share the same 

software framework but have widely differing performance (ranking the causal variant 1-10, in 17 cases by 

PhenIX, compared to 5 cases by Exomiser, P=0.0003). This comparison suggests that the integration of model 

organism data (as in Exomiser) may be less useful in prioritising established human phenotype: genotype 

relationships which underlie many clinical genetics applications. However, where there is high phenotypic and 

genotypic heterogeneity, such as in the case of mental retardation phenotypes, tools which encompass a wider 

range of predictors may be more useful.  

Beyond the questions of diagnostic accuracy, there are also other potential factors which would need to be 

considered prior to the implementation of these tools in a diagnostic setting. Amenability to high throughput 

use, and ability to integrate with existing software used would greatly reduce the ‘hands on’ time required for 

using these tools, as well as reducing the potential for user input error. Furthermore, care must be taken 

regarding data protection. Tools which provide only a website to which patient data is uploaded (for instance 

OMIMExplorer) will likely raise more concerns than a tool which can be run locally without data leaving the 

lab (such as the Exomiser software package). 

The use of these software tools will obviously fail to correctly identify the pathogenic variant in cases where 

the pathogenic variant is not present in the sequencing data (as seen in patient 6 with a pathogenic ARX 

variant). Some consideration should also be given to the use of a priori candidate gene sets identified using 

HPO terms (for example by using the Phenomizer platform [18]). Here, candidate genes worthy of sequencing 

may be identified and this information can impact the choice of panel for the planned sequencing experiment.  

It must be noted that this investigation considers only a small sample size, although they represent well 

characterised clinical cases. Although a total of 20 exomes contribute to the final analyses, it is noteworthy 



that the statistical superiority of PhenIX in these data has been demonstrated.  It is likely that these data are 

not representative of the substantial variety of exome samples that will be seen in clinical practice, though 

they do represent an unbiased selection of exomes which were clinically resolvable through traditional genetic 

investigations. Whilst resolving clinically tractable exomes is perhaps not the area for which these tools offer 

the biggest gain, they have the potential to  help streamline diagnostic processes if used routinely for  

diagnostic applications. It is therefore important to understand situations in which some of the tools may be 

sub-optimal. We have shown that this may be the case with hiPHIVE for clinically ‘simple’ cases, and further 

work is required to confirm this evidence to inform clinical practice as NGS and HPO analyses become 

increasingly mainstream. 

 

 

Materials and methods 

We consider 21 exome samples collected during a regional clinical exome service evaluation project in the 

UK. These cases have a previously established, clinically confirmed molecular diagnosis determined through 

traditional testing. Phenotypes from each case were described through comprehensive sets of HPO terms 

(Supplementary Table 1); HPO terms were selected based upon review of the clinical notes, identifying 

unambiguous physical features, as well as those reported by multiple clinicians. Samples were sequenced 

following capture using the TruSight One sequencing panel (Illumina, San Diego, CA, USA). The TruSight 

One panel captures the exonic regions of 4,813 genes that are known to be implicated in the development of 

human disease.  

For the tools we were able to compare (Table 2) we retained default parameters throughout and used the same 

HPO terms and VCF files as input in each case, with the following tool-specific differences: eXtasy could not 

utilise all current HPO terms because its internally held database of HPO terms has not been fully updated 

since the original publication of the eXtasy program. We consider two alternative statistics for the eXtasy 

software. Because each variant may be associated with different phenotypes eXtasy can report a maximum 

score (‘combined max’) across phenotypes [13] and, alternatively, it may report Order Statistics (‘combined 

order statistics’) [24] which combines ranking from separate data sources effectively reducing to a combined 

rank across all separate ranks. PhenIX was run utilising the available web server 

(http://compbio.charite.de/PhenIX/), whilst hiPhive was run using the downloaded Exomiser package. For 

hiPHIVE and PhenIX, we specified a 0.1% allele frequency cutoff. Exomiser (hiPHIVE) does not include 

CADD scores as a default but has the option to include them if downloaded locally. We compare both the 

default program and the program with the addition of CADD scores. We scored the rank position determined 

by each method tested for the known causal variant in every case (Table 2, Figure 1). 



This research was performed in accordance with the relevant guidelines for research within the National 

Health Service. 
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Figure 1. Ranks for causal variants by category. Chart showing the number of cases in different rank classes 
for each method. 

Figure 2. Intersection of pathogenic variants being ranked within the top 10 between software. Number of 

cases with top 10 ranks by individual and multiple methods. 



Table 1. Some phenotype-based variant prediction tools 

Tool Concept Authors benchmarks References and software  

Exomiser (hiPHIVE) 

(human/interactome-

PHenotypic Interpretation 

of Variants in Exomes) 

Integrated phenotypic and interactome analysis using model 

organisms (mouse, zebrafish) and human clinical data along with 

protein-protein interaction network data. Focussed on finding new 

disease genes.  

Known disease-gene associations the top hit in 97 % 

of simulated exomes. 

[1, 10, 11] 

http://www.sanger.ac.uk/scien

ce/tools/exomiser 

eXtasy Integrates predicted impact of variants with haploinsufficiency and 

phenotype-specific gene prioritisation. Uses random forest learning 

trained on the Human Gene Mutation Database (HGMD, [12]) 

Outperforms classical deleteriousness scores 

(PolyPhen, SIFT, MutationTaster) 

[13] 

http://extasy.esat.kuleuven.be/ 

 

OMIM Explorer Reduces high dimensional phenotypic and genotypic data using 

semantic similarity and multidimensional scaling. Interface can be 

used to convert clinical notes to HPO terms. 

Clinical variants given median rank of 2, causal 

variants in top 1% of candidates (47 cases). 

Outperformed Phen-Gen, eXtasy, and Exomiser 

(hiPHIVE) for clinical variants. 

[14] 

http://omimexplorer.research.b

cm.edu:3838/omim_explorer/ 

 

OVA 

“Ontology Variant 

Analysis” 

Integrates human and model organism phenotypes, functional 

annotations, curated pathways, cellular localizations and 

anatomical terms using supervised learning. Exploits multiple 

ontologies and experimental interaction data [15] 

Outperformed ExomeWalker [16] in benchmarking 

with 150 exomes. True disease gene ranked first in 

20% on cases. 

[17] 

http://dna2.leeds.ac.uk:8080/O

VA/index.jsp 

 

Phen-Gen Semantic matching of symptoms against disorder database 

following Phenomizer [18]. Functionally related genes recognised 

through random walk algorithm. Variants classified using 

conservation and predicted functionality scores. Phenotypic and 

genotypic evidence combined in Bayesian framework. 

Causal coding variants ranked first in 88% of cases 

(simulation) and in 8 of 11 patient samples. 

Outperformed VAAST, eXtasy and Phevor by 13–

58% and PHIVE by 13-16%. 

[19] 

http://phen-gen.org/ 

 

PhenIX 

(Phenotypic interpretation 

of eXomes) 

Interrogates only known Mendelian genes and uses semantic 

similarity matching in Phenomizer [18]. Uses MutationTaster, 

Polyphen2 and SIFT to predict pathogenicity.  

Tests on 52 patient samples with known mutations 

correct gene achieved mean rank of 2.1 

[20] 

http://compbio.charite.de/Phen

IX/ 

 

Phevor 

“Phenotype driven variant 

ontological re-ranking tool” 

Uses ontologies to re-prioritise candidates identified by other 

variant prioritisation tools such as SIFT, PhastCons and VAAST to 

identify alleles not previously linked to disease. 

 

Improved performance of tools such as SIFT and 

VAAST. 

[21] 

http://weatherby.genetics.utah.

edu/cgi-

bin/Phevor/PhevorWeb.html 

 

  



Table 2 Rank positions of causal variants by method 

Patient Gene Diagnosis Rank 

PhenIX Exomiser Exomiser with CADD OVA eXtasy (order statistics) eXtasy (combined max)

1 ARID1B COFFIN-SIRIS SYNDROME 2 95 132 1037 6013 6184

2 KCNQ2 EPILEPTIC ENCEPHALOPATHY 1 85 104 - 1458 8508

3 SGCE MYOCLONIC DYSTONIA 7 - - - 239 9304

4 MED13L MENTAL RETARDATION, AUTOSOMAL RECESSIVE 15 106 14 10 1004 2230 4511

5 RYR1 CONGENITAL FIBER-TYPE DISPROPORTION MYOPATHY 1 68 85 74 422 8624

6 ARX EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 4 - - - - - -

7 SACS SPASTIC ATAXIA, CHARLEVOIX-SAGUENAY TYPE 3 89 77 308 3264 5032

8 UBE3A ANGELMAN SYNDROME 12 74 77 - 178 8728

9 PTEN PTEN HAMARTOMA TUMOR SYNDROME 1 1 1 - 126 8822

10 DYNC1H1 SPINAL MUSCULAR ATROPHY, LOWER EXTREMITY, AUTOSOMAL DOMINANT 10 85 86 20 1759 4687

11 SCN1A DRAVET SYNDROME 2 27 53 72 250 8188

12 TCOF1 TREACHER COLLINS SYNDROME 3 9 99 92 45 259 8858

13 OTX2 MICROPHTHALMIA, ISOLATED 1 5 60 70 73 - -

14 EHMT1 KLEEFSTRA SYNDROME 10 88 95 - - -

15 EFNB1 CRANIOFRONTONASAL SYNDROME 1 1 1 - 254 8997

16 HRAS COSTELLO SYNDROME 7 1 1 52 1 9328

17 PTPN11 NOONAN SYNDROME 6 1 82 83 - 1 9328

18 EIF2B1 LEUKOENCEPHALOPATHY WITH VANISHING WHITE MATTER; VWM 11 - 144 - 30 9216

19 FGFR3 MUENKE SYNDROME 1 1 1 50 7 9281

20 POLG ALPERS SYNDROME 1 89 98 402 14 8876

21 COMP PSEUDOACHONDROPLASIA 1 78 90 53 10 9310

‘-‘ – not ranked 
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