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The Einstein-Vlasov system in spherical symmetry 1I: spherical perturbations of static
solutions

Carsten Gundlach
(Dated: 24 August 2017)

We reduce the equations governing the spherically symmetric perturbations of static spherically
symmetric solutions of the Einstein-Vlasov system (with either massive or massless particles) to a
single stratified wave equation — ++ = H1, with H containing second derivatives in radius, and
integrals over energy and angular momentum. We identify an inner product with respect to which
H is symmetric, and use the Ritz method to approximate the lowest eigenvalues of H numerically.
For two representative background solutions with massless particles we find a single unstable mode
with a growth rate consistent with the universal one found by Akbarian and Choptuik in nonlinear

numerical time evolutions.
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I. INTRODUCTION

A. The Einstein-Vlasov system

The Vlasov-Einstein system describes an ensemble of
particles of identical rest mass, each of which follows a
geodesic. The particles interact with each other only

through the spacetime curvature generated by their col-
lective stress-energy tensor, whereas particle collisions
are neglected.

For massive particles, this is a good physical model
of a stellar cluster. For either massive or massless par-
ticles, the Einstein-Vlasov system also serves as a well-
behaved toy model of matter in general relativity. In par-
ticular, spherically symmetric solutions of the Einstein-
Vlasov system with small data are known to exist glob-
ally in time for massive [I] and massless particles [2].
Self-similar spherically symmetric solutions with mass-
less particles have been analyzed in [3] and [4]. The
existence of spherically symmetric static solutions with
massive particles was proved in [5], and there is numeri-
cal evidence that at least some are stable within spheri-
cal symmetry [6]. Spherically symmetric static solutions
with massless particles were analysed and constructed
numerically in [7], and we investigate their linear per-
turbations here. See also [§] for a review and additional
references.

B. Motivation for this paper

This is the second paper in a series motivated by
Akbarian and Choptuik’s [9] (from now on, AC) re-
cent study of numerical time evolutions of the massless
Einstein-Vlasov system in spherical symmetry. AC found
two apparently contradictory results:

I) Taking several l-parameter families of generic
smooth initial data and fine-tuning the parameter to
the threshold of black hole formation, AC found what is
known as type-I critical collapse: in the fine-tuning limit
the time evolution goes through an intermediate static
solution. The lifetime A7 of this static solution increases
with fine-tuning to the collapse threshold as

AT ~ o ln|p — p.| + const, (1)

where p is the parameter of the family, p. its value at
the black-hole threshold, and 7 is the proper time at
the centre, in units of the total mass of the critical so-
lution. implies the existence of a single unstable
mode growing as exp(7/0). AC found that o was ap-
proximately universal (independent of the family), with



value 0 ~ 1.4 £ 0.1, and that the metric of the inter-
mediate static solution was also approximately universal
(up to an overall length and mass scale). In particu-
lar, its compactness I' := max(2M/r) was in the range
I' ~ 0.80+0.01 and its central redshift Z,. > 0 was in the
range Z, ~ 2.45 £ 0.05.

IT) Conversely, constructing static solutions by ansatz,
AC found that these covered much larger ranges of I’
and Z., but that each one was at the threshold of col-
lapse. That is, adding a small generic perturbation to the
static initial data and evolving in time with their nonlin-
ear code, they found that for one sign of the perturbation
the perturbed static solution collapsed while for the other
sign it dispersed. They found that o was in the narrow
range o ~ 1.43 £ 0.07, compatible with the value above.

Result II suggests that in spherical symmetry with
massless particles, the black hole-threshold coincides
with the space of static solutions. If so, then each static
solution would have precisely one unstable mode (with
its sign deciding between collapse and dispersion), with
all other modes either zero modes (moving to a neigh-
bouring static solution) or purely oscillating.

One aspect of Result I, namely that the spacetime of
the critical solution is universal, would imply that this
universal solution has one unstable mode (as before), but
that all its other modes (including those tangential to the
black hole threshold) are decaying ones, so that the at-
tracting manifold of the critical solution is precisely the
black hole threshold. Indeed, this is the familiar pic-
ture of type-I critical collapse in other matter-Einstein
systems. However, this is in apparent contradiction to
Result II.

In the first paper in this series [7] (from now Paper
I), we used a symmetry of the massless spherically sym-
metric Einstein-Vlasov system to reduce its number of
independent variables from four to three. We then nu-
merically constructed static solutions with compactness
in the range 0.7 ~ I' < 8/9. Based on this, we conjec-
tured that the apparent contradiction above is resolved
by the critical solution seen in fine-tuning generic initial
data being universal only to leading order, and that this
leading order is selected by the way in which it is ap-
proached during the evolution of generic smooth initial
data.

To make further progress, it seems essential to analyse
the spectrum of linear perturbations directly. This is the
programme of the current paper. In contrast to the static
solutions investigated in Paper I, their perturbations do
not simplify significantly for m = 0, and hence all of our
analysis, except for the numerical examples in Sec.
will be for m > 0.

C. Plan of the paper

In order to make the presentation self-contained and
to establish notation, we review some material from Pa-
per I in Sec. [[TL We begin in Sec. [[TA] by presenting the

equations of the time-dependent spherically symmetric
Einstein-Vlasov system. We do this in a form in which
the massless particle limit is regular and leads to a reduc-
tion of the number of independent variables. We discuss
static solutions in Sec. [[TB] and the massless limit, for
both the time-dependent and static case, in Sec. [[IC]

In Sec. [ITT] we then derive the spherical perturbation
equations. In Sec. [[ITA] we perturb the Vlasov and Ein-
stein equations about a static background, splitting the
perturbation of the Vlasov distribution function f into
parts ¢ and i that are even and odd, respectively un-
der reversing time. In Sec. [[ITB] we change independent
variables from momentum to energy, as we did for the
background solutions. We quickly dispense with static
perturbations in Sec. [[IIC] and in Sec. [[ITD] we reduce
the perturbed Vlasov and Einstein equations to a single
integral-differential equation —1; = H. In Sec. @
we dispense with the relatively trivial perturbations on
regions of phase space where the background solution is
vacuum. We state the massless limit in Sec. [TTT

In Sec. [[V] we attempt to find the spectrum of eigen-
values. In Sec. [VA] we identify a positive definite in-
ner product with respect to which H is symmetric. In
Sec.we rewrite the Hamiltonian as H = ATA— DD
where D is bounded, giving us at least a lower bound on
H. We then switch to an approximation method, the
Ritz method, which we review in Sec.[[V.C} In Sec. [VD]
we specify some properties of the function space V in
which to look for perturbation modes, that is eigenfunc-
tions of H. In Sec. we pick two specific background
solutions that we obtained numerically in Paper I and
use the Ritz method numerically. We find values of ¢ in
agreement with AC.

Sec. [V] contains a summary and outlook. Throughout
the paper, a := b defines a, and we use units such that
c=G=1.

II. BACKGROUND EQUATIONS
A. Field equations in spherical symmetry

We consider the Einstein-Vlasov system in spherical
symmetry, with particles of mass m > 0. We write the
metric as

ds* = —a?(t,r)dt>+a>(t, r)dr’+12(d6*+sin? 0dp?). (2)
To fix the remaining gauge freedom we set a(t,o0) = 1.

The Einstein equations give the following equations for
the first derivatives of the metric coefficients:

« a? -1
T — 4 2 , 3
« 2r +amratp (3)
2 _
ac;r =_2 5 + 4mra’p, (4)
&t _ 4rra?yj, (5)
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where p, p and j are the radial pressure, energy density
and radial momentum density, measured by observers at
constant r. The fourth Einstein equation, involving the
tangential pressure pr, is a combination of derivatives
of these three, and is redundant modulo stress-energy
conservation.

The Vlasov density describing collisionless matter in
general relativity is defined on the mass shell p*p, =
—m? of the cotangent bundle of spacetime, or f(t,z*, p;)
in coordinates. We define the square of particle angular
momentum

F := pg + sin? 9pi. (6)

In spherical symmetry this is conserved, leaving to f =
f@t,r,pr, F). In order to obtain a reduction of the
Einstein-Vlasov system in the limit m = 0, we replace
pr by the new independent variable
Pr
z:= . 7
o/F @)

The Vlasov equation for f(¢,r,z, F') is

0f pozdf (o _asZ zaa)OF o g
ot  aZ or r3aZ a a ) 8z
where we have defined the shorthand
m?2 1 apt
Z(T‘7Z,F):: ?+22+ﬁ:ﬁ (9)

The non-vanishing components of the stress-energy
tensor are

T z
=T"=— —, 10
p I (10)
T

p = T = rjjf Z, (11)

T o
=T = ——— 12
J t r2ajf ) ( )

1

=T =T,% = Jf— 1
pT 6 v} 27’4jfZ’ (3)

where we have introduced the integral operator (acting
to the right)
J = / FdF/ dz. (14)
0 —00

B. Static solutions

In the static metric
ds® = —a2(r)dt® + aZ(r)dr® 4 r*(d? + sin® 0dp?) (15)
with Killing vector & := ¢, the particle energy

E:=—¢"p, = —p = ayVFZ (16)

is conserved along particle trajectories. In order to obtain
a reduction of the static Einstein-Vlasov system in the
limit m = 0, we replace E by

E2
Q(r,z, F) = - = VA (17)

Hence we have

z=tap(r)v/Q —U, (18)
where we have defined
m? 1

The general static solution of the Vlasov equation, for
simplicity with a single potential well, is then given by

flr,z, F) = k(Q, F). (20)

(If U forms more than one potential well, k& could be
different in each of them [I0].)
The static Einstein equations are

/ 271 4 2.2
o _ %= Wy, (21)
o 2r r
&6:_@3—1_4ﬁ2a31ﬁ7 (22)
ap 2r r v

where we have defined the integral operator (acting to
the right)

T:= / FdF dQ (23)
0 U(r,F)

and the shorthand

2zl alp’
U(T,Q,F) = 7 = Tpt (24)
From and (9) we have dQ = 202z dz, and hence on
a static background, where Z is defined, it is related to

J by
IT=alJz. (25)

The second equality in shows that +v is the ra-
dial particle velocity, expressed in units of the speed of
light and measured by static observers. (Note that by
definition v > 0.) The fact that can be rewritten as

vz“l—% (26)

shows that U is an effective potential for the radial
motion of the particles with given constant “energy”
@ and angular momentum squared F. In particular
Q = U(r, F) determines the radial turning points r for
all particles with a given @ and F.



We define Uy(F) as the value of U(r, F) at its one
local maximum roy(F) in r. We define ro_(F') as the
other value of r for which U takes the same value. We
also define Us(F') as the value of U(r, F') at its one local
minimum 753(F) in r. Intuitively, Uy(F) is the “lip” of the
effective potential for particles of a given F, and Us(F)
its “bottom”. We define Uy (F) < Uy(F') as the upper
boundary in @ of the support of k(Q, F) and Us(F) >
Us(F) as the lower boundary. We define ry4(F) and
ro+ (F') as the values where @ = Uy (F) or Q = Us(F).

For massless particles, particles with all values of F
move in the same potential U = U(r), and all other
quantities we have just defined do also not depend on
F. See Fig. [1] for an illustration.

Any particles with @ > Uy (F') would be unbound, and
if such particles were present in a static solution with the
ansatz they would be present everywhere and hence
the total mass could not be finite. We must therefore
have k(Q, F) = 0 for Q@ > Up(F). k(Q,F) must either
have compact support in F', or fall off as F — oo suffi-
ciently rapidly for [ kF'dF to be finite. Both assumptions
are assumed implicitly in the definition of Z when
we formally extend the upper integration limits in @) and
F to oo.

By contrast, real values of z require Q > U(r, F'), and
when changing from [ dz to [ dQ, the condition @ > U
must be imposed ezplicitly as a limit to the integration
range in . Hence k(Q, F') needs to be defined for all
Us(F) < Q < Up(F) (it can be zero in part of that range),
but not all of that range contributes to the integral Z, and
hence to the stress-energy tensor, at every value of r.

C. Reduction of the field equations for m =0

Because F' is conserved, the field equations already do
not contain 9/0F. Furthermore, m and F appear in the
coefficients of the field equations only in the combination
m?/F. In the limit m = 0, these coefficients become
independent of F. As first used in [3], the integrated
Vlasov density

flt,r z) = /000 f,r,z, FYFdF (27)

then obeys the same PDE as f itself. The stress-
energy tensor is now given by the expressions (LO}{13])
above, with f in place of f, and

7= [ Z dz (28)

in place of J. We have reduced the Einstein-Vlasov sys-
tem to a system of integral-differential equations in the
independent variables (t,7,2) only. A solution (a,, f)
of the reduced system represents a class of solutions
(a,a, f), all with the same spacetime but different matter
distributions.

Similarly, in the static case with m = 0 the Einstein
equations are given by (21H22)) with
o0

RQ) = /0 K(Q, F)FdF (29)

in place of k(Q, F') and

(o]

7.— / dQ (30)
U(r)

in place of Z. Each solution of the reduced system

(ag, ap, k) represents a class of solutions (ag, g, k). We

now define U; and Us as the limits of support of k(Q).

In Paper I, we conjectured that the space of spheri-
cally symmetric static solutions with massless particles
is a space of single functions of one variable, subject to
certain positivity and integrability conditions. This sin-
gle function can be taken to be any one of ag(r), ag(r)
or k(Q).

As a postscript to Paper I, we note here that a mathe-
matically similar result holds for Vlasov-Poisson system
for a subclass of static solutions, namely the “isotropic”
ones, where the Vlasov function is assumed to be a func-
tion of energy only. With the isotropic ansatz the Vlasov
density uniquely defines the Newtonian gravitational po-
tential and vice versa [I1]. Physically, however, the two
results are different, as the relativistic result with mass-
less particles holds for all solutions, depending on both
energy and angular momentum.

III. SPHERICAL PERTURBATION
EQUATIONS

A. Perturbation ansatz

In the study of the linear perturbations of a static so-
lution we return to the general case m > 0. We make the
perturbation ansatz

alt,r) = ap(r) + da(t,r), (31)
a(t,r) = ap(r) + da(t,r), (32)

flt,r,2, F) =k(Q,F) + ¢(t,r, 2z, F)
+(t,r, 2, F), (33)

where (ap, a0, k) is a static solution of the Einstein-
Vlasov system, and where @ is given by . We de-
fine ¢ to be even in z and 1 to be odd. In particular,
as 0f(t,r, z, F') must be at least once continuously differ-
entiable (C!) to obey the Vlasov equation in the strong
sense, its odd-in-z part must vanish at z = 0, or

Y(t,r,z=0,F)=0. (34)

We now expand to linear order in the perturbations.
The linearised Vlasov equation splits into the pair
2

b1+ Lib = 2Qk o %5% (35)
0

Vot Lo = 2@@% (50‘> : (36)

Qo



where we have defined the differential operator

_zag O Qo Zay\ 0
" Zag Or <a0T3Z ao (37)

0z

Note, from , that the time-dependent Vlasov equation
in the fixed static spacetime (ag, ) is f+ + Lf = 0. By
construction, @ obeys L@ = 0, and hence Lk(Q, F') = 0,
as we have already used to construct static solutions. The
even-odd split of the perturbed Vlasov equation into the
pair reflects the fact that reversing both ¢ and z
together must leave the field equations invariant.
The perturbed Einstein equations are

(22) (L)t s oy

(&7s] r Qg ag r
réa 9
4

2,2
9 7. (40)

5a7t = —
r

We have used the background Einstein equations to elim-
inate all integrals of k in favour of aj and of. The
integrability condition for da between and is
identically obyed modulo the perturbed Vlasov equation

(351i36)), and hence the perturbed Einstein equation
is redundant [just as is in the nonlinear equations].

B. Change of variable from z to Q

To simplify the perturbation equations, we change in-
dependent variables from (¢, 7, z, F') to (¢,r, Q, F'), with Q
again given by . From the resulting transformation of
partial derivatives, we need only the following identities:

2 -2 "
;Z:;QH...);QT, (42)
L=V % , (43)
Q
where we have defined the shorthand
Vir,Q,F) = 2%, (44)

ao

with v given by (26). V is the coordinate speed dr/dt
corresponding to the physical speed v.

0/0r|, on its own appears in the field equations only
acting on the metric and its perturbations, in which case
the 0/0Q)|, term denoted by (...) in is irrelevant.
On the matter perturbations, 9/9r|, acts only in the
combination L. From now on 0/0r is understood to mean
6/8T|Q.

With (43]) the perturbed Vlasov equation becomes
02
i+ Vb, =2Qkq ;5(1,15, (45)
0

5
b+ Ve, = 2@@% (0‘> . (46)

Qo

With and the perturbed Einstein equations
(38H40]) become

e 1 2a4)\ da  4n2a?
() - ( - 0) —=—STvp,  (47)

(7)) T (7)) ap rag
) 472
(%) -2t
ag /) . af v
4 2.2
Say=——0Ty  (49)
rao

Equivalently, the stress-energy perturbations are given
by

s
op = @IW% (50)
T ¢
(Sp = 71"20[(2)15’ (51)
T
0j = — 2
J r2agpag (52)

Finally, the boundary condition on 1 becomes

Y(t,r,U(r,F),F)=0. (53)

C. Static perturbations

Static perturbations can be obtained more directly by
linear perturbation of the nonlinear static equations. The
infinitesimal change k& — k + 0k, a9 — ag + dag, g —
o + dag to a neighbouring static solution gives

b= LI (+eok) (a0 + eda)* 22, F)
de e=0
= BK(Q.F) +2Qk o, (54)
0

As expected, this solves the perturbed Vlasov equations
(45746) and FEinstein equation identically for ar-
bitrary functions 0k(Q, F), modulo the nontrivial per-
turbed Einstein equations .

D. Reduction to a single stratified wave equation

We can uniquely split any time-dependent perturba-
tion that admits a Fourier transform with respect to ¢
into a static part (with frequency w = 0) and a genuinely
non-static part (with frequencies w # 0). For genuinely
non-static perturbations we can uniquely invert /9t by
dividing by iw in the Fourier domain.



We now substitute into , and and
(%)71 into , and write the result in the com-

pact form
ot - =0, 56
(% 4 e) (0 0

where we have defined the integral-differential operators
(acting to the right)

A:=L+ gvZ, (57)
B:=L - gZv, (58)
C:=hgZ (59)

with the differential operator L now given by 7 the
integral operator Z defined in (both acting to the
right), v given by , and the shorthand expressions

2
8m%ag

g(T,Q7F) = rag Qk,Q v, (60)
ag (1 204
h(r) := P (r + %0) . (61)

Note that A, B, C do not commute with each other, while
0/0t commutes with all of them because their coefficients
are independent of t.

In this compact notation it is easy to see that by row
operations we can reduce the system to the upper
diagonal form

<% (§)2+AC—BA>(ZZ):O- (62)

Hence we have reduced the time-dependent problem to
the single integral-differential equation

— Y = Hy, (63)
where
H:=C—-BA=hgT —(L—gZv)(L+ gvZI). (64)

The coefficients g, h, v and V' commute with each other
but not with the operators 9/9r or Z. 9/0r and T do
commute with each other because of the boundary con-
dition .

It is convenient to split the time evolution operator H
into a kinematic and a gravitational part as

H = Ho + Hy, (65)
with
2y 9,9
Hyi= —L* ==V Voo, (66)
Hy =g (h+ (Iv2g)) 7+ gITvL — LgvZ (67)
= [g(h+ (Zv*g)) — (Lgv)] T+ g (ZvL — vLI).
(68)

Hence we can write (63)) as

— Yy + V%‘/%ﬂ/ = Hy9. (69)
This form stresses that is a stratified wave equa-
tion, in the sense that for fixed @) and F' we have a wave
equation in (¢,r), with coefficients also depending on @
and F, while different values of () and F' are also cou-
pled through the double integral Z over Q and F', which
represents the gravitational interactions between parti-
cles of different momenta at the same spacetime point.
Intuitively, the characteristic speeds of are £V be-
cause any matter perturbation is propagated simply at
the velocity of its constituent particles.
We note in passing that in our notation the static per-
turbations are solutions of
B¢ =0, ¥ =0. (70)
Given a solution v of the master equation 7 ¢ in any
genuinely nonstatic perturbation can be reconstructed
from v as

o=—(2) v ()

and the metric perturbations are obtained by solving
48)), with obeyed automatically.

E. Preliminary classification of non-static
perturbations

The right-hand side of is generated by pertur-
bations at all values of Q and F at at given space-
time point (¢,7), but because of the overall factor k ¢
it only acts on perturbations at those values of Q and F'
where k o(Q, F) # 0, that is, where background matter
is present.

This suggests a preliminary classification of all pertur-
bations into

e stellar modes, with support on the region in
(r,@, F) space that lies inside the potential well
and where also k(Q, F') has support;

e bottom modes, with support inside the potential
well and for values of @@ below the support of

k(Q, F);

e middle modes, with support inside the potential
well and for values of ) above the support of
k(Q, F) but below the top of the potential well;

e outer modes, with support outside the potential
well and for values of Q below the top of the po-
tential well;

e top modes, with values of ) above the top of the
potential well.
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FIG. 1. Sketch of the potential U(r) for massless parti-

cles, illustrating the classification of perturbations. The black
hatching shows the region in (U, r) space where particles are
present in the background solution. Outer modes have sup-
port in the green region, top modes in the yellow region, mid-
dle modes in the red region, bottom modes in the blue region,
and stellar modes in the hatched region only. (The top, mid-
dle and bottom modes also drive stellar modes.) This figure
can also be interpreted as the cross-section U(r,oc0) of the
potential U(r, F') in the massive case, compare the definition

ofU.

This classification of modes is illustrated in Fig. [1| for the
massless case, where all values of F' experience the same
effective potential U(r). Obviously, the middle modes do
not exist if the potential well is filled to the top (U; =
Up), and the bottom modes do not exist if it is filled to
the bottom (Us = Us).

Particles contributing to the bottom, middle, top and
outer modes move freely in the effective potential U (r, F)
set by the static background solution, without experienc-
ing a gravitational back-reaction. We may call them the
trivial modes. Mathematically, the trivial modes obey
in a region of (Q,F) space where the right-hand
side vanishes. In that region they can be solved in closed
form. To do this, we define the “tortoise radius”

o(r,@Q,F):= /r m dr'. (72)

This gives us

0
L=V 2
V@T

0

do

Q

; (73)
Q

and hence becomes

- ¢,tt + d},o'a =0 (74)

for ¥(t,0,Q, F), subject to the Dirichlet boundary con-
ditions

¢(ta0—(QaF),Q7F) = '(/}(t70-+(Q?F)?Q7F) = O’ (75)

where o4 are the left and right turning points given by
@ = U. Hence we can write down the general local solu-

tion of with S = 0 in d’Alembert form as

Yt Q F) =) ¢ult£0(rQ,F),Q,F]  (76)
+

subject to the boundary conditions .
With g = 0 for the trivial modes, becomes ¢ ; +
1Y s = 0, and hence

$(t,r,Q, F) =Y Foalt+0(r,Q,F),Q,F]. (T7)
+

We note also that i) + ¢ must be non-negative for physi-
cal trivial modes, as we cannot subtract particles from a
vacuum region.

The trivial modes (except for the outer modes) in-
duce stellar modes through gravitational interactions, or
mathematically through the right-hand side of . This
means that for a complete solution of the problem, we
need to solve for stellar modes including an arbitrary
driving term generated by the other modes, that is

0 _. 0
_w,tt +V§VE¢ = le‘i‘leext (78)

where 1 describes the stellar modes and eyt is the sum
of the top, middle and bottom modes. (The outer modes
do not couple to the stellar modes at all.)

F. Massless case

In the massless case, we define the integrated matter
perturbations in the obvious way:

5t Q) = /O 6(t.7,Q, F) FdF, (79)
&(t,r,Q) ::/O Y(t,r,Q, F) FdF. (80)

The reduced perturbation equations with m = 0 are ob-
tained from the ones in the general case by replacing ¢
and ¢ with ¢ and v, k(Q, F) and kg(Q, F) with k(Q)
and £'(Q), and Z with Z. The coefficients g, v, V and U
all become independent of F'. In particular, all particles
now move in the same effective potential U(r).

IV. PERTURBATION SPECTRUM
A. Inner product

Starting from , we rewrite the gravitational part
H; of the Hamiltonian more explicitly as

H =XcaZT+X <CQI’U28(9T — ;CQvQI> . (81



where we have defined the shorthands

X(Q,F,r)=QkqV, (82)
8r2a2
co(r) = =%, (83)
0
2 1 20/
ci(r) = 220 < + =0 03>, (84)
(A7) T (7))
8712a
CQ(T’) = TOO, (85)
8r2a2
c3(r) = 72011)3 Qkg. (86)
0

We have defined cq for later use: note that ¢ = coX.
For clarity we have not written out function arguments,
but recall that Z acting on anything gives a function of
t and 7 only, that k = k(Q,F), v* = 1-U/Q, U =
U(r,m?/F), and hence that v = v(r,Q,m?/F) and V =
V(r,Q,m?/F).

We now construct an inner product (i1, 2) with re-
spect to which H is a symmetric operator. Consider first
solutions 91, 19 with support only where k o(Q, F') =0,
that is the modes we have characterised as trivial. Then
only Hpv is non-vanishing, and the perturbed Vlasov
equation reduces to the free wave equation . The ob-
vious inner product is therefore the well-known one for
the free wave equation, that is

(1, 12) / / (/U+;QFF) 112 do> W@, F)dQ FdF,

(87)
where p(Q, F) > 0 is an arbitray weight. Expressing this
in terms of r, we have

oo [
(88)

If we interchange the integration over r with the double
integration over ) and F', we obtain

o= [T([, e

(QF)

- /O (Iw‘l/%)dr (89)

Integration by parts in r in , and then transforming
to , then gives

1) dr
V(r,Q,F)

)FdFdr

oo

<%ﬂWﬂ=ACMWuW0W=W%WWm%

(90)
which is explicitly symmetric in 17 and s.

Consider now solutions 1, 19 with support only where
kqo(Q,F) # 0, that is stellar modes. Assuming further
that kg < 0 wherever k # 0 (as will be the case for our
examples), we must then make the choice

1

N(Q,F):*QTQ

(91)

(up to a positive constant factor), that is

i) == [ (7982 ar (92)

__ /O Oo/j( / " w;g@ dr) dQ FdF, (93)

with X defined in (82). We then find from (90), and

that

(11, Hotpa) = —/OOO (IV%X%) dr, (94
(Y1, Hitpo) = /000 c1(Z1)(Zype) dr
- [ al@o@ii)

+(Z2) (Zv*r )] dr, (95)
where for the last term we have used integration by parts
in 7.

We now define u(Q, F) > 0 on all of phase space by

on the support of k(Q, F), and an arbitrary positive
u, for example pu = 1, everywhere else.

B. Quadratic form of the Hamiltonian

Consider the operator

XT

= 0 (96)

It is easy to see that P is a projection operator, in the

w(Q, F)dQ FdF. sense that

P?=P. (97)

We also have

Y1 X(Zeo) (Ztp1)(Zep2)
<¢1»P¢2>:/d T - (IX) :/drﬁa
(98)
and so P is symmetric,
Pt =P (99)

As a projection operator, P can only have eigenvalues
0 and 1. The corresponding eigenspaces V and V are
orthogonal, as

(L= P)tpr, Pp) = ((P

for any two vectors 11, 5.

Hence every normalisable vector i can be uniquely
split into two vectors, one from each eigenspace, that
is

— Py, 1h9) =0 (100)

Yb=9+¢, =Py, d=¢—v,  (101)



with Il& = 0. We write this statement as

v=VveV, (V,9)=0 (102)
From we see that
(V, H, V) =0, (103)

while all other matrix elements of H; and all of Hy are
non-trivial.

Using integration by parts in r in and the bound-
ary conditions

¢(ta Ti(Q) F)? Q7 F) = 07

/FdF/dQ

/FdF/dQ—/ dr iy 2 = (—Lap1,9a),

(104)

we have

(Y1, Lpg) = / dr g,

(105)
and so L is antisymmetric,
Lt =—L. (106)
Similarly, if we define
K = gvI = g XVZ, (107)

we have

(1, coXvIhg) =

(108)
and so
KT = ¢oXTv = gTv. (109)
Hence we have
A=L+K,  B=L-KI=-Al (110)
We can also write C as
C =hgZ = hcoXZ = heo(ZX)—— X1 —cg P, (111)
g. 0 0 (IX) 4
where we have defined the shorthand coefficient
cq(r) := —co(r)h(r)(ZX). (112)

Recall that we have assumed that X < 0, and hence
(ZX) < 0. Evidently ¢y > 0, and from we see that
h > 0, so we have ¢4 > 0. From

H=A'"A—¢,P, (113)

we then obtain a (negative) lower bound on the spectrum
of H, namely —max, ¢4. This is not sharp as AV # 0.

Using also that P? = P = P! and that P commutes
with multiplication by any function of r, we have

=-D?  D:=,/P, D'=D. (114)

We can therefore write the Hamiltonian also as the dif-
ference of two squares,

H=A"A—-D'D. (115)

- /dT’ co (Zvr) (Tap2) = (co X Tvipy, vha),

C. Ritz method

We briefly review the Ritz method to establish nota-
tion. Given a Hilbert space V with inner product (-, -)
and an operator H that is self-adjoint in V, the method
finds approximate eigenfunctions and eigenvalues of H in
the span of a finite set of functions e; € V, i = 1...N.
(In contrast to the usual application in quantum mechan-
ics, our V is a real vector space.) The e; are assumed to
have finite norm under the inner product, but need not
be orthogonal.

We try to find approximate eigenvectors ¢ of H by
determining the coefficients ¢’ in the ansatz

N
Y= Z cle;.
i=1

Our notion of “approximate eigenvector” is defined rela-
tive to the function set {e;}, that is by

(116)

(ei, (H = A\)p) = (117)
fort=1...N. We define the matrices
Sij = {ei,e5), Hij = (e;, Hej). (118)
Then is equivalent to
N
> (H; )&l =0 (119)

Jj=1

fori=1...N. As S;; and H;; are real symmetric ma-
trices, the (approximate) eigenvalues A are real and the
corresponding (approximate) eigenvectors ¢ of the form
(116) are orthogonal for different A (as must of course be
the case for the exact eigenvalues and eigenvectors of H).

D. The space of test functions v

We now attempt to restrict the real vector space V of
test functions e; in which we look for eigenfunctions of
H. To start with, we require functions in V to have a
finite norm under (-, -).

Starting from , we can write H; as

m2
Hi =Xcy |:<C5 + cgv +C7FQ> T+ TIv % _U2I§r
(120)
where we have defined the new shorthand coefficients
doy 1
= - 121
ca(r) i= e = o (121)
ay a3
=——— = 4 = 122
CG(T.) Qo a/O + 7", ( )
2 2
er(r) = =0 (123)

r .



Note that

Hyyp = (1/)1 + hov® + 13

m?
FQ

The functions of one variable 11 (r), ¥2(r) and 3(r) are
given by integrals of ¢, but we do not need their explicit
form for our argument.

Similarly, we can write Hy as

) X(r,Q,F). (124)

m2

2
How = %gv2¢’rr + <Cg —+ 09’1}2 + ClOFQ) ¢,r» (125)
where again the explicit form of the coefficients cg(r),
co(r) and c¢10(r) does not matter for the following argu-
ment.

Because z = vZ, with Z an even function of z by (@,
and because we assume that (¢, r, 2, F) is even in z,
Y(t,r,Q, F) cannot be completely regular at the bound-
ary Q = U where v = 0. The closest to smoothness we
can get is to consider ¥ of the form

Y =1, :=v(r,Q, F) x smooth(¢,r,Q, F),

where the second factor is smooth in particular at @ =
U(r,F) and at Q = Uy(F). If ko(Q, F) is also smooth,
in particular at the boundary @ = Uy (F') of its support,
then equivalently we can consider ¢ of the form

=15 :=X(r,Q, F) x smooth(¢,r,Q, F). (127)

From and we see that for smooth &k o, H maps
functions of the form into functions of the same
form. Hence if Qk g and therefore X is smooth, we can
consistently restrict V to functions of the form or
equivalently .

However, we also want to consider background solu-
tions where k ¢ is not smooth at the boundary @ = Us,
and so X is not smooth. The key example of this is the
class of critical solutions with massless particles conjec-
tured in Paper I, which is characterised by U; = Uy, with
k(Q) ~ (Uy — Q)2 for Q < Up. Should we now use the
ansatz (|126|) or , or a sum of both?

We note that Hy maps each of and into a
function of the same form, whereas H; maps both to a
function of the form . If we try the superposition

Y = Yr + by, (128)

(G ) = (it ) ().

The eigenvalue problem (H — A)¢ = 0 then becomes
(Ho — A =0, (130)
(H = Ns = —Hit,. (131)
Hence we can consistently assume that ¢, = 0, that is
we can restrict to the ansatz (127). If we allow for the
full ansatz (128]), then 1, behaves like a trivial mode,
driving a particular integral contribution to 5. Hence

we can neglect 1, when we are interested only in the
spectrum of pure stellar modes.

(126)

we find

(129)
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E. Numerical examples of the Ritz method for
massless particles

A set of basis functions of compact support
emnp (7, @, F) naturally has a triple discrete index mnp
corresponding to the index ¢ we used in the general dis-
cussion of the Ritz method. We focus here on the mass-
less case, where we can work directly with integrated
modes (r,Q), and the integrations in H and (-,-) are
the integrals Z over Q only. The basis functions e,,, (r, Q)
then only carry two indices.

Within the massless case, we further focus on back-
grounds with the integrated Vlasov distribution given by
“Ansatz 17 of [1], or

k(Q) o @)Uy — @)k,

where k£ > —1 and U; are constant parameters, and the
notation (...)% stands for (... )(...)*. We then have

(132)

QK (Q) < Q"2 (Uy — Q' [(k + 2)Us - 2Q). (133)
This motivates the perturbation ansatz

emn(r7 Q) = Npn (U1 — Q)T (r—mrs)"

[(k+2)Uh —2Q] Q37571
Here the constant factor V,,, is a normalisation constant
chosen so that (emn,emn) = 1. The next two factors
carry the basis indices m and n, which we choose to be
nonnegative integers. The implied factor 8(U; — Q) re-
stricts us to stellar modes (where ¢ can have either sign
because there is a background particle distribution from
which we can subtract an infinitesimal amount). We have
chosen the integer powers of U; — @ and of 7 — r3 as an
ad-hoc basis of smooth functions of () and r on an ir-
regularly shaped domain. We have chosen r — r3 as this
always changes sign on the interval [r_(Q),r+(Q)]. The
last factor on the first line makes e,,,, odd in z, as previ-
ously discussed.

The two factors on the second line have been chosen
merely for convenience. Putting the factor (k+2)U; —2Q
into our ansatz for e,,,, either eliminates this same factor
in the integrals over () in , and , or at least
puts it into the numerator, where it can be split into
linear factors already present and so does not make the
integrand more complicated. This leaves us with a sum
of integrals of the form

Uy
| @-U) i -Qrde,
where b = —1/2, 1/2 or 3/2, which can be evaluated in
closed form as hypergeometric functions of 1—U/U;. The
final factor in the ansatz allows us to set the power a to a
convenient, for example integer, value by the correspond-
ing choice of I. The integral over @ in the inner product
converges at U = @1 only if my +mo > k — 2, and
so we must have m > k/2 — 1.

(135)



Note that the factor (k+2)U; —2Q) is automically pos-
itive definite only for £ > 0. For k = 0 it can and should
be removed from the ansatz, as it would just increase m
by one. For k < 0 our ansatz with this factor works only
for (k + 2)U; > 2U5 [which must be verified numerically
by finding U (r)].

We compute S;; and H;; by symbolic integration over
Q followed by numerical integration over . We then solve
directly. As in [9] and Paper I, we fix an arbitrary
overall scale in solutions of the massless Einstein-Vlasov
system by setting the total mass of the background solu-
tion to 1.

As a first example, we take the background with k = 1
and Uy = Uy = 1/27, the lip of the effective poten-
tial. For any positive integer k, k’(Q) and hence X
is smooth at @ = wu;, and we can consistently assume
m = 0,1,2,...,M and n = 0,1,2,...,N. We set
[ =11/2, which simplifies the two Q-integrals in S;; and
Hy;; somewhat, and reduces the two )-integrals in H,;
to polynomials.

As a second example, we take k = 1/2 with U; =
Up = 1/27. This ansatz seems to agree well with the
critical solution observed in [9]. We set [ = 5. All four
integrals of e,,, over ) then reduce to polynomials of
U and U(r). As discussed above, we then choose m =
-1/2,1/2,3/2,...,M —1/2, and n = 0,1,2,..., N as
before. In either example, the size of the basis, and hence
the number of approximate eigenvalues obtained, is (M +
(N +1).

In both examples, we have carried out the numerical
integrations in r for M = N = 8. The results are similar
in both examples. At all basis sizes up to and including
this one, we find precisely one negative eigenvalue of H,
as expected from the results of [9]. Its value is A\ =~
—0.045 in both examples.

The approximate eigenvalues for different basis sizes
are shown in Figs. 2] and [B] The lowest few eigenvalues
appear to be converging with resolution to distinct val-
ues, providing evidence for the consistency of our method
and a discrete spectrum.

The components ¢™" of the lowest eigenvector 1y also
seem to converge with IV, but to diverge with M. The
reason may be that the simple powers of r—rg and Q—U;
are not good basis functions. The corresponding eigen-
functions appear visually to be smooth and converging
with M = N up to M = N = 7. (In the k = 1/2 exam-
ple, ¥y diverges as expected, and this statement refers
to vUy — Q o, which is finite.) For the largest basis
M = N =8, ¥y becomes noisy. Hence there is no point
in increasing M or N beyond M = N = 8 with our
limited accuracy.

If we write the dynamics of the time-dependent per-
turbations as — = Hi, and A is the single nega-
tive eigenvalue of H, then the single unstable mode has
time-dependence exp(v/—Agt). This must correspond to
exp(7/o) in the notation of [9], where 7 is the proper
time at the centre. 7 is related to our coordinate time ¢
(proper time at infinity) by dr = «.dt, where a, is the
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FIG. 2. The eigenvalues A of , for the background given
by the ansatz with £ = 1 and U; = Uy, for different
basis sizes M = N = 0,1,...,8. In both plots, the vertical
axis is A. In the upper plot, the horizontal axis is the number
i of the eigenvalue, starting from 0, and the different graphs
correspond to the different resolutions. In the lower plot, the
horizontal axis is resolution indicated by N, with M = N,
and the different graphs show different eigenvalues.

FIG. 3. As before, but now for k = 1/2.



lapse at the centre, and hence we have

o= _—2_ 136

Ve 30
With a, ~ 0.2968 and Ay ~ —0.0446 for the &k = 1 back-
ground solution, and «a, =~ 0.2874 and Ay ~ —0.0445
for k = 1/2, the formula gives 0 ~ 1.41 and
1.36, respectively, both compatible with the range o ~
1.43 £ 0.07 given by [9].

However, we have implemented our numerics using
only standard ODE solvers and nonlinear equations
solvers (for solving the background equations by shoot-
ing) and numerical integration and linear algebra meth-
ods (for applying the Ritz method to the perturbations)
in Mathematica, and have not tried to estimate our nu-
merical error or optimise our methods.

V. CONCLUSIONS

Numerical time evolutions of the Einstein-Vlasov sys-
tem in spherical symmetry with massless particles [9]
have suggested the rather surprising conjecture that all
static solutions of this system are one-mode unstable,
with the time evolutions resulting in collapse for one sign
of the initial amplitude of this mode, and dispersion for
the other. In the language of critical phenomena in grav-
itational collapse, all static solutions are critical solutions
at the threshold of collapse.

In Paper I [7] we have characterised all static solu-
tions with massive particles in terms of a single func-
tion of two variables k(Q, F). Here F is essentially con-
served angular momentum, and @ essentially conserved
energy per angular momentum, such that the orbit of a
massless particle of given @@ and F' depends on @ alone.
Correspondingly, we have the degeneracy that all dis-
tributions k(Q, F') of massless particles with the same
k(Q) := [ k(Q,F) FdF give rise to the same spacetime.

In the current Paper II we have reduced the pertur-
bations of static solutions (in spherical symmetry, with
either massive or massless particles) to a single master
variable ¥(t,r, Q, F'), which obeys an equation of motion
of the form — 4 = (Ho + Hy)y. In the massless case
we have the same degeneracy for the perturbations as for
the background, that is the metric perturbations only de-
pend on i) = [+ FdF, but in contrast to the background
equations this does simplify the equations significantly.
Hence we have assumed m > 0 in most of this paper.

The kinetic part Hy of H is such that ¢+ = Hot is
simply a second-order wave equation with characteristic
speeds £V (r,Q, F). There is no underlying wave equa-
tion in three space dimensions here. Rather, the left and
right-going waves correspond to particles moving inwards
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and outwards in the background spacetime, with V' their
radial velocity.

By contrast, the gravitational part H; of H vanishes in
the vacuum regions of the background solutions, and con-
tains integrals over @ and F' (as well as first r-derivatives)
representing the gravitational pull of all the other parti-
cles represented by the perturbation 1.

Following a suggestion by Olivier Sarbach, we have
identified an inner product of perturbations 1 which is
positive definite for suitable background solutions and
with respect to which the operator H is symmetric. This
additional mathematical structure allows us to find ap-
proximate eigenvectors 1 and eigenvalues A of H using
the Ritz method. We have carried out the numerical pro-
cedure for two representative background solutions with
massless particles (see Paper I for a discussion of these so-
lutions and their significance), and we have found numer-
ical evidence for a discrete spectrum of A with, for both
backgrounds, a single negative eigenvalue with a value
compatible with that found by Akbarian and Choptuik
[@.
On the analytic side, we have characterised the space
of functions ¢(r,Q,F) as V = V & V, where a certain

integral Zv over F' and ) vanishes for functions in V,
while V consists of functions of the form f(r)X(r,Q, F)
for a specific X given by the background solution. Hence
V is infinitely larger than V. Unfortunately, eigenvectors
1 of H cannot lie entirely in either subspace. We have
also found that we can write H as the difference of two
squares, H = ATA — DD, with D = D' annihilating
V. Unfortunately, the commutators of AT, A and D are
not simple, and so the apparent analogy with the quan-
tisation of the harmonic oscillator does not seem to be
helpful.

We had hoped that in bringing the perturbation equa-
tions into a sufficiently simple form we could prove the
conjecture of [9] that every spherically symmetric static
solution with massless particles has precisely one unsta-
ble mode and/or calculate its value in closed form. We
had also hoped to be able to show that some spherically
symmetric static solutions with massive particles are sta-
ble, as conjectured in [6]. We have not been able to do
either, but hope that our formulation of the problem will
be of future use.
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