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Abstract. We compute the equivariant K-homology of the classifying space
for proper actions, for cocompact 3-dimensional hyperbolic reflection groups.
This coincides with the topological K-theory of the reduced C∗-algebra asso-
ciated to the group, via the Baum-Connes conjecture. We show that, for any
such reflection group, the associated K-theory groups are torsion-free. This
means that we can complete previous computations with rational coefficients
to get results with integral coefficients. On the way, we establish an efficient
criterion for checking torsion-freeness of K-theory groups, which can be applied
far beyond the scope of the present paper.

1. Introduction

For a discrete group Γ, a general problem is to computeK∗(C∗
rΓ), the topological

K-theory of the reduced C∗-algebra of Γ. The Baum-Connes Conjecture predicts
that this functor can be determined, in a homological manner, from the complex
representation rings of the finite subgroups of Γ. This viewpoint led to general
recipes for computing the rational topological K-theory K∗(C∗

rΓ) ⊗ Q of groups,
through the use of Chern characters (see for instance Lück and Oliver [16] and
Lück [13], [15], as well as related earlier work of Adem [1]). When Γ has small
homological dimension, one can sometimes even give completely explicit formulas
for the rational topological K-theory, see for instance Lafont, Ortiz, and Sánchez-
Garćıa [11] for the case where Γ is a 3-orbifold group.

On the other hand, performing integral calculations for these K-theory groups
is much harder. For 2-dimensional crystallographic groups, such calculations have
been done in M. Yang’s thesis [25]. This was subsequently extended to the class of
cocompact planar groups by Lück and Stamm [18], and to certain higher dimen-
sional dimensional crystallographic groups by Davis and Lück [4] (see also Langer
and Lück [12]). For 3-dimensional groups, Lück [14] completed this calculation
for the semi-direct product Hei3(Z) ⋊ Z4 of the 3-dimensional integral Heisenberg
group with a specific action of the cyclic group Z4. Some further computations were
completed by Isely [7] for groups of the form Z2 ⋊ Z; by Rahm [22] for the class
of Bianchi groups; by Pooya and Valette [21] for solvable Baumslag-Solitar groups;
and by Flores, Pooya and Valette [5] for lamplighter groups of finite groups.

When the result was that the K-theory groups are torsion-free, like in the above
quoted papers [14] and [4], then so far, this was considered as an ad-hoc compu-
tational result. In the present paper, we can however explain such lack of torsion
with a new criterion (Theorem 4), which can be checked very efficiently (we do this
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for the Heisenberg semidirect product group of [14] in Appendix C, and for the
crystallographic groups of [4] in Appendix D).

The main purpose of the present paper is to establish the following formula for the
integral K-theory groups of cocompact 3-dimensional hyperbolic reflection groups.
We note that, by a celebrated result of Andre’ev [2], there is a simple algorithm
that inputs a Coxeter group Γ, and decides whether or not there exists a hyperbolic
polyhedron PΓ ⊂ H3 which generates Γ. In particular, given an arbitrary Coxeter
group, one can easily verify if it is covered by the following Main Theorem.

Main Theorem. Let Γ be a cocompact 3-dimensional hyperbolic reflection group,
generated by reflections in the side of a hyperbolic polyhedron P ⊂ H3. Then

K0(C
∗
r (Γ))

∼= Zcf(Γ) and K1(C
∗
r (Γ))

∼= Zcf(Γ)−χ(C),

where the integers cf(Γ), χ(C) can be explicitly computed from the combinatorics of
the polyhedron P.

Let us briefly describe the contents of the paper. In Section 2, we provide
background material on hyperbolic reflection groups, topological K-theory, and the
Baum-Connes Conjecture. We also introduce our main tool, the Atiyah-Hirzebruch
type spectral sequence. In Section 3, we use the spectral sequence to show that the
K-theory groups we are interested in coincide with the Bredon homology groups
HFin

0 (Γ; RC) and HFin
1 (Γ; RC) respectively. We also explain, using the Γ-action on

H3, why the homology group HFin
1 (Γ; RC) is torsion-free. In contrast, showing that

HFin
0 (Γ; RC) is torsion-free is much more difficult. In Section 4, we give a linear

algebraic proof, inspired by the “representation ring splitting” technique of [22],

and establishing a novel criterion for proving torsion-freedom of HFin
0 (Γ; RC) for any

collection of groups Γ with specified types of finite subgroups. Note that our proven
lack of torsion in the Bredon homology is not a property shared by all discrete
groups acting on hyperbolic 3-space: for example, 2-torsion occurs in HFin

0 (Γ; RC)
for a Bianchi group Γ whenever it has a 2-dihedral subgroup C2 × C2 [22].

Finally, in Section 5, we provide an explicit formula for the rank of the Bredon
homology groups (and hence for the K-groups we are interested in), in terms of
the combinatorics of the polyhedron P . Our paper concludes with two fairly long
Appendices, which contain all the character tables and induction homomorphisms
used in our proofs, making our results explicit and self-contained.
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2. Background Material

2.1. K-theory and the Baum-Connes Conjecture. Associated to a discrete
group Γ, one has C∗

rΓ, the reduced C∗-algebra of Γ. This algebra is defined to be
the closure, in the operator norm, of the linear span of the image of the regular
representation λ : Γ → B(l2(Γ)) of Γ on the Hilbert space l2(Γ) of square-summable
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complex valued functions on Γ. This algebra encodes various analytic properties of
the group Γ [20].

For a C∗-algebra A, one can define the topological K-theory groups K∗(A) :=
π∗−1(GL(A)), which are the homotopy groups of the space GL(A) of invertible ma-
trices with entries in A. Due to Bott periodicity, there are canonical isomorphisms
K∗(A) ∼= K∗+2(A), and thus it is sufficient to consider K0(A) and K1(A).

In the special case where A = C∗
rΓ, the Baum-Connes Conjecture predicts that

there is a canonical isomorphism KΓ
n (X) → Kn(C

∗
r (Γ)), where X is a model for EΓ

(the classifying space for Γ-actions with isotropy in the family of finite subgroups),
and KΓ

∗ (−) is the equivariant K-homology functor. The Baum-Connes conjecture
has been verified for many classes of groups. We refer the interested reader to the
monograph by Mislin and Valette [20] or the survey article by Lück and Reich [17]
for more information about these topics.

2.2. Hyperbolic reflection groups. By a d-dimensional hyperbolic polyhedron,
we mean the region of Hd enclosed by a given finite number of (geodesic) hy-
perplanes, that is, the intersection of a collection of half-spaces associated to the
hyperplanes. Let P ⊂ Hd be a polyhedron such that all the interior angles between
faces are of the form π/mij where mij ≥ 2 an integer (although some pairs of
faces may be disjoint). Let Γ = ΓP the associated Coxeter group generated by the
reflections in the hyperplanes containing the faces of P .

The Γ-space Hd is then a model of EΓ with fundamental domain P . This is a
strict fundamental domain, that is, no further points of P are identified under the
group action, and hence P = Γ\Hd (we will use left-action notation). Recall that
Γ admits the following Coxeter presentation

(1) Γ = 〈s1, . . . , sn | (sisj)
mij 〉

where n is the number of distinct hyperplanes enclosing P , si denotes the reflection
on the ith face, and mij ≥ 2 are integers such that: mii = 1 for all i, and, if i 6= j,
the corresponding faces meet with interior angle π/mij . We will write mij = ∞ if
the corresponding faces do not intersect.

Note that P may not be a CW or simplicial complex with the natural structure
given by vertices, edges, faces, etc (for example, an ideal triangle in H2 or the
region enclosed by two distinct hyperplanes). However, if P has finite volume, it
is a simplicial complex except from possibly ideal vertices at infinity. In such a
case (i.e. P non-compact) we can obtain a cocompact model of EΓ by equivariantly
removing some horoballs in Hd (see §4 in [8]). Hence a fundamental domain of the
resulting action would be a copy of P with all ideal vertices truncated.

For the rest of this article, d = 3, P is compact, and X is H3 with the Γ-action
described above.

2.3. Cell structure of the orbit space. Let J = {1, . . . , n} and write 〈S〉 for
the subgroup generated by a subset S ⊂ Γ. At a vertex of P , the concurrent faces
(a minimum of 3) must generate a reflection group acting on the 2-sphere, hence it
must be a spherical triangle group and in particular it forces the number of incident
faces to be exactly three. The only finite Coxeter groups with 3 generators are the
triangle groups ∆(2, 2,m) for some m ≥ 2, ∆(2, 3, 3), ∆(2, 3, 4) and ∆(2, 3, 5),
where we use the notation

(2) ∆(p, q, r) =
〈
s1, s2, s3 | s21, s

2
2, s

2
3, (s1s2)

p, (s1s3)
q, (s2s3)

r
〉
.
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Starting from our compact polyhedron P , we obtain a Γ-CW-structure on X = H3

with:

• one orbit of 3-cells, with trivial stabilizer;
• n orbits of 2-cells (faces) with stabilisers 〈si〉 ∼= Z/2 (i = 1, . . . , n);
• one orbit of 1-cells (edges) per (unordered) pair i, j ∈ J with mij 6= ∞,
with stabilizer 〈si, sj〉 ∼= Dmij

dihedral;
• one orbit of 0-cells (vertices) per (unordered) triple i, j, k ∈ J with 〈si, sj, sk〉
finite, with stabilizer 〈si, sj , sk〉 ∼= ∆(mij ,mik,mjk).

We introduce the following notation (after having fixed an order on the Coxeter
generators, or equivalently, on the faces of the polyhedron) for the simplices of P :

fi (faces),

eij = fi ∩ fj (edges),(3)

vijk = fi ∩ fj ∩ fk = eij ∩ eik ∩ ejk (vertices),

whenever the intersections are non-empty, that is, whenever mij 6= ∞, respectively
when {mij ,mik,mjk} equals {2, 2,m} for somem ≥ 2, {2, 3, 3}, {2, 3, 4} or {2, 3, 5}.

2.4. A spectral sequence. We ultimately want to compute the K-theory groups
of the reduced C∗-algebra of Γ via the Baum-Connes conjecture. Note that the con-
jecture holds for these groups: Coxeter groups have the Haagerup property [3] and
hence satisfy Baum-Connes [6]. Therefore, it suffices to compute the equivariant
K-homology groups KΓ

∗ (X), since X is a model of EΓ. In turn, these groups can
be obtained by the Bredon homology of X and an equivariant Atiyah-Hirezebruch
spectral sequence coming from the inclusion of the skeleta of the Γ-CW-complex
X [19]. The second page of this spectral sequence is given by the Bredon homology
groups (cf. [19])

(4) E2
p,q =

{
HFin

p (Γ; RC) q even,

0 q odd.

The coefficients of the Bredon homology groups (a functor from the orbit category
with respect to the family of finite subgroups of Γ, to Z-modules) are given by the
complex representation ring of the cell stabilizers, which are finite subgroups. In
order to simplify notation, we will often write Hp to denote HFin

p (Γ; RC).
Before defining Bredon homology, we note that dim(X) = 3 already implies, by

homological algebra arguments, the following.

Proposition 1. There are short exact sequences

0 // coker(d33,0) // KΓ
0 (X) // H2

// 0

and

0 // H1
// KΓ

1 (X) // ker(d33,0) // 0 .

(Here d33,0 : E
3
3,0 = H3 −→ E3

0,2 = H2 is the differential on the E3-page.)

Proof. This follows at once from [19, Theorem 5.29] but, for completeness, we give
a direct proof based on the Atiyah-Hirzebruch spectral sequence. Write Kn for
KΓ

n(X). Firstly, note that the E2-page is concentrated in the 0 ≤ p ≤ 3 columns
(since dim(X) ≤ 3), and in the q even rows —see (4) above.
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Secondly, recall that the bidegree of the differentials dkp,q on the Ek-page is

(−k, k−1). Thus the only non-trivial differentials are d33,q, q ≥ 0 even, from E3
3,q =

H3 to E3
0,q+2 = H0 (since E3 = E2). All in all, E∞ = E2 except E∞

3,q = ker(d33,q)

and E∞
0,q = coker(d33,q), that is,

E∞
p,q =





Hp p = 1, 2 and q even,

coker(d33,0) p = 0 and q even,

ker(d33,0) p = 3 and q even,

0 otherwise.

Now consider the filtration . . . ⊂ Fp−1,q+1 ⊂ Fp,q ⊂ . . . of Kp+q, where each
Fp,q = Im

(
KΓ

p+q(X
p) → KΓ

p+q(X)
)
, the image of the map induced in K-homology

by the inclusion of the p-skeleton in X . In particular, Fp,q = 0 for p < 0 and
Fp,q = Kp+q for p ≥ dim(X) = 3. The quotient Fp,q/Fp−1,q+1 is isomorphic to
E∞

p,q = E2
p,q, as given above. Therefore we have, on one hand, the filtration:

0 = F−1,2 = F0,1 ⊂ F1,0 = F2,−1 ⊂ F3,−2 = K1,

with only two non-trivial quotients isomorphic to E∞
1,0 = H1 and E∞

3,−2 = ker(d33,0).
On the other hand, we have the filtration:

0 = F−1,1 ⊂ F0,0 = F1,−1 ⊂ F2,−2 = F3,−3 = K0,

with non-trivial quotients isomorphic to E∞
0,0 = coker(d33,0) and E∞

2,−2 = H2. These
results combined together give the short exact sequences above. �

2.5. Bredon Homology. To shorten notation, write Γe for stabΓ(e). The Bredon
homology groups in (4) can be defined as the homology groups of the following
chain complex (recall that X is a model of EΓ)

(5) . . . //

⊕
e∈Id

RC (Γe)
∂d

//

⊕
e∈Id−1

RC (Γe) // . . . ,

where Id is a set of orbit representatives of d-cells (d ≥ 0), and ∂d is defined via the
geometric boundary map and induction between representation rings, as follows.
If ge′ is in the boundary of e (e ∈ Id, e′ ∈ Id−1, g ∈ Γ), then ∂ restricted to
RC (Γe) → RC (Γe′) is given by the composition

RC (Γe)
ind

// RC (Γge′)
∼=

// RC (Γe′) ,

where the first map is the induction homomorphism of representation rings asso-
ciated to the subgroup inclusion Γe ⊂ Γge′ , and the second is the isomorphism
induced by conjugation Γge′ = gΓe′g

−1. Finally, we add a sign depending on a
chosen (and thereafter fixed) orientation on the faces of P . The value ∂d(e) equals
the sum of these maps over all boundary cells of e.

Since P is a strict fundamental domain, we can choose the faces of P as orbit
representatives and thus g (as above) is always the identity. We will implicitly make
this assumption from now on.

3. Analyzing the Bredon chain complex for Γ

Let S = {si : 1 ≤ i ≤ n} be the set of Coxeter generators and J = {1, . . . , n}.
Let

(6) 0 // C3
∂3

// C2
∂2

// C1
∂1

// C0 // 0
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be the Bredon chain complex associated to X (since X is 3-dimensional).
Next we analyse each differential in the chain complex above. Recall that for a

finite group G the complex representation ring RC(G) is defined as the free abelian
group with basis the set of irreducible representations of G (the ring structure is
not relevant in this setting). Hence RC(G) ∼= Zc(G), where we write c(G) for the
set of conjugacy classes in G.

3.1. Analysis of ∂3. Let G be a finite group with irreducible representations
ρ1, . . . , ρm of degree n1, . . . , nm, and τ the only representation of the trivial sub-
group {1G} ≤ G. Then τ induces the regular representation in G:

(7) IndG{1G}(τ) = n1ρ1 + . . .+ nmρm .

Lemma 1. Let X be a Γ-CW-complex with finite stabilizers, and k ∈ N. If there is
a unique orbit of k-cells and this orbit has trivial stabiliser, then Hk = 0, provided
that ∂k 6= 0.

Proof. The Bredon module Ck equals RC(〈1〉) ∼= Z with generator τ , the trivial
representation. Then ∂k(τ) 6= 0 implies ker(∂k) = 0 and therefore the corresponding
homology group vanishes. �

From the lemma we immediately conclude that H3 = 0 if ∂3 6= 0. The case
∂3 = 0 occurs if and only if all boundary faces are pairwise identified, which cannot
happen since P is a strict fundamental domain (the group acts by reflections on
the faces). We conclude that H3 = 0 and, using Proposition 1, we obtain:

Proposition 2. We have KΓ
1 (X) ∼= H1, and there is a short exact sequence

0 // H0
// KΓ

0 (X) // H2
// 0 .

3.2. Analysis of ∂2. Let f be a face of P and e ∈ ∂f an edge. Suppose, using
the notation in (3), that f = fi and e = eij . Then we have a map RC (〈si〉) →
RC (〈si, sj〉) induced by inclusion. Recall that 〈si〉 ∼= C2 and 〈si, sj〉 ∼= Dmij

. A
straightforward analysis (see Appendix A for character tables, and Appendix B for
induction homomorphism notation and calculations) shows that

ρ1 ↑ = χ1 + χ̂4 +
∑

φp ,

ρ2 ↑ = χ2 + χ̂3 +
∑

φp ,

if i < j, or

ρ1 ↑ = χ1 + χ̂3 +
∑

φp ,

ρ2 ↑ = χ2 + χ̂4 +
∑

φp ,

if j < i. That is, as a map of free abelian groups Z2 → Zc(Dmij
),

(a, b) 7→ ±(a, b, b̂, â, a+ b, . . . , a+ b) or

(a, b) 7→ ±(a, b, â, b̂, a+ b, . . . , a+ b),

Using the analysis above, we can now show

Theorem 1. For any compact P, we have that H2 = 0.

From this theorem and Proposition 2, we immediately obtain
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Corollary 1. KΓ
0 (X) = H0 and KΓ

1 (X) = H1.

Proof of Theorem. Fix an orientation on the polyhedron P , and consider the in-
duced orientations on the faces. At an edge we have two incident faces fi and fj
with opposite orientations so without loss of generality we have, as a map of free
abelian groups,

RC (〈si〉) ⊕RC (〈sj〉) ∼= Z2 ⊕ Z2 → Zc(Dmij
) ∼= RC (〈si, sj〉)(8)

(a, b | c, d) 7→ (a− c, b− d, â− d, b̂− c, S, . . . , S)

where S = a + b − c − d, and the elements with a hat ̂ appear only when mij

is even. Note that we use vertical bars ‘|’ for clarity, to separate elements coming
from different representation rings.

By the preceding analysis, ∂2(x) = 0 implies that, for each i, j ∈ J , if the faces
fi and fj meet, then

(1) ai = aj and bi = bj , if mij is odd, and
(2) ai = aj = bi = bj , if mij is even.

Suppose that f1, . . . , fn are the faces of P . Let x = (a1, b1| . . . |an, bn) ∈ C2 be
an element in Ker(∂2). Note that ∂P is connected (since P is homeomorphic to
D3), so by (1) and (2) above, we have that a1 = . . . = an and b1 = . . . = bn.
Since the stabilizer of a vertex is a spherical triangle group, there is an even mij ,
which also forces a = b. Therefore we have x = (a, a| . . . |a, a) so x = ∂3(a) (note
that the choice of orientation above forces all signs to be positive), and this gives
ker(∂2) ⊆ im(∂3), which suffices to prove equality and hence the vanishing of the
second homology group. �

3.3. Analysis of ∂1. Let e = eij be an edge and v = vijk ∈ ∂e a vertex, using the
notation in (3). We study all possible induction homomorphisms RC (〈si, sj〉) →
RC (〈si, sj , sk〉) in Appendix B and conclude that H1 is torsion-free, as follows.

Theorem 2. There is no torsion in H1.

Proof. Consider the Bredon chain complex

C2
∂2

// C1
∂1

// C0.

To prove thatH1 = ker(∂1)/im(∂2) is torsion-free, it suffices to prove that C1/im(∂2)
is torsion-free. Let α ∈ C1 and 0 6= k ∈ Z such that kα ∈ im(∂2). We shall prove
that α ∈ im(∂2).

Since kα ∈ im(∂2), we can find β ∈ C2 with ∂2(β) = kα. Suppose that P has
n faces, and write β = (a1, b1| . . . |an, bn) ∈ C2, using vertical bars ‘|’ to separate
elements coming from different representation rings. We shall see that one can find
a 1-chain β′, homologous to β, and with every entry of β′ a multiple of k.

At an edge eij , the differential ∂2 takes the form (cf. §3.2)

(9)
RC(〈si〉)⊕RC(〈sj〉) −→ RC(〈si, sj〉)

(a, b | a′, b′) 7→ ±(a− a′, b− b′, b̂− a′, â− b′ |S, . . . , S),

where S = a+ b− a′ − b′, and the elements with a hat ̂ appearing only when mij

is even. Since every entry of ∂2(β) is a multiple of k, using (9), we have that for
every pair of intersecting faces fi and fj,

ai ≡ aj (mod k) and bi ≡ bj (mod k).
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Equation (9) also shows that 1∂P = (1, 1| . . . |1, 1), the formal sum over all
generators of representation rings of face stabilizers of ∂P ∈ C2, is in the kernel
of ∂2. In particular, setting β′ = β − a11∂P , we see that ∂2(β

′) = ∂2(β) = α and
we can assume without loss of generality that β′ satisfies a′1 ≡ 0 (mod k).

Let us consider the coefficients for the 1-chain β′. For every face fj intersecting
f1, we have a′1 − a′j ≡ 0 (mod k), which implies a′j ≡ 0 (mod k). Since ∂P is

connected, repeating this argument we have a′i ≡ 0 (mod k) for all i. In addition,
there are even mij (the stabilizer of a vertex is a spherical triangle group), and
hence (9) also gives a′i − b′j ≡ 0 (mod k), which implies b′j ≡ 0 (mod k). Exactly

the same argument as above gives then b′i ≡ 0 (mod k) for all i.
Since all coefficients of β′ are divisible by k, we conclude that α = ∂2(β

′/k) ∈
im(∂2), as desired. �

We note that a similar method of proof can be used (in many cases) to show
that H0 is torsion-free. This approach is carried out in [10].

Corollary 2. Let cf(Γ) be the number of conjugacy classes of elements of finite
order in Γ, and χ(C) the Euler characteristic of the Bredon chain complex (6).
Then we have

H1
∼= Zcf(Γ)−χ(C).

Proof. The Euler characteristic of a chain complex coincides with the alternating
sum of the ranks of the homology groups

χ(C) = rank(H0)− rank(H1) + rank(H2)− rank(H3).

Since H3 = H2 = 0, we have rank(H1) = rank(H0) − χ(C), and rank(H0) =
cf(Γ) [19]. Since H1 is torsion-free (Theorem 2), the result follows. �

Note that both cf(Γ) and χ(C) can be obtained directly from the geometry of
the polyhedron P or, equivalently, from the Coxeter integers mij . We show this
explicitly in Section 5.

Remark 1. Our results agree with a previous article by three of the authors [11],
where we computed the rank of the Bredon homology for groups Γ with a cocom-
pact, 3-manifold modelX of the classifying space EΓ. Firstly, note that Proposition
1 coincides with [11, Lemma 3], and, with respect to the vanishing of H3, Propo-
sition 2 follows from [11, Lemma 7]. The rank of H2(X) is given in [11, Corollary
14] by β2(Y ) if X/Γ is a closed oriented 3-manifold, or s+ t′ + 2t+ β2(Y )− 1 oth-
erwise. Here Y is the union of the closures of all interior faces of X/Γ along with
all the non-dihedral boundary components, s is the number of orientable non-odd
dihedral components, t the number of orientable odd dihedral components (see [11]
for definitions), t′ is the number of orientable, odd, connected components in ∂Y ,
and β2() indicates the second Betti number. In our case, X/G = P has a unique
boundary component, which must be dihedral (all edges stabilizers are of the form
Dmij

with mij ≥ 2), and there are no interior faces. Therefore Y = ∅, t′ = 0 and
either s = 0 and t = 1 (if all mij are odd), or s = 0 and t = 1 (if there is at least one
mij even). Picking any vertex v on ∂P , it has stabilizer which is a finite triangle
group, and hence at least one mij equals 2. Thus we have indeed s = 0 and t = 1
and we conclude that rank(H2) = 0, as expected. The rank of H0 coincides with
the number of conjugacy classes of elements of finite order in Γ. This number can
be deduced from the 1-skeleton of a model of EΓ, as explained in [11, §3.2], or in
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§5.1 below. Finally, the rank of H1 is obtained, in both [11] and this article, from
the rank of the other homology groups, and the Euler characteristic of the chain
complex (5) (or (1) in [11]), which equals the alternating sum of the number of
conjugacy classes in the stabilizers of Γ-orbits of cells.

To complete the computation of the Bredon homology, and hence of the equi-
variant K-homology, all that remains is the compute the torsion subgroup of H0.
We will show that in fact H0 is also torsion-free.

Theorem 3. There is no torsion in H0.

We postpone the proof to Section 4 below. An immediate consequence of Theo-
rem 3 is

Corollary 3. KΓ
0 (X) is torsion-free of rank cf(Γ).

Combining Corollaries 1, 2, and 3 immediately yields the above Main Theorem.
Moreover, in Section 5, we will give a formula for cf(Γ) and χ(C) from the geometry
of the polyhedron.

4. No torsion in H0

In this section, we give a proof of Theorem 3 inspired by the representation ring
splitting technique of [22]. For this purpose, we establish a criterion for HFin

0 (Γ; RC)
to be torsion-free which is quite efficient to check (by elementary linear algebra),
and which is satisfied for Γ a hyperbolic Coxeter group. The verification of that
criterion relies on simultaneous base transformations of the representation rings,
bringing the induction homomorphisms into the desired form, as carried out in
Appendices A and B. An alternative, geometric, proof for Theorem 3 is outlined
for hyperbolic Coxeter groups, and completed for a specific collection of hyperbolic
Coxeter groups, in [10].

Definition 1. The vertex block of a given vertex v in a Bredon chain complex
differential matrix ∂1 consists of all the blocks of ∂1 that are representing maps
induced (on complex representation rings from Γe → Γv) by edges e adjacent to v.

Therefore, denoting by n0 the rank of RC (Γv), if v is adjacent to edges e1, e2 and
e3, with corresponding representation rings of rank n1, n2 and n3, then its vertex
block is a submatrix of ∂1 (identified with its matrix representation after fixing a
basis) of size n1 + n2 + n3 times n0.

Our proof of Theorem 3 consists of checking on the vertex blocks the following
criterion that guarantees that HFin

0 (Γ; RC) is torsion-free.

Theorem 4. If there exists a base transformation such that all minors in all vertex
blocks are in the set {−1, 0, 1}, then HFin

0 (Γ; RC) is torsion-free.

For the proof of this criterion, we will use a simple linear algebra lemma, which
we prove again here for the sake of completeness, even though it was known to
linear algebraists before the authors re-discovered it.

Lemma 2. For square matrices M and B, we have

det

(
M 0
∗ B

)
= det(M) · det(B).
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Proof. Writing M = (ai,j) and denoting by M i,j the (i, j)-minor of M (that is, the
determinant of the block obtained by omitting the i-th row and the j-th column),
we have

det

(
M 0
∗ B

)
=

#M∑

j=1

a1,j(−1)1+jM1,j · det(B),

by iterating the development of the determinant by minors (#M − 1) times, and
making use of the zero block each time. �

Proof of Theorem 4. As a generality on Smith Normal Forms, known already to
Smith [24], we note that the elementary divisors of a matrix A can be computed (up

to multiplication by a unit) as αi =
di(A)

di−1(A) , where di(A) (called i-th determinant

divisor) equals the greatest common divisor of all i× i minors of the matrix A, and
d0(A) := 1.

Let us use the notation

pre-rank(∂1) := rankZ C1 − rankZ ker∂1,

where C1 is the module of 1-chains in the Bredon chain complex.
Then HFin

0 (Γ; RC) is torsion-free if and only if αi = ±1 for all 1 ≤ i ≤ pre-rank(∂1),
which, by the remark above, follows from finding an (i × i)-minor in the Bredon
chain complex differential matrix ∂1 with value ±1, for each 1 ≤ i ≤ pre-rank(∂1).
Let us show this is indeed the case, by induction on i.

Induction basis. For i = 1, we observe that there are vertices with adjacent edges
for the action of Γ, hence there are non-zero vertex blocks. As by assumption all
the entries in the vertex blocks are in the set {−1, 0, 1}, there exists an entry of
value ±1.

Inductive step. Let 2 ≤ i ≤ pre-rank(∂1), and assume that there exists an
(i − 1) × (i − 1)-minor of ∂1 of value ±1. We have to find an i × i-minor of ∂1
of value ±1. Let B′ be the (i − 1)× (i − 1)-block of ∂1, whose determinant is ±1
according to the inductive hypothesis. As i ≤ pre-rank(∂1), there exists a vertex
block V with the following property : After suitable base transformation, which
puts V into the upper left corner of ∂1, the block B′ can be extended to an i×i-block

B′′ = det

(
M 0
∗ B

)
,

with B a square sub-block of B′, and M a square sub-block of V . Here, B is
completely disjoint with V , and therefore we get the zero block in the upper right
corner of B′′ (note that the vertex blocks have been constructed to contain all
entries from adjacent edges, so the remainders of their rows are zero). In case that
B′ is already disjoint with V , we simply have B = B′, and M is then a single entry
of V . Otherwise, we construct B as the maximal square sub-block of B′ that has all
of its rows and columns outside rows and columns in which V is present. Then M
is constructed by taking the intersection of B′ and V , and extending it to a square
block of size n−size(B) inside V . Lemma 2 yields det(B′′) = det(M) ·det(B). Now
det(M) ∈ {−1, 0, 1} by the assumption that there is no torsion in the vertex blocks;
and as n ≤ pre-rank(∂1), we can reach det(B′′) 6= 0 and hence det(M) 6= 0. For
B as a sub-block of B′, det(B′) ∈ {−1, 1} entails det(B) ∈ {−1, 1}. This implies
det(B′′) = ±1 and we are done. �
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Using Theorem 4, the lack of non-trivial torsion in H0 is a consequence of the
following result, whose proof depends on the simultaneous base transformations in
Appendix B.

Proposition 3. For a system of finite subgroups of types A5 × C2, S4, S4 × C2,
∆(2, 2, 2) = (C2)

3 and ∆(2, 2,m) = C2 ×Dm for m ≥ 3 as vertex stabilizers, with
their three 2-generator Coxeter subgroups as adjacent edge stabilizers, there is a
simultaneous base transformation such that all vertex blocks have all their minors
contained in the set {−1, 0, 1}.

Proof. We apply the base transformation specified in Appendix A. Then we already
see that all of the induced maps (Appendix B, all Tables referenced in this proof
can be found there) have all of their entries in the set {−1, 0, 1}. Next, we assemble
the vertex blocks from the three vertex-edge-adjacency induced maps for any given
vertex stabilizer type. By Tables 24 and 25, the vertex block of a stabilizer of type
Dm for m ≥ 3 odd consists of

two blocks ±




1 0 0 0
0 0 0 1
0 0 0 0
...

...
...

...
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
.
..

.

..
.
..

.

..
0 0 0 0




and one block ±
(
identity matrix of size m+3

2
0

)
.

By Lemma 2, the columns which are concentrated in one entry ±1 cannot increase
the absolute value of the determinant of a block which is being extended into them.
We conclude that all minors are in {0,±1}.

For m ≥ 6 even, but not a power of 2, Tables 26 and 27 yield the following
vertex block, where each matrix block is specified up to orientation sign (we make
this assumption from now on),

Dm × C2 Dm →֒ Dm × C2 D2 →֒ Dm × C2 D2 →֒ Dm × C2

ρ1 ⊗ χ1 ↓ 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1
ρ1 ⊗ (χ3 − χ2) ↓ 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ1) ↓ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ3 − χ1) ↓ 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
.
.. ρ1 ⊗ (φp − φp−1) ↓

.

.. 0 0 0 0 0
. . . 0

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

ρ1 ⊗ (φm
2

−1 − φm
2

−2) ↓ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 1 0 0 0 1 0 0
(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 1 0 0 0 1 0
(ρ2 − ρ1)⊗ (χ3 − χ2) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
.
.. ρ1 ⊗ (φp − φp−1) ↓

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
ρ1 ⊗ (φm

2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 0 0
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By Lemma 2, we can ignore the rows and columns which have at most one entry ±1, and reduce
the above vertex block to the finite block




1 0 1 0 ±1 ±1
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0


 ,

for which we can easily check that it has all its minors in {0,±1}.
For m ≥ 4 a power of 2, Tables 28 and 29 yield the following vertex block,

Dm × C2 Dm →֒ Dm × C2 D2 →֒ Dm × C2 D2 →֒ Dm × C2

ρ1 ⊗ χ1 ↓ 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1
ρ1 ⊗ (χ3 − χ1) ↓ 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ2) ↓ 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ2 − χ1) ↓ 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0
. . . 0

...
...

...
...

...
...

...
...

(φm
2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 1 0 0 0 1 0 0
(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 1 0 0 0 1 0
(ρ2 − ρ1)⊗ (χ3 − χ1) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

...
...

...
...

...
...

...
...

...
ρ1 ⊗ (φm

2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 0 0

By Lemma 2, we can ignore the rows and columns which have at most one entry ±1, and reduce
the above vertex block to the finite block




1 0 0 0 0 ±1 0 ±1 0
0 1 0 1 0 0 ±1 0 ±1
0 1 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0




,

for which we can easily check that it has all its minors in {0,±1}. For the finitely
many remaining stabilizer types, we can proceed case-by-case: we input each ver-
tex block into a computer routine which computes all of its minors (such a routine
is straightforward to implement and takes approximately two seconds per vertex
block on a standard computer; the third author’s implementation is available at
http://math.uni.lu/˜rahm/vertexBlocks/). Note that for the groups under consider-
ation, the matrix rank of the vertex block is at most 7, so the 8 × 8-minors are all
zero, and it is enough to compute the n× n-minors for n ≤ 7. �

Corollary 4. For any Coxeter group Γ having a system of finite subgroups of types
∆(2, 2, 2) = (C2)

3, ∆(2, 2,m) = C2 × Dm for m ≥ 3, S4, S4 × C2 or A5 × C2 as

vertex stabilizers, we have that the Bredon homology group HFin
0 (Γ; RC) is torsion-

free.

Remark 2. Note that to use the criterion in Theorem 4 for proving that HFin
n (Γ; RC)

is torsion-free for a group Γ, the following should be taken into account:

(a) The proof of the theorem, stated for n = 0, implicitly uses the fact that
H0(BΓ;Z) is always torsion-free. To extend the theorem to n > 0, one should
either work with groups for which Hn(BΓ;Z) is torsion-free (such as Coxeter
groups), or use the splitting described in section 7 of [22] in order to make a

statement only about the part of HFin
n (Γ; RC) complementary to Hn(BΓ;Z).
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(b) Before trying to prove the hypothesis in the theorem using base transformations
(as in Appendix A), which can become quite laborious, one should construct the
vertex blocks without any base transformation and compute their elementary
divisors. If there exists a suitable simultaneous base transformation which
proves the criterion, then those elementary divisors must be in the set {−1, 0, 1}.

5. cf(Γ) and χ(C) from the geometry of P

Let Γ be the reflection group of the compact 3-dimensional hyperbolic polyhedron
P . In this section, we compute the number of conjugacy classes of elements of finite
order of Γ, cf(Γ), and the Euler characteristic of the Bredon chain complex (5),
χ(C), from the geometry of the polyhedron P . This makes our Bredon homology
and equivariant K-theory results, in particular the above Main Theorem, explicit.

5.1. Conjugacy classes of elements of finite order. We now give an algorithm
to calculate cf(Γ), the number of conjugacy classes of elements of finite order in
the Coxeter group Γ. We know that each element of finite order can be conjugated
to one which stabilizes one of the k-dimensional faces of the polyhedron, for some
k ∈ {0, 1, 2}. Of course, the only element which stabilizes all faces is the identity
element. Let us set that aside, and consider the non-identity elements, to which we
associate the integer k. We now count the elements according to the integer k, in
descending order.

Case k = 2: These are the conjugacy classes represented by the canonical generators
of the Coxeter group Γ. The number of these is given by the total number |P(2)|
of facets of the polyhedron P .

Case k = 1: These elements are edge stabilizers which are not conjugate to the sta-
bilizer of a face. We first note that there are some possible conjugacies between edge
stabilizers. Geometrically, these occur when there is a geodesic γ ⊂ H3 whose pro-
jection onto the fundamental domain P covers multiple edges inside the 1-skeleton
P(1). A detailed analysis of when this can happen is given in [9]. Following the
description in that paper, we decompose the 1-skeleton into equivalence classes of
edges, where two edges are equivalent if there exists a geodesic whose projection
passes through both edges. Denote by [P(1)] the set of equivalence classes of edges,
and note that each equivalence class [e] has a well defined group associated to it,
which is just the dihedral group Γe stabilizing a representative edge. We can thus
count the conjugacy classes in the corresponding dihedral group, and discard the
three conjugacy classes already accounted for (the conjugacy class of the two canon-
ical generators counted in case k = 2, as well as the identity). Thus the contribution
from finite elements of this type is given by

∑

[e]∈[P(1)]

(c(Γe)− 3).

(Recall that c(Dm), the number of conjugacy classes in a dihedral group of order
2m, is m/2 + 3 if m even, and (m− 1)/2 + 2 if m is odd.)

Case k = 0: Finally, we consider the contribution from the elements in the vertex
stabilizers which have not already been counted. That is to say, for each vertex v ∈
P(0), we count the conjugacy classes of elements in the corresponding 3-generated
spherical triangle group, which cannot be conjugated into one of the canonical 2-
generated special subgroups. This number, c̄(Γv), depends only on the isomorphism
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type of the spherical triangle group Γv, see Table 1. The contribution from these
types of finite elements is thus

∑

v∈P(0)

c̄(Γv) .

Γv c(Γv) c̄(Γv)
∆(2, 2,m) 2 c(Dm) c(Dm)− 3
∆(2, 3, 3) 5 1
∆(2, 3, 4) 10 3
∆(2, 3, 5) 10 5

Table 1. Number of conjugacy classes in spherical triangle
groups. The left column is the total number (cf. Appendix A),
and the right column the number of those not conjugated into one
of the three canonical 2-generated special subgroups.

Combining all these, we obtain the desired (combinatorial) formula for the num-
ber of conjugacy classes of elements of finite order inside the group Γ:

cf(Γ) = 1 + |P(2)|+
∑

[e]∈[P(1)]

(c(Γe)− 3) +
∑

v∈P(0)

c̄(Γv) .

5.2. Euler characteristic. The Euler characteristic of the Bredon chain complex
can be easily calculated from the stabilizers of the various faces of the polyhedron
P , according to the formula:

χ(C) =
∑

f∈P
(−1)dim(f) dim(RC(Γf )) .

Depending on the dimension of the faces, we know exactly what the dimension of the
complex representation ring is (the number of conjugacy classes in the stabilizer):

• for the 3-dimensional face (the interior), the stabilizer is trivial, so there is
a 1-dimensional complex representation ring;

• for the 2-dimensional faces, the stabilizer are Z2, and there is a 2-dimensional
complex representation ring;

• for the 1-dimensional faces e, the stabilizers are dihedral groups, and there
is a c(Γe)-dimensional complex representation ring;

• for the 0-dimensional faces v, the stabilizers are spherical triangle groups,
and there is a c(Γv)-dimensional complex representation ring.

Putting these together, we obtain

χ(C) = −1 + 2|P(2)| −
∑

e∈P(1)

c(Γe) +
∑

v∈P(0)

c(Γv) .

All in all, we have a more explicit version of the above Main Theorem, from the
geometry of the polyhedron P .
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Main Theorem (explicit). Let Γ be a cocompact 3-dimensional hyperbolic reflec-
tion group, generated by reflections in the side of a hyperbolic polyhedron P ⊂ H3.
Then K0(C

∗
r (Γ)) is a torsion-free abelian group of rank

cf(Γ) = 1 + |P(2)|+
∑

[e]∈[P(1)]

(c(Γe)− 3) +
∑

v∈P(0)

c̄(Γv) ,

and K1(C
∗
r (Γ)) is a torsion-free abelian group of rank

cf(Γ)−χ(C) = 2−|P(2)|+
∑

[e]∈[P(1)]

(c(Γe)−3)+
∑

e∈P(1)

c(Γe)−
∑

v∈P(0)

(c(Γv)− c̄(Γv)) ,

and the values c(Γv) and c̄(Γv) can be obtained from Table 1.
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(125):256–260, 1970.
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16 LAFONT, ORTIZ, RAHM, AND SÁNCHEZ-GARCÍA
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Appendix A. Character tables and base transformations

In this Appendix, we list the character tables of all the groups involved in the
Bredon chain complex (6), that is, finite Coxeter subgroups of Γ up to rank three.
This serves as a reference for the main text, and fixes the notation. In the character
tables below, rows correspond to irreducible representations, and columns to repre-
sentatives of conjugacy classes, written in term of the Coxeter generators s1, . . . , sn
in a fixed Coxeter presentation of Γ, as in (1).

In addition, for each character table, we apply elementary row operations to
obtain the transformed tables needed for Appendix B, which are in turn used in
our proof that H0 is torsion-free (Section 4). Although the rows of the transformed
tables do no more consist of irreducible characters, it is easy to check that they still
constitute bases of the complex representation rings.

Note that, for consistency across subgroups, we will pay attention to the order
of the Coxeter generators in a subgroup. We write e for the identity element in Γ.

A.1. Rank 0. This is the trivial group, with character table given below.

e
τ 1

Table 2. Character table of the trivial group.

A.2. Rank 1. A rank 1 Coxeter group is a cyclic group of order 2. Write si for its
Coxeter generator, then its character table is Table 3 below.

C2 e si
ρ1 1 1
ρ2 1 −1

Table 3. Character table of 〈si〉 ∼= C2.
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A.3. Rank 2. A finite rank 2 Coxeter group with Coxeter generators si and sj is
a dihedral group of order m = mij ≥ 2,

(10) Dm = 〈si, sj | s
2
i = s2j = (sisj)

m〉 .

The character table of this group is given in Table 4 below, where 0 ≤ r ≤ m− 1,
p varies between 1 and m/2− 1 if m is even or (m− 1)/2 if m is odd, and the hat
̂ denotes a character which appear only when m is even. In order to be consistent,

Dm (sisj)
r sj(sisj)

r

χ1 1 1
χ2 1 −1
χ̂3 (−1)r (−1)r

χ̂4 (−1)r (−1)r+1

φp 2 cos
(
2πpr
m

)
0

Table 4. Character table of < si, sj >∼= Dm, where i < j.

we assume the Coxeter generators are ordered so that i < j. If j < i, then the
character table is identical except that the third and fourth rows (the characters
χ̂3 and χ̂4) are interchanged, since (sjsi)

r = (sisj)
−r and si(sjsi)

r = sj(sisj)
−r−1.

For the case m = 2, that is, D2 = C2 × C2, we will sometimes use the notation
coming from the character table of C2 (Table 3) instead. (Recall that the irreducible
characters of a direct product G×H are obtained from the irreducible characters
of G and H as ρi⊗τj , where (ρi ⊗ τj) (g, h) = ρi(g) ·τj(h).) This gives the notation
and characters in Table 5, which are equivalent to Table 4 with ρ1 ⊗ ρ1 = χ1,
ρ1 ⊗ ρ2 = χ4, ρ2 ⊗ ρ1 = χ3 and ρ2 ⊗ ρ2 = χ2. As before, we assume i < j, or, if
j < i, the third and fourth rows (characters) must be interchanged.

C2 × C2 e si sj sisj
ρ1 ⊗ ρ1 1 1 1 1
ρ1 ⊗ ρ2 1 1 −1 −1
ρ2 ⊗ ρ1 1 −1 1 −1
ρ2 ⊗ ρ2 1 −1 −1 1

Table 5. Alternative character table of 〈si, sj〉 ∼= D2 = C2 × C2,
i < j.

We now give the base transformations of the character table of Dm needed later,
shown in Tables 6, 7 and 8.

A.4. Rank 3. A finite rank 3 Coxeter subgroup is one of the spherical triangle
groups ∆(2, 2,m), withm ≥ 2, ∆(2, 3, 3), ∆(2, 3, 4), or ∆(2, 3, 5), using the notation
in (2), or, more compactly, the Coxeter diagrams in Figure 1.

In these diagrams, the vertices represent Coxeter generators and the edges are
labelled by mij , with the conventions: no edge if mij = 2, and no label if mij = 3.
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D2 e sisj si sj∑
χi 4 0 0 0

χ2 + χ3 2 0 −2 0
χ3 1 −1 −1 1

χ3 + χ4 2 −2 0 0

Table 6. Base transformation of the character table of D2.

Dm e si sisj (sisj)
r (sisj)

m−1
2

χ1 + χ2 + 2
∑m−1

2
p=1 φp 2m 0 0 . . . 0

χ2 +
∑m−1

2
p=1 φp m −1 0 . . . 0

∑m−1
2

p=1 φp m− 1 0 −1 . . . −1
...

∑m−1
2

p=k φp

... m− 2k + 1
... ak,1 ak,r ak,m−1

2

φm−1
2

2 0 b1 br bm−1
2

Table 7. Base transformation of the character table ofDm, m ≥ 3

odd. Here, ak,r :=
∑m−1

2

p=k 2 cos(2πpr
m

), br := 2 cos(π(m−1)r
m

), and

1 < k, r < m−1
2 .

Dm e si sisj (sisj)
r (sisj)

m
2 sjsisj∑4

p=1 χp + 2
∑m

2 −1
p=1 φp 2m 0 0 . . . 0 0

χ2 + χ3 +
∑m

2 −1
p=1 φp m 0 0 . . . 0 −2

χ3 +
∑m

2 −1
p=1 φp m− 1 1 −1 . . . −1 −1

χ2 + χ4 +
∑m

2 −1
p=1 φp m −2 0 . . . 0 0∑m

2 −1
p=1 φp m− 2 0 0 −1− (−1)r −1− (−1)

m
2 0

...
∑m

2 −1

p=k φp

... m− 2k
... ak,1 ak,r 2

∑m
2 −1

p=k (−1)p 0

φm
2 −1 2 0 b1 br 2(−1)

m
2 −1 0

Table 8. Base transformation of the character table of Dm, m ≥

4 even. Here, ak,r :=
∑m

2 −1

p=k 2 cos(2πpr
m

), br := 2 cos(π(m−2)r
m

),
1 < k < m

2 − 1 and 1 < r < m
2 .

m 4 5

Figure 1. Coxeter diagrams of rank 3 spherical Coxeter groups.

A.4.1. ∆(2, 2, 2). This triangle group is isomorphic to C2 × C2 × C2 and we have
irreducible characters ρabc := ρa ⊗ ρb ⊗ ρc, a, b, c ∈ {1, 2}, from Table 3, listed
in Table 9 below, where ρa ⊗ ρb ⊗ ρc(x) = ρa(x1) · ρb(x2) · ρc(x3) for all x =
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(x1, x2, x3) ∈ C2 × C2 × C2. Here we assume that we have ordered the Coxeter

C2 × C2 × C2 e si sj sk sisj sisk sjsk sisjsk
ρ111 := ρ1 ⊗ ρ1 ⊗ ρ1 1 1 1 1 1 1 1 1
ρ112 := ρ1 ⊗ ρ1 ⊗ ρ2 1 1 1 −1 1 −1 −1 −1
ρ121 := ρ1 ⊗ ρ2 ⊗ ρ1 1 1 −1 1 −1 1 −1 −1
ρ122 := ρ1 ⊗ ρ2 ⊗ ρ2 1 1 −1 −1 −1 −1 1 1
ρ211 := ρ2 ⊗ ρ1 ⊗ ρ1 1 −1 1 1 −1 −1 1 −1
ρ212 := ρ2 ⊗ ρ1 ⊗ ρ2 1 −1 1 −1 −1 1 −1 1
ρ221 := ρ2 ⊗ ρ2 ⊗ ρ1 1 −1 −1 1 1 −1 −1 1
ρ222 := ρ2 ⊗ ρ2 ⊗ ρ2 1 −1 −1 −1 1 1 1 −1

Table 9. Character table of 〈si, sj , sk〉 ∼= ∆(2, 2, 2) = C2 × C2 ×
C2, i < j < k, from Table 3.

generators si, sj , sk so that i < j < k. Finally, the base transformation of the
character table of ∆(2, 2, 2) needed later is shown in Table 10.

C2 × C2 × C2 e si sj sk sisj sisk sjsk sisjsk
ρ111 1 1 1 1 1 1 1 1

ρ112 − ρ111 0 0 0 −2 0 −2 −2 −2
ρ121 − ρ111 0 0 −2 0 −2 0 −2 −2
ρ122 − ρ121 0 0 0 −2 0 −2 2 2
ρ211 − ρ111 0 −2 0 0 −2 −2 0 −2
ρ212 − ρ211 0 0 0 −2 0 2 −2 2
ρ221 − ρ121 0 −2 0 0 2 −2 0 2
ρ222 − ρ221 0 0 0 −2 0 2 2 −2

Table 10. Base transformation of the character table of
〈si, sj , sk〉 ∼= ∆(2, 2, 2) = C2 × C2 × C2, i < j < k.

A.4.2. ∆(2, 2,m) with m > 2. This group is isomorphic to C2 × Dm, and has
Coxeter presentation

∆(2, 2,m) =
〈
si, sj, sk | s2i , s

2
j , s

2
k, (sisj)

2, (sisk)
2, (sjsk)

m
〉
,

where we have sorted the Coxeter generators sj and sk such that j < k (the
generator si is uniquely determined from the presentation). As a direct product
of two groups, the character table of this group can be obtained from those of C2

(Table 3) and Dm (Table 4). This is shown on Table 11, where TDm
is the matrix

of entries of the character table of Dm (Table 4). As explained before, if k < j one
needs to swap the characters χ3 and χ4, that is, swap ρ1 ⊗ χ3 and ρ1 ⊗ χ4, and
ρ2 ⊗ χ3 and ρ2 ⊗ χ4.

The corresponding base transformations for ∆(2, 2,m) ∼= C2 ×Dm are given in
Table 12 (m odd), Table 13 (m ≥ 6 even not a power of 2), and Table 14 (m ≥ 4 a
power of 2).
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∆(2, 2,m) (sjsk)
r sk(sjsk)

r si(sjsk)
r sisk(sjsk)

r

ρ1 ⊗ χ1

ρ1 ⊗ χ2

ρ1 ⊗ χ̂3 TDm
TDm

ρ1 ⊗ χ̂4

ρ1 ⊗ φp

ρ2 ⊗ χ1

ρ2 ⊗ χ2

ρ2 ⊗ χ̂3 TDm
−TDm

ρ2 ⊗ χ̂4

ρ2 ⊗ φp

Table 11. Character table of ∆(2, 2,m), m = mjk > 2, j < k.

Dm × C2 e si (sisj)
r α αsi α(sisj)

r

ρ1 ⊗ χ1 1 1 1 1 1 1
ρ1 ⊗ (χ2 − χ1) 0 −2 0 0 −2 0

ρ1 ⊗ (φ1 − χ2 − χ1) 0 0 br 0 0 br
ρ1 ⊗ (φp − φp−1), 0 0 ap,r 0 0 ap,r

(ρ2 − ρ1)⊗ χ1 0 0 1 −2 −2 −2
(ρ2 − ρ1)⊗ (χ2 − χ1) 0 0 0 0 4 0

(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) 0 0 0 0 −4 −2br
(ρ2 − ρ1)⊗ (φp − φp−1), 0 0 0 0 0 −2ap,r

Table 12. Base transformation of the character table of Dm×C2

for m ≥ 3 odd. Here ap,r := 2 cos(2πpr
m

) − 2 cos(2π(p−1)r
m

), br :=

2 cos(2πr
m

)− 2, 2 ≤ p ≤ m−1
2 and 1 ≤ r ≤ m− 1.

A.4.3. ∆(2, 3, 3). This triangle group has Coxeter presentation

(11) ∆(2, 3, 3) =
〈
si, sj , sk | s2i , s

2
j , s

2
k, (sisj)

3, (sisk)
2, (sjsk)

3
〉
.

This group is, in standard notation, A3, and it is isomorphic to the symmetric
group S4, with Coxeter generators si = (1 2), sj = (2 3) and sk = (3 4), for
instance. Then we have conjugacy classes (cycle types in S4) represented, in terms
of the Coxeter generators, by si = (1 2), sisj = (1 3 2), sisjsk = (1 4 3 2) and
sisk = (1 2)(3 4). In particular, we have the character table for ∆(2, 3, 3) shown in
Table 15 below. In this case, the Coxeter generators are unique up to conjugation
since Out(S4) is trivial, hence the choice of si and sk does not affect the character
table.

The required base transformation of the character table Table 15 is given in
Table 16.

A.4.4. ∆(2, 3, 4). This triangle group has Coxeter presentation

(12) ∆(2, 3, 4) =
〈
si, sj, sk | s2i , s

2
j , s

2
k, (sisj)

3, (sisk)
2, (sjsk)

4
〉
,

and the Coxeter generators are uniquely determined from the presentation. In
standard notation, this is the finite Coxeter group B3 (or C3). This group is
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Dm × C2 si (sisj)
r sjsisj αsi α(sisj)

r αsjsisj
ρ1 ⊗ χ1 1 1 1 1 1 1

ρ1 ⊗ (χ2 − χ1) −2 0 −2 −2 0 −2
ρ1 ⊗ (χ3 − χ2) 2 cr 0 2 cr 0
ρ1 ⊗ (χ4 − χ1) −2 cr 0 −2 cr 0

ρ1 ⊗ (φ1 − χ3 − χ1) −2 br 0 −2 br 0
... ρ1 ⊗ (φp − φp−1)

... 0 ap,r 0 0 ap,r 0

(ρ2 − ρ1)⊗ χ1 0 0 0 −2 −2 −2
(ρ2 − ρ1)⊗ (χ2 − χ1) 0 0 0 4 0 4
(ρ2 − ρ1)⊗ (χ3 − χ2) 0 0 0 −4 −2cr 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) 0 0 0 0 −4cr 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) 0 0 0 0 −2(br + cr) 0
(ρ2 − ρ1)⊗ (φp − φp−1) 0 0 0 0 −2ap,r 0

Table 13. Base transformation of the character table of Dm×C2

for m ≥ 6 even, not a power of 2. Here ap,r := 2 cos(2πpr
m

) −

2 cos(2π(p−1)r
m

), br := 2 cos(2πr
m

) − (−1)r − 1, cr = (−1)r − 1 and
1 < p, r < m

2 .

Dm × C2 si (sisj)
r sjsisj αsi α(sisj)

r αsjsisj
ρ1 ⊗ χ1 1 1 1 1 1 1

ρ1 ⊗ (χ2 − χ1) −2 0 −2 −2 0 −2
ρ1 ⊗ (χ3 − χ2) 0 cr −2 0 cr −2
ρ1 ⊗ (χ4 − χ1) 0 cr 2 0 cr 2

ρ1 ⊗ (φ1 − χ3 − χ1) 0 br 0 0 br 0
... ρ1 ⊗ (φp − φp−1)

... 0 ap,r 0 0 ap,r 0

(ρ2 − ρ1)⊗ χ1 0 0 0 −2 −2 −2
(ρ2 − ρ1)⊗ (χ2 − χ1) 0 0 0 4 0 4
(ρ2 − ρ1)⊗ (χ3 − χ2) 0 0 0 0 −2cr 4

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) 0 0 0 0 −4cr 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) 0 0 0 0 −2br 0
(ρ2 − ρ1)⊗ (φp − φp−1) 0 0 0 0 −2ap,r 0

Table 14. Base transformation of the character table of Dm ×
C2 for m ≥ 4 even a power of 2. Here ap,r := 2 cos(2πpr

m
) −

2 cos(2π(p−1)r
m

), br := 2 cos(2πr
m

)− 2, cr = (−1)r − 1 and 1 < p, r <
m
2 .

isomorphic to S4×C2 with Coxeter generators, for instance, si = (1 2)α, sj = (1 3)α
and sk = (1 2)(3 4)α, where α is the generator of the C2 factor. We can choose
representatives of the conjugacy classes in terms of the Coxeter generators, for
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∆(2, 3, 3) e si sisj sisjsk sisk
ξ1 1 1 1 1 1
ξ2 1 −1 1 −1 1
ξ3 2 0 −1 0 2
ξ4 3 1 0 −1 −1
ξ5 3 −1 0 1 −1

Table 15. Character table of 〈si, sj , sk〉 ∼= ∆(2, 3, 3) ∼= S4.

S4 e si sisj sisjsk sisk
ξ1 1 1 1 1 1

ξ̃2 := ξ2 − ξ1 0 −2 0 −2 0

ξ̃3 := ξ3 − ξ2 − ξ1 0 0 −3 0 0

ξ̃4 := ξ4 − ξ3 − ξ1 0 0 0 −2 −4

ξ̃5 := ξ5 − ξ4 − ξ2 + ξ1 0 0 0 4 0

Table 16. Base transformation of the character table of
∆(2, 3, 3) ∼= S4.

example,

e ∼ e α ∼ (sisjsk)
3

(1 2) ∼ sisk (1 2)α ∼ si

(1 2 3) ∼ sisj (1 2 3)α ∼ sisjsk

(1 2 3 4) ∼ sjsk (1 2 3 4)α ∼ si(sjsk)
2

(1 2)(3 4) ∼ (sjsk)
2 (1 2)(3 4)α ∼ sk

where ‘∼’ means ‘conjugate’. Using this representatives, and the fact that ∆(2, 3, 4)
is a direct product, the character table of this group can be written as in Table 17
below, where TS4 is the matrix of coefficients of the character table of S4 (Table
15).

The base transformation needed is given in Table 18, where {ξ̃i} is the trans-
formed basis of the character table of S4, Table 16.

A.4.5. ∆(2, 3, 5). This group has Coxeter presentation

(13) ∆(2, 3, 5) =
〈
si, sj , sk | s2i , s

2
j , s

2
k, (sisj)

3, (sisk)
2, (sjsk)

5
〉

and it is isomorphic to A5 × C2 with Coxeter generators si = (1 2)(3 5)α, sj =
(1 2)(3 4)α, sk = (1 5)(2 3)α, for example. In standard notation, this is the
exceptional finite Coxeter group H3.

Remark 3. These Coxeter generators are not unique, since Out(A5 × C2) ∼= C2.
There are then two sets of Coxeter generators up to conjugation, the other one given
by conjugation by a suitable g ∈ S5 \ A5, for instance, conjugating by g = (2 4):
s′i = (1 4)(3 5)α, s′j = (1 4)(2 3)α, s′k = (1 5)(3 4)α. In the first case sjsk =
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S4 × C2 e sisk sisj sjsk (sjsk)
2 (sisjsk)

3 si sisjsk si(sjsk)
2 sk

ρ1 ⊗ ξ1
ρ1 ⊗ ξ2
ρ1 ⊗ ξ3 TS4 TS4

ρ1 ⊗ ξ4
ρ1 ⊗ ξ5
ρ2 ⊗ ξ1
ρ2 ⊗ ξ2
ρ2 ⊗ ξ3 TS4 −TS4

ρ2 ⊗ ξ4
ρ2 ⊗ ξ5

Table 17. Character table of 〈si, sj , sk〉 ∼= ∆(2, 3, 4) = S4 × C2.

S4 × C2 (1) (12) (123) (1234) (12)(34) α α(12) α(123) α(1234) α(12)(34)

α1 1 1 1 1 1 1 1 1 1 1
α2 0 −2 0 −2 0 0 −2 0 −2 0
α3 0 0 −3 0 0 0 0 −3 0 0
α4 0 −2 0 4 −4 2 0 2 6 −2
α5 0 0 0 4 0 0 0 0 4 0

α6 0 2 0 2 0 −2 0 −2 0 −2
α7 0 −4 0 0 0 0 0 0 4 0
α8 0 0 0 0 0 0 0 6 0 0
α9 0 0 0 6 −4 4 0 4 −6 8
α10 0 0 0 0 0 0 0 0 −8 0

where α1 := ρ1 ⊗ ξ1, α2 := ρ1 ⊗ ξ̃2, α3 := ρ1 ⊗ ξ̃3, α4 := ρ1 ⊗ (ξ̃4 + 2ξ̃5)− (ρ2 ⊗ ξ1 − ρ1 ⊗ ξ2),

α5 := ρ1 ⊗ ξ̃5, α6 := ρ2 ⊗ ξ1 − ρ1 ⊗ ξ2, α7 := ρ2 ⊗ ξ2 − ρ2 ⊗ ξ1 + ρ1 ⊗ (ξ5 − ξ4),

α8 := (ρ2 − ρ1)⊗ ξ̃3, α9 := ρ2 ⊗ (ξ̃4 + 2ξ̃5) + (ρ1 − ρ2)⊗ (ξ1 + ξ2), α10 := (ρ2 − ρ1) ⊗ ξ̃5.

Table 18. Base transformation of the character table of
〈si, sj , sk〉 ∼= ∆(2, 3, 4) = S4 × C2.

(1 3 4 2 5), conjugated to (1 2 3 4 5), and in the second case s′js
′
k = (1 3 2 4 5),

conjugated to (1 3 2 4 5), which represent different conjugacy classes in A5.

A character table for the alternating group A5 reads as follows.

A5 e (1 2 3) (1 2)(3 4) (1 2 3 4 5) (1 3 4 5 2)
ξ1 1 1 1 1 1
ξ2 4 1 0 −1 −1
ξ3 5 −1 1 0 0

ξ4 3 0 −1 1+
√
5

2
1−

√
5

2

ξ5 3 0 −1 1−
√
5

2
1+

√
5

2

If we call TA5 the matrix of coefficients of this table then the character table of
∆(2, 3, 5) is given by Table 19, where we have used the following representatives of
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the conjugacy classes in terms of the Coxeter generators (‘∼’ means ‘conjugate’)

e ∼ e α ∼ (sisjsk)
5

(1 2 3) ∼ sisj (1 2 3)α ∼ si(sjsk)
2

(1 2)(3 4) ∼ sisk (1 2)(3 4)α ∼ si

(1 2 3 4 5) ∼ sjsk (1 2 3 4 5)α ∼ sisjsk

(1 2 3 5 4) ∼ (sisjsk)
4 (1 2 3 5 4)α ∼ sjsisk

A5 × C2 e sisj sisk sjsk (sisjsk)
4 (sisjsk)

5 si(sjsk)
2 si sisjsk sjsisk

ρ1 ⊗ ξ1
ρ1 ⊗ ξ2
ρ1 ⊗ ξ3 TA5 TA5

ρ1 ⊗ ξ4
ρ1 ⊗ ξ5
ρ2 ⊗ ξ1
ρ2 ⊗ ξ2
ρ2 ⊗ ξ3 TA5 −TA5

ρ2 ⊗ ξ4
ρ2 ⊗ ξ5

Table 19. Character table of 〈si, sj , sk〉 ∼= ∆(2, 3, 5) = A5 × C2.

Remark 4. With the non-conjugate set of Coxeter generators s′i, s
′
j , s

′
k (see Remark

3), we get the analogous set of representatives except swapping the obvious ones,
that is, sjsk ∼ (s′is

′
js

′
k)

4, (sisjsk)
4 ∼ s′js

′
k, (sisjsk)

5sjsk ∼ s′is
′
js

′
k and sisjsk ∼

(s′is
′
js

′
k)

5s′js
′
k. On the character table this amounts to interchanging ρi ⊗ ξ4 with

ρi ⊗ ξ5 for i = 1 and 2.

For the base transformation required, first note that the character table for the
alternating group A5 above can be transformed as follows,

A5 e (1 2 3) (1 2)(3 4) (1 2 3 4 5) (1 3 4 5 2)
ξ1 1 1 1 1 1

ξ̃2 := ξ2 − 4ξ1 0 −3 −4 −5 −5

ξ̃3 := ξ3 − ξ2 − ξ1 0 −3 0 0 0

ξ̃4 := ξ4 − ξ2 + ξ1 0 0 0 5+
√
5

2
5−

√
5

2

ξ̃5 := ξ5 + ξ4 − ξ1 − ξ3 0 0 −4 0 0

and then

A5 e (1 2 3) (1 2)(3 4) (1 2 3 4 5) (1 3 4 5 2)
ξ1 1 1 1 1 1

˜̃
ξ2 := ξ̃2 − ξ̃3 − ξ̃5 0 0 0 −5 −5

ξ̃3 0 −3 0 0 0

ξ̃4 0 0 0 5+
√
5

2
5−

√
5

2

ξ̃5 0 0 −4 0 0

With this notation, the required base transformation is given in Table 20.
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A5 × C2 e sisj sisk sjsk (sisjsk)
4 (sisjsk)

5 si(sjsk)
2 si sisjsk sjsisk

β1 1 1 1 1 1 1 1 1 1 1

β2 0 0 0
√
5 −

√
5 0 0 0

√
5 −

√
5

β3 0 −3 0 0 0 0 −3 0 0 0

β4 0 0 0 5+
√

5
2

5−
√

5
2

0 0 0 5+
√

5
2

5−
√

5
2

β5 0 0 −4 0 0 4 4 0 4 4

β6 0 0 0 0 0 −2 −2 −2 −2 −2
β7 0 0 0 0 0 0 0 0 10 10
β8 0 0 0 0 0 0 6 0 0 0

β9 0 0 0 0 0 0 0 0 −5−
√
5 −5 +

√
5

β10 0 0 0 0 0 −8 −8 0 −8 −8

where β1 := ρ1 ⊗ ξ1, β2 := ρ1 ⊗ ˜̃
ξ2 + 2ρ1 ⊗ ξ̃4, β3 := ρ1 ⊗ ξ̃3, β4 := ρ1 ⊗ ξ̃4,

β5 := ρ1 ⊗ ξ̃5 − 2(ρ2 − ρ1)⊗ ξ1, β6 := (ρ2 − ρ1) ⊗ ξ1, β7 := (ρ2 − ρ1)⊗ ˜̃
ξ2, β8 := (ρ2 − ρ1)⊗ ξ̃3,

β9 := (ρ2 − ρ1) ⊗ ξ̃4, β10 := (ρ2 − ρ1)⊗ (ξ̃5 + 4ξ1).

Table 20. Base transformation of the character table of
〈si, sj , sk〉 ∼= ∆(2, 3, 5) = A5 × C2.

Appendix B. Induction homomorphisms

In this Appendix, we compute all possible induction homomorphisms RC (H) →
RC (G) appearing in the Bredon chain complex (6). That is, G is a finite Coxeter
subgroup of Γ of rank n generated by n ≤ 3 of the Coxeter generators (1), and H is
a subgroup of G generated by a subset of exactly n−1 of those Coxeter generators.

We give explicit induction homomorphisms with respect to the standard charac-
ter tables, and also with respect to the transformed bases in Appendix A for rank
3 subgroups, as this is needed for the simultaneous base transformation argument
in the proof that HFin

0 (Γ; RC) is torsion-free (Section 4).
We implicitly use the character tables and notation in Appendix A, and Frobe-

nius reciprocity [23], throughout this Appendix. We also note that Frobenius reci-
procity extends linearly:

Lemma 3. If H is a subgroup of a finite group G and φ and η, respectively τ and
π, are representations of G, respectively H, then

(φ ↓ +ξ ↓ |τ + π) = (φ + ξ|τ ↑ +π ↑) .

Proof.

(φ ↓ +ξ ↓ |τ + π) =
1

|H |

∑

h∈H

(φ ↓ +ξ ↓)(h) · (τ + π)(h)

=
1

|H |

∑

h∈H

(φ ↓ ·τ + ξ ↓ ·τ + φ ↓ ·π + ξ ↓ ·π)(h)

which by Frobenius reciprocity on irreducible characters equals

1

|G|

∑

g∈G

(φ · τ ↑ +ξ · τ ↑ +φ · π ↑ +ξ · π ↑)(h) = (φ+ ξ|τ ↑ +π ↑) . �

B.1. Rank 1. The only induction homomorphism in this case is

RC ({e}) → RC (〈si〉)
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which must the regular representation τ 7→ ρ1 + ρ2 shown, in terms of free abelian
groups, in Figure 2.

RC({e}) → RC(C2)

Z → Z2

a 7→ (a, a)

Figure 2. Induction homomorphism from H = {e} to G = 〈si〉 ∼= C2.

B.2. Rank 2. In this case G is a dihedral group with the presentation

G = 〈si, sj | s
2
i = s2j = (sisj)

m〉 ,

where m = mij and we assume i < j. Consider first the case H = 〈si〉. The
characters of Dm (Table 5) restricted to H are (note that si = sj(sisj)

m−1)

Dm ↓ e si
χ1 1 1
χ2 1 −1
χ̂3 1 −1
χ̂4 1 1
φp 2 0

Multiplying with the rows of the character table of H ∼= C2 (Table 3) we obtain
the induced representations

ρ1 ↑ = χ1 + χ̂4 +
∑

φp,
ρ2 ↑ = χ2 + χ̂3 +

∑
φp.

The other case is when H = 〈sj〉. This is analogous, but note that, in order to keep
the notation consistent with Table 4, the characters χ3 and χ4 must be interchanged
in the even case. Specifically, we have now sj = sj(sisj)

0 and hence

Dm ↓ e sj
χ1 1 1
χ2 1 −1
χ̂3 1 1
χ̂4 1 −1
φp 2 0

and therefore

ρ1 ↑ = χ1 + χ̂3 +
∑

φp,
ρ2 ↑ = χ2 + χ̂4 +

∑
φp.

All in all, as maps of free abelian groups, we have that the induction homomor-
phisms RC (H) → RC (G) shown in Figure 3.

B.3. Rank 3. We compute each case individually.
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RC(H) → RC(G)

Z2 → Zc(Dm)

(a, b) 7→ (a, b, b̂, â, a+ b, . . . , a+ b) for H = 〈si〉,

(a, b) 7→ (a, b, â, b̂, a+ b, . . . , a+ b) for H = 〈sj〉,

Figure 3. Induction homomorphisms from H to G = 〈si, sj〉 ∼=
Dm, m = mij and i < j.

B.3.1. G = ∆(2, 2, 2). This group is isomorphic to C2 × C2 × C2, and has Coxeter
generators si, sj , sk where i < j < k. We compute the induction homomorphisms
for the Coxeter subgroups 〈si, sj〉, 〈si, sk〉 and 〈sj , sk〉, all three direct factors of
G and isomorphic to C2 × C2. Using the bases of RC(C2 × C2) and RC(∆(2, 2, 2))
induced from C2 (Tables 5 and 9), we immediately obtain the induction homomor-
phisms shown, as maps of free abelian groups, shown in Figure 4.

Remark 5. Recall how to the induction homomorphism works from a group A to
direct product A×B: if ρ is a representation of A then IndA×B

A (ρ) = ρ⊗ rB, where
rB is the regular representation of B.

RC(H) → RC(G)

Z4 → Z8

(a, b, c, d) 7→ (a, a, b, b, c, c, d, d) for H = 〈si, sj〉,

(a, b, c, d) 7→ (a, b, a, b, c, d, c, d) for H = 〈si, sk〉,

(a, b, c, d) 7→ (a, b, c, d, a, b, c, d) for H = 〈sj , sk〉.

Figure 4. Induction homomorphisms from H to G =
〈si, sj , sk〉 ∼= ∆(2, 2, 2) = C2 × C2 × C2, and i < j < k.

On the other hand, with respect to the transformed bases (Tables 6 and 10 in
Appendix A), the induction homomorphisms take the form shown in Tables 21, 22,
and 23. Note that, for the transformed bases, we show the restricted characters,
and the induced map, in two adjacent tables separated by double vertical bars.

B.3.2. G = ∆(2, 2,m), m > 2. This group is isomorphic to C2 ×Dm with Coxeter
presentation

∆(2, 2,m) =
〈
si, sj, sk | s2i , s

2
j , s

2
k, (sisj)

2, (sisk)
2, (sjsk)

m
〉
,

We have three relevant Coxeter subgroups H , which we treat separately. In each
case, we restrict the characters of G (Table 11) to the subgroup H and then use
Frobenius reciprocity to write the induced characters of H into G in terms of the
characters of G.

Case 1: H = 〈si, sj〉 ∼= D2 = C2 × C2.

The elements e, si, sj and sisj of H are obtained from the 1st, 3rd, 2nd and 4th
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〈sj , sk〉 →֒ C2 ×C2 × C2 e sj sk sjsk (·|
∑

χi) (·|χ2 + χ3) (·|χ3 + χ4) (·|χ4)

ρ111 ↓ 1 1 1 1 1 0 0 0
ρ112 − ρ111 ↓ 0 0 −2 −2 0 1 0 0
ρ121 − ρ111 ↓ 0 −2 0 −2 0 0 1 1
ρ122 − ρ121 ↓ 0 0 −2 2 0 1 0 −1
ρ211 − ρ111 ↓ 0 0 0 0 0 0 0 0
ρ212 − ρ211 ↓ 0 0 −2 −2 0 1 0 0
ρ221 − ρ121 ↓ 0 0 0 0 0 0 0 0
ρ222 − ρ221 ↓ 0 0 −2 2 0 1 0 −1

Table 21. Restricted characters and induced map 〈sj , sk〉 →֒
∆(2, 2, 2) = C2 × C2 × C2.

〈si, sk〉 →֒ C2 × C2 × C2 e si sk sisk (·|
∑

χi) (·|χ2 + χ3) (·|χ3 + χ4) (·|χ4)

ρ111 ↓ 1 1 1 1 1 0 0 0
ρ112 − ρ111 ↓ 0 0 −2 −2 0 1 0 0
ρ121 − ρ111 ↓ 0 0 0 0 0 0 0 0
ρ122 − ρ121 ↓ 0 0 −2 −2 0 1 0 0
ρ211 − ρ111 ↓ 0 −2 0 −2 0 0 1 1
ρ212 − ρ211 ↓ 0 0 −2 2 0 1 0 −1
ρ221 − ρ121 ↓ 0 −2 0 −2 0 0 1 1
ρ222 − ρ221 ↓ 0 0 −2 2 0 1 0 −1

Table 22. Restricted characters and induced map 〈si, sk〉 →֒
∆(2, 2, 2) = C2 × C2 × C2.

〈si, sj〉 →֒ C2 × C2 × C2 e si sj sisj (·|
∑

χi) (·|χ2 + χ3) (·|χ3 + χ4) (·|χ4)

ρ111 ↓ 1 1 1 1 1 0 0 0
(ρ112 − ρ111) ↓ 0 0 0 0 0 0 0 0
(ρ121 − ρ111) ↓ 0 0 −2 −2 0 1 0 0
(ρ122 − ρ121) ↓ 0 0 0 0 0 0 0 0
(ρ211 − ρ111) ↓ 0 −2 0 −2 0 0 1 1
(ρ212 − ρ211) ↓ 0 0 0 0 0 0 0 0
(ρ221 − ρ121) ↓ 0 −2 0 2 0 0 1 0
(ρ222 − ρ221) ↓ 0 0 0 0 0 0 0 0

Table 23. Restricted characters and induced map D2
∼=

〈si, sj〉 →֒ ∆(2, 2, 2) = C2 × C2 × C2.

column of Table 11 for r equals 0, 0, n − 1 and n − 1 respectively, giving the re-
strictions (by abuse of notation we indicate the restricted character with the same
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symbols):

C2 ×Dm ↓ e si sj sisj
ρ1 ⊗ χ1 1 1 1 1
ρ1 ⊗ χ2 1 1 −1 −1
ρ1 ⊗ χ̂3 1 1 −1 −1
ρ1 ⊗ χ̂4 1 1 1 1
ρ1 ⊗ φp 2 2 0 0
ρ2 ⊗ χ1 1 −1 1 −1
ρ2 ⊗ χ2 1 −1 −1 1
ρ2 ⊗ χ̂3 1 −1 −1 1
ρ2 ⊗ χ̂4 1 −1 1 −1
ρ2 ⊗ φp 2 −2 0 0

Now we use Frobenius reciprocity (multiply the rows of the character tables of
H with those of G ↓ H above, and divide by |H | = 4) to obtain the coefficients
of the induced irreducible representations of H in G in terms of the irreducible
representations of G. If i < j then the character table of H is the one given in
Table 5, but if j < i we should interchange the second and third characters (rows)
in that table. This gives

ρ1 ⊗ ρ1 ↑ = ρ1 ⊗ χ1 + ̂ρ1 ⊗ χ4 +
∑

ρ1 ⊗ φp

ρ1 ⊗ ρ2 ↑ = ρ1 ⊗ χ2 + ̂ρ1 ⊗ χ3 +
∑

ρ1 ⊗ φp

ρ2 ⊗ ρ1 ↑ = ρ2 ⊗ χ1 + ̂ρ2 ⊗ χ4 +
∑

ρ2 ⊗ φp

ρ2 ⊗ ρ2 ↑ = ρ2 ⊗ χ2 + ̂ρ2 ⊗ χ3 +
∑

ρ2 ⊗ φp

if i < j, and

ρ1 ⊗ ρ1 ↑ = ρ1 ⊗ χ1 + ̂ρ1 ⊗ χ4 +
∑

ρ1 ⊗ φp

ρ1 ⊗ ρ2 ↑ = ρ2 ⊗ χ1 + ̂ρ2 ⊗ χ4 +
∑

ρ2 ⊗ φp

ρ2 ⊗ ρ1 ↑ = ρ1 ⊗ χ2 + ̂ρ1 ⊗ χ3 +
∑

ρ1 ⊗ φp

ρ2 ⊗ ρ2 ↑ = ρ2 ⊗ χ2 + ̂ρ2 ⊗ χ3 +
∑

ρ2 ⊗ φp

if j < i. Equivalently, as a map of free abelian groups, we have the homomorphisms
shown in Figure 5.

RC (H) → RC (G)

Z4 → Z2·c(Dm)

(a, b, c, d) 7→ (a, b, b̂, â, a+ b, . . . , a+ b, c, d, d̂, ĉ, c+ d, . . . , c+ d) if i < j,

(a, b, c, d) 7→ (a, c, ĉ, â, a+ c, . . . , a+ c, b, d, d̂, b̂, b+ d, . . . , b+ d) if j < i.

Figure 5. Induction homomorphisms fromH = 〈si, sj〉 ∼= C2×C2

to G = 〈si, sj , sk〉 ∼= ∆(2, 2,m) = C2 × Dm, m = mjk > 2, and
j < k.

Case 2: H = 〈si, sk〉 ∼= C2 × C2.
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Restricting Table 11 to H (1st, 3rd, 2nd and 4th column for k equals 0) we get

C2 ×Dm ↓ e si sk sisk
ρ1 ⊗ χ1 1 1 1 1
ρ1 ⊗ χ2 1 1 −1 −1
ρ1 ⊗ χ̂3 1 1 1 1
ρ1 ⊗ χ̂4 1 1 −1 −1
ρ1 ⊗ φp 2 2 0 0
ρ1 ⊗ χ1 1 −1 1 −1
ρ1 ⊗ χ2 1 −1 −1 1
ρ1 ⊗ χ̂3 1 −1 1 −1
ρ1 ⊗ χ̂4 1 −1 −1 1
ρ1 ⊗ φp 2 −2 0 0

Via Frobenius reciprocity we obtain, assumming first i < k,

ρ1 ⊗ ρ2 ⊗

ρ1 ⊗ ρ1 ↑ = ρ1 ⊗ χ1 + ̂ρ1 ⊗ χ3 +
∑

ρ1 ⊗ φp

ρ1 ⊗ ρ2 ↑ = ρ1 ⊗ χ2 + ̂ρ1 ⊗ χ4 +
∑

ρ1 ⊗ φp

ρ2 ⊗ ρ1 ↑ = ρ2 ⊗ χ1 + ̂ρ2 ⊗ χ3 +
∑

ρ2 ⊗ φp

ρ2 ⊗ ρ2 ↑ = ρ2 ⊗ χ2 + ̂ρ2 ⊗ χ4 +
∑

ρ2 ⊗ φp

If k < i, the calculation is the same but we must interchange again the 2nd and
3rd generators. All in all, we have the homomorphisms shown in Figure 6 as maps
between free abelian groups.

RC (H) → RC (G)

Z4 → Z2·c(Dm)

(a, b, c, d) 7→ (a, b, â, b̂, a+ b, . . . , a+ b, c, d, ĉ, d̂, c+ d, . . . , c+ d) if i < k,

(a, b, c, d) 7→ (a, c, â, ĉ, a+ c, . . . , a+ c, b, d, b̂, d̂, b+ d, . . . , b+ d) if k < i.

Figure 6. Induction homomorphisms fromH = 〈si, sk〉 ∼= C2×C2

to G = 〈si, sj , sk〉 ∼= ∆(2, 2,m) = C2 × Dm, m = mjk > 2, and
j < k.

Case 3: H = 〈sj , sk〉 ∼= Dm

In this case the condition j < k already holds. Restricting Table 11 to H (the first
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two columns)

C2 ×Dm ↓ (sjsk)
r sk(sjsk)

r

ρ1 ⊗ χ1

ρ1 ⊗ χ2

ρ1 ⊗ χ̂3 Tm

ρ1 ⊗ χ̂4

ρ1 ⊗ φp

ρ2 ⊗ χ1

ρ2 ⊗ χ2

ρ2 ⊗ χ̂3 Tm

ρ2 ⊗ χ̂4

ρ2 ⊗ φp

where Tm are the coefficients of the character table of Dm as in Table 4. This
immediately gives

χi ↑ = ρ1 ⊗ χi + ρ2 ⊗ χi for all i, and
φp ↑ = ρ1 ⊗ φi + ρ2 ⊗ φp for all p.

Equivalently, as a map of free abelian groups, this induction homomorphism is the
one given in Figure 7.

RC (H) → RC (G)

Zc(Dm) → Z2·c(Dm)

(a, b, ĉ, d̂, r1, . . . , rN ) 7→ (a, b, ĉ, d̂, r1, . . . , rN , a, b, ĉ, d̂, r1, . . . , rN ).

Figure 7. Induction homomorphisms from H = 〈sj , sk〉 ∼= Dm to
G = 〈si, sj , sk〉 ∼= ∆(2, 2,m) = C2×Dm, m = mjk > 2, and j < k.

Finally, we compute the induction homomorphisms with respect to the trans-
formed basis (Tables 6, 7, 8, 12, 13, 14 in Appendix A), summarising the results in
Tables 24 to 29.

B.3.3. G = ∆(2, 3, 3). This group is isomorphic to the symmetric group S4 with
Coxeter presentation

(14) ∆(2, 3, 3) =
〈
si, sj , sk | s2i , s

2
j , s

2
k, (sisj)

3, (sisk)
2, (sjsk)

3
〉

and we assume i < k. We have again three relevant Coxeter subgroups H .

Case 1: H = 〈si, sj〉 ∼= D3

The expanded character table for D3 (from Table 4), assuming first i < j, is

D3 e si sj sisj sjsi sisjsi
χ1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 −1
φ1 2 0 0 −1 −1 0

There are 3 conjugacy classes, {e}, {si, sj, sisjsi = sjsisj} and {sisj , sjsi}, which
remain unchanged if we swap si and sj , hence if j < i the table stays the same
and we do not have to treat those two cases separately. The character table of G
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Dm →֒ Dm × C2 si (sisj)
r α1 α2 α3 βk

ρ1 ⊗ χ1 ↓ 1 1 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ −2 0 0 1 0 0

ρ1 ⊗ (φ1 − χ2 − χ1) ↓ 0 br 0 0 1 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 ap,r 0 0 0 δp,k
(ρ2 − ρ1)⊗ χ1 ↓ 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0

... (ρ2 − ρ1)⊗ (φp − φp−1) ↓
... 0 0 0 0 0 0

where α1 :=
2∑

ℓ=1

χℓ + 2
(m−1)/2∑

ℓ=1

φℓ, α2 := χ2 +
(m−1)/2∑

ℓ=1

φℓ, α3 :=
(m−1)/2∑

ℓ=1

φℓ,

βk :=
(m−1)/2∑

ℓ=k

φℓ.

Table 24. Restricted characters and map induced by Dm →֒
∆(2, 2,m) = Dm × C2 for m ≥ 3 odd. Here ap,r := 2 cos(2πpr

m
) −

2 cos(2π(p−1)r
m

), br := 2 cos(2πr
m

) − 2, δp,k the Kronecker delta,

2 ≤ p, k ≤ m−1
2 and 0 ≤ r ≤ m−1

2 .

D2 →֒ Dm × C2 e si α αsi
∑

χi χ2 + χ̂3 χ̂3 χ̂3 + χ̂4

ρ1 ⊗ χ1 ↓ 1 1 1 1 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ 0 −2 0 −2 0 0 0 1

ρ1 ⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 0 −2 −2 0 1 0 0
(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 0 4 0 0 1 0

(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
... (ρ2 − ρ1)⊗ (φp − φp−1) ↓

... 0 0 0 0 0 0 0 0

Table 25. Restricted characters and map induced by the two in-
clusions D2 →֒ ∆(2, 2,m) = Dm × C2, for m ≥ 3 odd. Here
2 ≤ p ≤ m−1

2 .

(Table 15) restricted to H consists on the 1st, 2nd, 2nd, 3rd, 3rd, 2nd columns
(since si ∼ sj, sjsi ∼ sisj and sisjsi ∼ si):

S4 ↓ e si sj sisj sjsi sisjsi
ξ1 1 1 1 1 1 1
ξ2 1 −1 −1 1 1 −1
ξ3 2 0 0 −1 −1 0
ξ4 3 1 1 0 0 1
ξ5 3 −1 −1 0 0 −1
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Dm →֒ Dm × C2 si (sisj)
r sjsisj α1 α2 α3 α4 α5 βk

ρ1 ⊗ χ1 ↓ 0 0 1 1 0 0 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ −2 0 −2 0 1 0 1 0 0
ρ1 ⊗ (χ3 − χ2) ↓ 0 cr −2 0 0 1 −1 0 0
ρ1 ⊗ (χ4 − χ1) ↓ −2 cr 0 0 0 0 1 0 0

ρ1 ⊗ (φ1 − χ3 − χ1) ↓ −2 br 0 0 0 0 1 1 0
..
. ρ1 ⊗ (φp − φp−1) ↓

..

. 0 ap,r 0 0 0 0 0 0 δp,k
(ρ2 − ρ1)⊗ χ1 ↓

(ρ2 − ρ1)⊗ (χ2 − χ1) ↓
(ρ2 − ρ1)⊗ (χ3 − χ2) ↓ 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓
(ρ2 − ρ1) ⊗ (φ1 − χ2 − χ1) ↓

... (ρ2 − ρ1)⊗ (φp − φp−1) ↓
...

where α1 :=
4∑

ℓ=1
χℓ + 2

m
2
−1∑
p

φp, α2 := χ2 + χ3 +

m
2

−1∑
ℓ=1

φℓ, α3 := χ3 +

m
2

−1∑
ℓ=1

φℓ,

α4 := χ2 + χ4 +

m
2

−1∑
ℓ=1

φℓ, α5 :=

m
2
−1∑

ℓ=1
φℓ, βk :=

m
2

−1∑
ℓ=k

φℓ.

Table 26. Restricted characters and map induced by the inclusion
Dm →֒ ∆(2, 2,m) = Dm × C2, for m ≥ 6 even, not a power of 2.

Here ap,r := 2 cos(2πpr
m

)−2 cos(2π(p−1)r
m

), br := 2 cos(2πr
m

)−(−1)r−
1, cr := (−1)r − 1, δp,k the Kronecker delta, 2 ≤ p, k ≤ m

2 − 1, and
0 ≤ r ≤ m

2 .

D2 →֒ Dm × C2 e sjsisj α αsjsisj
∑

χi χ2 + χ̂3 χ̂3 χ̂3 + χ̂4

ρ1 ⊗ χ1 ↓ 1 1 1 1 1 0 0 0

ρ1 ⊗ (χ2 − χ1) ↓ 0 −2 0 −2 0 0 0 1
ρ1 ⊗ (χ3 − χ2) ↓ 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ1) ↓ 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ3 − χ1) ↓ 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 0 −2 −2 0 1 0 0
(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 0 4 0 0 1 0
(ρ2 − ρ1)⊗ (χ3 − χ2) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0

... (ρ2 − ρ1)⊗ (φp − φp−1) ↓
... 0 0 0 0 0 0 0 0

Table 27. Restricted characters and map induced by the two in-
clusions D2 →֒ ∆(2, 2,m) = Dm × C2, for m ≥ 2 even, not a
power of 2. Here 2 ≤ p ≤ m

2 − 1. Our choice on the generators
is (12)(34) 7→ sjsisj and (12) 7→ α; any other choice yields an
equivalent matrix.

Multiplying rows and dividing by |H | = 6 we obtain

χ1 ↑ = ξ1 + ξ4
χ2 ↑ = ξ2 + ξ5
φ1 ↑ = ξ3 + ξ4 + ξ5
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Dm →֒ Dm × C2 si (sisj)
r sjsisj α1 α2 α3 α4 α5 βk

ρ1 ⊗ χ1 ↓ 1 1 1 1 0 0 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ −2 0 −2 0 1 0 1 0 0
ρ1 ⊗ (χ3 − χ2) ↓ 0 cr −2 0 1 1 0 0 0
ρ1 ⊗ (χ4 − χ1) ↓ 0 cr 2 0 −1 0 0 0 0

ρ1 ⊗ (φ1 − χ3 − χ1) ↓ 0 br 0 0 0 1 0 1 0
..
. ρ1 ⊗ (φp − φp−1) ↓

..

. 0 ap,r 0 0 0 0 0 0 δp,k
(ρ2 − ρ1)⊗ χ1 ↓

(ρ2 − ρ1)⊗ (χ2 − χ1) ↓
(ρ2 − ρ1)⊗ (χ3 − χ2) ↓ 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓
(ρ2 − ρ1) ⊗ (φ1 − χ2 − χ1) ↓

... (ρ2 − ρ1)⊗ (φp − φp−1) ↓
...

where α1 :=
4∑

ℓ=1
χℓ + 2

m
2
−1∑
p

φp, α2 := χ2 + χ3 +

m
2

−1∑
ℓ=1

φℓ, α3 := χ3 +

m
2

−1∑
ℓ=1

φℓ,

α4 := χ2 + χ4 +

m
2

−1∑
ℓ=1

φℓ, α5 :=

m
2
−1∑

ℓ=1
φℓ, βk :=

m
2

−1∑
ℓ=k

φℓ.

Table 28. Restricted characters and map induced by the inclusion
Dm →֒ ∆(2, 2,m) = Dm×C2, for m ≥ 4 a power of 2. Here ap,r :=

2 cos(2πpr
m

)− 2 cos(2π(p−1)r
m

), br := 2 cos(2πr
m

)− 2, cr := (−1)r − 1,
δp,k the Kronecker delta, 2 ≤ p, k ≤ m

2 − 1 where 1 < r < m
2 and

1 < k < m
2 − 1.

D2 →֒ Dm × C2 e si α αsi
∑

χi χ2 + χ̂3 χ̂3 χ̂3 + χ̂4

ρ1 ⊗ χ1 ↓ 1 1 1 1 1 0 0 0
ρ1 ⊗ (χ2 − χ1) ↓ 0 −2 0 −2 0 0 0 1
ρ1 ⊗ (χ3 − χ1) ↓ 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ2) ↓ 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 0 −2 −2 0 1 0 0
(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 0 4 0 0 1 0
(ρ2 − ρ1)⊗ (χ3 − χ1) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0

... (ρ2 − ρ1)⊗ (φp − φp−1) ↓
... 0 0 0 0 0 0 0 0

Table 29. Restricted characters and map induced by the two in-
clusions D2 →֒ ∆(2, 2,m) = Dm × C2, for m ≥ 4 a power of 2.
Here 2 ≤ p ≤ m

2 −1. Our choice on the generators is (12)(34) 7→ si
and (12) 7→ α, and any other choice yields an equivalent matrix.

Equivalently, we have the map of free abelian groups shown in Figure 8.

Case 2: H = 〈sj , sk〉 ∼= D3
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RC (H) → RC (G)

Z3 → Z5

(a, b, c) 7→ (a, b, c, a+ c, b+ c).

Figure 8. Induction homomorphism from H = 〈si, sj〉 ∼= D3 or
H = 〈sj , sk〉 ∼= D3 to G = 〈si, sj , sk〉 ∼= ∆(2, 3, 3) = S4, and i < k.

This case is completely analogous to the previous one, so we obtain the same map,
also shown in Figure 8.

Case 3: H = 〈si, sk〉 ∼= D2 = C2 × C2

The character table of G (Table 15) restricted to H consists on the 1st, 2nd, 2nd,
5th columns:

S4 ↓ e si sk sisk
ξ1 1 1 1 1
ξ2 1 −1 −1 1
ξ3 2 0 0 2
ξ4 3 1 1 −1
ξ5 3 −1 −1 −1

Multiplying the rows with the characters of H (Table 5) and dividing by |H | = 4
we obtain (note that i < k already holds)

ρ1 ⊗ ρ1 ↑ = ξ1 + ξ3 + ξ4
ρ1 ⊗ ρ2 ↑ = ξ4 + ξ5
ρ2 ⊗ ρ1 ↑ = ξ4 + ξ5
ρ2 ⊗ ρ2 ↑ = ξ2 + ξ3 + ξ5

Equivalently, this is the homomorphism of abelian groups shown in Figure 9. Note
that this is the first time that of an induction homomorphism with nontrivial kernel.

RC (H) → RC (G)

Z4 → Z5

(a, b, c, d) 7→ (a, d, a+ d, a+ b+ c, b+ c+ d).

Figure 9. Induction homomorphism from H = 〈si, sk〉 ∼= C2×C2

to G = 〈si, sj , sk〉 ∼= ∆(2, 3, 3) = S4, and i < k.

Now we give the induction homomorphisms with respect to the transformed
bases (Tables 6, 7, 16 in Appendix A), summarised in Table 30.

B.3.4. G = ∆(2, 3, 4). This group is isomorphic to S4 ×C2 with Coxeter presenta-
tion

∆(2, 3, 4) =
〈
si, sj, sk | s2i , s

2
j , s

2
k, (sisj)

3, (sisk)
2, (sjsk)

4
〉
.

The three relevant induction homomorphism are as follows.

Case 1: H = 〈si, sk〉 ∼= D2 = C2 × C2



36 LAFONT, ORTIZ, RAHM, AND SÁNCHEZ-GARCÍA

D2 →֒ S4 (1) (1 2) (1 2)(3 4) (ξ̃i|
∑

χi) (ξ̃i|χ2 + χ̂3) (ξ̃i|χ̂3) (ξ̃i|χ̂4)

ξ̃1 ↓ 1 1 1 1 0 0 0

ξ̃2 ↓ 0 −2 0 0 1 0 0

ξ̃3 ↓ 0 0 0 0 0 0 0

ξ̃4 ↓ 0 0 −4 0 0 1 1

ξ̃5 ↓ 0 0 0 0 0 0 0

D3 →֒ S4 (1) (12) (123) (ξ̃i|2φ1 +
∑

χi) (ξ̃i|χ2 + φ1) (ξ̃i|φ1)

ξ̃1 ↓ 1 1 1 1 0 0

ξ̃2 ↓ 0 −2 0 0 1 0

ξ̃3 ↓ 0 0 −3 0 0 1

ξ̃4 ↓ 0 0 0 0 0 0

ξ̃5 ↓ 0 0 0 0 0 0

where ξ̃1 := ξ1, ξ̃2 := ξ2 − ξ1, ξ̃3 := ξ3 − ξ2 − ξ1, ξ̃4 := ξ4 − ξ3 − ξ1,

ξ̃5 := ξ5 − ξ4 − ξ2 + ξ1.

Table 30. Restricted characters and map induced by the inclu-
sions of D2 and D3 into S4. The second inclusion 〈(23), (34)〉 ∼=
D3 →֒ S4 induces the same map as the first one, because (23) ∼
(12) and (234) ∼ (123).

The character table of G (Table 17) restricted to H consists on the 1st, 7th, 10th
and 2nd columns:

S4 × C2 ↓ e si sk sisk
ρ1 ⊗ ξ1 1 1 1 1
ρ1 ⊗ ξ2 1 −1 1 −1
ρ1 ⊗ ξ3 2 0 2 0
ρ1 ⊗ ξ4 3 1 −1 1
ρ1 ⊗ ξ5 3 −1 −1 −1
ρ2 ⊗ ξ1 1 −1 −1 1
ρ2 ⊗ ξ2 1 1 −1 −1
ρ2 ⊗ ξ3 2 0 −2 0
ρ2 ⊗ ξ4 3 −1 1 1
ρ2 ⊗ ξ5 3 1 1 −1

Suppose first that i < k. Multiplying these rows with the rows of Table 5 we deduce
that (note the shortcut in notation)

ρ1 ⊗ ρ2 ⊗

ρ1 ⊗ ρ1 ↑ = ξ1 + ξ3 + ξ4+ ξ4 + ξ5
ρ1 ⊗ ρ2 ↑ = ξ4 + ξ5+ ξ2 + ξ3 + ξ5
ρ2 ⊗ ρ1 ↑ = ξ2 + ξ3 + ξ5+ ξ4 + ξ5
ρ2 ⊗ ρ2 ↑ = ξ4 + ξ5+ ξ1 + ξ3 + ξ4

On the other hand, if k < i, then we should interchange the 2nd and 3rd generators.
All in all, we have the homomorphisms of free abelian groups shown in Figure 10.

Case 2: H = 〈si, sj〉 ∼= D3
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RC (H) → RC (G)

Z4 → Z10

(a, b, c, d) 7→ (a, c, a+ c, a+ b+ d, b+ c+ d, d, b, b+ d, a+ c+ d, a+ b+ c) if i < k,

(a, b, c, d) 7→ (a, b, a+ b, a+ c+ d, b+ c+ d, d, c, c+ d, a+ b+ d, a+ b+ c) if k < i.

Figure 10. Induction homomorphism from H = 〈si, sk〉 ∼= C2 ×
C2 to G = 〈si, sj , sk〉 ∼= ∆(2, 3, 4) = S4 × C2.

The characters of G (Table 17) restricted to H consists on the 1st, 7th, 7th, 3rd,
3rd, 7th columns:

S4 × C2 ↓ e si sj sisj sjsi sisjsi
ρ1 ⊗ ξ1 1 1 1 1 1 1
ρ1 ⊗ ξ2 1 −1 −1 1 1 −1
ρ1 ⊗ ξ3 2 0 0 −1 −1 0
ρ1 ⊗ ξ4 3 1 1 0 0 1
ρ1 ⊗ ξ5 3 −1 −1 0 0 −1
ρ2 ⊗ ξ1 1 −1 −1 1 1 −1
ρ2 ⊗ ξ2 1 1 1 1 1 1
ρ2 ⊗ ξ3 2 0 0 −1 −1 0
ρ2 ⊗ ξ4 3 −1 −1 0 0 −1
ρ2 ⊗ ξ5 3 1 1 0 0 1

Multiplying these rows with the rows of character table of D3 above we deduce that
(recall that this table is fixed by interchanging the Coxeter generators)

ρ1 ⊗ ρ2 ⊗

χ1 ↑ = ξ1 + ξ4+ ξ2 + ξ5
χ1 ↑ = ξ2 + ξ5+ ξ1 + ξ4
φ1 ↑ = ξ3 + ξ4 + ξ5+ ξ3 + ξ4 + ξ5

or, equivalently, the linear map shown in Figure 11.

RC (H) → RC (G)

Z3 → Z10

(a, b, c) 7→ (a, b, c, a+ c, b+ c, b, a, c, b+ c, a+ c).

Figure 11. Induction homomorphism from H = 〈si, sj〉 ∼= D3 to
G = 〈si, sj , sk〉 ∼= ∆(2, 3, 4) = S4 × C2.

Case 3: H = 〈sj , sk〉 ∼= D4
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First we expand the character table of D4, assuming j < k,

D4 e sj sk sjsk sksj sjsksj sksjsk sjsksjsk
χ1 1 1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 −1 −1 1
χ3 1 −1 1 −1 −1 1 −1 1
χ4 1 1 −1 −1 −1 −1 1 1
φ1 2 0 0 0 0 0 0 −2

Note that if k < j we should interchange the characters χ3 and χ4 in order to
maintain the notation consistent. The characters of G restricted to H are the 1st,
7th, 10th, 4th, 4th, 10th, 7th, 5th columns of Table 17:

S4 × C2 ↓ e s2 s3 s2s3 s3s2 s2s3s2 s3s2s3 s2s3s2s3
ρ1 ⊗ ξ1 1 1 1 1 1 1 1 1
ρ1 ⊗ ξ2 1 −1 1 −1 −1 1 −1 1
ρ1 ⊗ ξ3 2 0 2 0 0 2 0 2
ρ1 ⊗ ξ4 3 1 −1 −1 −1 −1 1 −1
ρ1 ⊗ ξ5 3 −1 −1 1 1 −1 −1 −1
ρ2 ⊗ ξ1 1 −1 −1 1 1 −1 −1 1
ρ2 ⊗ ξ2 1 1 −1 −1 −1 −1 1 1
ρ2 ⊗ ξ3 2 0 −2 0 0 −2 0 2
ρ2 ⊗ ξ4 3 −1 1 −1 −1 1 −1 −1
ρ2 ⊗ ξ5 3 1 1 1 1 1 1 −1

Multiplying these rows with the rows of the character table of D4 above we deduce
that

ρ1 ⊗ ρ2 ⊗

χ1 ↑ = ξ1 + ξ3+ ξ5
χ2 ↑ = ξ5+ ξ1 + ξ3
χ3 ↑ = ξ2 + ξ3+ ξ4
χ4 ↑ = ξ4+ ξ2 + ξ3
φ1 ↑ = ξ4 + ξ5+ ξ4 + ξ5

The computation in the case k < j is identical, but interchanging χ3 and χ4. All in
all, we have the induction homomorphisms shown, as maps between abelian groups,
in Figure X

RC (H) → RC (G)

Z5 → Z10

(a, b, c, d, e) 7→ (a, c, a+ c, d+ e, b+ e, b, d, b+ d, c+ e, a+ e) if j < k,

(a, b, c, d, e) 7→ (a, d, a+ d, c+ e, b+ e, b, c, b+ c, d+ e, a+ e) if k < j.

Figure 12. Induction homomorphism from H = 〈sj , sk〉 ∼= D4 to
G = 〈si, sj , sk〉 ∼= ∆(2, 3, 4) = S4 × C2.

On the other hand, the induction homomorphisms with respect to the trans-
formed bases (Tables 7, 8, 18 in Appendix A) are summarised in Tables 31, 32 and
33.
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D2 →֒ S4 ×C2 (1) α(12) α(12)(34) (34) (·|
∑

χi) (·|χ2 + χ̂3) (·|χ̂3 + χ̂4) (·|χ̂4)

α1 ↓ 1 1 1 1 1 0 0 0
α2 ↓ 0 −2 0 −2 0 1 0 0
α3 ↓ 0 0 0 0 0 0 0 0
α4 ↓ 0 0 −2 −2 0 0 1 1
α5 ↓ 0 0 0 0 0 0 0 0

α6 ↓ 0 0 −2 2 0 0 1 0
α7 ↓ 0 0 0 −4 0 0 0 1
α8 ↓ 0 0 0 0 0 0 0 0
α9 ↓ 0 0 0 0 0 0 0 0
α10 ↓ 0 0 0 0 0 0 0 0

Table 31. Restricted characters and map induced by the inclusion
of D2 into S4 × C2. Here α1, . . . , α10 are as in Table 18.

D4 →֒ S4 × C2 (1) α(13) (13)(24) α(12)(34) (1432)

α1 ↓ 1 1 1 1 1
α2 ↓ 0 −2 0 0 −2
α3 ↓ 0 0 0 0 0
α4 ↓ 0 0 −4 −2 4
α5 ↓ 0 0 0 0 4

α6 ↓ 0 0 0 −2 2
α7 ↓ 0 0 0 0 0
α8 ↓ 0 0 0 0 0
α9 ↓ 0 0 0 0 0
α10 ↓ 0 0 0 0 0

D4 →֒ S4 × C2 (·|2φ1 +
∑

χi) (·|χ2 + χ̂3 + φ1) (·|χ̂3 + φ1) (·|χ̂4 + χ2) (·|φ1)

α1 ↓ 1 0 0 0 0
α2 ↓ 0 0 0 1 0
α3 ↓ 0 0 0 0 0
α4 ↓ 0 1 0 −1 1
α5 ↓ 0 0 −1 0 0

α6 ↓ 0 1 0 0 0
α7 ↓ 0 0 0 0 0
α8 ↓ 0 0 0 0 0
α9 ↓ 0 0 0 0 0
α10 ↓ 0 0 0 0 0

Table 32. Restricted characters (top) and map induced by the
inclusion of D4 into S4 × C2 (bottom). Here α1, . . . , α10 are as in
Table 18.

B.3.5. G = ∆(2, 3, 5). This group is isomorphic to A5 ×C2 with Coxeter presenta-
tion

∆(2, 3, 5) =
〈
si, sj, sk | s2i , s

2
j , s

2
k, (sisj)

3, (sisk)
2, (sjsk)

5
〉
.

We have again three relevant induction homomorphisms.

Case 1: H = 〈si, sk〉 ∼= D2 = C2 × C2

The characters of G (Table 19) restricted to H consists on the 1st, 8th, 8th, 3rd
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D3 →֒ S4 × C2 (1) α(12) (123) (·|2φ1 +
∑

χi) (·|χ2 + φ1) (·|φ1)
α1 ↓ 1 1 1 1 0 0
α2 ↓ 0 −2 0 0 1 0
α3 ↓ 0 0 −3 0 0 1
α4 ↓ 0 0 0 0 0 0
α5 ↓ 0 0 0 0 0 0
α6 ↓ 0 0 0 0 0 0
α7 ↓ 0 0 0 0 0 0
α8 ↓ 0 0 0 0 0 0
α9 ↓ 0 0 0 0 0 0
α10 ↓ 0 0 0 0 0 0

Table 33. Restricted characters and map induced by the inclusion
of D3 into S4 × C2. Here α1, . . . , α10 are as in Table 18.

columns
A5 × C2 ↓ e si sk sisk
ρ1 ⊗ ξ1 1 1 1 1
ρ1 ⊗ ξ2 4 0 0 0
ρ1 ⊗ ξ3 5 1 1 1
ρ1 ⊗ ξ4 3 −1 −1 −1
ρ1 ⊗ ξ5 3 −1 −1 −1
ρ2 ⊗ ξ1 1 −1 −1 1
ρ2 ⊗ ξ2 4 0 0 0
ρ2 ⊗ ξ3 5 −1 −1 1
ρ2 ⊗ ξ4 3 1 1 −1
ρ2 ⊗ ξ5 3 1 1 −1

Suppose first i < k. Multiplying these rows with the rows of Table 5 we obtain

ρ1 ⊗ ρ2 ⊗

ρ1 ⊗ ρ1 ↑ = ξ1 + ξ2 + 2ξ3+ ξ2 + ξ3 + ξ4 + ξ5
ρ1 ⊗ ρ2 ↑ = ξ2 + ξ3 + ξ4 + ξ5+ ξ2 + ξ3 + ξ4 + ξ5
ρ2 ⊗ ρ1 ↑ = ξ2 + ξ3 + ξ4 + ξ5+ ξ2 + ξ3 + ξ4 + ξ5
ρ2 ⊗ ρ2 ↑ = ξ2 + ξ3 + ξ4 + ξ5+ ξ1 + ξ2 + 2ξ3

If k < i we must interchange the 2nd and 3rd generators, but note that we obtain
the same map. All in one, we have one induction map, given as a homomorphism
of free abelian groups in Figure 13.

RC (H) → RC (G)

Z4 → Z10

(a, b, c, d) 7→ (a, b+ c+ d, 2a+ b+ c+ d, b + c+ d, b+ c+ d,

d, a+ b+ c, a+ b+ c+ 2d, a+ b+ c, a+ b+ c).

Figure 13. Induction homomorphism from H = 〈si, sk〉 ∼= C2 ×
C2 to G = 〈si, sj , sk〉 ∼= ∆(2, 3, 5) = A5 × C2.
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Case 2: H = 〈si, sj〉 ∼= D3

The characters of G (Table 19) restricted to H consists on the 1st, 8th, 8th, 2nd,
2nd and 8th columns:

A5 × C2 ↓ e si sj sisj sjsi sisjsi
ρ1 ⊗ ξ1 1 1 1 1 1 1
ρ1 ⊗ ξ2 4 0 0 1 1 0
ρ1 ⊗ ξ3 5 1 1 −1 −1 1
ρ1 ⊗ ξ4 3 −1 −1 0 0 −1
ρ1 ⊗ ξ5 3 −1 −1 0 0 −1
ρ2 ⊗ ξ1 1 −1 −1 1 1 −1
ρ2 ⊗ ξ2 4 0 0 1 1 0
ρ2 ⊗ ξ3 5 −1 −1 −1 −1 −1
ρ2 ⊗ ξ4 3 1 1 0 0 1
ρ2 ⊗ ξ5 3 1 1 0 0 1

Multiplying these rows with the rows of the character table of D3 (which is inde-
pendent of whether i < j or j < i)

ρ1 ⊗ ρ2 ⊗

χ1 ↑ = ξ1 + ξ2 + ξ3+ ξ2 + ξ4 + ξ5
χ2 ↑ = ξ2 + ξ4 + ξ5+ ξ1 + ξ2 + ξ3
φ1 ↑ = ξ2 + 2ξ3 + ξ4 + ξ5+ ξ2 + 2ξ3 + ξ4 + ξ5

This is then the map of free abelian groups shown in Figure 14.

RC (H) → RC (G)

Z3 → Z10

(a, b, c) 7→ (a, a+ b+ c, a+ 2c, b+ c, b+ c,

b, a+ b+ c, b+ 2c, a+ c, a+ c).

Figure 14. Induction homomorphism from H = 〈si, sj〉 ∼= D3 to
G = 〈si, sj , sk〉 ∼= ∆(2, 3, 5) = A5 × C2.

Case 3: H = 〈sj , sk〉 ∼= D5

First we expand the character table for D5 (from Table 4)

D5 e sj sk sjsk sksj sjsksj sksjsk sjsksjsk sksjsksj sjsksjsksj
χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 −1 −1 1 1 −1
φ1 2 0 0 ϕ− 1 ϕ− 1 0 0 ϕ ϕ 0
φ2 2 0 0 ϕ ϕ 0 0 ϕ− 1 ϕ− 1 0

where ϕ is the golden ratio 1+
√
5

2 , and we have used 2 cos
(
2π
5

)
= ϕ − 1 and

2 cos
(
4π
5

)
= ϕ. Note that this table is independent of interchanging si with sj .

Next we restrict the characters of G (Table 19) to H , that is, the 1st, 8th, 8th, 4th,
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D2 →֒ A5 × C2 (1) (12)(35)α (15)(23)α (13)(25)
β1 ↓ 1 1 1 1
β2 ↓ 0 0 0 0
β3 ↓ 0 0 0 0
β4 ↓ 0 0 0 0
β5 ↓ 0 0 0 −4
β6 ↓ 0 −2 −2 0
β7 ↓ 0 0 0 0
β8 ↓ 0 0 0 0
β9 ↓ 0 0 0 0
β10 ↓ 0 0 0 0

D2 →֒ A5 × C2 (·|∑χi) (·|χ2 + χ3) (·|χ3 + χ4) (·|χ4)
β1 ↓ 1 0 0 0
β2 ↓ 0 0 0 0
β3 ↓ 0 0 0 0
β4 ↓ 0 0 0 0
β5 ↓ 0 0 0 1
β6 ↓ 0 1 1 0
β7 ↓ 0 0 0 0
β8 ↓ 0 0 0 0
β9 ↓ 0 0 0 0
β10 ↓ 0 0 0 0

Table 34. Restricted characters (top) and map induced by the
inclusion of D2 into A5 × C2 (bottom).

4th, 8th, 8th, 5th, 5th and 8th columns.

A5 × C2 ↓ e sj sk sjsk sksj sjsksj sksjsk sjsksjsk sksjsksj sjsksjsksj
ρ1 ⊗ ξ1 1 1 1 1 1 1 1 1 1 1
ρ1 ⊗ ξ2 4 0 0 −1 −1 0 0 −1 −1 0
ρ1 ⊗ ξ3 5 1 1 0 0 1 1 0 0 1
ρ1 ⊗ ξ4 3 −1 −1 ϕ ϕ −1 −1 −ϕ+ 1 −ϕ+ 1 −1
ρ1 ⊗ ξ5 3 −1 −1 −ϕ+ 1 −ϕ+ 1 −1 −1 ϕ ϕ −1
ρ2 ⊗ ξ1 1 −1 −1 1 1 −1 −1 1 1 −1
ρ2 ⊗ ξ2 4 0 0 −1 −1 0 0 −1 −1 0
ρ2 ⊗ ξ3 5 −1 −1 0 0 −1 −1 0 0 −1
ρ2 ⊗ ξ4 3 1 1 ϕ ϕ 1 1 −ϕ+ 1 −ϕ+ 1 1
ρ2 ⊗ ξ5 3 1 1 −ϕ+ 1 −ϕ+ 1 1 1 ϕ ϕ 1

Remark 6. With a non-conjugated choice of Coxeter generators, it would be the
5th instead of the 4th column, or, equivalently, swapping ρi ⊗ ξ4 with ρi ⊗ ξ5 for
i = 1 and 2.

Multiplying these rows with the rows of character table of D5 above, and using
that ϕ2 − ϕ = 1, we obtain

ρ1 ⊗ ρ2 ⊗

χ1 ↑ = ξ1 + ξ3+ ξ4 + ξ5
χ2 ↑ = ξ4 + ξ5+ ξ1 + ξ3
φ1 ↑ = ξ2 + ξ3 + ξ4+ ξ2 + ξ3 + ξ4
φ2 ↑ = ξ2 + ξ3 + ξ5+ ξ2 + ξ3 + ξ5

This gives the homomorphism of free abelian groups in Figure 15.
We finish by giving the same induction homomorphisms but this time with re-

spect to the transformed bases (Tables 6, 7, 20 in Appendix A) in Tables 34, 35
and 36.
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RC (H) → RC (G)

Z4 → Z10

(a, b, c, d) 7→ (a, c+ d, a+ c+ d, b+ c, b+ d,

b, c+ d, b+ c+ d, a+ c, a+ d).

Figure 15. Induction homomorphism from H = 〈sj , sk〉 ∼= D5 to
G = 〈si, sj , sk〉 ∼= ∆(2, 3, 5) = A5 × C2.

D3 →֒ A5 ×C2 (1) (12)(34)α (123) (·|
∑

χi + 2φ1) (·|χ2 + φ1) (·|φ1)

β1 ↓ 1 1 1 1 0 0
β2 ↓ 0 0 0 0 0 0
β3 ↓ 0 0 −3 0 0 1
β4 ↓ 0 0 0 0 0 0
β5 ↓ 0 0 0 0 0 0

β6 ↓ 0 −2 0 0 1 0
β7 ↓ 0 0 0 0 0 0
β8 ↓ 0 0 0 0 0 0
β9 ↓ 0 0 0 0 0 0
β10 ↓ 0 0 0 0 0 0

Table 35. Restricted characters and map induced by the inclusion
of D3 into A5 × C2.

D5 →֒ A5 × C2 (1) (12345) (12354) (12)(34)α (·|
∑

χi + 2
∑

φi) (·|χ2 +
∑

φi) (·|
∑

φi) (·|φ2)

β1 ↓ 1 1 1 1 1 0 0 0

β2 ↓ 0
√
5 −

√
5 0 0 0 0 1

β3 ↓ 0 0 0 0 0 0 0 0

β4 ↓ 0 5+
√

5
2

5−
√

5
2

0 0 0 −1 0

β5 ↓ 0 0 0 0 0 0 0 0

β6 ↓ 0 0 0 −2 0 1 0 0
β7 ↓ 0 0 0 0 0 0 0 0
β8 ↓ 0 0 0 0 0 0 0 0
β9 ↓ 0 0 0 0 0 0 0 0
β10 ↓ 0 0 0 0 0 0 0 0

Table 36. Restricted characters and map induced by the inclusion
of D5 into A5 × C2.

We show that HFin
0 (Γ; RC) is torsion-free for Γ the Heisenberg semidirect product

group of Lück’s paper.

Appendix C. The Heisenberg semidirect product group

In Tables 37 and 38, we transform the character tables of all the non-trivial finite
subgroups of the Heisenberg semidirect product group, as specified by Lück [14].

In Tables 39, 40 and 41, we compute all possible induction homomorphisms
RC (H) → RC (G) appearing in any possible Bredon chain complex.
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Cyclic group of order 2 with generator s.


C2 e s
ρ1 1 1
ρ2 1 −1


 7→




C2 e s
ρ1 + ρ2 2 0

ρ2 1 −1




Table 37. Character table of C2

Cyclic group of order 4 with generator s, we let i2 = −1.


C4 e s s2 s3

ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 i −1 −i
ρ4 1 −i −1 i




7→




C4 e s s2 s3

ρ1 1 1 1 1
ρ2 − ρ1 0 −2 0 −2
ρ3 − ρ1 0 i− 1 −2 −i− 1
ρ4 − ρ3 0 −2i 0 2i




Table 38. Character table of C4

The only non-trivial inclusion of a cyclic group of order 2 into a cyclic group of order 4:

C2 →֒ C4 e s2 (·|ρ1 + ρ2) (·|ρ2)
ρ1 ↓ 1 1 1 0

(ρ2 − ρ1) ↓ 0 0 0 0
(ρ3 − ρ1) ↓ 0 −2 0 1

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0 0 0

Table 39. The only non-trivial inclusion C2 →֒ C4: s 7→ s2.

The trivial inclusion of a cyclic group of order 2 into a cyclic group of order 4:

C2 →֒ C4 e e (·|ρ1 + ρ2) (·|ρ2)
ρ1 ↓ 1 1 1 0

(ρ2 − ρ1) ↓ 0 0 0 0
(ρ3 − ρ1) ↓ 0 0 0 0

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0 0 0

Table 40. The trivial inclusion C2 →֒ C4: s 7→ e.

The inclusion of the trivial group into a cyclic group of order 4:

C2 →֒ C4 e (·|τ)
ρ1 ↓ 1 1

(ρ2 − ρ1) ↓ 0 0
(ρ3 − ρ1) ↓ 0 0

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0

Table 41. The inclusion of the trivial group {1} →֒ C4

Obviously, any concatenation of copies of the three matrices given in Tables 39,
40 and 41 yields a matrix with all of its minors contained in the set {−1, 0, 1}. For
the inclusions into cyclic groups of order 2, we proceed analogously, only it is then
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even simpler to compute the induced matrices. Hence by Theorem 4, HFin
0 (Γ; RC)

is torsion-free for Γ the Heisenberg semidirect product group of Lück’s article [14].

Appendix D. Crystallographic groups

Davis and Lück [4] consider the semidirect product of Zn with the cyclic p-
group Z/p, where the action of Z/p on Zn is given by an integral representation,
which is assumed to act freely on the complement of zero. The action of this
semidirect product group Γ on EΓ ∼= Rn is crystallographic, with Zn acting by
lattice translations, and Z/p acting with a single fixed point. In particular, all cell
stabilizers are trivial except for one orbit of vertices of stabilizer type Z/p. So all
maps in the Bredon chain complex are induced by the trivial representation, and
we can easily apply Theorem 4 to see that HFin

0 (Γ; RC) is torsion-free for Γ.


