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Abstract

Lieberman and Phillips (2017; LP) introduced a multivariate sto-
chastic unit root (STUR) model, which allows for random, time vary-
ing local departures from a unit root (UR) model, where nonlinear
least squares (NLLS) may be used for estimation and inference on
the STUR coe¢ cient. In a structural version of this model where the
driver variables of the STUR coe¢ cient are endogenous, the NLLS es-
timate of the STUR parameter is inconsistent, as are the correspond-
ing estimates of the associated covariance parameters. This paper
develops a nonlinear instrumental variable (NLIV) as well as GMM
estimators of the STUR parameter which conveniently addresses en-
dogeneity. We derive the asymptotic distributions of the NLIV and
GMM estimators and establish consistency under similar orthogonal-
ity and relevance conditions to those used in the linear model. An
overidenti�cation test and its asymptotic distribution are also devel-
oped. The results enable inference about structural STUR models

�This paper is a revised version of an earlier paper entitled �IV and GMM Estimation
and Testing of Multivariate Stochastic Unit Root Models.�We thank the CoEditor, Pentti
Saikkonen and two referees for helpful comments and Tim Ginker for research assistance.

yBar-Ilan University. Support from Israel Science Foundation grant No. 1082-14 and
from the Sapir Center in Tel Aviv University are gratefully acknowledged. Correspondence
to: Department of Economics and Research Institute for Econometrics (RIE), Bar-Ilan
University, Ramat Gan 52900, Israel. E-mail: o¤er.lieberman@gmail.com

zYale University, University of Auckland, Southampton University, and Singapore Man-
agement University. Support is acknowledged from the NSF under Grant No. SES
1258258.



and a mechanism for testing the local STUR model against a simple
UR null, which complements usual UR tests. Simulations reveal that
the asymptotic distributions of the the NLIV and GMM estimators
of the STUR parameter as well as the test for overidentifying restric-
tions perform well in small samples and that the distribution of the
NLIV estimator is heavily leptokurtic with a limit theory which has
Cauchy-like tails. Comparisons of STUR coe¢ cient and a standard
UR coe¢ cient test show that the one-sided UR test performs poorly
against the one-sided STUR coe¢ cient test both as the sample size
and departures from the null rise. The results are applied to study
the relationships between stock returns and bond spread changes.

Key words and phrases: Autoregression; Di¤usion; Similarity; Sto-
chastic unit root; Time-varying coe¢ cients.

JEL Classi�cation: C22

1 Introduction

Persistence is widely acknowledged to be one of the primary characteristics in
economic and �nancial time series. This feature is often well captured empir-
ically by using models with unit autoregressive roots or roots in the general
vicinity of unity. The use of a local unit root (LUR) as a modeling and in-
ferential tool has grown signi�cantly since the early developmental research
on these models (Chan and Wei, 1987; Phillips, 1987) and the methodol-
ogy now provides useful mechanisms for uniform autoregressive inference in
both time series (Giraitis and Phillips, 2006; Mikusheva, 2008, 2011) and
panels (Chao and Phillips, 2017). The LUR mechanism for characterizing
local departures from unity uses a standard Pitman drift speci�cation. This
approach is convenient mathematically for studying local power properties.
But it does not accommodate random departures from unity, formulations
that allow for time variation in the coe¢ cients, or structural dependence
in the system between the coe¢ cients and the equation errors, all of which
provide a richer environment for practical empirical work.
An alternative approach uses stochastic departures from unity, allows

for endogeneity, and leads to what we call an endogenous stochastic unit
root (STUR) model. The present paper is concerned with such models and
consistent methods of estimation of the localizing coe¢ cients. The resulting
asymptotic theory, as will be shown, o¤ers a methodology for testing unit
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root persistence directly against random departures from unity even in the
presence of endogeneity. The model under consideration is the structural
stochastic unit root (STUR) system given by

Y1 = "1;

Yt = �t (a;n)Yt�1 + "t; t = 2; :::; n; (1)

where the STUR coe¢ cient

�t (a;n) = exp

�
a0utp
n

�
; (2)

depends nonlinearly on an K � 1 vector of observed stationary variables ut
that are assumed to drive the localizing coe¢ cient �t (a;n). In the important
case where the vector a = 0, the model reduces to a simple unit root (UR)
time series model. When the vector a 6= 0 but has certain components
that are zero then a certain subvector of ut comprises the driver variables
of �t (a;n). These submodels are of considerable interest in cases where the
UR model itself appears too restrictive and localized departures from unity
are considered more relevant, especially when there are potential endogenous
driver variables that are thought to in�uence the degree of persistence.
Examples of empirical models with roots in the vicinity of unity abound in

the literature and this phenomenon has motivated the use of alternative mod-
els such as the local UR (LUR) model, where the coe¢ cient �t (a;n) = e

c
n is

�xed for given n and some unknown scalar a = c (Phillips, 1987; Chan and
Wei, 1987). In the STUR model (1)-(2), the coe¢ cient �t (a;n) is similarly
localized in an array format but is dependent on a group of stationary co-
variates ut with a localizing decay rate of n�1=2 that is compatible with the
(assumed) stationarity of ut and enables an asymptotic development. Some
examples of empirical applications of STUR models in �nance include dual
stocks pricing (Lieberman (2012)), Exchange Traded Funds pricing (Lieber-
man and Phillips (2014)) and call option pricing (Lieberman and Phillips
(2017, hereafter, LP)). STUR models have the advantage that, under cer-
tain conditions, the coe¢ cients may be identi�ed and consistently estimated,
thereby enabling investigators to test for the presence of relevant driver vari-
ables that in�uence departures of the coe¢ cient �t (a;n) from unity. As will
be shown in the present paper, we may also allow for structural model formu-
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lations in which the driver variables ut that appear in (2) are endogeneous.
Under the assumption that (ut; "t) is a martingale di¤erence sequence

(mds), LP (2017) showed that in the limit as the sample size n ! 1, the
standardized output n�1=2Yt of (1)-(2) takes the form of a nonlinear di¤usion,
extending the well-known linear di¤usion result for the LUR model. The
asymptotic distribution of the nonlinear least squares (NLLS) estimator ân
of the localizing coe¢ cient a in (2) then depends on this nonlinear di¤usion.
The LP results show that ân is inconsistent in the structural model case where
ut and "t are correlated. Thus, in a structural version of (1)-(2), endogeneity
bias is present in NLLS estimation in the limit, just as in linear models.
However, when the right hand side of (1) contains a drift, LP (2017) showed
that ân is

p
n-consistent whether or not ut and "t are correlated, a result

due to the stronger regression signal that is present in the lagged variable
regressor in (1) in this case.
The main goals of the present paper are as follows. First, we extend the

central result of LP (2017) and derive the limit process of the standardized
output n�1=2Yt when ut and "t are general linear processes. As expected,
this extension induces additional terms in the limit which do not appear
in the mds case. Second, we derive the asymptotic distribution of ân in
the model (1)-(2) for general weakly dependent ut and "t. The asymptotic
theory provides extensive implementation of recent weak convergence results
of sample covariances between nonlinear functionals of integrated processes
and short memory time series (Ibragimov and Phillips, 2008; Liang et al.
2016). We are particularly interested in the structural model case where ut
and "t are correlated because it seems important to allow for such correlation
in practical work. Since the NLLS estimator ân is inconsistent when ut and
"t are correlated, it is important to develop an alternative procedure that
enables identi�cation and consistent estimation.
As in the case of linear structural models, the primary alternative proce-

dure involves instrumental variables. The present paper develops a nonlinear
instrumental variable (NLIV) as well as (the more general) GMM estimators
of a, derives their asymptotic distribution, and shows consistency under sim-
ilar conditions to those used in the linear model. Furthermore, we derive
the asymptotic distribution of the Sargan-Hansen test for overidentifying re-
strictions in this model. The limit theory facilitates statistical testing of the
STUR model (1)-(2) against the simple unit root model where a = 0: Such
tests are valuable in empirical applications where the relevance of potential
driver variables warrants investigation.
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The plan for the remainder of the paper is as follows. In Section 2 we
set up model assumptions, characterize the asymptotic limit process form of
n�1=2Yt; and derive the limit distribution of ân. The theory for the NLIV
estimator is presented in Section 3. Asymptotic theory for estimation of the
covariance parameters follows in Section 4 and a test statistic which accounts
for the estimation of nuisance parameters is suggested in Section 5. Limit
theory for GMM estimation and a test for overidentifying restrictions are
developed in Section 6. Simulation experiments evaluating the adequacy of
the limit theory are reported in Section 7 and a real data application is given
in Section 8. Section 9 concludes and proofs are given in the Appendix.

2 Preliminaries and Results on the NLLS

For the generating mechanism of the process wt = (u0t; "t)
0 we adopt a linear

process framework similar to Ibragimov and Phillips (IP, 2008), making the
following assumption.

Assumption 1. The vector wt is a linear process satisfying

wt = G (L) �t =
1X
j=0

Gj�t�j,
1X
j=1

j kGjk <1, G (1) has full rank K + 1,

(3)
�t is iid, zero mean with E (�t�0t) = �� > 0 and maxE j�i0j

p <1, for some
p > 4.

Under Assumption 1, wt is zero mean, strictly stationary and ergodic,
with partial sums satisfying the invariance principle

n�1=2
bn�cX
t=1

wt ) B (�) � BM
�
�`r
�
; �`r =

�
�`ru �`ru"
�`r0u"

�
�`r"
�2 � ; (4)

where b�c is the �oor function and B = (Bu; B")
0 is a vector Brownian mo-

tion1. The matrix �`r = G (1)��G (1)
0 > 0 is the long run covariance matrix

of wt, with K �K submatrix �`ru > 0, scalar
�
�`r"
�2
> 0 and K � 1 vector

1Primitive conditions under which the functional law (4) holds are given, for example,
in Phillips and Solo (1992).
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�`ru". In component form, we write (3) as

wt =

�
ut
"t

�
=

�
G11 (L) G12 (L)
G21 (L) G22 (L)

��
�1t
�2t

�
=

�
G1 (L)

G2 (L)

��
�1t
�2t

�
(5)

=

�P1
j=0G1;j�t�jP1
j=0G2;j�t�j

�
where �1t is K � 1; �2t is scalar, G1;j is K � (K + 1) and G2;j is 1� (K + 1).
Denote the contemporaneous covariance matrix of wt by � > 0, with

corresponding components �u = E (utu0t) > 0; �u" = E (ut"t) and �2" =
E ("2t ) > 0. The one-sided long run covariance matrices are similarly denoted
by � =

P1
h=1 E (w0w0h) and � =

P1
h=0 E (w0w0h) = � + �, with correspond-

ing component submatrices �u" =
P1

h=1 E (u0"0h), �"" =
P1

h=1 E ("0"0h) and
�u" =

P1
h=0 E (u0"0h), �"" =

P1
h=0 E ("0"0h).

In the special case where wt is an mds, � = �`r. For that case, Lieber-
man and Phillips (2014, 2017) showed that the standardized output process
n�1=2Yt=bn�c of (1) converges weakly to a nonlinear di¤usion process. The
following Lemma extends the result of LP (2017) to the present case of sta-
tionary driver variables and equation errors satisfying Assumption 1.

Lemma 1 For the model (1)�(2), under Assumption 1,

n�1=2Ybnrc ) ea
0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� a0�u"

Z r

0

e�a
0Bu(p)dp

�
:= Ga (r) :

(6)

Importantly, the quantity a0�u" in (6) involves the one-sided long run
covariance matrix �u" between u and ": This quantity measures the impor-
tance of the random drift e¤ect,

R r
0
ea

0(Bu(r)�Bu(p))dp; that is induced in the
limit process Ga whenever a 6= 0 and �u" 6= 0: If a = 0; the limit process is
standard Brownian motion B" as expected.
Denote by ân the NLLS of a which minimizes the criterion Qn (a) =Pn
t=2 fYt � �t (a;n)Yt�1g

2. By H and L we denote the

(K + 1)2 � (K + 1) (K + 2) =2 and ((K + 1) (K + 2) =2)� (K + 1)2

duplication and elimination matrices, respectively, of zeros and ones, which
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for a (K + 1)� (K + 1) matrix A, satisfy

vec (A) = Hvech (A) and vech (A) = Lvec (A) : (7)

If �t has �nite fourth moments, centred partial sums of �t�
0
t satisfy the in-

variance principle

1p
n

bnrcX
t=1

vech (�t�
0
t � ��)) � (r) ; (8)

where � (r) is vector Brownian motion with covariance matrix

��
� = E
�
vech (�t�

0
t � ��) (vech (�t�0t � ��))

0�
= E (L ((�t 
 �t)� E (�t 
 �t)) ((�0t 
 �0t)� E (�0t 
 �0t))L0) :

Furthermore, for any l 6= 0, by � (r) we denote the vector Brownian motion
with a covariance matrix

E
�
vec
�
�t�

0
t�l
� �
vec
�
�t�

0
t�l
��0�

= �� 
 ��:

Finally, we denote the matrix of third order moments of � by

M3 = E ((�t 
 �t) �0t) : (9)

The following theorem was established in LP (2017) for the case where �t
is a strictly stationary mds and is extended below to the case where �t is a
zero mean, strictly stationary and ergodic process, satisfying Assumption 1.

Theorem 2 For the model (1)�(2), under Assumption 1, the asymptotic
behavior of ân is given by:

(1) (ân � a))
R 1
0 Ga(r)drR 1
0 G

2
a(r)dr

��1u �u"; if �u" 6= 0:

(2) ân )
R 1
0 B"(r)drR 1
0 B

2
" (r)dr

��1u �u"; if �u" 6= 0 and a = 0:
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(3)

p
n (ân � a)

) 1R 1
0
G2a (r) dr

��1u

 1X
j=0

(G2;j 
G1;j)H
Z 1

0

Ga (r) d� (r)

+

1X
j=1

(G2;j 
G1;j)M3

0@ j�1X
i=0

G1;i

!0
a

Z 1

0

Ga (r) dr +

 
j�1X
i=0

G2;i

!01A
+
X
j 6=k

(G2;k 
G1;j)
Z 1

0

Ga (r) d� (r)

+ fE ("tutu0t)g a
Z 1

0

Ga (r) dr

�
; if �u" = 0: (10)

(4)

p
nân ) 1R 1

0
B2" (r) dr

��1u

 1X
j=0

(G2;j 
G1;j)H
Z 1

0

B" (r) d� (r)

+
1X
j=1

(G2;j 
G1;j)M3

 
j�1X
i=0

G2;i

!0

+
X
j 6=k

(G2;k 
G1;j)
Z 1

0

B" (r) d� (r)

!
;

if �u" = 0 and a = 0:

Remark 1 The results in Theorem 2 depend directly on the contemporaneous
covariance matrices �u =

P1
j=0G1j��G

0
1j and �u" =

P1
j=0G1j��G

0
2j, where

�� = E (�t�0t), and in view of (6), on the long run covariances indirectly,
through Ga (r).

Remark 2 If �t has a symmetric distribution around zero and K = 1, then

E ("tutu0t) = E
�
"tu

2
t

�
=

1X
j=0

G2;jG
2
1;jE

�
�3t�j

�
= 0; and M3 = 0

because all odd moments of a symmetric distribution around zero are equal
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to zero. In this case, eq�n (10) reduces to

p
n (ân � a) ) 1R 1

0
G2a (r) dr

��1u

 1X
j=0

(G2;j 
G1;j)H
Z 1

0

Ga (r) d� (r)

+
X
j 6=k

(G2;k 
G1;j)
Z 1

0

Ga (r) d� (r)

!
;

if �u" = 0:

Remark 3 If (u0t; "t)
0 is a vector MDS, G2;j = 0 and G1;j = 0 8j 6= 0 and

eq�n (10) simpli�es to

p
n (ân � a)

) 1R 1
0
G2a (r) dr

��1u

�Z 1

0

Ga (r) dBu" (r) + fE ("tutu0t)g a
Z 1

0

Ga (r) dr

�
,

if �u" = 0:

It follows from Theorem 2 that ân is inconsistent when �u" 6= 0. It
is emphasized that this result pertains to the model (1)-(4) in which it is
assumed that the drift parameter equals zero. When the drift parameter is
non-zero, LP (2017) showed that the least squares estimator of a is consistent
even when �u" 6= 0.
The present paper develops consistent IV and GMM estimators for a and

derives their limit distributions. The conditions imposed on the instruments
are similar to those that are used in linear model IV. The results are used to
test the null hypothesis of a unit root against the STUR alternative which is
given by eq�ns (1)-(2).
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3 IV Estimation of the STUR Model

Let Zt be an q � 1 vector of instruments for ut, q � K, and ��t be a
(K + q + 1)� 1- random vector. We extend the setup of (5) by letting

w�t =

0@ ut
"t
Zt

1A = G� (L) ��t =
1X
j=0

G�j�
�
t�j =

0@ G1 (L)
G2 (L)
G3 (L)

1A0@ �1t
�2t
�3t

1A
=

0@ G11 (L) G12 (L) G13 (L)
G21 (L) G22 (L) G23 (L)
G31 (L) G32 (L) G33 (L)

1A0@ �1t
�2t
�3t

1A =

0@ P1
j=0G1;j�t�jP1
j=0G2;j�t�jP1
j=0G3;j�t�j

1A :
Assumption 2: The vector w�t satis�es

1X
j=1

j
G�j <1, G� (1) is full rank,

��t is iid, zero mean with E (��t��0t ) = ��� > 0 and maxE j��i0j
p < 1, for

some p > 4.

This framework is su¢ ciently rich to include many known models, includ-
ing the stationary and ergodic ARMA model.

Assumption 3: For all t,

E (Zt"t) =
1X
j=0

G3j���G
0
2j = 0; (11)

E (Ztu0t) = �Zu =
1X
j=0

G3j���G
0
1j has full rank K: (12)

In the remainder of this section we shall consider the q = K case, in
which the IV estimator, âIVn , solves the K-moment conditions:

nX
t=2

�
Yt � �t

�
âIVn ;n

�
Yt�1

�
Zt = 0: (13)

The more general q � K case will be discussed in Section 6. Under Assump-
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tion 2,

n�1=2
bnrcX
t=1

Zt"t ) BZ" (r) ; (14)

where BZ" (r) is a Brownian motion with a covariance matrix

`rZ" =

1X
h=�1

E
�
ZtZ

0
t+h"t"t+h

�
=

1X
h=�1

E
�
ZtZ

0
t+h)E("t"t+h

�
(15)

if Zt is uncorrelated with "s for all s; t.
The asymptotic distribution of the IV estimator is as follows.

Theorem 3 For the model (1)-(4), under Assumptions 2-3, for q = K,

p
n
�
âIVn � a

�
) ��1ZuBZ" (1)R 1

0
Ga (r) dr

: (16)

It is emphasized that the matrix �Zu appearing on the right side of (16)
is the contemporaneous covariance between Z and u. Several remarks are in
place.

Remark 4 Unlike the least squares estimator, Theorem 3 implies that âIVn
is consistent for a, whether or not �u" = 0:

Remark 5 The role of the usual IV orthogonality condition (11) in As-
sumption 3 is evident in eq�n (55) of the Appendix, where it is clear that
if E (Zt"t) 6= 0, then

�Zu

�Z 1

0

Ga (r) dr

��
âIVn � a

�
) E (Zt"t) :

Hence, a violation of condition (11) renders âIVn inconsistent as expected.

Remark 6 The limit distribution in (16) is not de�ned if the relevance con-
dition (12) of Assumption 3, that �Zu has full rank, is violated. In particular,
if some instruments are irrelevant and �Zu has de�cient rank, then the IV
estimator will be inconsistent, although in such cases some contrasts (linear
combinations) of a may be consistently estimable.
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Remark 7 In the K = 1 case, under the null hypothesis H0 : a = 0,Z 1

0

Ga (r) dr =

Z 1

0

B" (r) dr =d N
�
0;
�
�lr"
�2
=3
�
;

so that,
p
nâIVn )

N
�
0; lrZ"

�
�ZuN

�
0; (�lr" )

2 =3
� (17)

where �Zu = Cov (Z; u). If, in addition, Zt and "t are independent mds
processes, then

p
nâIVn ) N (0; �2"�

2
Z)

�ZuN (0; �2"=3)
; (18)

where �2Z = V ar (Zt), 8t.

The limit distributions (17) and (18) are scaled ratios of normal variates
which have heavy Cauchy tails because the denominator has positive density
at the origin and is not perfectly correlated with the numerator2. This feature
of the limit distribution is manifest in �nite samples and a¤ects the simulation
results of Section 7, where large outliers occurred in the computation of
simulated means and variances.
To explore this issue further, we rewrite the result (17) as

p
nâIVn ) �1

�Zu�2
;

say. The vector (�1; �2)
0 is N

�
0;��

�
, �� is positive de�nite and with compo-

nents
n
��11; �

�
12; �

�
22

o
. Then

p
nâIVn ) �1:2

�Zu�2
+

��12

�Zu�
�
22

=:
�1:2
�Zu�2

+B;

2If � = �1
�2
where (�1; �2) � N

�
0;��

�
and �� > 0 has components

n
��11; �

�
12; �

�
22

o
;

then � = �1:2
�2
+

��12
��22
; where �1:2 = �1 �

��12
��22
�2 � N

�
0; ��11:2

�
; and ��11:2 = �

�
11 �

��12
��22

2

> 0:

Since �1:2 is independent of �2; the ratio
�1:2
�2
�
�
��11:2
��22

�1=2
C, where C is standard Cauchy,

and so � = ��12
��22

+
�
��11:2
��22

�1=2
C is non-central Cauchy and has Cauchy tails.
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say, giving the bias B = ��12=�Zu�
�
22 in the limit distribution. When the

covariance parameters in B are estimated, which will be at a
p
n rate if

the variables form an mds or, more typically, at a lower than
p
n rate if

they are weakly dependent and long run variances/covariances need to be
estimated, we will e¤ectively end up with centred asymptotics of the following
form. Thus, if the rate of convergence is

p
kn for kn

n
! 0 and we have

p
kn

�
B̂ �B

�
) N (0; VB) ; then we will have

p
nâIVn � B̂ =

p
nâIVn �B +

�
B̂ �B

�
=
p
nâIVn �B +Op

�
1p
kn

�

) �1:2
�Zu�2

=
1

�Zu

 
��11:2

��22

!1=2
C:

Now, under Assumption 2,

��12 = Cov (�1; �2) = E

 
1p
n

nX
t=1

Zt"t

! 
1

n3=2

nX
s=1

sX
j=1

"j

!
:

If Zt is independent of "t, as assumed in the second part of Remark 7, then
��12 = 0 and so, B = 0. Otherwise,

��12 =
1

n2

nX
t=1

nX
s=1

E

 
Zt"t

sX
j=1

"j

!

=
1

n2

nX
t=1

nX
s=1

E

 1X
k=0

G3;k�t�k

1X
l=0

G2;l�t�l

sX
j=1

1X
m=0

G2;m�j�m

!

=
1

n2

nX
t=1

nX
s=1

E

 1X
k=0

1X
l=0

sX
j=1

1X
m=0

G3;kG2;lG2;m�t�k�t�l�j�m

!

=
1

n2

nX
t=1

nX
s=1

1X
k=0

sX
j=1

1X
m=0

G3;kG2;kG2;mE
�
�3t�k

�
1 ft� k = j �mg :

This term will be zero if �t has a symmetric distribution. In these cases, (17)
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simpli�es to

p
nâIVn ) 1

�Zu

 
��11:2

��22

!1=2
C =

1

�Zu

 
��11

��22

!1=2
C =

1

�Zu

�
lrZ"

(�lr" )
2 =3

�1=2
C

and (18) reduces to
p
nâIVn )

p
3�Z
�Zu

C, (19)

respectively. For inference, this scaled Cauchy distribution can be used.
We note that, unlike the ADF t-test in the linear case, the estimated

standard deviation of âIVn does not have a closed form. In principle, t-ratio
and Wald tests might be constructed by simulating the standard deviation
of the right side of (16) and extacting the corresponding limit theory of the
ratio. Such a construction substantially complicates implementation relative
to the coe¢ cient test and it is unclear whether this approach brings any
bene�t over the simpler coe¢ cient test implied by (16).
To complete this section we compare the STUR approach to a direct

DF test of the UR null implied by H0 : a = 0. Simple calculations based
on the earlier asymptotic theory show that the usual UR coe¢ cient test of
�t (a;n) = � = 1, 8t, has the following limit theory

n
�
�̂ � 1

�
)
R 1
0
B"dB" + �""R 1

0
B2"

; under H0 : a = 0: (20)

Under the alternative we have

�Yt =
�
ea

0ut=
p
n � 1

�
Yt�1 + "t =

a0utp
n
Yt�1 + "t + op (1) ;

and using the results3

1

n

nX
t=2

"tYt�1 )
Z 1

0

Ga (r) dB" (r) + �
0
u"a

Z 1

0

Ga (r) dr + �""; (21)

3The proofs of (21) and (22) are similar to that of Lemma 8 and are available on request
from the authors.
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1

n3=2

1X
t=2

utY
2
t�1 )

Z 1

0

G2a (r) dBu (r)+2

�
�0uua

Z 1

0

G2a (r) dr + �u"

Z 1

0

Ga (r) dr

�
;

(22)
and

n�2
nX
t=1

Y 2t�1 )
Z 1

0

G2a (r) dr;

which obtain the following limit behavior

n
�
�̂ � 1

�
=
n�1

Pn
t=1 Yt�1�Yt

n�2
Pn

t=1 Y
2
t�1

=
n�1 (

Pn
t=1 Yt�1"t) + n

�3=2a0
Pn

t=1 utY
2
t�1 + op (1)

n�2
Pn

t=1 Y
2
t�1

)
�Z 1

0

G2a (r) dr

��1�Z 1

0

Ga (r) dB" (r) (23)

+ �0u"a

Z 1

0

Ga (r) dr + �"" + a
0
�Z 1

0

G2a (r) dBu (r)

+2

�
�0uua

Z 1

0

G2a (r) dr + �u"

Z 1

0

Ga (r) dr

���
The limit (23) shows that standard UR tests based on the estimate �̂ have
local power which depends on the magnitude of a and the process Ga (r).
Finite sample performance is investigated numerically in Section 7.

4 Estimation of the covariance parameters

The limit theory of the least squares-based estimators of �2", �u and �u",
�̂2";n, �̂u;n and �̂u";n, respectively, was given in Theorem 3 of LP (2017), in
the case where wt is a strictly stationary and ergodic mds process. It follows
from their results that that �̂2";n and �̂u";n are inconsistent. Let

eIVt = Yt � eâ
IV 0
n ut=

p
nYt�1; t = 2; :::; n: (24)
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We show in the next result that for j = 0; 1; 2; :::, the IV-based estimators

̂IV";n (j) =
1

n

nX
t=j+2

eIVt e
IV
t�j; ̂

IV
u;";n (j) =

1

n

nX
t=j+2

ute
IV
t�j;

̂IVZ";n (j) =
1

n

nX
t=j+2

ZtZ
0
t�je

IV
t e

IV
t�j;

of " (j) = Cov ("t; "t�j), u;" (j) = Cov (ut; "t�j) and Z" (j) = Cov
�
Zt"t; Z

0
t�j"t�j

�
are all consistent. In particular, ̂IV";n (0) =

�
�̂IV";n

�2
is consistent for �2"; and

�̂Zu;n =
1
n

Pn
t=2 Ztu

0
t is consistent for �Zu by ergodicity.

Theorem 4 Under Assumptions 2-3, for q = K,

1. ̂IV";n (j)� " (j) = Op
�
n�1=2

�
.

2. ̂IVu;";n (j)� u;" (j) = Op
�
n�1=2

�
.

3. ̂IVZ";n (j)� Z" (j) = Op
�
n�1=2

�
.

The variance estimate �̂u;n, de�ned through vech
�
�̂u;n

�
= 1

n

Pn
t=1 vech (utu

0
t),

does not depend on a and is
p
n-consistent.

5 A Test Statistic with Nuisance Parameters
Estimated

The limit distribution in (16) depends on the unknown parameter �Zu. In
fact, under Assumptoin 1 and from eq�n (55) of the Appendix, we have

p
n

�Z 1

0

Ga (r) dr

�
�Zu

�
âIVn � a

�
= BZ" (1) +Op

�
n�1=2

�
: (25)
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The left side of (25) is equal to

p
n

�Z 1

0

Ga (r) dr

�
�̂Zu;n

�
âIVn � a

�
+
p
n

�Z 1

0

Ga (r) dr

��
�Zu � �̂Zu;n

� �
âIVn � a

�
=

p
n

�Z 1

0

Ga (r) dr

�
�̂Zu;n

�
âIVn � a

�
+Op

�
n�1=2

�
= BZ" (1) +Op

�
n�1=2

�
:

Therefore, to �rst order we may replace the right sides of (16) and (18) by�
�̂Zu;n

��1
BZ" (1)R 1

0
Ga (r) dr

(26)

and
BZ" (1)

�̂Zu;n
R 1
0
B" (r) dr

; (27)

respectively. The long run covariances associated with the distributions in
(26) and (27) can be consistently estimated using the results of Theorem 4
and a standard tapering argument. For instance, the covariance matrix lrZ"
of BZ" (1) may be consistently estimated by a Bartlett-Newey-West HAC
estimator using the autocovariance estimates ̂IVZ";n (j).

6 GMM Estimation and a Test for Overiden-
tifying Restrictions

The approach may be extended to allow for q > K instruments in Zt: In such
cases, we may estimate a by GMM and a Sargan-Hansen-type test may be
used to test for overidentifying restrictions. This section develops this analy-
sis and provides limit theory for the GMM estimator and overidenti�cation
test. Let

gn (a) =
1

n

nX
t=1

(Yt � �t (a)Yt�1)Zt;
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âGn = â
G
n

�
Ŵ
�
= argmin

a
Jn

�
a; Ŵ

�
; (28)

where
Jn

�
a; Ŵ

�
= ng0n (a) Ŵgn (a) ;

Ŵ is a q � q, symmetric positive de�nite matrix, possibly dependent on the
sample, such that Ŵ !p W , and W is a weighting matrix. In this case �Zu
is given by (12) but is (q �K), with the possibility that q � K. The limit
theory for âGn is as follows.

Theorem 5 For the model (1)-(4), under Assumptions 2-3 and for q � K,

p
n
�
âGn � a

�
) (�0ZuW�Zu)

�1
�0ZuW

BZ" (1)�R 1
0
Ga (r) dr

� : (29)

Remark 8 If the model is just identi�ed, the result of the Theorem collapses
to (16).

Remark 9 Consider the linear model

Yt = x
0
t� + "t;

where xt is K�1. Let Zt be a q�1 vector of instruments for xt, with q � K,
and Ŵ is de�ned above. It is well known (e.g., Hayashi, 2000) that the GMM

estimator �̂
G

n of � in this model is

�̂
G

n =
�
S 0ZXŴSZX

��1
S 0ZXŴsXy; (30)

where

SZX =
1

n

nX
t=1

Ztx
0
t and sXy =

1

n

nX
t=1

xtYt:

The correspondence between (29) and the usual linear formulation (30) is
clear.

A Sargan-Hansen-type test for overidentifying restrictions in this context
can be based on the statistic

Jn

�
âGn

��
̂`rZ";n

��1�
;
�
̂`rZ";n

��1�
= nĝ0n

�
̂`rZ";n

��1
ĝn;
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where

ĝn = gn

�
âGn

��
̂`rZ";n

��1��
=
1

n

nX
t=1

Zt

�
Yt � �t

�
âGn

��
̂`rZ";n

��1��
Yt�1

�
;

and ̂`rZ";n is a consistent estimator of 
`r
Z";n, de�ned in (15). The limit theory

for this statistic has the usual �2q�K form, as given in (31) below.

Theorem 6 For the model (1)-(4), under Assumptions 2-3 and for q � K,

Jn

�
âGn

��
̂`rZ";n

��1�
;
�
̂`rZ";n

��1�
= nĝ0n

�
̂`rZ";n

��1
ĝn ) �2q�K : (31)

Remark 10 The �2q�K limit distribution for the overidentifying test again
corresponds to that in the linear model discussed in Remark 9.

7 Simulations

This section reports an investigation of the �nite sample performance of the
limit theory for the coe¢ cient estimator âIVn ; the coe¢ cient test (27), the
e¢ cient GMM estimator âGn ; and the overidenti�cation test. We consider the
following scenarios.
Case 1:

ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� but + �t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:

Case 2:

ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� but + 2�t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:

Case 3:

ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� N
�
0; �2u

�
;

ut are independent of "t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:
Case 4:
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ut
iid� N

�
0; �2u

�
; �2u = 0:1; "t

iid� N
�
0; �2u

�
+ 2�t;

ut are independent of "t; �t
iid� U [�1; 1] ; Zt

iid� ut � 3b�2u�t:
For each case, we simulated 5000 replications with n = 100, 1000, 10000

and b = 0:2. These scenarios are summarized in Table 1 below.

Table 1. Covariances in each case.
Case �u" �Z" �Zu
1 6= 0 = 0 6= 0
2 6= 0 6= 0 6= 0
3 = 0 = 0 6= 0
4 = 0 6= 0 6= 0

Cases 1-2 correspond to the situation in which �u" 6= 0, but Assumption
3 holds for Case 1, because

E ("tZt) = E
�
(but + �t)

�
ut � 3b�2u�t

��
= b�2u � 3b�2uV ar (�t) = 0;

whereas in Case 2, �Z" 6= 0. Similarly, Cases 3-4 correspond to the situa-
tion in which �u" = 0, but Assumption 3 holds for Case 3, whereas in Case
4, �Z" 6= 0. For each case we consider also two subcases: a = 0:15 and
a = 0. The data was simulated according to (1) and (2) and the IV esti-
mator was solved in each replication as a solution to the nonlinear moment
condition (13). To assess the adequacy of the results of Section 4, we have
also added Cases 5 and 6, which are cases 1 and 3 with �̂Zu;n replacing �Zu.
A 1%-trimming was enforced in the simulations because large outliers were
encountered, some due to the limit distribution being a scaled ratio of nor-
mals and some due to the fact that large simulated ut-values can result in
large exponentials and consequently, numerically unstable results.
PP Plots of the left side of (16) against its limit distribution (coded as

right side) and against the estimated normal distribution of the left side were
formed. A selection of the plots is presented. The typical situation is given
in Figures 1-2. As expected, for cases 1,3,5, in which Assumption 3 holds,
the left side and right side in each case are very close for as little as n = 100.
There is no noticeable di¤erence between the �u" = 0 and �u" 6= 0 cases. On
the other hand, as expected, the left and right sides become very di¤erent
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as n grows in cases 2,4,6, when �Z" 6= 0. Figure 3 reveals that replacing
�Zu by �̂Zu;n does not cause a noticeable di¤erence. In cases 1,3,5, in which
Assumption 3 holds, the asymptotic distribution of the test statistic has a
peaked distribution compared with the normal distribution. This is evident
in the PP plots and Figure 4, which provides kernel density estimates of the
left and right sides and estimated normal density of the left side. Finally, for
the case a = 0, the comparisons drawn in Figure 5 between the distribution
of
p
nâIVn and the scaled Cauchy variate, given in (19), show a near perfect

�t.
In the second part of the analysis we investigated the empirical p-values

(PV) of the hypothesis test H0 : a = 0 using (27). The results are of interest
for applications with small to moderate n and/or a. Each of the experiments
were based on 2000 replications. We considered the process

�1t
iid� N

�
0; �2�1

�
, �2t

iid� N
�
0; �2�2

�
, �3t

iid� N
�
0; �2�3

�
(32)

�2�1 = 0:673; �
2
�2
= 0:129; �2�3 = 0:5

ut = �1;t + 0:432�1;t�1 � 0:21�2;t�1
"t = �2;t � 0:251�1;t�1 + 0:12�2;t�1
Zt = �3;t + 0:3�1t + 0:4�3;t�1: (33)

In this setting, Cov (u; ") 6= 0, Cov (u; Z) 6= 0 and Cov ("; Z) = 0. For the
�rst part of the analysis, we set n = 2000 and varied the true a over the
values 0, 0:2, 0:5, 1, 2, 5. The results are given in Table 2 and Figure 6. For
the second part of the analysis, we �xed a at 0:2 and 1 and varied n over
the values 100, 500, 1000, 1500, 2000, 5000. The results for this part of the
analysis are given in Tables 3-4. In Table 2, clearly, as a increases, both the
one-sided and two-sided PVs decrease from about 0:5 to about 0:01 and 0:02,
respectively, and the sample mean of âIVn is accurate. In Table 3-4 we also
observe a decrease in the PVs and a decrease in the standard deviations of
the estimator, as n increases, as expected.
For the same setting we simulated PVs of the DF statistic against the

distribution of (n�1
Pn

t=1 Yt�1�Yt) =
�
n�2

Pn
t=1 Y

2
t�1
�
with Yt generated under

all the true parameters of the process as given by (32)-(33). Accordingly, the
simulation reports performance of an �ideal�DF test because the parameters
�"" and �2" that are needed for the simulation of the right side of (20) were
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taken to be known. Even with this prior advantage that the (one-sided) DF
test has over this paper�s coe¢ cient test in which nuisance parameters are
estimated, it is clear from Tables 2-4 that the DF test lacks power when it
is applied, as is conventional, in a single direction. More speci�cally, Table
2 reveals that one-sided DF test PV does not change for small to moderate
values of a and decreases very slowly (and much slower than the IV-STUR
coe¢ cient based test) as a increases from 1 to 5. Tables 3-4 show that
for small to moderate values of a, as the sample size increases the PV of
the DF test is essentially �xed and close to 0:5 over the full range n 2
f100; 500; 1000; 1500; 2000; 5000g. In contrast, the IV-STUR coe¢ cient test
has PVs that decrease from 0.46 to 0.25 when a = 0:2 and from 0.3 to 0.06,
when a = 1, over this range of sample sizes.
The performance of the DF test in these simulations is obviously a¤ected

by the (conventional) one-sided implementation of the test. The one-sided
DF test is naturally expected to have power limited by the fact that in
the STUR model we get mildly explosive departures 50% of the time with a
symmetric ut - distribution. In such (subperiod) cases the departures will not
contribute power to a left sided UR test against stationarity. This manifests
itself in the simulations. In summary, the one-sided directional IV-STUR
test has good power which increases with both a and n; and in all cases
gives better discriminatory power than the usual directional DF test against
stationarity.
In the third part of the analysis we analyzed the small sample performance

of the distributions of the e¢ cient two-step e¢ cient GMM estimator and the
Jn-test for overidentifying restrictions based on it. The �rst step weighting
matrix was taken to be Ŵ = n (

Pn
t=1 ZtZ

0
t)
�1 �see, for instance, Hayashi

(2000, p. 213). To this end we generated 5000 samples of n = 100, 500,
according to the following law:

�t � N (0; I4) , "t = �1t

ut = g21�1t +
�
g22;0�2t + g22;1�2;t�1

�
+
�
g23;0�3t + g23;1�3;t�1

�
+
�
g24;0�4t + g24;1�4;t�1

�
Z1t =

�
g32;0�2t + g32;1�2;t�1

�
+
�
g33;0�3t + g33;1�3;t�1

�
+
�
g34;0�4t + g34;1�4;t�1

�
Z2t =

�
g42;0�2t + g42;1�2;t�1

�
+
�
g43;0�3t + g43;1�3;t�1

�
+
�
g44;0�4t + g44;1�4;t�1

�
:
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The g�s were generated from a uniform distribution U [0:1; 0:35] once only
and a = 0 and 0:15. Clearly, Assumptions 2-3 are satis�ed with q = 2 and
K = 1. Additional �gures supplied in the online version of the paper show
that the pp-plots for the distribution of âGn against the right side of (29) is
very accurate for as little as n = 100 observations, in both the a = 0 and
a 6= 0 cases and that the asymptotic distribution of Jn against the �2 (1)
limit distribution is reasonable for n = 100 and is excellent for n = 500.

8 Empirical Application

We estimated the STUR model (1)-(2) with Yt being the log spread be-
tween an index of U.S. dollar denominated investment grade rated corporate
debt publically issued in the U.S. domestic market, and the spot Treasury
curve. To qualify for inclusion in the index, securities must have an in-
vestment grade rating (based on an average of Moody�s, S&P, and Fitch)
and an investment grade rated country of risk (based on an average of
Moody�s, S&P, and Fitch foreign currency long term sovereign debt rat-
ings). Each security must have greater than 1 year of remaining maturity,
a �xed coupon schedule, and a minimum amount outstanding of $250 mil-
lion. It was calculated from the BofA (Bank of America) Merrill Lynch
US Corporate Master Option-Adjusted Spread. The variable ut was taken
to be the demeaned 100 log(SPUS;t=SPUS;t�1); where SPUS;t is the opening
rate of the SPDR S&P 500 ETF Trust (SPY). The instrument Zt is calcu-
lated as the demeaned 100 log(SPUS;t=SPAX;USD;t), where SPAX;USD;t is the
Australian currency adjusted iShares Core S&P 500 ETF (IVV.AX) open-
ing rate. The data is measured at the daily frequency and covers the pe-
riod from January 5, 2010 to December 30, 2015, giving a total of 1454
observations. The stock data was obtained from the Yahoo Finance Web-
site (https://au.�nance.yahoo.com/) and the Spread data was retrieved from
the Federal Reserve Bank of St. Louis (FRED). For further details re-
garding the construction methodology of this series, the reader is refered
to https://fred.stlouisfed.org/series/BAMLC0A0CM.
The model chosen for the application follows up the �ndings of Kwan

(1996) that returns on stocks and yield changes on bonds are negatively
correlated and that lagged stock returns have explanatory power for bond
yield changes, so that stocks lead bonds in re�ecting �rm-speci�c information.
To this end, it is emphasized that in our data the information in ut and in
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Zt are recorded prior to the information on yt on any given day.
The sample correlations in the data are given by �̂u;�y = �0:52, �̂u;z =

0:26 and �̂z;�y = �0:08. Thus, for the data under consideration, there is
indeed a negative correlation between stock returns and bond spread changes,
as Kwan (1996) reported. This also means that the NLLS of the STURmodel
is inconsistent. The �gures for �̂u;z and �̂z;�y justify Zt as a good instrument
for ut.
The results for the model estimation are as follows. First, âIVn = �0:245

whereas ân = �0:297. The mean squared prediction error (MSPE) of the
random walk model is 32.8% larger than the one obtained by the NLIV
estimated STUR model. The ADF test of a unit root in yt yielded a p-value
of 0:76. For the hypothesis H0 : a = 0, the simulated p-value using (18) is
0:188 and using (19) with covariance estimates it is 0:207. To assess how
signi�cant this value is, we simulated 2000 replications of two processes with
n given by the empirical sample size: a random walk with covariances given
by the sample covariances of the data and a STUR model with a = âIVn
and covariances as in the random walk simulation. Against H1 : a < 0, the
simulated p-value in the random walk model was 0:502, whereas in the STUR
simulation it was 0:303. The ADF test p-values in the two simulations was
0:500. Table 3 also reveals that for a simulated STUR process with a = 0:2
and n = 1500 observations (albeit with di¤erent covariance con�guration),
one should expect a p-value of 0:329. Therefore, the p-values obtained in
the application, together with the NLIV estimate âIVn = �0:245 and the
improvement in terms of MSPE compared with the random walk model are
all strongly indicative of a STUR process in the spread data. On the other
hand, for n and a of the magnitudes given here, the ADF test does not
appear to identify departures from the random walk model in the direction
of a STUR alternative.

9 Conclusion

This paper explores a structural version of the STUR autoregressive model
and extends the existing limit theory for both the output process and for the
nonlinear least squares estimator of the localizing STUR coe¢ cient in the
weakly dependent time series case. Just as in linear and nonlinear models
involving only stationary variables, instrumental variables are shown here
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to be useful in providing consistent estimates of the localizing coe¢ cients
of the driver variables in the structural version of the STUR model under
orthogonality and relevance conditions that mirror those used in other imple-
mentations of IV. The limit distribution of the nonlinear IV estimators in the
just identi�ed case turns out to be Cauchy-like and involves a bias term. The
limit distribution of the Sargan-Hansen test for overidentifying restrictions
turns out to be �2q�K just as in the linear case, facilitating inference.
It is of particular interest in empirical applications of STUR models to be

able to test for the presence of driver variables in determining the STUR co-
e¢ cient. The coe¢ cient-based test for the relevance of driver variables that
is proposed in the present paper has a convenient limit theory and simula-
tions show that its performance in �nite samples is satisfactory. The theory
is potentially useful in cases where the data generating process can only be
approximately described by a unit root process and which is more likely to
�t data with a time dependent coe¢ cient that is in�uenced by covariates
that may be endogenous. The IV and GMM procedures given here enable
inference about structural STUR models and provide a mechanism for test-
ing the local STUR model against a simple UR null. The STUR test appears
to have promising power performance characteristics against standard di-
rectional UR coe¢ cient tests both as the sample size rises and departures
from the null increase. The STUR test gains this advantage from its greater
speci�city concerning the alternative model, which enables focus on potential
driver variables that in�uence departures from unit root behavior.
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Appendix
Proof of Lemma 1. In what follows, the notation op (1) and Op (1)

stands for orders in probability which are uniform wrt t. In view of the
functional law (4), in an appropriately expanded probability space we may
write, for t = bnrc and any r > 0;

n�1=2
tX
j=1

�j = B (t=n) + op (1) ; (34)

so that

n�1=2Yt = n
�1=2
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�
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�
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e

n
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j=0 uj�
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n
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o
"s +Op
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�
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0Bu(t=n)

�
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s=1
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0Bu((s�1)=n)+op(1)g

�
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n
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�
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n
� ea0Bu(t=n)
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a0us"s
n

�
+ op (1) :

(35)

Setting t = bnrc and noting that E
�
e�a

0Bu(p)
�2
< 1; the �rst term on the

right side of (35) has the following limit in an appropriately de�ned space

ea
0Bu( tn)

t�1X
s=1

e�a
0Bu( s�1n ) "sp

n

!p e
a0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� �0u"a

Z r

0

e�a
0Bu(p)dp

�
=: G�a (r) :(36)
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The limit (36) makes use of a result on the weak convergence to stochastic
integrals with random drift of sample covariances involving functions of par-
tial sums (see Ibragimov and Phillips, 2008, theorem 3.1; Liang et al, 2016,
theorems 2.3 and 3.1). Again, as in (34), we assume that the probability
space has been expanded to permit the representation of (36) as a limit in
probability.
The second term on the right side of (35) is

� ea0Bu(t=n)
tX
s=1

e�a
0Bu( s�1n )

�
a0us"s
n

�
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n
+
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n
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�
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�
!p � a0�su"ea
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0

e�a
0Bu(p)dp:

Hence,

n�1=2Ybnrc !p G
�
a (r)� a0�u"ea

0Bu(r)
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0

e�a
0Bu(p)dp
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0Bu(r)

�Z r

0

e�a
0Bu(p)dB" (p)� �0u"a
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e�a
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�a0�u"
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0

e�a
0Bu(p)dB" (p)� a0�u"
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0

e�a
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�
(38)

giving (6), as required. �

The following lemma will be used in the sequel. The terms H, � (r) and
M3, which appear in it, were de�ned in (7), (8) and (9), respectively.

27



Lemma 7 Under Assumption 1,
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Proof of Lemma 7: Throughout we use column vectorization. The
term under consideration is

1
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The leading term is
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but we also need to consider
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First,
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As in the developments leading to (39), but because �t�
0
t�1 is not a symmetric

matrix, the �rst term in (40) yields
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where � (r) is de�ned following (8). The second term in (40) yields
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The second term in (42) is
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Further,
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and the last term in (43) is 1
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The third term in (46) is
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The result of the lemma follows upon aggregation over the indices j and k.
�
Proof of Theorem 2. We trace through the proof of Theorem 2 of LP

and extend the derivations there to the linear process case. The objective
function is
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Now,
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The second term above is Op (n (ân � a)). In the �u" 6= 0, we only need to
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, so the second term above can
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1p
n

nX
t=2

"tutu
0
tânYt�1 = nE ("tutu0tân)

Z 1

0

Ga (r) dr + op (n) :

Ignoring negligible terms, we thus seek a solution to (49) as

n3=2�u (ân � a)
Z 1

0

G2a (r) dr = n
3=2�u"

Z 1

0

Ga (r) dr
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+n

 1X
j=0

(G2;j 
G1;j)H
Z 1

0

Ga (r) d� (r)

+

1X
j=1

(G2;j 
G1;j)M3

0@ j�1X
i=0

G1;i

!0
a

Z 1

0

Ga (r) dr +

 
j�1X
i=0

G2;i

!01A
+
X
j 6=k

(G2;k 
G1;j)
Z 1

0

Ga (r) d� (r)

+E ("tutu0tân)
Z 1

0

Ga (r) dr

�
;

giving the results stated in the theorem. �
Proof of Theorem 3. Expanding the moment conditions (13) yields

the (asymptotically equivalent) equation

nX
t=2

�
Yt � �t

�
âIVn ;n

�
Yt�1

�
Zt =

nX
t=2

�
�t (a;n)Yt�1 + "t � �t

�
âIVn ;n

�
Yt�1

�
Zt

=
nX
t=2

�
�t (a;n)� �t

�
âIVn ;n

�	
Yt�1Zt +

nX
t=2

Zt"t

=
nX
t=2

(�
a� âIVn

�0
utp

n
+
(a0ut)

2 �
�
âIV 0n ut

�2
2n

+ op

�
1

n

�)
Yt�1Zt +

nX
t=2

Zt"t

= 0: (50)

Under Assumption 2,

n�1=2
bnrcX
t=1

vec (Ztu
0
t � �Zu)) BZu (r) ;

where BZu (r) is vector Brownian motion with covariance matrix

�`rZ
u =
1X

h=�1

�Z
u(h)

and
�Z
u(h) = E

�
ZtZ

0
t+h 
 utu0t+h

�
� E (Zt 
 ut)E (Z 0t 
 u0t) :
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By an application of Lemma 7,

nX
t=1

Yt�1Ztu
0
t = n

3=2�Zu

Z 1

0

Ga (r) dr +Op (n) : (51)

Hence,�
âIVn � a

�0
p
n

nX
t=2

utYt�1Zt =
1p
n

 
nX
t=2

Yt�1Ztu
0
t

!�
âIVn � a

�
= Op

�
n
�
âIVn � a

��
:

(52)
Next,

(a0ut)
2 �

�
âIV 0n ut

�2
=
�
a� âIVn

�0
ut
�
a+ âIVn

�0
ut:

Therefore, the leading term in the factor

nX
t=2

(
(a0ut)

2 �
�
âIV 0n ut

�2
2n

)
Yt�1Zt

which appears in (50), is

p
n

2
E
n�
a� âIVn

�0
ut
�
a+ âIVn

�0
utZt

oZ 1

0

Ga (r) dr = Op
�p
n
�
a� âIVn

��
:

(53)
Finally, by (14),

nX
t=2

Zt"t = nE (Zt"t) +
p
nBZ" (1) + op (n) ; (54)

where, temporarily, we have not imposed Assumption 3 requiring E (Zt"t) =
0, in order to examine its role in Remark 5. Collecting the dominant terms
in (51)-(54), we need a solution to the equation�

n�Zu

Z 1

0

Ga (r) dr +Op
�p
n
�� �

âIVn � a
�
=
p
nBZ" (1) + nE (Z") : (55)

The desired result follows immediately upon imposition of Assumption 3. �
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Proof of Theorem 4. Using (24), we have

eIVt = Yt � �t
�
âIVn
�
Yt�1

= Yt � �t (a) �t
�
âIVn � a

�
Yt�1

= Yt � �t (a)
 
1 +

�
âIVn � a

�0
utp

n
+ op

�p
n
�!
Yt�1

= "t � �t (a)
 �
âIVn � a

�0
utp

n
+ op

�p
n
�!
Yt�1: (56)

As
�
âIVn � a

�
= Op

�
n�1=2

�
,

�t (a)

�
âIVn � a

�0
utp

n
Yt�1 = �t (a)

�
âIVn � a

�0
ut (Ga (r) + op (1))

= Op
�
n�1=2

�
:

The next order term in the expansion (56) is

�t (a)

��
âIVn � a

�0
ut

�2
2n

Yt�1 = �t (a)

��
âIVn � a

�0
ut

�2
2
p
n

(Ga (r) + op (1))

= Op
�
n�3=2

�
:

Therefore,

̂IV";n (j) =
1

n

nX
t=j+1

�
"t +Op

�
n�1=2

�� �
"t�j +Op

�
n�1=2

��
= " (j)+Op

�
n�1=2

�
;

and part (1) of the Theorem is established. The proofs for parts (2)-(3) are
similar and are therefore omitted. �
Proof of Theorem 5. The solution to (28) must satisfy 

@g0n
�
âGn
�

@a

!
Ŵgn

�
âGn
�
= 0:
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Now,
@g

0
n

�
âGn
�

@a
= � 1

n3=2

nX
t=1

�t
�
âGn
�
Yt�1utZ

0
t;

so, we need to solve 
nX
t=1

�t
�
âGn
�
Yt�1utZ

0
t

!
Ŵ

 
nX
t=1

�
Yt � �t

�
âGn
�
Yt�1

�
Zt

!
(57)

=

 
nX
t=1

�t
�
âGn
�
Yt�1utZ

0
t

!
Ŵ

 
nX
t=1

��
�t (a)� �t

�
âGn
��
Yt�1 + "t

�
Zt

!
= 0:

We shall need the following results. First,

nX
t=1

�t
�
âGn
�
Yt�1utZ

0
t =

nX
t=1

�
1 +

âG0n utp
n
+ op

�
n�1=2

��
utZ

0
tYt�1

= n3=2�0Zu

�Z 1

0

Ga (r) dr + op (1)

�
+ nE

�
âG0n ututZ

0
t

��Z 1

0

Ga (r) dr + op (1)

�
+Op (n) :

By (54),
nX
t=1

"tZt =
p
nBZ" (1) + op

�p
n
�
; (58)

Finally,

nX
t=1

�
�t (a)Yt�1 � �t

�
âGn
�
Yt�1

�
Zt =

nX
t=1

 �
a� âGn

�0
utp

n
+ op

�
n�1=2

�!
Yt�1Zt

= n�Zu
�
a� âGn

� Z 1

0

Ga (r) dr + op
�
n
�
a� âGn

��
: (59)

The result of the theorem follows upon substitution of (58)-(59) into (57). �
Proof of Theorem 6. We know from (54) that

p
n�gn �

1p
n

nX
t=1

Zt"t ) BZ" (1) � N
�
0; `rZ"

�
:
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It follows that

ĝn = gn

�
âGn

��
̂`rZ";n

��1��
=
1

n

nX
t=1

Zt

�
�tYt�1 + "t � �t

�
âGn

��
̂`rZ";n

��1��
Yt�1

�
=

1

n

nX
t=1

Zt"t +
1

n

nX
t=1

Zt

�
�t (a)Yt�1 � �t

�
âGn

��
̂`rZ";n

��1��
Yt�1

�
:

Therefore,

p
nĝn = BZ" (1)

+
1p
n

nX
t=1

Zt

0B@
�
a� âGn

��
̂`rZ";n

��1��0
ut

p
n

+ op
�
n�1=2

�1CAYt�1 + op (1) :
The second term above is equal to

+
1p
n

�
n�Zu

�
a� âGn

��
̂`rZ";n

��1��Z 1

0

Ga (r) dr

+op

�
n
�
a� âGn

��
̂`rZ";n

��1����
=

p
n�Zu

�
a� âGn

��
̂`rZ";n

��1��Z 1

0

Ga (r) dr + op (1)

= ��Zu
�Z 1

0

Ga (r) dr

��1 �
�0Zu

�
̂`rZ";n

��1
�Zu

��1
�0Zu

�
̂`rZ";n

��1
�BZ" (1)

�Z 1

0

Ga (r) dr

�
+ op (1)

=

�
Iq � �Zu

�
�0Zu

�
̂`rZ";n

��1
�Zu

��1
�0Zu

�
̂`rZ";n

��1�
BZ" (1) + op (1) :

= B̂nBZ" (1) + op (1) ;

say. The test for over-identifying restrictions is given by

Jn

�
âGn

��
̂`rZ";n

��1�
; ̂`rZ";n

�
= nĝ0n

�
̂`rZ";n

��1
ĝn

= n�g0B̂n
�
̂`rZ";n

��1
B̂n�g + op (1) :
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The middle term in the last line is equal to

B̂n
�
̂`rZ";n

��1
B̂n

=

�
Iq �

�
̂`rZ";n

��1
�Zu

�
�0Zu

�
̂`rZ";n

��1
�Zu

��1
�0Zu

� �
̂`rZ";n

��1
�
�
Iq � �Zu

�
�0Zu

�
̂`rZ";n

��1
�Zu

��1
�0Zu

�
̂`rZ";n

��1�
=

�
̂`rZ";n

��1 � �̂`rZ";n��1�Zu ��0Zu �̂`rZ";n��1�Zu��1�0Zu �̂`rZ";n��1
=

�
̂`rZ";n

��1=2�
Iq �

�
̂`rZ";n

��1=20
�Zu

�
�0Zu

�
̂`rZ";n

��1
�Zu

��1
�0Zu

�
̂`rZ";n

��1=2��
̂`rZ";n

��1=20
=

�
̂`rZ";n

��1=2
M̂n

�
̂`rZ";n

��1=20
;

say. Thus,

Jn

�
âGn

��
̂`rZ";n

��1�
;
�
̂`rZ";n

��1�
= n�g0

�
̂`rZ";n

��1=2
M̂n

�
̂`rZ";n

��1=20
�g + op (1) :

The result of the theorem follows from the facts that
�
̂`rZ";n

��1=20
�g ) N (0; Iq)

and M̂n is symmetric and idempotent with rank q �K. �
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Table 2. Simulated p-values (PV) and estimates

a 0 0:2 0:5 1 2 5
One sided PV 0:502 0:311 0:179 0:096 0:042 0:010
DF one sided PV 0:500 0:500 0:496 0:501 0:449 0:134
Two sided PV 0:502 0:374 0:226 0:109 0:052 0:022

ân �0:047 0:231 0:482 0:999 2:0029 5:003
�̂ (ân) 0:676 0:623 0:532 0:602 0:513 0:147

Note: n = 2000, the number of replications is equal to 2000. The values
were obtained for the model (1) and (2) with a 1% trimming from each tail.

Table 3. Simulated p-values (PV) and estimates

n 100 500 1000 1500 2000 5000
One sided PV 0:458 0:393 0:363 0:329 0:303 0:246
DF one sided PV 0:498 0:500 0:498 0:500 0:500 0:499
Two sided PV 0:508 0:458 0:431 0:399 0:371 0:297

ân 0:196 0:173 0:177 0:163 0:231 0:200
�̂ (ân) 1:719 1:202 0:817 0:812 0:623 0:415

Note: a = 0:2, the number of replications is equal to 2000. The values were
obtained for the model (1) and (2) with a 1% trimming from each tail.

Table 4. Simulated p-values (PV) and estimates

n 100 500 1000 1500 2000 5000
One sided PV 0:302 0:158 0:128 0:099 0:084 0:055
DF one sided PV 0:501 0:501 0:498 0:502 0:492 0:508
Two sided PV 0:394 0:211 0:161 0:114 0:108 0:065

ân 0:893 0:967 1:029 1:024 0:966 0:990
�̂ (ân) 1:723 1:033 0:969 0:668 0:534 0:443

Note: a = 1, the number of replications is equal to 2000. The values were
obtained for the model (1) and (2) with a 1% trimming from each tail.
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Figure 1: PP plots of the distributions of
√

¡
̂ − 0

¢
(black) and

 (1) 
¡


R
 () 

¢
(gray) against the estimated normal distribution

of
√

¡
̂ − 0

¢
, with  = 100, Σ 6= 0, Σ = 0,  6= 0,  = 015.
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Figure 2: PP plots of the distributions of
√

¡
̂ − 0

¢
(black) and

 (1) 
¡


R
 () 

¢
(gray) against the estimated normal distribution

of
√

¡
̂ − 0

¢
, with  = 1000, Σ 6= 0, Σ 6= 0,  6= 0,  = 015.
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Figure 3: PP plots of the distributions of
√

¡
̂ − 0

¢
(black) and

 (1) 
¡
̂

R
 () 

¢
(gray) against the estimated normal distribution

of
√

¡
̂ − 0

¢
, with  = 100, Σ 6= 0, Σ = 0, Σ =  6= 0,  = 015.
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Figure 4: Kernel density estimates of
√

¡
̂ − 0

¢
(dashed black) and

 (1) 
¡


R
 () 

¢
(solid red) against the estimated normal distri-

bution of
√

¡
̂ − 0

¢
(dotted blue), with  = 10000, Σ 6= 0, Σ = 0,

 6= 0,  = 015.
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Figure 5: Kernel density estimate of
√

¡
̂ − 0

¢
(solid blue) against the

scaled Cauchy variate (dashed red),  = 100, Σ 6= 0, Σ = 0,  6= 0,

 = 0.
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Figure 6: Trimmed (1% from each side) RHS (solid blue) and LHS kernel

distributions, based on 2000 replications with  = 2000 .  = 0 (dotted

brown),  = 02 (dashed green),  = 05 (dot dashed red),  = 1 (bold

dashed magenta),  = 2 (bold dot dashed brown).
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