Photochemical oxidation of dimethylsulphide to dimethylsulphoxide in estuarine and coastal waters

Günther Uher a, *, J. Julian Pillans a,1, Angela D. Hatton b,2, Robert C. Upstill-Goddard a

a School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
b Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll, PA37 1QA, United Kingdom

HIGHLIGHTS
- We observed 1:1 M conversion of DMS to DMSO in estuarine waters.
- This suggests that DMS photo-oxidation occurred via the CDOM sensitised 1O2 pathway.
- Photochemical rate constants decreased ~10-fold from river to seawater.
- Rate constants were strongly correlated with CDOM absorption coefficients (a350).
- a350-normalised rate constants increased ~10-fold from river to seawater.

ABSTRACT
Dimethylsulphide (DMS) photo-oxidation and dimethylsulphoxide (DMSO) photoproduction were estimated in 26 laboratory irradiations of coastal samples from NE England (Tyne estuary) and W Scotland (Loch Linnhe and River Nant at Taynuilt). Pseudo-first order rate constants of DMS photo-oxidation (0.038 h⁻¹ to 0.345 h⁻¹) and DMSO production (0.017 h⁻¹ to 0.283 h⁻¹) varied by one order of magnitude and were lowest in the coastal North Sea. Estuarine samples (salinity S < 30) had a mean DMSO yield of 96 ± 16% (n = 14), consistent with 1:1 M conversion via photosensitised oxidation by singlet oxygen. Photochemical rate constants were strongly correlated with coloured dissolved organic matter (CDOM) absorption coefficients at 350 nm, a350. Variations in a350 explained 61% (R² = 0.61, n = 26) and 73% (R² = 0.73, n = 17) of the variability in DMS photo-oxidation and DMSO production, respectively. However, CDOM normalised photochemical rate constants increased strongly towards coastal waters exhibiting lowest CDOM absorbance, indicating water samples of marine character (S > 30) to be most reactive with respect to DMS photo-oxidation. Estimates of water column averaged DMS photo-oxidation rate constants, obtained by scaling to mean daily irradiance (July, NE England) and mid-UV underwater irradiance, were 0.012 d⁻¹, 0.019 d⁻¹, and 0.017 d⁻¹ for upper estuary (S < 20), lower estuary (20 < S < 30) and coastal waters (S > 30), at the lower end of previous observations. Comparing our water column averaged DMS photo-oxidation rate constants with estimated DMS losses via air-sea gas exchange and previously reported biological consumption implies that DMS photochemical removal is of only minor importance in our study area.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dimethylsulphide (DMS) is an important biogenic trace gas implicated in the regulation of global climate. Marine DMS emissions may account for ~20–35 Tg (S) a⁻¹ globally (Simo and Dachs, 2002; Kloster et al., 2006; Lana et al., 2011; Land et al., 2014) and likely dominate the southern hemisphere tropospheric sulphur budget (12 Tg (S) a⁻¹; Stern, 2006; Lana et al., 2012; Land et al., 2014). A marine DMS-climate feedback loop was first proposed...
by Charlson et al. (1987), in which gas to particle conversion of phytoplankton-derived DMS in the marine boundary layer produces sulphate aerosols that act as cloud condensation nuclei, thereby impacting Earth’s radiation balance via changes to cloud albedo. While some recent modelling studies imply a rather weak marine DMS-climate feedback (Carslaw et al., 2010; Quinn and Bates, 2011), others support the notion that cloud condensation nuclei abundance may be controlled by DMS-derived and other secondary aerosols (Lana et al., 2012). Considerable uncertainty regarding the contribution of DMS to indirect aerosol forcing (Carslaw et al., 2013; Woodhouse et al., 2013) illustrates the need for further studies of biogeochemical DMS cycling.

Marine DMS is primarily derived from the enzymatic breakdown of dimethylsulphonio-propionate (DMSP), an algal osmorelyte and cryoprotectant (Simó, 2001). Sea surface DMS losses are usually dominated by microbial consumption or photodegradation, with only minor contributions from air-sea exchange (Archer et al., 2002; Toole et al., 2006; Vila-Costa et al., 2008; Gall and Simó, 2015). Results from 35S-DMS tracer experiments indicate that microbial DMS consumption in surface waters primarily yields dimethylsulphoxide (DMSO) (Del Valle et al., 2007b). By contrast, the DMSO yield from DMS photo-oxidation apparently varies between shelf seas (25%), polar waters (39%) and the open ocean (14%) (Kieber et al., 1996; Hatton, 2002; Toole et al., 2004). Even so, DMSO concentrations frequently exceed those of DMS (Lee et al., 1999), possibly due to a lack of photochemical removal (Toole et al., 2004), slow microbial consumption (Tysebotn et al., 2017), significant biological production (Del Valle et al., 2007a) or an aggregate of all three.

Laboratory studies established that aqueous solutions of dialkylsulphides undergo photosensitised oxidation to their respective sulphoxides (e.g. Sysak et al., 1977), involving singlet oxygen (1O2) or alkylsulphides undergo photosensitised oxidation to their respective sulphoxides (e.g. Sysak et al., 1977), involving singlet oxygen (1O2). However, the overall contribution of nitrate related pathways is likely limited to channelled emissions (Uher, 2006). UV light absorption by CDOM, a proxy for the photosensitisation capacity of natural waters (Zepp et al., 1985) is also high in coastal waters (Stedmon and Nelson, 2014). Given the high levels of natural photosensitisers, it is plausible to assume that CDOM related DMS photo-degradation, including CDOM sensitised photo-oxidation by 1O2, is important in controlling coastal DMS concentrations and sea-to-air flux. In this paper we evaluate the results of irradiation experiments using estuarine and coastal waters collected along the UK northeast and northwest coasts. DMS photo-degradation and DMSO photoproduction were quantified, with the DMSO yield used to diagnose photosensitised DMS oxidation by 1O2. Rate constants for DMS photo-oxidation and concurrent DMSO production were compared to spectral CDOM absorbance in the UV and visible domains to test for predictive relationships between photochemical DMS removal and proxies of the photo-sensitisation capacity of natural waters.

2. Methods

2.1. Study areas and sampling

A total of 16 surface water samples were collected from the Tyne estuary, NE England, and adjacent North Sea waters, and a further 2 samples were obtained from Loch Linnhe and the River Nant at Taynicht, N Scotland (Table 1, Fig. 1). Both study areas receive river discharge rich in dissolved organic carbon (DOC) due to extensive blanket peat coverage in their catchments (Hope et al., 1997; Joint Nature Conservation Committee, 2011). The Tyne estuary is a ria type, macrotidal estuary of 33 km length, receiving a mean freshwater discharge of ~45 m3 s−1 from the River Tyne (Manning, 2012). Loch Linnhe is a large Scottish sea loch of fjordic character, extending approximately 60 km in length from its north-eastern end to the coastal waters of the Inner Hebrides to the southwest. Loch Linnhe is connected with Loch Eil and, via River Lochy, with Loch Lochy to the north, receiving significant runoff (112.5 m3 s−1), dominated by River Lochy discharge (59.5 m3 s−1) to its northern end (Manning, 2012). The Lochy and Tyne rank among the 10 largest UK rivers by discharge (National River Flow Archive, http://nrfa.ceh.ac.uk/). The River Nant is a small Scottish river of ~10 km length discharging freshwater from Loch Locht into Loch Etive, which connects with Loch Linnhe at Connel, Argyll and Bute, Scotland.

Surface water samples for subsequent irradiation experiments were collected in 25 L high density polyethylene (HDPE) carboys pre-cleaned with laboratory detergent, (Decon 90), 10% HCl, and 1:1 M conversion to the sulphoxide. Brimblecombe and Shooter (1986) showed that marine chromophoric dissolved organic matter (CDOM) sensitises DMS photo-oxidation, consistent with singlet oxygen (1O2) formation via electronically excited triplet states in natural CDOM (Zepp et al., 1985). However, Brimblecombe and Shooter (1986) did not report DMSO concentrations, and subsequent work reported low DMSO yields, particularly in open ocean waters (Kieber et al., 1996; Hatton, 2002; Toole et al., 2004), that are not consistent with the 1O2 pathway. Positive correlations of DMS photo-oxidation rates with nitrate concentrations imply that reactive intermediates deriving from nitrate photolysis are also involved in DMS photodegradation (Bouillon and Miller, 2004; Toole et al., 2004). Their likely contribution, as estimated from relationships between photo-oxidation rate constants and in-situ nitrate concentrations, appears to be rather variable between contrasting open ocean waters of the subpolar South Pacific (35%; Toole et al., 2004) and NE Pacific (81%; Bouillon and Miller, 2004). By implication, these results suggest highly variable contributions from CDOM related pathways of DMS photo-oxidation (19–65%). Data on the relationship between DMS photo-oxidation rate constants and nitrate concentrations remain scant. However, a recent meta-analysis of both available and unpublished apparent quantum yields of DMS photo-oxidation suggested that photochemical DMS removal is primarily controlled by CDOM nature and abundance, while the overall contribution of nitrate related pathways is likely limited to ~20–25% (Gali et al., 2016). Concurrent studies of the effects of CDOM and nitrate on DMS photo-oxidation are needed to further constrain the roles of contrasting photodegradation pathways at regional scales.

Due to their characteristically high DMS concentrations, coastal waters are thought to be disproportionately large contributors to global marine DMS emissions (Uher, 2006). UV light absorption by
(0.2 μm Sartopore 2 Gamma capsule filter) to minimise microbial activity, samples were transferred to a series of 2 L HDPE carboys and augmented with a DMS stock solution, to adjust their initial DMS concentrations to within the range typical of European estuarine and coastal waters. Our average initial DMS concentration was 7.6 nM, comparable to the mean European shelf water concentration during summer (8.4 nM; Uher, 2006). The DMS stock solution was prepared by injecting pure DMS (Sigma-Aldrich, 99% purity) into 50 ml crimp top vial. After adding the appropriate volumes of working stock the sample carboys were filled, 50 ml crimp top vial. The sealed vessels via side ports were mounted vertically in a solar simulator carousel surrounded by cooling fans to keep samples at laboratory temperature (20±2 ºC). We did not determine the spectral output of our light source immediately prior to our study but we did subsequently determine its broadband UV (300–400 nm) and visible (400–800 nm) irradiances with a spectroradiometer (ILT950, International Light Technologies); these were 35.4 W m⁻² and 277 W m⁻² respectively. Irradiations ran for periods of 6–30 h, during which times a minimum of 3 subsamples were removed for analysis. We also ran dark controls wrapped in tin foil to exclude light but otherwise treated identically to their irradiated counterparts.

For selected samples, simultaneous sunlight and laboratory irradiations facilitated a direct comparison of solar simulator irradiance with irradiance under ambient conditions. Sunlight irradiations were on the roof of the Newcastle laboratory during July and August 2004, between 10:00 and 15:00 local time. Quartz irradiation flasks were laid horizontally in plastic trays continuously flushed with tap water to maintain the temperature close to that of ambient North Sea water (11±1 ºC).

2.3. DMS and DMSO analysis

Dissolved DMS was determined by helium purging, followed by gas chromatography (Shimadzu, GC14B) and sulphur chemiluminescence detection (Sievers, 350B), using a method modified from Uher and Andreae (1997). Water samples were transferred from the irradiation flasks into ground glass syringes, with known volumes (up to 40 ml) then injected into a series of 120 ml purging vessels via side ports fitted with gas tight stopcocks. Each sample was helium-purged for 14 min at 85 ml min⁻¹. The helium stream (BOC N4.6) passed through a U-shaped borosilicate water trap (35 cm × 10 mm i.d.; −20 °C) and into a liquid nitrogen cryotrap (perfluoroalkoxy (PFA) tubing, 75 cm × 1.65 mm, packed with...
20 mm silanised glass wool) attached to a 4-port injector valve (Vici Valco 4UWE). Once purging was completed, a second helium stream (30 ml min$^{-1}$) transferred the cryotrapped sample to a liquid nitrogen cryofocussing loop (PFA, 25 cm × 0.8 mm, packed with 10 mm silanised glass wool) connected to the gas chromatograph’s 6-port injection valve (Vici Valco, C6UWE). After 5 min the 6-port valve was actuated with the cryoloop submerged in warm water, thereby injecting the cryo-concentrated sample onto the GC column (Chrompak Porabond Q, 25 m × 0.32 mm; helium carrier gas, 5 ml min$^{-1}$). DMS was baseline separated from other sulphur gases by a two-stage temperature programme (1.2 min at 60 °C, 40 °C min$^{-1}$, 1 min at 180 °C), and eluted at a retention time of 3.8 min. Two stripping channels were used simultaneously to increase sample throughput. All glassware was silanised (Sigma-Aldrich, Sylon CT, No. 33065-U), and all connections used PFA tubing (Fluoroware) with Nylon compression fittings (Swagelok) to minimise DMS adsorption onto internal system surfaces.

DMSO was analysed after enzymatic reduction to DMS Hatton et al. (1994). Following DMS purging and analysis, 3 ml of an aqueous solution containing 30 mM EDTA, 540 μM flavin mononucleotide, and 18.5 μg ml$^{-1}$ DMSO reductase was added to each of the purging vessels. To facilitate enzymatic reduction, these were next each illuminated by three incandescent 60 W light bulbs and purged for 18 min to enable complete DMSO conversion to DMS, with the purged DMS analysed as described above.

Method calibration was with DMS emitted from a gravimetrically calibrated permeation device (Vici Metronics, Type 6200, 51 ± 1 ng DMS min$^{-1}$) maintained in a temperature controlled chamber (30 °C) flushed with synthetic air (30 ml min$^{-1}$). Gravimetrically calibrated sample loops were used to inject varying volumes of permeation gas onto the cryofocusing loop. Calibrations using gaseous standards and aqueous standards prepared by diluting stock DMSO (99.9%, Sigma-Aldrich, No. 27,043-1) agreed to within ±1% and were linear over the range 1–50 ng DMS ($R^2 = 0.996, n = 13$). This corresponds to DMS concentrations of 0.8–80 nM using 20 ml and 40 ml sample volumes respectively. The overall precision of the method was better than ±5% based on replicate injections of gaseous DMS standards. Considering cumulative errors in sample loop volumes, DMS mass losses from the permeation device and air flow through the permeation chamber (<±5%), we estimate the overall analytical error of the method at better than ±10%.

2.4 CDOM absorbance spectra and ancillary data

CDOM absorbance in the UV and visible range (250–800 nm)
was recorded on a double beam spectrophotometer (Kontron, Uvikon 923), using quartz cells with optical path lengths of 10 mm or 100 mm. Mill-Q was used as a reference. Spectra were corrected for refractive index effects and instrument drift by subtracting the mean absorbance over the wavelength range 680–700 nm (Kitidis et al., 2008). Absorption coefficients were calculated from

\[a_\lambda = \ln(10) A_\lambda d^{-1} \]

where \(a_\lambda \) is the Napierian absorption coefficient \((\text{m}^{-1})\) at wavelength \(\lambda \), \(A_\lambda \) is the absorption at wavelength \(\lambda \), and \(d \) is the optical path length \((\text{m})\). We adopted the absorption coefficient at 350 nm \((a_{350})\) as a proxy for CDOM, because \(a_{350} \) is a robust predictor of DOC levels in our study area (Spencer et al., 2008) and is representative of photochemically active chromophores in the mid-UV range (Kitidis et al., 2008). The spectral slope factor over the wavelength range 290–350 nm \((S_{290-350})\) was estimated from a non-linear fit to a single exponential model

\[a_\lambda = a_{350} \exp(-S_{290-350} (\lambda - \lambda_0)) \]

where \(a_{350} \) is the absorption coefficient at the reference wavelength \(\lambda_0 \) (250 nm). \(S_{290-350} \) was previously shown to discriminate between terrestrial and marine-derived CDOM (Uher et al., 2001; Spencer et al., 2007b), and to indicate CDOM photobleaching, as lowest \(S_{290-350} \) values are associated with newly formed CDOM (Kitidis et al., 2006), while progressive photodegradation increases \(S_{290-350} \) (Kitidis et al., 2008). Salinity was determined using a portable conductivity meter (Hanna, model 8633).

2.5. Calculation of rate constants and molar conversion

Pseudo first order rate constants, \(k_{\text{DMS}} \), were derived by regressions to the log-linearised first order rate law,

\[\ln(C_t(DMS)/C_0(DMS)) = -k_{\text{DMS}} \times t \]

where \(C_t \) and \(C_0 \) are DMS concentrations at time \(t \) and \(t = 0 \), respectively. To correct for any changes in the DMS concentrations of dark controls, the first order rate constants derived from regressions to DMS concentrations in dark controls were subtracted from those obtained by regressions to irradiated sample concentrations. Pseudo first order DMSO photoproduction rate constants, \(k_{\text{DMSO}} \), were obtained in a similar way, except that the DMS concentration at time \(t \), \(C_t(DMS) \), was calculated by subtracting the net increase in DMSO concentration between \(t \) and \(t = 0 \), \(\Delta C_t(DMSO) \), from the initial DMS concentration,

\[\ln((C_t(DMS) - \Delta C_t(DMSO))/C_0(DMS)) = -k_{\text{DMSO}} \times t \]

Rate constants were divided by the self-shading factor, \(f \), to correct for self-shading via intrinsic light absorbance by CDOM. The self-shading factor, \(f \), was calculated from

\[f = (1 - \exp(-a_{350} d))/(a_{350} d) \]

where \(a_{350} \) is the CDOM absorption coefficient at 350 nm and \(d = 0.021 \) m is the mean optical path length through the quartz irradiation flasks (Kitidis et al., 2008). Below salinity \(S = 10 \), \(f \) varied between 0.5 and 0.84, while for \(S > 10 \) samples were optically thin \((f > 0.95)\). Irradiations of Tyne river water with and without broadband filters (DuPont, Mylar D, 320 nm cut-off) confirmed that UV-A irradiance \((>320 \text{ nm})\) accounted for >65% of total DMS photo-oxidation (data not shown), justifying the use of mid UV CDOM absorption coefficients to calculate \(f \).

The overall molar conversion of DMS to DMSO was determined as the average percentage conversion, corrected for changes in dark controls, over the full duration of each irradiation.

3. Results and discussion

3.1. Photodegradation kinetics and DMSO yield

DMS concentrations decreased in all irradiations, accompanied by increases in DMSO (Fig. 2). In dark controls DMS and DMSO showed little to no change, remaining within \(\pm 1 \text{ nM} \) of their initial concentrations throughout the experiments (<30 h). DMS photooxidation and DMSO photoproduction both followed first order kinetics (Fig. 2), in line with previous findings for DMS (Kieber et al., 1996; Brugger et al., 1998; Hatton, 2002; Toole et al., 2004).

Our experimental protocol demanded DMS additions prior to the start of the irradiations, with initial DMS concentrations typically varying from 3.5 nM to 14.3 nM (Table 1). We therefore irradiated a series of Tyne River waters to evaluate any dependence of our pseudo first order rate constants on DMS concentration over the relevant range (6.1–41.1 nM, Table 1, Fig. 3). Initial DMS loss rates, calculated from the product of the initial DMS concentration and the photo-oxidation rate constant, increased linearly with DMS concentration \((R^2 = 0.985, n = 5\) (Fig. 3), supporting our assumption of pseudo first order kinetics and consistent with previous conclusions for DMS concentrations <50 nM (Kieber et al., 1996; Brugger et al., 1998).

Table 1 summarises the DMSO yields from DMS photo-oxidation. For estuarine samples \((S < 30)\) the mean DMSO yield was 96 ± 16% \((n = 14)\), consistent with 1:1 M conversion. In 3 experiments \((Table 1, \text{No}5, 6, 21)\), DMSO yields exceeded the mean by more than one standard deviation. Elevated DMSO yields might suggest the presence of additional DMSO sources other than DMS. However, so far the only known alternative DMSO source is biological production by particle associated processes (Del Valle et al., 2007a) which should have been excluded by our filtration protocols. Another possibility, bacterial reduction of dimethylsulphide (Bentley and Chasteen, 2004), also seems unlikely because dimethylsulphide has not been detected in seawater (Lee et al., 1999). We therefore conclude that elevated DMSO yields likely resulted from combined analytical error across four sample subsets (DMS and DMSO determinations in dark controls and irradiated samples). For samples of salinity >30 the yield was much lower \((60 ± 12%, n = 3)\). The lowest molar conversion percentages were for samples from Cullercoats Bay \((52\%)\) and Loch Linhe \((55\%)\), possibly a result of differing sample compositions for estuarine \((S < 30)\) and coastal \((S > 30)\) waters.

The mean \((±\text{standard error})\) of all DMS photo-oxidation rate constants was 0.166 ± 0.016 h\(^{-1}\) \((n = 26, \text{Table 1})\). For our sample subset with concurrent DMSO photoproduction data the mean DMS photo-oxidation rate constant \((0.157 ± 0.019 \text{ h}^{-1}; n = 17)\) agreed closely with the mean DMSO photoproduction rate constant \((0.133 ± 0.018 \text{ h}^{-1}; n = 17)\). Overall, the rate constants for DMS photo-oxidation and DMSO photoproduction were not significantly different \((t\text{-test}, p = 0.10)\). These results support a 1:1 M conversion for the majority of samples, particularly for estuarine samples \((S < 30)\) for which allochthonous CDOM is predominantly terrestrialily-derived (Uher et al., 2001).

Our finding of 1:1 M conversion of DMS to DMSO is consistent with photo-oxidation by \(O_2\) deriving from natural photosensitisers in the CDOM pool (Sysak et al., 1977; Zepp et al., 1985; Brimblecombe and Shooter, 1986). DMSO yields close to 100% for estuarine waters \((S < 30)\) imply photosensitised oxidation by \(O_2\) to be the dominant DMS photodegradation pathway. Although DMSO yields for our coastal samples \((S > 30)\) were lower \((52–78\%),\)
Table 1), they were still significantly higher than previously reported yields for the northern North Sea (5–37%; Hatton, 2002), the equatorial Pacific (14%; Kieber et al., 1996) and the subpolar South Pacific (33–45%; Toole et al., 2004). Our findings clearly indicate that DMS photo-oxidation by pathways other than photosensitised oxidation by $1O_2$ (Bouillon and Miller, 2004; Toole et al., 2004) is of only minor importance for the estuarine and coastal waters studied here. By contrast, contributions to DMS photo-oxidation from nitrate related pathways, extrapolated from the nitrate dependence of DMS photo-oxidation rates, were important in the subpolar South Pacific (35%) and NE Pacific (81%) (Bouillon and Miller, 2004; Toole et al., 2004). To date, DMSO yields (33–45%), a proxy for the $1O_2$ pathway contribution to DMS photo-oxidation (Kieber et al., 1996), and concurrent contributions from nitrate related pathways (35%) have only been reported in Toole et al. (2004), for the subpolar South Pacific. Findings by Toole et al. (2004) imply overall contributions of 68–80% from singlet-oxygen and nitrate related pathways combined, and therefore suggest a contribution of 20–32% from CDOM related pathways other than those involving $1O_2$ and DMSO formation. In summary, further research is required to resolve the varying contributions of individual DMS removal pathways and their underlying mechanisms.

3.2. Variability of DMS photo-oxidation rates and relationship to CDOM

Pseudo first order DMS photo-oxidation rate constants and
DMSO photoproduction rate constants both varied nearly 10-fold, with highest values (0.345 h⁻¹ and 0.283 h⁻¹ respectively) near the head of the Tyne estuary and lowest values (0.038 h⁻¹ and 0.017 h⁻¹ respectively) in the adjacent coastal North Sea (Table 1). We tested for correlations between rate constants on the one hand and salinity, CDOM characteristics (a₃₅₀, S₂₉₀-₃₅₀), and first order rate constants for the absorption coefficient (kₐ₃₅₀) and CDOM spectral slope (S₂₉₀-₃₅₀) photobleaching on the other, to gain an insight into what controls the variability in photochemical DMS conversion. We considered photobleaching rate constants, because we observed significant decreases in a₃₅₀ concurrent with increases in S₂₉₀-₃₅₀ in our irradiations, and because photobleaching rate constants may reflect CDOM nature and photoreactivity (Rodríguez-Zúniga et al., 2008). Average first order rate constants of a₃₅₀ photobleaching and S₂₉₀-₃₅₀ increase were 0.016 ± 0.005 h⁻¹ and 0.006 ± 0.004 h⁻¹, respectively, consistent with previous work in the study area (Kitidis et al., 2008). Experiments 1 and 22–24 (Table 1) were excluded from this correlation analysis, because CDOM photo-bleaching data were unavailable. Overall, rate constants for DMS photo-oxidation and DMSO production both showed the strongest relationships with a₃₅₀ (DMS: r = 0.723, n = 22; DMSO: r = 0.824, n = 15; Table 2). They were both also negatively correlated to salinity (DMS: r = −0.607, n = 22; DMSO: r = −0.559, n = 15; Table 2) reflecting the inverse relationship between salinity and a₃₅₀, (r = −0.491, n = 22, p = 0.02). The weaker correlations for salinity arise at least in part because salinity is a rather weak index of CDOM variations in the source river waters entering our study estuaries (a₃₅₀ = 16.6 to 71.9 m⁻¹, Table 1). Variability in a₃₅₀ alone explained more than 60% and 70% of the observed variability in the rate constants of DMS photo-oxidation (R² = 0.61, n = 26) and DMSO production (R² = 0.73, n = 17) (Fig. 4). We therefore suggest that a₃₅₀ can be a useful predictor of DMS photochemical conversion rates in estuarine and coastal waters that have comparable CDOM levels. Interestingly, the intercepts of the regression lines in Fig. 4 imply some residual photoreactivity in the absence of CDOM (kDMS = 0.9 h⁻¹; kDMSO = 0.5 h⁻¹), which may possibly be related to nitrate. However, for a₃₅₀ below 2 m⁻¹, representative of coastal North Sea waters, observed rate constants for both DMS photo-oxidation and DMSO production fell significantly below the regression lines (Fig. 4). We therefore contend that the trends depicted in Fig. 4 are likely unrepresentative of waters with CDOM absorption coefficients (a₃₅₀) significantly lower than those for our study area (1.1–71.9 m⁻¹; Table 1).

A strong correlation between DMS photochemical conversion rate constants and CDOM is consistent with the notion of CDOM photosensitised oxidation by O₂ because steady-state concentrations of DOM derived triplet states involved in O₂ formation are proportional to mid UV CDOM absorption coefficients (a₃₅₀) significantly lower than those for our study area (1.1–71.9 m⁻¹; Table 1).

Table 2

<table>
<thead>
<tr>
<th></th>
<th>kDMS (n = 22)</th>
<th>kDMSO (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₃₅₀</td>
<td>−0.607**</td>
<td>−0.559**</td>
</tr>
<tr>
<td>S₂₉₀-₃₅₀</td>
<td>0.723**</td>
<td>0.824**</td>
</tr>
<tr>
<td>k(a₃₅₀)</td>
<td>−0.356**</td>
<td>−0.711**</td>
</tr>
<tr>
<td>k(S₂₉₀-₃₅₀)</td>
<td>0.510**</td>
<td>0.323**</td>
</tr>
<tr>
<td></td>
<td>0.459**</td>
<td>0.291**</td>
</tr>
</tbody>
</table>

In seawater light absorption in the UV-A range is dominated by DOM chromophores (Toole et al., 2004; Taalba et al., 2013). Even so, the evidence for DMS photo-oxidation — CDOM relationships remains scant. Hatton (2002) did not find any correlation between DMS photo-oxidation rate constants and DOC in the northern North Sea, plausibly due to the limited range of DOC concentrations (60–80 μM C), and by implication CDOM levels, encountered. Irradiation experiments with a dilution series of aged Adriatic Sea water indicated a linear increase in initial DMS photo-oxidation rate with increasing DOC concentrations (8–80 μM C) (Brugger et al., 1998), but did not allow any conclusions regarding the variability of DMS photo-oxidation rates across samples of varying DOM composition. In the north-western Atlantic Ocean DMS photo-oxidation rate constants were highest in shelf waters with elevated CDOM absorption coefficients, but no relationships between DMS photo-oxidation, salinity or CDOM characteristics were reported (Toole et al., 2006). However, a recent study from the Canadian Arctic reported apparent quantum yields of DMS photo-oxidation (AQY₄₇₅) as a function of salinity and CDOM spectral slope from 275 to 295 nm, S₂₅₋₂₉₅ (Taalba et al., 2013). AQY₄₇₅ remained approximately constant in samples of estuarine character (S < 25) but increased exponentially towards higher salinity and accompanying lower CDOM. This was attributed primarily to differences in CDOM photoreactivity between terrestrial and marine samples, which were also reflected in S₂₅₋₂₉₅, a proposed proxy of terrestrial CDOM (Taalba et al., 2013).

We interrogated our own data for possible differences in the efficiency of photochemical DMS conversion by examining variations in CDOM normalised rate constants (i.e. kDMS and kDMSO divided by a₃₅₀) with salinity, a₃₅₀ and S₂₉₀-₃₅₀. CDOM normalised rate constants of both DMS photo-oxidation and DMSO production showed little variation in CDOM-rich samples and a steep increase towards low CDOM coastal waters, best described by a power function. Regression result for DMS photo-oxidation and DMSO production were remarkably similar, again consistent with near 1:1 M conversion of DMS to DMSO (DMS: k/ a₃₅₀ = 0.0405 × a₃₅₀, R² = 0.86, n = 26; DMSO: k/ a₃₅₀ = 0.0293 × a₃₅₀, R² = 0.79, n = 17). Pooling both data sets was therefore justified. Variability in a₃₅₀ explained 81% of the overall variability in CDOM normalised rate constants (k/ a₃₅₀ = 0.0353 × a₃₅₀, R² = 0.81, n = 43; Fig. 5). The relationship of CDOM normalised rate constants with salinity was weaker (k/ a₃₅₀ = 0.0007 × S + 0.0066, R² = 0.74, n = 43; data not shown), chiefly because salinity does not adequately reflect the variability in a₃₅₀ from terrestrial inputs. CDOM normalised rate constants were not related to S₂₉₀-₃₅₀ (R² = 0.001, n = 43) because substantial variations in S₂₉₀-₃₅₀ (0.0133–0.0153 nm⁻¹; Table 1) at low salinities did not cause discernible changes in photochemical DMS conversion efficiency.

The increase in our CDOM normalised rate constants with decreasing a₃₅₀ is consistent with the notion that marine waters have higher photoactivity with respect to DMS photo-oxidation than terrestrial waters (Taalba et al., 2013; Gali et al., 2016). The higher photoactivity of seawater samples may in part be attributed to an increasing contribution from nitrate related DMS photo-oxidation with increasing salinity offshore (Taalba et al., 2013). In the upper Tyne estuary, nitrate concentrations are elevated (40–80 μM) but decline rapidly to < 2 μM in the adjacent North Sea (Ahd et al., 2006), similar to those in Loch Linnhe (0–3 μM; Ross et al., 1993). Even so, given that photochemical DMS conversion in our samples seems to be dominated by CDOM related photo-oxidation by O₂ (see section 3.1), and that coastal nitrate levels are comparatively low, an increasing contribution from nitrate related pathways alone is an unlikely explanation of an approximately 10-fold increase in CDOM normalised rate constants across
Fig. 4. Relation of pseudo first order rate constants of DMS photo-oxidation (a) and DMSO photoproduction (b) to the CDOM absorption coefficient at 350 nm. The best fit line for DMS photo-oxidation was $k_{\text{DMS}} = 0.0033 \times a_{350} + 0.089$ ($R^2 = 0.61$, $n = 26$). The best fit line for DMSO photoproduction was $k_{\text{DMSO}} = 0.0032 \times a_{350} + 0.057$ ($R^2 = 0.73$, $n = 17$). Dashed lines indicate 99% confidence intervals.
the salinity gradient. Furthermore, strong summer depletion of nitrate in the coastal NE North Sea (nitrate <50 mM; Woodward and Owens, 1990) suggests a low overall contribution from nitrate related DMS photo-oxidation in our study area. More plausibly, compositional differences between terrestrial and marine CDOM were important in defining the variability in CDOM normalised rate constants depicted in Fig. 5. These findings agree with a recent meta-analysis (Gallí et al., 2016) which concluded that CDOM nature and abundance are the primary controls of DMS photo-oxidation, that any contributions from nitrate related pathways are comparatively low, and that variability in AQY\textsubscript{DMS} reflects CDOM origin (terrestrial versus marine) and subsequent photobleaching in the upper mixed layer. However, in our study areas the variability in photochemical DMS conversion was overall dominated by changes in CDOM abundance, the lowest rate constants being found in coastal waters with the lowest values of a\textsubscript{350} (Fig. 4).

3.3. Photochemical DMS turnover and DMS production

The lower end of our range of DMS photo-oxidation rate constants (0.038–0.345 h−1; Table 1) overlaps with previously reported values from sunlight incubations of coastal seawater in the northern (0.03–0.07 h−1; Hatton, 2002) and south-western North Sea (0.09 h−1; Brimblecombe and Shooter, 1986), the northern Adriatic Sea (0.12 h−1; Brugger et al., 1998) and the north-western Atlantic Ocean (0.03–0.09 h−1; Toole et al., 2006). By contrast, our highest DMS photo-oxidation rate constants are 3–5 fold higher than those previously reported. This may reflect differences in irradiation conditions or in the intrinsic photoreactivity of the seawater samples used. Sunlight incubations on the roof of our Newcastle laboratory simulatrice with our laboratory irradiations enabled us to compare our laboratory results with the ambient sunlight effect (Table 3). The ratio of DMS photo-oxidation rate constants derived with these two approaches was close to unity for overcast conditions (R(Sun/Sim) = 1.09), but reached a maximum of 1.66 under reduced cloud cover. On average, rate constants determined in sunlight incubations were 1.43 times higher than those determined in the solar simulator. Given that our sunlight irradiations were carried out around midsummer at a latitude similar to or higher than in previous experiments (Brimblecombe and Shooter, 1986; Brugger et al., 1998; Hatton, 2002; Toole et al., 2006), our irradiation conditions most likely do not account for our comparatively high rate constants. We consider it more likely that the high DMS photo-oxidation rate constants we found reflect elevated CDOM levels (Table 1).

To examine the role of varying CDOM levels and thus facilitate further comparison to other work, we grouped our data into upper estuary (S < 20), lower estuary (20 < S < 30), and coastal domains (S > 30) (Table 4). The mean a\textsubscript{350} of these sample groupings broadly agrees with previous work in the study area (Stubbins et al., 2011). Furthermore, the mean CDOM absorption coefficient for our coastal samples (a\textsubscript{350} = 1.4 m−1) is similar to the mean a\textsubscript{350} value of 1.3 m−1 for the North Sea, obtained by extrapolation from a\textsubscript{442} = 0.348 m−1 (Tilstone et al., 2012) using a CDOM spectral slope of 0.014 nm−1 (Table 1). Our mean coastal DMS photo-oxidation rate constant, k\textsubscript{DMS}, was 1.0 d−1, 2-fold and 5-fold lower than our means for the lower and upper estuary, respectively (Table 4). To scale our mean rate constants to the daily mean solar irradiance in our study area in July we multiplied our mean k\textsubscript{DMS} values by (i) the mean ratio of k\textsubscript{DMS} from sunlight irradiations to that determined under artificial light (R(Sun/Sim) = 1.43), and (ii) the ratio of daily global clear sky irradiance (317 W m−2) to the average global clear sky irradiance (775 W m−2) from SMARTS2 (Guemard, 2001) over the duration of our sunlight irradiations. The scaled DMS photo-oxidation rate constants, k\textsupscript{DMS} (Table 4), were approximately 2-fold lower than the unscaled values from our laboratory irradiations, but still equal to or exceeding the median daily DMS photo-oxidation rate constants for river-influenced coastal surface waters (0.58 d−1; Gallí et al., 2016).

The most rigorous calculations of photochemical DMS turnover in the water column are based on apparent quantum yields and wavelength resolved underwater irradiance (Toole et al., 2003; Bouillon et al., 2006; Taalba et al., 2013). Because we did not obtain wavelength resolved DMS photo-oxidation rates or underwater irradiance data, we constrained the effects of underwater light attenuation by scaling to mid-UV underwater irradiance at 350 nm. Following Zepp et al. (1987), we estimated mean DMS photo-oxidation rate constants in the water column, ku\textsubscript{DMS}, from

\[
ku\textsubscript{DMS} = (kDMS\textsubscript{exp} (1 - K\textsubscript{d,350} z))/(K\textsubscript{d,350} z)
\]

where z is water column depth and K\textsubscript{d,350} is the light attenuation coefficient at 350 nm. K\textsubscript{d,350} was estimated from CDOM absorbance

Table 3

<table>
<thead>
<tr>
<th>No.</th>
<th>Irradiation Date</th>
<th>Conditions</th>
<th>UV/W m−2</th>
<th>a\textsubscript{350}/m−1</th>
<th>k\textsubscript{DMS}/h−1</th>
<th>R(Sun/Sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13/07/2004</td>
<td>Broken clouds</td>
<td>18.5</td>
<td>71.6</td>
<td>0.737 ± 0.060</td>
<td>1.64</td>
</tr>
<tr>
<td>2</td>
<td>21/07/2004</td>
<td>Overcast to clear</td>
<td>18.0</td>
<td>16.8</td>
<td>0.250 ± 0.018</td>
<td>1.29</td>
</tr>
<tr>
<td>3</td>
<td>23/07/2004</td>
<td>Scattered clouds</td>
<td>22.9</td>
<td>16.8</td>
<td>0.362 ± 0.014</td>
<td>1.66</td>
</tr>
<tr>
<td>4</td>
<td>27/07/2004</td>
<td>Broken to scattered clouds</td>
<td>20.1</td>
<td>16.7</td>
<td>0.314 ± 0.022</td>
<td>1.49</td>
</tr>
<tr>
<td>5</td>
<td>02/08/2004</td>
<td>Overcast to hazy</td>
<td>11.2</td>
<td>16.6</td>
<td>0.246 ± 0.019</td>
<td>1.09</td>
</tr>
</tbody>
</table>
Our water column averaged DMS photo-oxidation rate constants are due at least in part to high nitrate levels, enhanced CDOM photoreactivity and high daily irradiance (Toole et al., 2004). Our estimates of $k_{\text{int, DMS}}$ are also sensitive to the choice of water column depth (equation (5)). For our work we chose bathymetric depth (Stubbins et al., 2011) because the water columns in our study area are predominantly well mixed (van Leeuwen et al., 2015). Even so, freshwater induced stratification can lead to upper mixed layer depths of 2–10 m in the lower Tyne estuary and adjacent North Sea (Rodrigues et al., 2007). For illustration, using an upper mixed layer depth of 2–10 m would return $k_{\text{int, DMS}}$ of 0.03–0.16 d^{-1} for coastal waters (S > 30), in broad agreement with estimates for the Mackenzie Shelf (0.01–0.11 d^{-1}) where mixed layer depths are comparably shallow, at 1–4.5 m (Taiba et al., 2013). In conclusion, our rate constants for DMS water column turnover are broadly comparable with previous work in coastal waters with elevated CDOM levels and high light attenuation, but they are somewhat lower than those for the clearest open ocean waters.

Previous studies reported a variable contribution from DMS photo-oxidation to overall DMS removal of around 6–70% (Kieber et al., 1996; Archer et al., 2002; Toole et al., 2003, 2004; Bouillon et al., 2006; Gall and Simó, 2010, 2015), and indicated that photo-oxidation can typically dominate over losses through biological consumption and air-sea gas exchange during periods of strong stratification with shallow mixed layer depths (Toole et al., 2006; Gall and Simó, 2010). However, a recent meta-analysis of DMS cycling rates suggest that the combined contributions of photochemical and air-sea gas exchange losses generally fall below 20% (Gall and Simó, 2015). Our low water column integrated DMS photo-oxidation rate constants suggest long photochemical turnover times of 86, 53, and 61 days for upper, lower estuarian and coastal waters, respectively. For comparison, we calculated ventilation turnover times based on water depths from Table 4, summer means of DMS concentrations for western European estuaries (3.77 nM) and shelves (8.43 nM), wind speed at 10 m height and seawater temperature, taken from Uher (2006). DMS fluxes were calculated according to Nightingale et al. (2000). Gas transfer velocities were corrected for their Schmidt number (Sc) dependence by multiplying with ($\text{Sc}/660^{0.5}$), using the parameterisation of Saltzman et al. (1993). Our ventilation turnover times were 2.3, 3.8, and 7.5 days for upper, lower estuarian and coastal waters, respectively, i.e. one order of magnitude lower than the photochemical turnover times. In coastal waters, photochemical losses only accounted for about 12% of the loss by air-sea gas exchange. Concurrent rate data for DMS biological consumption are not available for our study area. However, recent work in UK coastal waters indicated summertime biological turnover times of 0.6–2.7 days (Hopkins and Archer, 2014), significantly faster than photo-oxidation. Our comparison thus implies that photochemical removal of DMS is probably of only minor importance in our study area.

4. Summary and conclusions

We found near 1:1 M conversion of DMS to DMSO in irradiations

Table 4

<table>
<thead>
<tr>
<th>Water depth/m</th>
<th>$\alpha_{350, \text{m}^{-1}}$</th>
<th>$K_{d,350, \text{m}^{-1}}$</th>
<th>Solar simulator $k_{\text{DMS, d}^{-1}}$</th>
<th>Scaler $k_{\text{DMS, d}^{-1}}$</th>
<th>Water column average $k_{\text{DMS, d}^{-1}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal (S > 30)</td>
<td>20</td>
<td>1.4</td>
<td>1.8</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Lower estuary (20 < S < 30)</td>
<td>10</td>
<td>4.7</td>
<td>6.2</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Upper estuary (S < 20)</td>
<td>6</td>
<td>29.9</td>
<td>39.9</td>
<td>4.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Where $K_{d,350}$ is the light attenuation coefficient at 350 nm (Buiteveld et al., 1994). Scaling to underwater irradiance appears justified given that water column DMS photo-oxidation was previously found to be dominated by UV-A wavelengths (Toole et al., 2003; Deal et al., 2005; Taiba et al., 2013). Estimating $K_{d,350}$ from CDOM absorbance introduces some additional uncertainty, although previous work by Farmer et al. (1993) in the Ori-noce River plume found generally good agreement between $K_{d,350}$ predicted from equation (6) and direct observations. Even so, scattering and absorbance by particulate matter likely contributed significantly to overall light attenuation in our study area (Stubbins et al., 2011). Therefore, our estimates of $K_{d,350}$ in Table 4 should be regarded as lower limits and consequently, our water column averaged DMS photo-oxidation rate constants should be viewed as upper limits.

Our estimates of water column averaged DMS photo-oxidation rate constants, $k_{\text{int, DMS}}$, span a rather narrow range: 0.012 to 0.019 d^{-1} (Table 4). In the upper estuary, $k_{\text{int, DMS}}$ was lowest, plausibly due to a shallower optical depth (i.e. ($K_{d,350}$) < 0.03 m) caused by high light attenuation. Deeper optical depths in lower estuary (0.2 m) and in coastal waters (0.7 m) counteracted the lower DMS photo-oxidation rate constants, resulting in slightly higher $k_{\text{int, DMS}}$.

Our water column averaged DMS photo-oxidation rate constants fall towards the low end of a recently compiled range (Taalba et al., 2013), in which the lowest $k_{\text{int, DMS}}$ were for the Canadian Arctic (0.01–0.03 d^{-1}), Bering Sea (0.02–0.11 d^{-1}) and subarctic NE Pacific (0.03–0.25 d^{-1}) (Deal et al., 2005; Bouillon et al., 2006; Taiba et al., 2013), and highest values were for the subpolar North Atlantic (0.04–2.5 d^{-1}) (Simó and Paredes-Alió, 1999). For the subpolar North Atlantic, photochemical water column turnover rate constants were determined indirectly from the difference between the net of total DMS loss and its biological consumption, and estimates of air sea gas exchange. They should therefore be regarded as somewhat uncertain. The highest $k_{\text{int, DMS}}$ values derived from controlled irradiation experiments were for the Ross (0.5–0.71 d^{-1}) and Greenland Seas (0.23–1.05 d^{-1}) (Toole et al., 2004; Gall and Simó, 2010). High turnover rate constants in the Ross Sea were attributed to a combination of high nitrate levels, enhanced CDOM photoactivity and high daily irradiance during the austral Summer (Toole et al., 2004), while high upper mixed layer-integrated rate constants for the Greenland Sea are due at least in part to shallow, ice melt induced stratification (Gall and Simó, 2010). Given that seawater photoactivity appears to increase offshore, presumably due to an increasing contribution by nitrate photochromicy and the higher photoactivity of marine CDOM (Bouillon and Miller, 2004; Toole et al., 2004; Taiba et al., 2013), our low $k_{\text{int, DMS}}$ can be partly explained by the lower photoactivity of CDOM-rich, near coastal waters (Fig. 5) and partly by higher light attenuation in our study area ($K_{d,350} > 1.8 m^{-1}$) than was encountered by Toole et al. (2004) in the clear waters of the Ross Sea ($K_{d} = 0.085 m^{-1}$). Estimates of $k_{\text{int, DMS}}$ are also sensitive to the choice of water column depth (equation (5)).

$K_{d,350} = 4 \left(\frac{\alpha_{350}}{K_{d,350}} \right) / 3$ (6)

where α_{350} is the light absorption coefficient of pure water at 350 nm (Buitveteld et al., 1994). Scaling to underwater irradiance appears justified given that water column DMS photo-oxidation was previously found to be dominated by UV-A wavelengths (Toole et al., 2003; Deal et al., 2005; Taiba et al., 2013). Estimating $K_{d,350}$ from CDOM absorbance introduces some additional uncertainty, although previous work by Farmer et al. (1993) in the Ori-noce River plume found generally good agreement between $K_{d,350}$ predicted from equation (6) and direct observations. Even so, scattering and absorbance by particulate matter likely contributed significantly to overall light attenuation in our study area (Stubbins et al., 2011). Therefore, our estimates of $K_{d,350}$ in Table 4 should be regarded as lower limits and consequently, our water column averaged DMS photo-oxidation rate constants should be viewed as upper limits.

<table>
<thead>
<tr>
<th>Salinity range</th>
<th>Water depth/m</th>
<th>$\alpha_{350, \text{m}^{-1}}$</th>
<th>$K_{d,350, \text{m}^{-1}}$</th>
<th>Solar simulator $k_{\text{DMS, d}^{-1}}$</th>
<th>Scaler $k_{\text{DMS, d}^{-1}}$</th>
<th>Water column average $k_{\text{DMS, d}^{-1}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal (S > 30)</td>
<td>20</td>
<td>1.4</td>
<td>1.8</td>
<td>1.0</td>
<td>0.6</td>
<td>0.017</td>
</tr>
<tr>
<td>Lower estuary (20 < S < 30)</td>
<td>10</td>
<td>4.7</td>
<td>6.2</td>
<td>2.0</td>
<td>1.2</td>
<td>0.019</td>
</tr>
<tr>
<td>Upper estuary (S < 20)</td>
<td>6</td>
<td>29.9</td>
<td>39.9</td>
<td>4.8</td>
<td>2.8</td>
<td>0.012</td>
</tr>
</tbody>
</table>
of estuarine samples (S < 30), consistent with photosensitised DMS photo-oxidation by $^1\text{O}_2$. On this basis, we contend that this is the predominant pathway for photochemical DMS removal in our study area. The variability we observed in photo-oxidation rate constants along our river-sea transect is largely attributable to varying CDOM levels, as reflected in α_{s0} (Fig. 4). Overall, however, high sea surface DMS photo-oxidation rate constants in areas of highest CDOM abundance were counterbalanced by low mid-UV optical depths, such that mean daily water column photo-oxidation rate constants (k_{DMS}) showed little variation between riverine, estuarine and coastal areas. However, strong increases in the CDOM-normalised rate constants of DMS photo-oxidation and DMSO production towards low CDOM levels in coastal North Sea waters (Fig. 5) implies that marine waters are more reactive than estuarine waters with respect to DMS photo-oxidation. This higher photoactivity may be explained by a combination of an increased contribution from nitrate related DMS photo-oxidation and a higher photoactivity of marine-derived CDOM, as previously suggested (Toole et al., 2004; Taalba et al., 2013). The high photoactivity of coastal samples ($S > 30$) is reflected in CDOM normalised DMS photo-oxidation rate constants ($\text{mean} = 0.034 \text{ m h}^{-1}$; Fig. 5), the lowest DMSO yields ($\text{mean} = 60\%$, $n = 3$; Table 1) and by implication the lowest contribution from the $^1\text{O}_2$ pathway to DMS photo-oxidation. Photosensitized oxidation by $^1\text{O}_2$ may thus be less effective than other photochemical removal pathways. Progress in understanding the complex relationship between CDOM and DMS photo-oxidation will require an improved understanding of these various underlying mechanisms.

Our comparatively long photochemical turnover times (53–86 days, section 3.3) are consistent with low seawater photoactivity combined with shallow optical depths in the mid UV (<0.03–0.7 m). Assuming our DMS photo-oxidation rate constants to broadly represent other estuarine and near coastal waters, corresponding contributions from photochemical DMS removal to overall losses are likely to be minor albeit still significant. In near coastal waters, photochemical removal likely dominates only in conditions of shallow stratification, low rates of air-sea gas exchange due to low wind speeds and low biological consumption in near surface waters (Toole et al., 2006; Gali and Simó, 2010). We believe that further research in this field should focus on the balance of DMS removal processes during periods of shallow stratification.

Acknowledgements

We would like to thank the crews of RV Bernicia and RV Seol Mara, and Jonathan Barnes and Vassillis Kitidis for their assistance with seawater sampling. Gordon Henry assisted in setting up the Newcastle solar simulator and with GC-SCD analyses. J. Julian Pilley was supported by a UK Natural Environment Research Council studentship (NER/S/A/2001/00647). We thank two anonymous reviewers for their insightful comments that helped us to improve our manuscript.

References

