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Abstract

An efficient Navier–Stokes solver for the infinite–swept wing problem is presented. The new
flow solution, that reproduces correctly the physics responsible for cross–flow effects, is obtained
around a two–dimensional stencil. On the contrary, existing state–of–the–art methods rely on a
three–dimensional stencil. Numerical details are followed by an extensive validation campaign,
including steady and unsteady compressible flows. The test cases are for single and multi–
element aerofoils in both laminar and turbulent regimes. Under identical conditions (numerical
settings, grids, etc.), the computational cost of the proposed solver was reduced by at least 75%
compared to that of existing state–of–the–art methods. This was also confirmed employing var-
ious turbulence models. With a limited effort required to enhance an existing computational
fluid dynamics solver (either two or three–dimensional), the infinite–swept wing method was
implemented in an industrial–grade package used across Europe for rapid engineering analysis.

Keywords: rapid CFD methods, laminar flows, turbulent flows, steady and unsteady problems,
multi–element aerofoil

Nomenclature1

b Wing span, [m]
k Reduced frequency
M Mach number
R Rotation matrix
u, v, w Velocity components, [m/s]
V Velocity vector, [m/s]
Re Reynolds number
Pr Prandtl number
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Π Stress tensor
S Velocity gradients tensor
q̇ Heat flux vector

Greek2

α Angle of attack, [deg]
β Side–slip angle, [deg]
Λ Wing sweep angle, [deg]

Operators3

: double scalar product
⊗ dyadic product

Abbreviations4

2D Two–dimensional
3D Three–dimensional
AR Aspect ratio
CFD Computational fluid dynamics
ISW Infinite swept wing
LLT Lifting line theory
MG Maturity gate
NS Navier–Stokes
NLF Natural Laminar Flow
RANS Reynolds–averaged Navier–Stokes
SA Spalart–Allmaras
URANS Unsteady Reynolds–averaged Navier–Stokes
VLM Vortex lattice method

Indexes5

′ Body–attached frame of reference
0 Mean value
A Amplitude
∞ Freestream
: double scalar product
⊗ dyadic product

1. Introduction6

Industrial aircraft design proceeds through a series of maturity gates (MG). At the early stages7

of this process, designers explore a large parameter space relying heavily on empirical and linear8
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correlations [1]. In order to down–select the final aircraft concept, the design parameters are9

tightened and addressed in ever increasing detail [2]. At MG 5, denoted "freeze of concept"10

in industrial jargon, the shape and structural layout are converged and the aircraft target loads11

are set. Design target loads are the limiting loads that an aircraft or aircraft component must12

be designed to withstand. The objective of MG 5 is to anticipate the certification loads level,13

and issue this data as target loads. It is critical to limit the risk in setting these target loads [3]14

because: a) if the target loads are underestimated, as revealed following flight test, then expensive15

re–design is often required incurring the costs and penalties arising from programme delay; and16

b) if the target loads are overestimated, the aircraft will be heavier than needed with degraded17

performances.18

The analysis process to establish limit loads is computationally demanding as it consists of a19

very large number of conditions across the loads envelope. Despite a number of simplifications20

are introduced (linearized aerodynamics, weak coupling between disciplines, etc.), the number21

of load cases for certification [4], including ranges in Mach number, altitude, payload and fuel22

mass, exceeds easily several hundreds of thousands.23

Today, the solution of the Navier–Stokes (NS) equations is recognized as a prerequisite for24

realistic flow applications, but the associated computational costs of the three–dimensional (3D)25

problem become prohibitive when confronted with the number of load cases. Therefore, re-26

searchers have proposed two stratagems to overcome this problem. The first stratagem concerns27

the approximation of the output quantities of interest, e.g. aerodynamic loads, across the design28

envelope exploiting efficient and accurate adaptive design of experiments [5] and surrogate mod-29

elling techniques [6]. The advantage is that the use of off–the–shelf computational fluid dynamics30

(CFD) packages is straightforward. The second stratagem consists of applying a number of sim-31

plifying assumptions in the solution of the NS equations, making calculations cheaper [7, 8]. The32

advantage of this approach is the ability to find, for a particular problem, a balance between the33

approximation of the solution and the computational efficiency of the approximation. This work,34

specifically, addresses the second point.35

Rapid CFD methods currently employed in pre–MG 5 are derived combining Prandtl’s lifting36

line theory (LLT) or the vortex lattice method (VLM), which are linear 3D aerodynamic methods,37

with a two–dimensional (2D) solution of the NS equations. The resulting aerodynamic predictive38

tool, often referred to as the quasi–3D method, is nonlinear because sectional flow nonlinearities39

are obtained from a 2D CFD analysis. As the LLT or the VLM are inexpensive, the overall cost40

of a quasi–3D analysis is comparable to that of a 2D CFD analysis. Reference [9] discussed41

the design process of the high–lift devices of an Airbus A380–like configuration and the relative42

challenges encountered in the development phase. The aerodynamic design was built around the43

quasi–3D method from the early stages of the design process to obtain a pre–optimised shape44

that was wind tunnel tested. Reference [10] exercised the quasi–3D method for the optimisation45

of a flexible high–lift wing configuration. Another application concerning drag minimization46

was presented in Ref. [11]. Therein, the VLM was corrected with the MSES aerofoil predic-47

tions [12] based upon the solution of the Euler equations coupled with an integral formulation of48

the boundary layer equations, with a built–in transition model. The resulting tool was limited to49

low Reynolds number aerofoils. Other application areas of the quasi–3D method may be found50

in Refs. [2, 13].51

The reasons that the quasi–3D aerodynamic method finds large applicability for industrial52

design are: a) no detailed 3D geometry information is needed, relying instead on planform data53

and known aerofoil sections from available databases; b) minimum computational requirements,54

often not more than several hours of wall clock time for complete polars at various Mach num-55
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bers; and c) the easiness to introduce multi–physics considerations (icing, control sizing and56

allocation, etc.) without extra complication. It is worth observing that the references mentioned57

in the previous paragraph, and the references therein, rely on a 2D flow analysis to correct the58

predictions obtained from a linear 3D aerodynamic model. This is a poor choice in lieu of various59

experiments [14] showing that cross–flow effects, around a swept wing, strongly influence the60

boundary layer separation as well as the position of shock waves. Generally, these un–modelled61

effects are included via knowledge–based corrections, which are also a source of inaccuracies62

for less–conventional wing planforms departing from the original database.63

This study is part of a larger on–going effort at the University of Southampton to deliver,64

within an industrial design environment, novel computationally efficient methods to calculate65

dynamic aeroelastic loads around complete aircraft. The aim of this work is to report on the66

development of a computationally efficient aerodynamic method suitable for aircraft preliminary67

sizing studies, improving upon existing state–of–the–art methods. The technical objectives are68

to: a) discuss the resolution of the NS equations for the specific problem of an infinite–swept69

wing (ISW) on a 2D grid stencil; b) present a thorough validation study of the proposed method70

for a number of steady and unsteady flow problems, using two different turbulence models; and c)71

demonstrate and quantify the performance gains for industry–relevant test cases. The proposed72

methodology has been implemented within the DLR�Tau flow solver, where it is referred to73

as the 2.5D+ approach to recall the enhanced (computational and convergence) properties in74

comparison with existing methods. To note that our work goes beyond that presented in Ref. [15]75

where steady–state flows are considered around simple configurations and an assessment of the76

performance improvements is missing.77

Direct applications of the 2.5D+ solver within an industrial setting are the exploration of78

the flight envelope for a fixed configuration, including transient analyses when needed, and the79

optimisation of the aerodynamic shape (control effectors size and allocation, wing twist, etc.).80

The paper continues in Section 2 with a brief overview of the CFD solver used in this work.81

Section 3 explains the underlying methodology and discusses the implementation details of the82

proposed flow analysis. Then, Section 4 focuses on results for steady and unsteady flow prob-83

lems. Finally, conclusions are given in Section 5.84

2. Flow Solver85

The flow solver employed in this study is DLR�Tau [16], a finite volume based CFD flow86

solver used by a number of aerospace industries across Europe. The DLR�Tau solver uses an87

edge–based vertex–centred scheme, where the convective terms are computed via several first–88

and second–order schemes, including central and upwind types. The viscous terms are com-89

puted with a second–order central scheme. Time integration is performed either with various90

explicit Runge–Kutta schemes or the Lower–Upper Symmetric Gauss–Seidel (LU–SGS) im-91

plicit approximate factorization scheme. For time accurate computations, the dual time stepping92

approach of Jameson [17] is employed. Convergence rate is improved with a multi–grid acceler-93

ation technique based on agglomerated coarse grids generated by a pre–processing tool. Several94

models for turbulence closure are available including, for example, the one–equation Spalart–95

Allmaras (SA) type and more complex two–equation models of the k–ω family.96

The proposed 2.5D+ method has been implemented within the DLR�Tau flow solver, and is97

now available from version 2016.1.0 for production [18].98
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3. Infinite Swept Wing Model99

The ISW model assumes a wing of infinite span with a moderate wing sweep angle, Λ. In100

analogy with Euler–Bernoulli beam formulation, the only hypothesis is that the cross section is101

constant or slowly varying along the wing span. The solution of the ISW model is valid at a102

reasonable distance from the fuselage and wing tip. Un–modelled effects may be accounted for103

using the LLT or VLM, as already discussed in Section 1.104

A schematic of an ISW is illustrated in Fig. 1. Two convenient frames of reference (FoRs) are105

shown. The global FoR with axes (x, y, z), often located at the nose of the aircraft configuration,106

is generally used to solve the governing flow equations. Then, a body–attached FoR with axes107

(x′, y′, z′) provides a suitable choice for the ISW model. The FoR is located at the leading–edge108

of the wing. The x′ axis is perpendicular to the quarter–chord axis of the local chord, pointing at109

the trailing–edge, and the y′ axis is parallel to the quarter–chord axis of the local chord, pointing110

at the wing tip.111

Figure 1: Schematic of an infinite swept wing; flow from top to bottom

The existing state–of–the–art approach to model the ISW involves a one–cell width 3D stencil112

and can be implemented in two ways, see Fig. 2, with identical results and equivalent computa-113

tional costs. The first, denoted "sheared approach", solves the 3D NS equations on a wing section114

extracted along the direction of the incoming flow, i.e. x− z plane in Fig. 1. Boundary conditions115

include periodicity on the two planes aligned with the flow direction. The freestream angle of116

attack, α∞, and speed, U∞, are set at the far–field. It is worth noting that in this approach the117

geometry already incorporates the wing sweep angle. The second approach, denoted "beta ap-118

proach", solves the 3D NS equations on a wing section extracted along the x′ − z′ plane in Fig. 1.119

Periodic boundary conditions are set on the two planes perpendicular to the y′ axis. As opposed120

to the first strategy, any information related to the sweep angle is introduced as an appropriate121
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boundary condition at the far–field. The freestream velocity vector, as seen in the global FoR,122

V∞ =

 V∞ cos (α∞)
0

V∞ sin (α∞)

 (1)

is used to calculate the components of the velocity vector in the body–attached FoR123

V′∞ = R V∞ =

 V∞ cos (α∞) cos (Λ)
V∞ cos (α∞) sin (Λ)

V∞ sin (α∞)

 (2)

where R is the rotation matrix obtained by a rotation Λ around the z axis. One then finds that the124

angle of attack in the body–attached FoR is computed as125

tan
(
α′∞

)
=

w′

u′
=

V∞ sin (α∞)
V∞ cos (α∞) cos (Λ)

=
tan (α∞)
cos (Λ)

(3)

The side–slip angle in the body–attached FoR, β′∞, is obtained as126

sin
(
β′∞

)
=

v′
√

u′2 + v′2 + w′2

=
V∞ cos (α∞) sin (Λ)√

V2
∞ cos2 (α∞) cos2 (Λ) + V2

∞ cos2 (α∞) sin2 (Λ) + V2
∞ sin2 (α∞)

= cos (α∞) sin (Λ)

(4)

For low angles of attack, the approximation β′∞ ≈ Λ holds. Equations (3) and (4) represent the127

far–field boundary conditions for the second ("beta") approach.128

The two approaches above solve the NS equations on a one–cell width 3D stencil with pe-129

riodic boundary conditions set on both planes. For this reason, the convention to denote the130

"sheared" and "beta" approaches as "3D-stencil" is used hereafter, see Fig. 2. The following131

Sections illustrate the derivation, implementation, and application of a novel strategy for ISW132

calculations, also reported in Fig. 2, with a computational cost equivalent to a 2D analysis. The133

proposed model is referred to as 2.5D+ and uses a purely 2D stencil.134

3.1. Specific form of the Navier–Stokes Equations135

To solve the NS equations for the ISW model in a very efficient manner, one starts from
the 3D NS equations that are generally expressed in the global FoR. The key idea is to avoid
imposing the ISW flow through a periodicity boundary condition, using a 3D stencil, but rather
a–priori imposing the y′–independence within the equations. For this reason, the NS equations
are rewritten in the body–attached FoR, with axes (x′, y′, z′). In this FoR, the flow is assumed to
have statistical homogeneity in the y′ direction. This assumption encapsulates a fully developed
local flow in the y′ direction, leading to ∂(·)/∂y′ = 0. The governing equations are therefore
simplified by the condition ∂(·)/∂y′ = 0. Once these steps are carried out, the explicit set of
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Figure 2: Summary of approaches to model the ISW problem; the "sheared" and "beta" approaches employ a one–cell
width 3D stencil; the proposed approach, on the other hand, uses a purely 2D stencil

equations, reported here in component notation for clarity, become

∂ρ

∂t
+
∂ (ρ u′)
∂x′

+
∂ (ρw′)
∂z′

= 0 (5a)

∂ (ρ u′)
∂t

+
∂ (ρ u′ u′)

∂x′
+
∂ (ρ u′ w′)

∂z′
= −

∂p
∂x′

+
∂τ′xx

∂x′
+
∂τ′xz

∂z′
(5b)

∂ (ρ v′)
∂t

+
∂ (ρ u′ v′)
∂x′

+
∂ (ρ v′ w′)

∂z′
=
∂τ′yx

∂x′
+
∂τ′yz

∂z′
(5c)

∂ (ρw′)
∂t

+
∂ (ρ u′ w′)

∂x′
+
∂ (ρw′ w′)

∂z′
= −

∂p
∂z′

+
∂τ′zx

∂x′
+
∂τ′zz

∂z′
(5d)

∂ (ρ e0)
∂t

+
∂ (ρ h0 u′)

∂x′
+
∂ (ρ h0 w′)

∂z′
=

∂

∂x′
(
u′ τ′xx + v′ τ′xy + w′ τ′xz

)
+

∂

∂z′
(
u′ τ′zx + v′ τ′zy + w′ τ′zz

)
+

−
∂q̇′x
∂x′
−
∂q̇′z
∂z′

(5e)

Equations (5a), (5b) and (5d) are independent from the cross–flow component, v′, and are136

equivalent to the 2D NS equations. Equation (5c) represents a transport equation for the cross–137

flow on the flow field, and can be solved at each iteration once the flow field variables u′ and138

w′ are known. The coupling between cross–flow and the other variables is provided by the en-139

ergy conservation equation, Eq. (5e). This equation couples the thermal field with the kinematic140

field, and the effects become significant with compressibility, i.e. Mach numbers above 0.3. It141

is worth observing that the cross–flow variable, v′, does not influence only the energy equation142
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through the viscous terms, but also modifies the total energy e0 and the total enthalpy h0 defi-143

nitions. The numerical solution obtained with this set of equations has the same properties as144

that obtained using the one–cell width 3D stencil, but instead of leaving the solver to converge145

to a y′–independent solution through the periodicity, such information is added in the equations146

directly.147

Note also that this assumption holds true for the solution of the laminar fields. The case of148

Reynolds–averaged fields will be discussed in Section 3.2. For other modelling techniques, such149

as large eddy and direct numerical simulations, the three–dimensionality of the flow needs to be150

solved also in y′–statistical homogeneity condition, requiring an adequate spanwise resolution.151

The system of equations (5a)–(5e) can be compactly written in vector form using a modified152

nabla operator, defined as153

∇′ =

(
∂

∂x′
, 0,

∂

∂z′

)
(6)

hence the equations in vector form are

∂ρ

∂t
+ ∇′ ·

(
ρV′

)
= 0 (7a)

∂ (ρV′)
∂t

+ ∇′ ·
(
ρV′ ⊗ V′

)
= −∇′p + ∇′ ·Π′ (7b)

∂ (ρ e0)
∂t

+ ∇′ ·
(
ρV′h0

)
= ∇′ ·

(
V′ ·Π′

)
− ∇′ · q̇ (7c)

For aerodynamic laminar flows, the viscous stress tensor can be defined recalling the Newto-154

nian approximation, which assumes a linear, homogeneous and isotropic relation with the defor-155

mation tensor which can be written in the body–attached FoR as156

Π′ = 2 µ
(
S′ −

1
3

Tr(S′) I
)

(8)

where Π′ is the shear stress tensor, S′ indicates the velocity deformation tensor, while the vis-157

cosity coefficient is denoted by µ. The operator Tr is the trace, and I is identity matrix. Under158

the ISW model assumption, the velocity deformation tensor is computed as159

S′ =
1
2

(
∇′V′ + ∇′V′T

)
(9)

where160

∇′V′ =



∂ u′

∂ x′
0

∂ u′

∂ z′

∂ v′

∂ x′
0

∂ v′

∂ z′

∂w′

∂ x′
0

∂w′

∂ z′


(10)

For laminar flows, the system of equations is closed by choosing an appropriate thermodynamic161

model for the fluid and by coupling the q̇ vector with the thermal field, for example, using the162

Fourier law. Within the ISW approximation, it can be expressed as163

q̇ =
µ

Pr
∇′h (11)

where h = cpT is the enthalpy, T is the temperature, and Pr is the Prandtl number.164
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3.2. RANS Modelling165

Following the steps discussed for the NS equations, one can derive a revised version of166

the Favre–averaged NS equations for the ISW problem. Such derivation imposes the condition167

∂(·)/∂y′ = 0 within the equations similarly to what has been shown in Sec. 3.1. In this case, the168

additional turbulent stresses can be modelled through the Reynolds stress tensor, and therefore169

Π′, evaluated in the body–attached FoR, becomes170

Π′ = 2 µe

(
S′ −

1
3

Tr(S′) I
)

(12)

where µe = µ + µt is the sum of the molecular and the turbulent viscosities and S′ is defined171

in Eq. (9). The scalar quantity µt is modelled through additional transport equations that can be172

simplified in the case of an ISW calculation with respect to their 3D versions imposing ∂(·)/∂y′ =173

0. We remark that those modifications should be intended as a customization rather than a model174

variant. In other words, all the physical properties of the original, 3D model are retained. In the175

current study, the 2.5D+ implementation has been verified with two different turbulence closures,176

the SA [19] and the k–ω [20], and these are briefly discussed below.177

The SA model written in the body–attached FoR assumes the following fashion178

∂ν̃

∂t
+ ∇′ ·

(
V′ν̃

)
= cb1(1 − ft2)S̃ ν̃ −

[
cw1 fw −

cb1

κ2 ft2
] (
ν̃

d

)2

+
1
σ

[
∇′ ·

(
(ν + ν̃)∇′ν̃

)
+ cb2(∇′ν̃)2

] (13)

and µt = ρν̃ fv1. Here, ν = µ/ρ, S̃ = Ω + ν̃/(κ2d2) fv2, with179

Ω =
√

2W : W, W =
1
2

(
∇′V′ − ∇′V′T

)
, (14)

which neglects the y′–derivatives. Note that all the other model coefficients of Ref. [19] are180

employed.181

Similar considerations are valid for the k–ω model. The transport equations under the ISW182

approximation can be written as183

∂ρk
∂t

+ ∇′ ·
(
ρV′k

)
= Pk − β

∗ρωk + ∇′ ·
(
(µ + σkµt)∇′k

)
(15)

184

∂ρω

∂t
+ ∇′ ·

(
ρV′ω

)
=
γ

νt
Pk − β

∗ρω2 + ∇′ ·
(
(µ + σωµt)∇′ω

)
+ 2(1 − F1)ρσω2

1
ω
∇′k · ∇′ω

(16)

and the turbulent viscosity is obtained as µt = ρk/ω. The production term is computed, according185

to Ref. [20], as Pk = Π′R : ∇′V′, which again neglects the y′–derivatives. Herre Π′R is the186

Reynolds stress tensor187

Π′R = 2 µt

(
S′ −

1
3

Tr(S′) I
)
−

2
3
ρkI. (17)
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Note that the shear–stress correction188

µt = min
(
ρk
ω
,

a1ρk
ΩF2

)
(18)

is computed according to the ISW approximation using Ω according to Eq. (14). All the other189

model constants are evaluated according to Ref. [20].190

Finally, the heat flux vector q̇ is obtained as191

q̇ =

(
µ

Pr
+
µt

Prt

)
∇′h (19)

where Prt is the turbulent Prandtl number. Additional terms, which are neglected when using192

the SA model, originate by the mass–weighted average and involve the contribution of the tur-193

bulent kinetic energy k transport to the energy equation. They can however be computed again194

neglecting the y′–derivative as ∇′ · (σk∇
′k).195

3.3. Boundary Conditions196

The solution of the 2.5D+ governing equations requires appropriate boundary conditions to197

be defined. For viscous flows, the no–slip boundary condition must be satisfied at the surface198

by imposing that the three components of the flow velocity are equal to the wall velocity in the199

body–attached FoR. In case of a stationary wall, u′ = v′ = w′ = 0, whereas for moving grid200

problems, the flow velocity at the wall is set equal to the solid surface velocity.201

The far–field velocity needs to be imposed in the body–attached FoR. As the body–attached202

FoR is not aligned with the global FoR, the transformation of the freestream velocity components203

from the global FoR to the body–attached FoR is required, and is computed using Eq. (2). Stan-204

dard boundary conditions for the turbulence model quantities can be employed. Furthermore,205

the Reynolds number in the body–attached FoR needs to be appropriately scaled in order to be206

consistent with the chord length in the body–attached FoR, using the expression207

Re′∞ = Re∞ cos (Λ) (20)

No scaling of the Mach number is required.208

3.4. Post–processing209

Integrated force coefficients resolved into the body–attached FoR are transformed back to the210

global FoR using the relation211  Cx

Cy

Cz

 =

 cos(Λ) sin(Λ) 0
− sin(Λ) cos(Λ) 0

0 0 1


 C′x

C′y
C′z

 (21)

which also applies to the moment coefficients.212
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3.5. Numerical Implementation213

The specific numerical implementation of the 2.5D+ approach depends on the type of solver214

available. Here, two scenarios are considered for exemplification. In the first scenario, one215

starts with a 2D flow solver. The additional terms related to the cross–flow component, v′, are216

introduced into the energy equation and in the turbulence models, where only the source term is217

affected. The set of equations are solved for the cross–flow in a coupled or segregated manner218

using the additional transport equation, Eq. (5c). This transport equation can be solved together219

with the turbulence model in a similar fashion. In the second scenario, featuring a 3D flow solver220

as starting point, all the transport equations are already implemented. At the pre–processing221

stage, the 2.5D+ option may be activated reducing the number of element faces employed in the222

calculations, i.e. only those faces having a normal perpendicular to the direction of periodicity.223

This yields a significant computational speed–up compared to a solution of the ISW problem on224

a 3D stencil.225

The numerical implementation of the 2.5D+ method in the DLR�Tau code follows the second226

approach. This choice reflects a practical situation, with a 3D solver being available to the227

authors. Note however that no differences will be observed from the two implementation options228

discussed above.229

4. Results230

This Section contains a number of test cases to validate the proposed methodology and to231

assess the expected potential efficiency improvements when compared to an existing state–of–232

the–art solver. Section 4.1, in particular, concerns the solution of steady flow problems while233

Section 4.2 addresses an unsteady flow problem. In all subsequent figures and tables, results ob-234

tained from the 2.5D+ method will be labelled as "2.5D+", and those from the existing approach235

(either "sheared" or "beta") as "3D-stencil". Note that both the 2.5D+ and the 3D stencil ap-236

proaches have similar CFL limits, being the scale on the span–wise direction greater than those237

in the x′ − z′ plane. All the tests were performed with the same CFL number, ensuring the same238

pseudo–time step size within the DLR�Tau framework.239

4.1. Steady–state Results240

This Section presents the application to three test cases. The first test case, discussed in241

Section 4.1.1, is for a natural laminar flow (NLF) aerofoil in low speed aerodynamics. In the242

absence of experimental data, the accuracy and computational performance of the 2.5D+ method243

is compared with the existing state–of–the–art method in solving the ISW problem. Section 4.1.2244

introduces the second test case which is the baseline aerofoil of the Onera AFV D variable sweep245

angle wing. With a number of experimental data available, the comparison is drawn with wind246

tunnel measurements. Finally, Section 4.1.3 presents the application to a multi–element wing247

section extracted from the DLR–F11 high–lift wing–body configuration.248

To quantify the computational speed–up of the proposed 2.5D+ method in comparison with249

the existing state–of–the–art solver, a metric is introduced. The speed–up factor, S, is defined as250

251

S =
t3D

t2.5D+

(22)

For the same convergence level, the term t3D indicates the CPU time required by the existing 3D252

stencil methods (either "beta" or "sheared") to achieve converge. The term t2.5D+ is the equivalent253
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counterpart recording the CPU time required by the 2.5D+ method. By definition, a speed–up254

factor greater than unity indicates that the 2.5D+ method is computationally more efficient than255

existing state–of–the–art solvers of the ISW problem while achieving the same accuracy level.256

4.1.1. Natural Laminar Flow Aerofoil257

The NLF aerofoil is based on the NLF(2)–0415 geometry, which is typically used for small258

commercial aircraft. The freestream boundary conditions are for M∞ = 0.044, α∞ = −2.8 deg,259

and Re∞ = 1.96 · 106. Transition is fixed at 62% of the chord on the suction side, and fully260

turbulent flow is assumed on the pressure side. The assessment of the methods is carried out261

for a sweep angle Λ = 45.0 deg. The unstructured hybrid grid used in this work consists of262

27,077 elements and is shown in Fig. 3. This grid, which was generated using the best industrial263

practice, was found adequate to guarantee grid independent results.264

Figure 3: Unstructured hybrid grid of the NLF(2)–0415 aerofoil

To assess the accuracy and computational efficiency, the 2.5D+ method is compared with265

the 3D stencil approach. The same numerical settings are used in both approaches to ensure266

a representative comparison. The central scheme with scalar dissipation [21] was used, with267

second order dissipation coefficient set to 0.5 and inverse fourth order dissipation coefficient set268

to 64. The original SA turbulence model was used for the closure of the equations.269

First, the accuracy of the methods was investigated. Figure 4 shows the comparison of surface270

quantities computed with the 2.5D+ and 3D stencil methods. Identical results are found for the271

pressure coefficient distribution, shown in Fig. 4(a), and for the components of the skin friction272

coefficient, in Fig. 4(b). Note that an excellent agreement is also observed near the leading edge,273

where the gradients are the highest. The comparison validates the 2.5D+ implementation which274

produces results consistent with the state–of–the–art methods.275

Next, the computational efficiency (in terms of CPU–time needed to achieve a target conver-276

gence level) is assessed. Figure 5 reports the converge history of the two solvers. The calcu-277

lations were run until the density residual dropped 13 orders of magnitude (target convergence:278

10−13). The convergence of the residual with the number of iterations, shown in Fig. 5(a), re-279

veals a similar general trend. Both solvers achieve the target convergence level in about 12,000280

iterations. The computational cost required by the two solvers to achieve full convergence is281
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(a) Surface pressure coefficient (b) Skin friction components

Figure 4: NLF(2)–0415 aerofoil, surface quantities (M∞ = 0.044, α∞ = −2.8 deg, Re∞ = 1.96 · 106, and Λ = 45.0 deg)

compared in Fig. 5(b), where the CPU time of each solver is normalised by the time required282

by the 2.5D+ strategy to achieve the desired convergence, t0. The comparison demonstrates the283

higher efficiency of the proposed 2.5D+ solver compared to the current state–of–the–art method.284

(a) Convergence in iterations (b) Convergence in normalised time

Figure 5: NLF(2)–0415 aerofoil, convergence analysis (M∞ = 0.044, α∞ = −2.8 deg, Re∞ = 1.96 · 106, and Λ = 45.0
deg)

The efficiency of the 2.5D+ implementation is quantified in Table 1. The speed–up factor,285

S, and the number of iterations, nit, to achieve three representative residual levels (10−9, 10−10
286

and 10−13) are summarised. It was found that the 2.5D+ method is consistently more efficient287

than the existing method, with a factor larger than 4. This is equivalent to a reduction of the288
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computational time of about 75%. This reflects the decreased complexity of the set of equations289

solved in the 2.5D+ approach, without impacting on the accuracy despite the different stencils290

employed.291

Table 1: Computational details for the results of the NLF(2)–0415 aerofoil test case

Residual 10−9 10−10 10−13

S nit S nit S nit

3D-stencil - 5,951 - 7,537 - 12,262
2.5D+ 4.36 5,596 4.43 6,934 4.23 12,900

4.1.2. OneraD Aerofoil292

The OneraD aerofoil represents the baseline profile for the Onera AFV D variable sweep293

angle wing as well as the Onera M6 wing. A large body of experimental and numerical work294

exists, but here the interest is on the Onera AFV D variable sweep angle wing which has been295

extensively wind tunnel tested [22]. The wing represents a valuable validation test case because it296

has an aspect ratio (AR) of eight, in the unswept configuration, and a taper ratio of one, satisfying297

reasonably well the assumptions of the ISW problem without the need for the LLT or VLM.298

The numerical settings employed were the same as the previous test case. For the turbulence299

model, the original SA formulation was used. The flow conditions, for which experimental data300

are available for a number of angle of attacks, are for M∞ = 0.78 and Re∞ = 2.5 · 106. The wing301

configuration was tested for sweep angles of 30 and 50 deg. Without other information, the flow302

was assumed fully turbulent.303

Calculations were run on an unstructured hybrid grid containing 93,347 cells, shown in Fig. 6.304

The circular far–field is placed at fifty times the aerofoil chord. The first layer on the wall was305

placed at 5 · 10−6 (for a chord of one), ensuring y+ < 1. The spacing distribution was tested to306

guarantee grid–independent results in terms of lift coefficient for α∞ = 0 deg.307

Figure 6: Unstructured grid of the OneraD aerofoil

Experimental data of the pressure coefficient were measured at several sections along the308
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span of the Onera AFV D wing. Since the 3D nature of the flow features influences the pressure309

distribution over the wing span, the comparison between numerical predictions and experimental310

data was performed for α∞ = 0 deg. For an untwisted wing with a symmetric aerofoil, this con-311

dition guarantees independence of the flow characteristics from the span–wise location, avoiding312

wing tip effects. Experimentally, variations of the pressure coefficient on different pressure taps313

locations were observed, and are attributed to aleatory uncertainties in the model geometry (man-314

ufacturing tolerances) and flow conditions (misalignment, blockage, etc.). Another concurrent315

factor is the wing sweep angle which promotes the occurrence of cross–flow effects that are316

affected by the conditions at the two boundaries (wall on one side and free wing tip on the other).317

Figure 7 shows the pressure coefficient distribution at a span–wise section, y/b = 0.6, where318

the flow is considered fully developed. Calculations were run to machine accuracy. Pressure tap319

measurements are reported in symbols, and lines indicate 2.5D+ results. A good agreement is320

observed for the three sweep angles tested (Λ = 0, 30, 50 deg). The 2.5D+ predictions capture321

relevant physical effects, such as the pressure recovery at the cove region and the decreasing322

intensity of the shock at the leading edge for increasing sweep angles.323

Figure 7: Onera AFV D wing, pressure coefficient distribution at span–wise station y/b = 0.6 (M∞ = 0.78, α∞ = 0.0
deg, and Re∞ = 2.5 · 106); experimental data from Ref. [22]

The computational performance of the 2.5D+ method is assessed against the 3D stencil ap-324

proach. To ensure a sufficient generality of the assessment, the comparison is performed at three325

angles of attack (α∞ = 0, 2.59, and 4.33 deg, corresponding to α′∞ = 0, 3 and 5 deg). For the326

Λ = 30 deg configuration, the predictions of the flow solution are reported in Fig. 8. For the327

pressure coefficient, the virtually perfect match between the two approaches validates again the328

implementation. Despite the fact that the stencil of the 2.5D+ method is purely 2D, the posi-329

tion and intensity of the shock are captured in the same way as the one–cell width 3D stencil330

approach.331

Figure 9 shows the flow–field solution for the Λ = 30 deg wing at a free–stream incidence332

α∞ = 4.33 deg. The upper plots illustrate the pressure coefficient and cross–flow velocity compo-333

nent computed with the 2.5D+ approach. The lower plots are for the difference in the flow–field334

solutions between the 2.5D+ and 3D–stencil approaches. These differences, which are limited335

to the shock region, occur across one grid cell. The reason for this is attributed to the slightly336
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Figure 8: Onera D aerofoil, pressure coefficient distribution (M∞ = 0.78, Re∞ = 2.5 · 106, and Λ = 30.0 deg)

different dissipative behaviour of the spatial discretisations employed in the two approaches. The337

flow field indicates that the intensity of the cross–flow decreases behind the shock position due338

to flow separation. The qualitative match corroborates previous considerations on the accuracy339

of the 2.5D+ method. Similar observations were found for the configuration with Λ = 50 deg.340

With decreasing intensity of the leading edge shock, the flow remains attached. Comparisons are341

not reported herein for brevity.342

(a) Pressure coefficient (b) Cross–flow velocity component, v′

Figure 9: Onera D aerofoil, flow field solutions (top) and error (bottom) (M∞ = 0.78, α∞ = 4.33 deg, Re∞ = 2.5 · 106,
and Λ = 30 deg)

Figure 10 summarises the convergence history of the density residual plotted versus nondi-343

mensional CPU time for the three angles of attack (α′∞ = 0, 3 and 5 deg) and two configurations344

(Λ = 30 and 50 deg). An observation is that the angle of attack has a negligible influence on the345
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convergence rate of both solvers. It is also observed that the higher computational efficiency of346

the 2.5D+ solver remains nearly constant with the sweep angle.347

A quantitative analysis of the computational efficiency is reported in Table 2 for the 30 deg348

sweep angle case, and in Table 3 for the 50 deg test case. Note that the speed–up is assessed349

for the target residual of 10−8. For all cases tested, the 2.5D+ method retains the higher com-350

putational efficiency already observed for the NLF(2)–0415 aerofoil. For this transonic fully351

turbulent problem, in particular, the CPU–time using the 2.5D+ solver is reduced by more than352

75% compared with the cost required by the existing 3D stencil approach. As the number of353

iterations to achieve convergence are comparable, the cost of each iteration of the 2.5D+ solver354

is on average more than 75% faster than the that of the 3D stencil method.355

(a) Λ = 30 deg (b) Λ = 50 deg

Figure 10: Onera D aerofoil, convergence analysis (M∞ = 0.78 and Re∞ = 2.5 · 106)

Table 2: Computational efficiency analysis for the Onera D aerofoil (Λ = 30 deg)

α∞ [deg] 0 2.59 4.33
S nit S nit S nit

3D-stencil - 44,057 - 39,654 - 43,633
2.5D+ 4.79 45,460 4.30 40,012 4.60 43,902

Table 3: Computational efficiency analysis for the Onera D aerofoil (Λ = 50 deg)

α∞ [deg] 0 1.92 3.22
S nit S nit S nit

3D-stencil - 38,120 - 40,000 - 41,350
2.5D+ 4.11 38,695 4.35 40,443 4.55 44,522

4.1.3. Multi–element Aerofoil356

A representative multi–element aerofoil section was extracted from the DLR–F11 configura-357

tion which was used in the 2nd AIAA High Lift Prediction Workshop. In particular, the aerofoil358
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section is located at a non–dimensional span–wise station y/b = 0.964. The unstructured mesh359

which consists of about 43 thousand triangular elements is shown in Fig. 11.360

Figure 11: Unstructured grid of the multi–element aerofoil (section at y/b = 0.964 of the DLR–F11 configuration)

The flow conditions are for Re∞ = 25 · 106, M∞ = 0.22. The local wing sweep angle361

is Λ = 30 deg, therefore α′∞ = 24.5 deg. Flow separation is a dominant feature and, to362

avoid introducing the dependence on computational parameters such as the location of turbulence363

transition, all cases were run fully turbulent. The SA and k–ω models were used.364

Figure 12 compares the pressure coefficient distribution obtained using the 2.5D+ and 3D365

stencil methods for the two turbulence models. The SA model predicts attached flow. On the366

opposite, the k–ω model predicts the flow to be fully separated over the main element. Despite367

the flow solution is highly dependent on the turbulence model used, as it may be expected in368

this flow regime, the main point here is the equivalence of the predictions between the two ISW369

model implementations. A speed–up consistent with the previous test cases was also recorded.370

4.2. Forced Sinusoidal Motion371

The last test case concerns transonic flow predictions for a forced sinusoidal motion. The372

test case is a prototype problem, being the forced motion representative of (undamped) structural373

vibrations or the kinematics imposed traditionally to extract aerodynamic derivatives. The flow374

conditions are related to AGARD CT5 (M∞ = 0.755 and Re∞ = 5.5 · 106) and the forced375

sinusoidal motion376

α∞ (t) = α0 + αA sin (2 k τ) (23)

is characterised by a reduced frequency k = 0.0814, mean angle of attack α0 = 0.016 deg377

and amplitude αA = 2.51 deg [23]. The usual convention is to denote the non–dimensional378

time by τ. The flow field presents the formation of a strong and highly dynamic shock wave379

experiencing Tijdeman and Seebass’s [24] type–B shock motion. The steady solution includes380

a virtually symmetric shock wave which periodically appears and disappears on the upper and381

lower surfaces as consequence of the harmonic motion.382

Two sets of geometries (and grids) were used, see Fig. 13. The first set is employed to383

solve the 2.5D+ unsteady RANS (URANS) equations. The grid consists of about 15.3 thousand384
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(a) SA turbulence model (b) k–ω turbulence model

Figure 12: Multi–element aerofoil, surface pressure coefficient (α∞ = 21.53 deg, Re∞ = 25 ·106, M∞ = 0.22, Λ = 30
deg)

mesh elements with wall refinement. The first layer on the wall was placed at 5 · 10−6 (for385

a chord of one), ensuring y+ < 1. The second set is representative of a 3D half wing model386

of aspect ratio (AR) 20, see Fig. 13(b). Three sets of 3D wings were generated, for 0, 10,387

and 20 deg sweep angles. The 3D wing was built by stacking the 2D unstructured grid in the388

span–wise direction, from the symmetry plane on one side to the lateral far–field boundary. In389

the span–wise direction, 128 points were used, featuring about 2 million mesh elements, and a390

symmetry boundary condition was used to halve the computational cost. For all test cases, the391

SA turbulence model was employed. An implicit dual–time stepping scheme was used, with a392

target residual drop of three orders at each physical time step. One hundred time steps per cycle393

with 600 pseudo iterations were employed, and four cycles were simulated.394

The time response of the normal force coefficient for the 2.5D+ solution is shown in Fig. 14395

with experimental data. The curve labelled "3D (wing)" is the (sectional) normal force coefficient396

resulting from the integration of the surface pressure coefficient at the 50% span–wise section397

of the 3D wing. This section is highlighted in red in Fig. 13. In all cases, the pitch axis is at398

the quarter chord. Numerical results are in good agreement for this first test case which features399

zero sweep angle (Λ = 0 deg). The slightly smaller hysteresis of the 3D wing reflects 3D time–400

dependent flow effects, which propagate along the wing span, due to the symmetry boundary401

condition, on one side, and the free end at the wing tip. Deviations from experimental data have402

been discussed previously in the open literature [7].403

Having performed a validation for the no sweep case against experimental data, we proceed404

to investigate the effects of the sweep angle (Λ = 10 and 20 deg) on the unsteady flow. For the405

3D wing, the axis of rotation is fixed at the quarter of the root chord, as shown in Fig. 15. This406

figure also illustrates the procedure to impose the correct kinematics for the 2.5D+ method. The407

aerofoil section is extracted at 50% of the wing span where the flow is assumed fully developed408

in the span–wise direction. Due to the offset from the sweep angle at this location, the axis of409

rotation lies upstream of the aerofoil quarter chord. Furthermore, for 2.5D+ analysis, the forced410
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(a) Unstructured 2D grid (b) Aspect ratio 20 wing with a 20 deg sweep angle

Figure 13: Grids for the forced sinusoidal motion test case; the cross section is for the NACA 0012 aerofoil

Figure 14: Lift coefficient dependence on forced sinusoidal motion, Λ = 0 deg (M∞ = 0.755, Re∞ = 5.5 · 106,
k = 0.0814, α0 = 0.016 deg, αA = 2.51 deg); experimental data from Ref. [23]
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sinusoidal motion given in Eq. (23), which is written in the global FoR, needs to be transformed411

to body–attached FoR using Eq. (3).412

Figure 15: Kinematics of the forced sinusoidal motion around the axis of rotation

Figure 16 shows the impact of the sweep angle on the time response of the normal force413

coefficient. The 2.5D+ solutions, computed around the 2D stencil grid, are in remarkably good414

agreement with the solutions computed around the complete 3D wing. The hysteresis of the415

loops (aerodynamic damping) decreases for increasing sweep angles, and disappears completely416

for the Λ = 20 deg wing. The reason for this is that, for increasing sweep angle, the axis417

of rotation moves further upstream of the aerofoil quarter chord. This, in turn, modifies the418

forced oscillatory motion perceived by the aerofoil section, from a purely pitch oscillation to an419

oscillatory motion with a dominant plunge component.420

The time response to a forced sinusoidal motion is conveniently analysed in the frequency421

domain employing the Fourier transform. The finite Fourier transform of a continuous scalar422

function g (t) on a finite time interval t ∈ [0, T ] is defined as423

F
[
g (t)

]
≡ g̃ (iω) =

∫ T

0
g (t) e−i 2 π f t dt (24)

where i is the imaginary unit, and f the dimensional frequency (2 π f = k V/b). The system424

response, quantified by the amplitude ratio and phase lag with respect to the input, can be de-425

termined by the transfer function between the input and the output. For the surface pressure426

coefficient Cp (x, t), this is427

G (x, ω) =
F

[
Cp (x, t)

]
F [α (t)]

= R (x, ω) ei φ(x, ω) (25)

where R (x, ω) and φ (x, ω) are the amplitude ratio and phase lag, respectively, and are defined428
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(a) Λ = 10 deg (b) Λ = 20 deg

Figure 16: Lift coefficient dependence on forced sinusoidal motion for two sweep angles (M∞ = 0.755, Re∞ = 5.5·106,
k = 0.0814, α0 = 0.016 deg, αA = 2.51 deg)

as429

R (x, ω) =
‖ C̃p (x, iω) ‖
‖ α̃ (iω) ‖

(26)

430

φ (x, ω) = ∠ C̃p (x, iω) − ∠ α̃ (iω) (27)

The transfer function calculations were carried out using a standalone Matlab–based toolbox that431

has proved accurate in previous studies [25]. This toolbox is freely available from the University432

of Southampton repository at http://dx.doi.org/10.5258/SOTON/D0272.433

Figure 17 quantifies the variation of the transfer function at the oscillatory frequency of inter-434

est, k = 0.0814, for several values of the wing sweep angle. The amplitude ratio of the transfer435

function at the lower and upper surfaces of the aerofoil are coincident. This is not unexpected436

because the mean angle of attack is small and the aerofoil section is symmetric. During the437

harmonic motion, the shock moves upstream and downstream with respect to the average flow438

field [7], which depends in turn on the wing sweep angle. For the phase angle, the two distinct439

curves for a given sweep angle reflect the different behaviour on the lower and upper surfaces of440

the aerofoil. In particular, as the angle of attack increases, the pressure coefficient on the upper441

side decreases, and that on the lower side increases. In a frequency domain analysis, this obser-442

vation translates into a phase angle of approximately ±180 deg for the upper aerofoil surface,443

and a phase angle of approximately 0 deg for the lower surface. Overall, the 2.5D+ method444

provides a physically consistent solution, with a comparable information content to that obtained445

from a 3D solution but at a fraction of the computational time. Specifically, 146 CPU hours per446

oscillatory cycle were needed for the calculation around the 3D wing. The CPU time per cycle447

was reduced to 30 minutes when employing the 2.5D+ solver.448
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(a) Amplitude ratio (b) Phase angle

Figure 17: Transfer function at the fundamental harmonic (k = 0.0814) between the angle of attack and the surface
pressure coefficient (M∞ = 0.755, Re∞ = 5.5 · 106, k = 0.0814, α0 = 0.016 deg, αA = 2.51 deg)

5. Conclusions449

An efficient implementation for the solution of the infinite–swept wing problem was dis-450

cussed. The proposed method was thoroughly validated against experimental data, when avail-451

able, and numerical data obtained from existing methods. A set of configurations for single–452

element and multi–element aerofoils were chosen, in steady and unsteady flow problems. The453

flow regimes included transitional and fully turbulent conditions.454

Two conclusions may be formulated following the extensive validation campaign. The first455

is that the proposed method retains the same accuracy of existing state–of–art methods, captur-456

ing well–known physical phenomena that characterize the flow field around swept wings. The457

second conclusion is for the high efficiency of the proposed method. The solution of the Navier–458

Stokes equations for the infinite–swept wing problem is carried out on a two–dimensional stencil,459

as opposed to existing methods employing a three–dimensional stencil. The outgrowths of this460

operation is a computational cost reduction by at least 75% with a similar convergence of the461

flow solver. Further application of the proposed method to a geometry of industrial relevance has462

shown consistent speed–up values larger than that reported herein (up to 97%).463

It is worth observing that the proposed method was implemented in the DLR�Tau flow solver,464

an industrial grade package used by a number of European aerospace industries. The deployment465

of the method within an industrial environment is seamless as no changes to current procedures,466

methods and tools are needed. This highlights the relevance of the present work within an in-467

dustrial context. Current work concerns the use of the method to correct, via nonlinear sectional468

data, a three–dimensional linear aerodynamic method, and the coupling with a structural solver469

for (static and dynamic) aeroelastic analysis. These studies will be reported in a separate publi-470

cation.471
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