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Abstract 

The paper reports results of an experimental investigation into load response and failure behaviour of 

rectangular prismatic concrete beams reinforced with a combined flexural and shear reinforcement 

system made from carbon fibre reinforced polymer (CFRP) fabric. It is shown that CFRP U-channels 

with aggregate coating and an anchorage system consisting of a lipped channel section with 

intermittent closed loops were found to provide improved composite action between the CFRP 

reinforcement and concrete. These CFRP channels also ensured adequate strength and ductility 

before failure. Possible modes of failures of the beams are discussed as is the effect of the design 

parameters on the failure mode and the failure load. It is anticipated that the findings of this paper 

could be effectively used in other applications such as non-prismatic concrete geometries and as 

permanent formwork/reinforcement in thin concrete members where the flexible characteristics of 

dry CFRP fabrics are most useful. 
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Introduction 1 

Interest in fibre reinforced polymer (FRP) internal reinforcement in concrete is mostly focused on their 2 

use as a way to mitigate corrosion seen in conventional steel-reinforced concrete structures exposed 3 

to the environment, such as highway bridges and sea walls (Achintha, 2009). Superior mechanical 4 

properties, high tensile strength and lightweight mean FRPs are attractive in civil engineering 5 

structures. Nonmagnetic properties of FRPs also make them useful for facilities for MRI medical 6 

equipment, airport runways, electronics laboratories, etc. FRP internal reinforcements have mostly 7 

been used in the form of reinforcement bars (e.g. Manalo et al., 2014; Qin et al., 2017), whilst other 8 

reinforcement systems such as grids, fabrics, and ropes have also been sparsely used (Gudonis et al., 9 

2013). Commercially available FRP reinforcement systems are mostly made from glass (GFRP) or 10 

carbon (CFRP) fibres embedded in a resin matrix.  11 

 12 

 ‘FRP-reinforced concrete’ design guidelines published by national/international professional 13 

organisations (e.g. ACI 440.1R-15, 2015; CAN/CSA-S806-12, 2012, fib Bulletin No. 40, 2007) are mainly 14 

given in the form of modifications to existing limit state design principles adopted in steel-reinforced 15 

concrete codes of practice. The modifications generally take into account the intrinsic mechanical 16 

properties of FRPs, and are mostly empirical equations developed based on experimental 17 

investigations. However, the use of FRPs as a direct substitute for steel bars using the same design 18 

principles as in steel-reinforced concrete members means designs are often expensive and inefficient 19 

(Bank, 2006). There are fundamental differences between the characteristics of the two materials: 20 

FRPs are elastic and brittle whereas steel yields under high stresses. There are also major differences 21 

in the bond characteristics: with steel bars having a strong concrete–steel bond, which is 22 

advantageous since when the strain in the steel reaches the yield strain at a crack in the concrete, the 23 

steel yields and no stress concentration can occur. In contrast, failure of FRPs may be triggered by high 24 

local strains. The existing FRP internal reinforcement design guidelines are being linked to FRP bars 25 

and the guidelines are often too conservative (Bank, 2006).   26 
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The flexible nature of FRP fabrics prior to curing with resins provides the prospect of forming novel, 27 

efficient 2D/3D reinforcement systems. Wide ranges of mechanical properties, to match the design 28 

requirements, can be obtained by combining fabric sheets in different laminate arrangements. Despite 29 

the potential of FRP fabrics to reinforce concrete, only a little research, largely external strengthening 30 

of concrete beams and columns has been reported (e.g. Punurai, 2013). Despite the high material cost 31 

of FRPs compared to traditional reinforcing materials, the economic benefits may come from less 32 

maintenance requirements and longer life. Total life cycle analyses and environmental impact 33 

assessments may be used to justify the economic viability of FRPs in the construction industry 34 

(Achintha, 2016).   35 

 36 

This paper presents selected findings from a research programme that aimed to exploit the use of 2D 37 

multidirectional CFRP fabric as a combined flexural and shear reinforcement in concrete beams. The 38 

paper reports results of an experimental investigation of the bond behaviour of concrete beams 39 

reinforced with three different CFRP fabric reinforcement configurations; a plain U-channel, a U-40 

channel with an aggregate coating (i.e. a layer of aggregate applied on all surfaces of the CFRP channel 41 

using an epoxy resin and allowed to cure prior to casting concrete), and an anchorage system 42 

consisting of a lipped U-channel section with intermittent closed loops. Possible modes of failures of 43 

the beams are discussed as is the effect of the aggregate coating on FRPs and anchorages on the failure 44 

mode and the failure load. It is anticipated that the basis provided by the present work could be 45 

effectively used in applications such as combined flexural and shear reinforcement systems in 46 

structurally optimised, non-prismatic concrete members cast using flexible formwork (e.g. Orr, 2012) 47 

and as permanent formwork in novel forms of thin-shell concrete flooring system (e.g. Hawkins et al., 48 

2017) for multi-storey buildings, where both applications have potential to create low embodied 49 

energy alternatives to respective traditional reinforced concrete applications. 50 

 51 

 52 
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Biaxial CFRP fabric reinforcement 53 

Over-reinforced designs are preferred in FRP–concrete design guidelines as a mean of mitigating 54 

potential brittle failure of FRPs. Nevertheless, the resulting compression failure of concrete is still 55 

brittle and it is not favoured in the construction industry. There is a need for innovative and cost-56 

effective FRP reinforcement systems that will ensure sufficient ductility in concrete structures whilst 57 

enabling the efficient use of high strength/strain capacities of FRPs. The existing FRP reinforcement 58 

systems are largely unidirectional. These systems are prone to brittle material/bond failures.  Multi-59 

directional FRP fabrics have potential to provide reinforcement systems which will have greater 60 

strength and ductility in more than one direction. For example, 0o fibres in a multidirectional laminate 61 

can provide high strength/stiffness properties along the fibre direction, whereas 90o fibres will 62 

enhance the mechanical properties in the transverse direction. On the other hand, ±45o fibres provide 63 

high in-plane strength and strain properties. 64 

 65 

FRP fabrics have great potential of lending themselves to any required geometry and to provide 66 

mechanical properties to match the design requirements. Previous studies on the use of multi-67 

directional FRP fabrics in strengthening concrete beams and columns (Punurai, 2013), FRP fabrics–fine 68 

grained concrete thin layers for retrofitting of concrete beams (Brückner et al., 2006), in thin-walled 69 

concrete facades (Shams et al., 2014), etc. demonstrated benefits such as ductile failure compared to 70 

equivalent applications of conventional FRP bars or unidirectional pre- impregnated fibre sheets. In 71 

the current study, a single combined flexural and shear reinforcement system was investigated for 72 

concrete beams. ±45o multi-layer CFRP fabric reinforcement systems were investigated, owing to the 73 

potential of ±45o fabrics to ensure greater ductility in the beams. Since the long-term performance of 74 

GRFP under some special harsh environment conditions—such as exposure to high alkalinity, seawater, 75 

or deicing salts—remains unknown (Robert and Benmokrane, 2013), CFRP fabrics were chosen in the 76 

current study.  77 

 78 
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Concrete–FRP bond 79 

Concrete–FRP bond is the single most important parameter that governs load response and failure 80 

behaviour of FRP reinforced concrete beams. The characteristics of the concrete–FRP bond have been 81 

extensively studied in the literature, mostly using the experiments of pull-out tests of FRP bars in 82 

concrete (e.g. Achillides and Pilakoutas, 2004; Aiello et al., 2007). Limited research on bending tests 83 

that represents FRP as flexural reinforcement in concrete beams has also been reported (e.g. Ashtiani 84 

et al., 2013). The poorer bond performance of the concrete–FRP bars when compared to steel 85 

reinforcement is well known (Larralde and Silva-Rodriguez, 1993). Different types of surface 86 

deformation systems of the FRP, in particular, sand-coated FRP bars are known for their promise in 87 

enhancing bond strength whilst eliminating premature debonding failure (Baena et al., 2009).  88 

 89 

The technique of sand-coatings on FRPs has not been widely explored for 2D/3D internal FRP 90 

reinforcement systems such as CFRP channels. The limited applications of sand/aggregate coatings 91 

has primarily been on tensile/shear pull-out experiments of FRP laminate coupons; experimental 92 

investigations suggested improved bond strength and less brittle failure behaviour (e.g. Wang et al., 93 

2014; Cho et al., 2010; Li et al., 2014). The improvements in the composite action between FRP and 94 

concrete may be attributed to mechanical interlocking and the improved bond between aggregate 95 

coating and the cement paste (Wang et al., 2014; Li et al., 2014). The feasibility of epoxy-bonded 96 

aggregate coatings to improve composite action between concrete and FRP has also been 97 

demonstrated in applications of pultruded FRP planks as permanent formwork in concrete–FRP hybrid 98 

bridge decks (Bank et al., 2007).  99 

 100 

The average bond strength determined from tensile and shear pull-off tests of aggregate-coated FRP 101 

coupons reported in Wang et al. (2014) depended on the size of the aggregate in the coating layer; for 102 

example, aggregate of size 3.15-4.75 mm resulted in higher average bond strength compared to that 103 

noted for aggregate of size 1.25-2.36 mm. Experimental results (Wang et al., 2014) also suggested the 104 
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effect of aggregate size on failure mode: failure in concrete was noted when aggregate of size 1.18-105 

4.75 mm was used in the coating, whereas epoxy failure was noted when large aggregate of size 6.70-106 

9.52 mm was used. Mixed-mode failure was noted when aggregate coatings had particles of size 4.00-107 

7.00 mm (Cho et al., 2010). The possible influence of the distribution density of aggregate in the 108 

coating on concrete–FRP bond was also noted (Cho et al., 2010), nevertheless, the reported results 109 

are insufficient to establish verified conclusions.  110 

 111 

Anchorage mechanisms for preventing premature debonding of the concrete–FRP bond  112 

Premature failure of concrete–FRP bond is common in all concrete–FRP hybrid systems; debonding 113 

usually triggers at high stress concentration features or at locations where interface cracks/flaws are 114 

present. Despite the significant improvements in bond properties of aggregate-coated FRP–concrete 115 

bond, debonding was not completely eliminated (e.g. Bank et al., 2007; Li et al., 2014). Debonding was 116 

also noted with sand-coated FRP bars (Cosenza et al., 1997) as well as in externally bonded FRP 117 

systems on concrete beams for flexural/shear strengthening/retrofitting purposes (Achintha and 118 

Burgoyne, 2012). Extensive research on debonding of externally bonded FRPs from concrete has 119 

identified that provision of anchorages in the vicinities where the FRP curtails has potential to 120 

eliminate debonding and to improve the overall structural performance (Grelle and Sneed, 2013).  121 

 122 

Experimental programme 123 

In the first half of the experimental programme, three concrete beams, each with dimensions 1000 124 

mm (length) x 120 mm (width) x 120 mm (depth), reinforced with three different forms of CFRP fabric 125 

reinforcement: a plain U-channel (B1), a U-channel with aggregate coating (B2), and an anchorage 126 

system consisting of a lipped U-channel with intermittent closed loops (B3) (Fig. 1a), were tested. 127 

Aggregate coating was used as a means of improving the composite action between concrete and the 128 

CFRP reinforcement, whereas a lipped channel section with intermittent closed loops was chosen to 129 

eliminate premature debonding that may be originated at the top edges of the U-channel.  After taking 130 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=16&cad=rja&uact=8&ved=0ahUKEwjQ5Z39vrLQAhUsLsAKHa1SBUA4ChAWCDMwBQ&url=http%3A%2F%2Fwww.endure-itn.eu%2Findex.php%2Findividual-projects-list%2Fproject-menu-esr-6&usg=AFQjCNHnrHaCFER8piMVmj_D4j0DWV7jTw
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into account the results of these three beams, a beam reinforced with a lipped CFRP U-channel with 131 

intermittent closed loops and an aggregate coating on all internal and external surfaces (B4) was 132 

designed and tested in the second half of the experimental programme as a mean to achieve stronger 133 

and stiffer beams with improved post-breakage strength and ductility. For comparison of the results, 134 

a reference beam (B5) of the same dimensions as B4, but with a plain CFRP U-channel was also 135 

fabricated and tested. The objective of this experimental programme was not to provide design data 136 

but to demonstrate the basic mechanics of concrete beams reinforced with CFRP fabric reinforcement. 137 

Although a combined flexural/shear reinforcement system was provided, the experiments aimed to 138 

investigate the flexural behaviour of the beams.  A detailed shear analysis of the beams was beyond 139 

the scope the study, however, an approximate shear design was used to ensure no premature shear 140 

failure prior to the expected flexural failure. The design of the CFRP fabric reinforcement systems was 141 

not trivial; the analyses adopted in the currents study will be presented in a future publication. 142 

 143 

Materials 144 

All three test beams were made using the same materials, fabrication techniques, and curing 145 

conditions. The CFRP channels were first fabricated and then concrete was cast once the CFRP 146 

channels had fully cured. 147 

 148 

±45o biaxial carbon fibre dry fabric (Fig. 1b) (weight 300 g/m² and thickness 0.35 mm), purchased from 149 

a commercial supplier was used to fabricate the reinforcement channels. Four plies of dry CFRP fabrics 150 

were first individually impregnated with an epoxy laminating resin in combination with a slow 151 

hardener using a wet lay-up fabrication technique and then layered each one on top of the other in 152 

order to fabricate a four-layer laminate. A slow hardener was chosen because of longer workability 153 

time and the flexibility it provided for fabricating U-channels. With a dry fabric thickness of ~0.35 mm 154 

and a total resin thickness of ~0.25 mm, the thickness of the laminate was ~1.65 mm. The laminate 155 

was symmetric, since for each layer on one side of the mid-plane there was a corresponding layer at 156 
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equal distance from the mid-plane on the other side with identical elastic mechanical properties and 157 

layer thickness; this ensures no coupling between in-plane loading and bending deformations. 158 

Similarly, the laminate was balanced since it had pairs of layers with identical elastic mechanical 159 

properties and thicknesses, but with +45o and -45o fibre orientations with respect to the longitudinal 160 

axis; this eliminates coupling between normal loading and in-plane shear deformations. 161 

 162 

The concrete mix was designed in accordance with ‘BRE Design Manual’ (BRE, 1997). A high slump (60-163 

180 mm) and small aggregate (10 mm maximum size) were chosen to ensure the workability required 164 

to cast the beams of small dimensions. Fine aggregate with 100% passing through 600 μm sieve was 165 

used. Concrete was cast in situ in accordance with the requirements specified in BS EN 206 (2013). 166 

The average 28-day compressive strength of the concrete was determined to be ~38 MPa.  167 

 168 

CFRP fabric reinforcement systems 169 

Plain U-channel  170 

The plain U-channel was fabricated from 970 mm x 230 mm CFRP fabric sheets in order to achieve the 171 

dimensions 970 mm x 80 mm x 80 mm of the channel (Fig. 2a). The required U-shape was obtained by 172 

wrapping the wet, rectangular laminate around a foam mould (Fig. 2b). The CFRP-wrapped foam 173 

mould was then positioned within a plywood formwork (Fig. 2c) and cured in ambient conditions 174 

(20±2 °C) for two days. Thin release films that leaves no residues were used between the CFRP and 175 

the foam and also between the CFRP and the plywood. In order to limit the effects of stress 176 

concentrations, the corners of the channel were rounded. Although autoclave or resin infusion 177 

techniques have potential to produce higher quality products than the wet lay-up method used here, 178 

advanced manufacturing methods were beyond the scope of the study, since the objective was to 179 

demonstrate the use of novel forms of fabric reinforcement in concrete beams.  180 

 181 

 182 



9 
 

U-channel with aggregate coating  183 

The aggregate-coated CFRP channel adopted the same section dimensions, manufacturing and curing 184 

methods as the plain U-channel. However, once the CFRP had cured, an aggregate coating was applied 185 

on all internal and external faces (Fig. 1a). The size of the aggregate particles and surface density were 186 

chosen to achieve desirable benefits. 187 

 188 

Size and spatial distribution of aggregate coating 189 

Aggregate of size 2-5 mm was chosen considering the improved bond properties and the favourable 190 

concrete substrate failure reported in the literature for coating with particles of this size range. Dried 191 

quartz gravel purchased from a commercial supplier was used. Fig. 3a shows the distribution of the 192 

particle size, obtained from a sieve analysis conducted in accordance with BS 1377: Part 2 (1990) using 193 

an automatic sieve shaker (vibration amplitude 5.5 mm and over a 10-minutes duration) with sieve 194 

sizes 1.18 mm, 2.00 mm, 3.35 mm, 5.00 mm and 6.30 mm. As can be seen from Fig. 3a, the particles 195 

were within the required size range (2-5 mm). Particles less than 1.18 mm in size (only 0.16% by weight 196 

of total particles) were removed, since such small particles were not previously used in aggregate 197 

coatings. ~50% surface distribution density of aggregate coating was chosen as a reasonable starting 198 

point in the investigation, in order to achieve improved bond properties whilst providing adequate 199 

space for mechanical interlock between the coating and in situ concrete. The volume of aggregate 200 

required for ~ 50% coverage of the total surface area of the CFRP channel was determined by using 201 

the knowledge of the volume of aggregate required for an approximate 100% surface coverage of a 202 

known surface area of the CFRP. In the present study, one sixth of the required total volume of 203 

aggregate was applied on all surfaces of each one sixth length of the CFRP channel. 204 

 205 

Application of aggregate coating 206 

The same epoxy resin and the mix ratio used in the CFRP channels was also used to bond the aggregate 207 

on the surfaces of the CFRP channel. The thickness of the resin layer was maintained to be ~0.5 mm 208 
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in order to achieve a sufficient submersion of the aggregates whilst eliminating complete coverage of 209 

aggregate (a ‘smoothing’ effect caused by the full coverage of epoxy on aggregate can weaken the 210 

CFRP–concrete bond (Bank et al., 2007)). The aggregate coating was applied on two horizontal 211 

surfaces at a time (see Fig. 3b), and once the resin adhesive had fully cured (usually after 24 hours), 212 

coating was applied on another two surfaces of the CFRP channel (see Fig. 3b). Generally, an even 213 

layer of aggregate was applied on all surfaces, although due to the curvature at the corners of the 214 

channel small slippages and movement of the aggregate were unavoidable.  215 

 216 

Lipped U-channel with intermittent closed loops  217 

In order to investigate the effect of anchorage at high stress locations of the concrete–CFRP bond, a 218 

lipped U-channel with intermittent closed loops was investigated (Fig. 1a). Conversely to the other 219 

two channels, this CFRP channel was made using two dry fabric plies of size 970 mm x 230 mm and 220 

two larger plies of size 970 mm x 332 mm. The larger plies were cut on each side to create a series of 221 

anchorage tabs (each of width 60 mm and length 74 mm), as shown in Fig. 4a. When stacking the plies 222 

during the wet lay-up process, tabbed plies were positioned in the middle, with others located on the 223 

top and bottom as shown in Fig. 4a. Tabs on one side of the laminate were first wrapped over the 224 

foam mould, and then those on the other side were wrapped over the first to make the required 225 

intermittent closed loops (Fig. 4b). Intermittent gaps of 120 mm x 40 mm in plan were left between 226 

the closed loops in order to facilitate concrete casting. The CFRP channel was cured in the same way 227 

as the other two channels. 228 

 229 

Concrete beam casting and test set up 230 

Two linear strain gauges (gauge length ~6 mm and grid resistance 120±0.3 Ω) were fixed along the two 231 

fibre direction at midspan of each CFRP channel on the bottom surface. Although strain gauge rosettes 232 

would have been an alternative, the relatively large rosette could weaken the surrounding concrete–233 

FRP bond, therefore, strain gauges which are much smaller than a rosette were used.  In order to 234 
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improve the bond between plain CFRP channels and in situ concrete (i.e. in B1 and B3), a thin wet 235 

epoxy resin layer was applied ~45 minutes prior to concrete casting on all surfaces of the CFRP 236 

channels. No epoxy resin was applied to the aggregate-coated channel (B2) in order to eliminate 237 

potential ‘smoothing’ of the aggregate surfaces. The three concrete beams were cast and cured in 238 

ambient conditions.  239 

 240 

Beams were tested after 28 days of curing in four-point bending (Fig. 5a) (shear span = 325 mm, 241 

constant moment zone = 250 mm) using a servo-hydraulic test machine, displacement controlled 242 

(stroke rate of 2 mm/min). Midspan deflection was measured using two digital displacement gauges, 243 

located at the front and back of the beam.  244 

 245 

Experimental results 246 

Load–midspan deflection relationship 247 

Fig. 5b shows load–midspan deflection relationships of the three beams. As expected, the behaviour 248 

of the three beams were similar within the uncracked regime of concrete. The results suggest that in 249 

all beams flexural cracks first developed at applied load ~7.5 kN, where the corresponding midspan 250 

deflection was ~0.6 mm. As expected, after the formation of flexural cracks, beams showed reduction 251 

in flexural stiffness. As can be seen from the figure, B2 demonstrated a higher bending stiffness and 252 

failure load compared to B1 and B3. This suggests the improved bond and composite action between 253 

concrete and CFRP in B2. The peak load of ~46.65 kN of B2 is significantly higher than those of 29.88 254 

kN and 30.86 kN of B1 and B3 respectively.  255 

 256 

Ductility 257 

Since the tests were conducted displacement controlled, the post-peak behaviour of the beams was 258 

also observed (Fig. 5b). All beams resisted applied load beyond the peak load demonstrating notable 259 

ductility before final failure.  The beams failed at loads 25.90 kN, 23.74 kN and 23.38 KN respectively; 260 
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86.7%, 50.9% and 75.8% of the respective peak loads. The midspan deflections of the beams at the 261 

respective failure loads were 17.2 mm, 15.9 mm and 20.2 mm, whereas deflections at the respective 262 

peak loads were 8.5 mm, 9.7 mm and 12.2 mm. ‘Ductility index’ may be defined as the ratio of the 263 

additional midspan deflection after the peak load to the midspan deflection at the peak load; ductility 264 

indices of the three beams are 102.4%, 63.9% and 91.6% respectively. The results suggest that, unlike 265 

conventional applications of FRP bars and other FRP internal reinforcements in concrete beams where 266 

brittle failures were inevitable, beams B1, B2 and B3 demonstrated significant ductility and safe failure 267 

behaviour. A further advantage of the beams may be explored: the beams recovered the deflection 268 

upon unloading, as shown in Fig. 5b. The residual midspan deflections of the three beams were 7.9 269 

mm, 2.6 mm and 8.9 mm respectively (the corresponding recovery of the midspan deflection from the 270 

failure load were 54.1%, 83.6%, 55.9%). This suggests that a large part of the energy put into the beam 271 

during loading has dissipated rather than storing as strain energy; this ensures no explosive failure. 272 

 273 

Analysis of failure 274 

Fig. 6a shows the applied load–strain relationships at midspan of all three test beams. Strains at the 275 

top surface of the beam (i.e. compression surface) and the strain in the CFRP along the fibre direction 276 

are shown in the figure. As noted previously, CFRP strain was measured along both fibre directions 277 

(+45o and -45o); the two CFRP strain measurements were largely similar in each beam.  Since a detailed 278 

investigation of the 2D strain behaviour of the CFRP channel is beyond the scope of this paper, the 279 

average of the two measured strains is shown in Fig. 6a. 280 

 281 

Strain in CFRP   282 

As expected, the CFRP experienced higher strains after the development of flexural cracks in the 283 

beams. It should be noted that, due to the failure of strain gauges, the CFRP strain in B3 was recorded 284 

only up to applied load 14.95 kN.  Fig. 6a shows that the CFRP strains at the peak loads of B1 and B2 285 

were 0.00418 and 0.0036 respectively, and then the strains dropped after the peak load. In a previous 286 
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study of the authors (Achintha et al., 2015), it was noted that tensile and shear failure strains of the 287 

same CFRP laminate were greater than ~0.016. Thus, the results suggest that the CFRP did not rupture 288 

in the beams.  289 

 290 

Strain in concrete 291 

As can be noted from Fig. 6a, the compressive strains at the peak load of the three beams were 292 

0.001869, 0.002617 and 0.002990 respectively. The observation of the failure mode of the beams (Fig. 293 

6b) suggests the concrete compression zone failed in all beams. However, the noted strains in 294 

concrete (Fig. 6a) at the peak loads are significantly lower than the expected ultimate compressive 295 

strain of concrete (~0.0035) (Eurocode 2, 2004). Test results of a steel-reinforced beam made from 296 

the same concrete and tested as a control beam in the current study confirmed a concrete failure 297 

strain of ~0.0033 (see Fig. 6a). The results suggest that the failure of B1, B2 and B3 was not 298 

conventional concrete compression failure, as described presently. 299 

 300 

Crack patterns  301 

All beams showed similar even distribution of flexural cracks within the constant moment zone and a 302 

nominal number of minor cracks within shear spans. All beams exhibited horizontal ‘splitting’ cracks 303 

on the top and side surfaces (Fig. 7). Visual observations during testing confirmed that ‘splitting’ cracks 304 

on the top surface occurred prior to the development of horizontal ‘splitting’ on the sides of beams. 305 

The ‘splitting’ cracks on the top surface were first observed after the peak load; for example, top 306 

surface ‘splitting’ cracks on B2 and B3 were first observed at load ~42 KN and ~28.2 kN respectively 307 

during the post-peak regime (note: observations were not made during the testing of B1). Analysis of 308 

crack patterns suggests that all beams underwent similar failure mechanisms. 309 

Failure mechanism 310 

Under bending, the top surface region of the constant moment zone of the beams has subjected to 311 

high axial compression forces. In concrete, forces are mainly transferred from aggregate to aggregate, 312 
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which are randomly distributed. Under uniaxial compression, tensile forces develop in the lateral 313 

direction in order to balance the lateral component of the compressive force between adjacent 314 

aggregate those are essentially not aligned along a direction parallel to the longitudinal axis of the 315 

beam. Coalescence of microcracks and unstable growth of microcracks around the aggregate usually 316 

starts at applied stress of ~90% of the peak compressive stress (strain ~0.0014) (Hus et al., 1963). In 317 

the beams, the top of the CFRP channel was located 20 mm below the top surface of the beam. A 318 

weak bond between concrete and CFRP and flaws/voids larger than those normally expect in pure 319 

concrete are expected in the vicinity where the vertical sides of the CFRP channels were terminated. 320 

Thus, as noted in the experiments (Fig. 7), development of major cracks in the compression zone, just 321 

above the CFRP curtailment location, parallel to the beam length (i.e. perpendicular to the lateral 322 

tensile stress) is expected under continued increase in the applied load. As can be seen in Fig. 7, the 323 

major crack locations on the top surface in B1 and B2 were offset by ~20 mm from the beam edge and 324 

~40 mm offset in B3; these offset distances are comparable to the location of the top edge of the CFRP 325 

channel.  326 

 327 

It should be noted the concrete cover spalling off once flexural cracking occurs did not happen in the 328 

beams tested in the study. This behaviour may be attributed to the bond improvement mechanisms 329 

used in the beams (i.e. applications of 1. an epoxy layer (Beams B1, B3 and B5) and 2.  an aggregate 330 

coating (Beam B2 and B4), on all surfaces (including the outer surfaces) of the CFRP channel); and the 331 

failure happened in the compression zone of the beam. A detailed study of the potential danger of 332 

cover spalling off once flexural cracking occurs and the effects of freezing and thawing on spalling is 333 

beyond the scope of the present paper.    334 

 335 

Narrow concrete compression zone 336 

Fig. 8a shows the neutral axis depth (pre-peak load regime only) measured from the top surface of the 337 

beam, calculated based on an assumed linear strain distribution at midspan through the beam section 338 
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and using the strain values measured on the concrete at the top surface and on the side of the beam 339 

20 mm below the top surface. Although the use of closely spaced strain readings (on top and 20 mm 340 

below that) where the top strain gauge was at the beam centreline whilst the other was on the side 341 

surface with 60 mm offset from the centreline to infer the through-depth strain profile may only 342 

provide an approximate estimate of the neutral axis depth, the authors believe the neutral axis data 343 

shown in Fig. 8a may still be reasonably accurate for comparisons purposes. For brevity, only neutral 344 

axis depth at relatively high applied loads (above 7kN) is shown in the figure. As expected, the neutral 345 

axis depth decreased with the applied load. The applied load–neutral axis depth relationships for B1 346 

and B3 are similar, suggesting similar load sharing behaviour of the two beams, whereas the different 347 

level of composite action between the CFRP reinforcement and concrete in B2 is evident from its 348 

notably different neutral axis location compared to B1 and B3.  The neutral axis depths of the three 349 

beams at the respective peak loads are approximately 17 mm, 27 mm and 15 mm respectively. The 350 

estimated neutral axis depth is used below for explaining the crack pattern and the final failure 351 

location observed in the test beams. 352 

 353 

Final failure mode 354 

Observation of crack patterns and the analysis of strain data suggest that a major ‘split’ was developed 355 

in the beam midspan just above the side of CFRP channel. Consequently, a narrow zone of concrete 356 

(~20 mm wide in B1 and B2 and ~40 mm wide in B3), between the crack and the side of beam, was 357 

formed. Given the shallow depth of the compression zone (~17mm, ~27 mm, and ~15 mm in B1, B2 358 

and B3 respectively), under the high axial compression, the laterally unsupported narrow zone of 359 

concrete became the equivalent of a slender ‘column’, as shown in Fig. 8b. Given the no upward 360 

resistance to buckling, the ‘slender concrete column’ bent/buckled outwards, causing failure at the 361 

middle region of the ‘concrete column’. The agreement between the crack locations on the side of the 362 

beams (Fig. 7) with the neutral axis depth at the peak load (Fig. 8a), justifies the failure mechanism 363 
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identified above. Once the ‘edge columns’ had failed, the area of the concrete compression zone was 364 

reduced, and subsequently caused the complete failure of the beam.  365 

 366 

Overall performance  367 

The results confirmed that the use of an aggregate coating on the surfaces of the CFRP reinforcement 368 

enhanced the composite action between CFRP and concrete, subsequently ensured a higher strength 369 

and stiffness in the beam. However, the drop in the load resistance after the peak load was quite high 370 

(~50% of the peak load) and the ductility index is modest (63.9%). In contrast, the lipped CFRP channel 371 

section with intermittent closed loops (B3) ensured a greater ductility (91.6%) and ability to resist a 372 

significant part of the peak load (>75.8% of the peak load) during the post-peak regime.  373 

 374 

New beam design 375 

After taking into account the results of the previous three beams, a beam reinforced with a lipped 376 

CFRP U-channel with intermittent closed loops and an aggregate coating on all internal and external 377 

surfaces was designed and tested (Beam B4) as means to achieve stronger and stiffer beams with 378 

improved post-breakage strength and ductility. In order to demonstrate the applicability of the earlier 379 

research findings to beams with different design parameters, the dimensions and the concrete 380 

strength (25 MPa) of the new beam (B4) were chosen to be different to those of the previous three 381 

beams. The cross section of the aggregate-coated CFRP channel used in B4 was 100 mm x 70 mm and 382 

it had lips of 20 mm wide and intermittent closed loops (Fig. 9a). The size of the lips and the spacing 383 

of the tabs were chosen to provide sufficient space for the application of aggregate coating and 384 

concrete casting. Fabrication of the CFRP channel and aggregate coating were done in the same way 385 

as for B2 and B3. The overall dimension of the concrete beam was 1370 mm x 150 mm x 100 mm. For 386 

comparison of the results, a reference beam (B5) of the same dimensions as B4, but with a plain CFRP 387 

U-channel was also fabricated and tested. Beams B4 and B5 were tested in four-point bending similar 388 

to the previous three beams, but with shear span 510 mm and constant moment zone of 250 mm (the 389 



17 
 

clear span of the beam was 1270 mm). Strain gauges were fixed on the CFRP channel and concrete at 390 

beam midspan.   391 

 392 

Similar to the previous three beams, B4 and B5 demonstrated even distributions of flexural cracks 393 

within the constant moment zone and nominal numbers of minor cracks within the shear spans. Both 394 

beams failed in the same way as the three previous beams where separation of a narrow concrete slit 395 

above the top edge of the CFRP channel at midspan was followed by buckling/bending of a narrow 396 

concrete column (Fig. 8b). Fig. 9b shows the load–midspan deflection relationships. As expected, 397 

beam B4 showed a higher strength (peak load 14.1 kN, which is equivalent to the design load if the 398 

beam had been reinforced with two 10 mm diameter steel bars of yield strength 500 MPa), flexural 399 

stiffness, and ductility (ductility index 58.8%) compared to B5 (peak load 10.9 kN and ductility index 400 

24.4%). Similar to B2, B4 demonstrated greater strength and stiffness due to improved composite 401 

action between the CFRP channel and concrete. However, the drop in load after the peak load in B4 402 

was 23.8%, compared to 49.1% in B2; this suggests the contribution of the anchorages for an improved 403 

post-breakage behaviour.  404 

 405 

Fig. 10 shows the top surface strain and CFRP strain against applied load at beam midspan. The results 406 

suggest that the compressive strain at the top surface of B5 at the peak load is 0.00188 and this value 407 

matches with that in B1 (0.001870) which had a similar reinforcement arrangement. The compressive 408 

strain at the top surface of B4 at the peak load is 0.00286; this value is significantly higher than that 409 

noted in B5, but, as expected, it is between the corresponding values of 0.002617 and 0.002990 noted 410 

in B2 and B3 respectively. The midspan CFRP strains shown in Fig. 10 also highlight the improved 411 

strength and ductility characteristics of B4 compared to B5. The CFRP strains at the respective peak 412 

loads of B4 and B5 are 0.0113 and 0.00628, and those at the respective failure loads are 0.0202 and 413 

0.098. These results suggests better utility of the CFRP reinforcement in B4 compared to B5.  It should 414 

be noted that the reason for the apparently high CFRP strains in B4 and B5 compared to the three 415 
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previous beams is because in B4 and B5 the CFRP strains were recorded along the longitudinal 416 

direction of the beam (i.e. 45o angle to the fibre directions), whereas in B1, B2 and B3 the strains were 417 

measured along the two fibre directions. An analysis of 2D strain behaviour of the CFRP channels is 418 

beyond the scope of current paper, and such analysis will be carried out by the authors in a future 419 

publication.  420 

 421 

Conclusions 422 

 The study has shown that concrete–CFRP bond influences the strength and ductility of concrete 423 

beams reinforced with CFRP fabric reinforcement. 424 

 It has been experimentally shown that use of an aggregate coating on the surfaces of CFRP 425 

improved the composite action between the CFRP channel and concrete, thereby improving 426 

strength and stiffness of the beam compared to plain CFRP channel reinforcement. On the other 427 

hand, the provision of anchorage mechanisms at the top edges of the CFRP reinforcement ensured 428 

a better post-breakage resistance and ductility compared to plain U-channels. 429 

 A U-channel with aggregate coating and an anchorage system consisting of a lipped channel section 430 

with intermittent closed loops was found to provide an improved composite action between the 431 

CFRP and concrete and also provided satisfactory ductility before final failure.  432 

 It was found that the final failure mode was concrete failure in the compression zone, induced by a 433 

horizontal splitting developed just above the top edge of the CFRP channel causing a narrow slither 434 

of concrete to bend/buckle outwards.   However, since a small number of test specimens of 435 

dimensions smaller than real-life beams were tested in the present study, a more generic validation 436 

of the results may be required. Challenges such as fabrication and connecting CFRP channels in long, 437 

real-life beams should also be addressed in detail. 438 

 It is anticipated that the basis provided by the present work could be effectively used in other 439 

applications such as non-prismatic geometries and permanent formwork/reinforcement in thin 440 



19 
 

concrete structural members where the flexible characteristics of dry CFRP fabrics during 441 

preparation of CFRP reinforcement may be most useful. 442 
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Fig. 1. (a) Three types of CFRP fabric channel reinforcement   (b)   ±45o biaxial CFRP dry fabric  
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Fig. 2.  (a) Cross sectional dimensions of the plain U-channel  (b) Wrapping the wet, rectangular 

CFRP laminate around a foam mould    (c) Positioning of the CFRP wrapped foam mould within a 

plywood formwork  
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Fig. 3. (a) Particle size distribution of aggregate coating     (b) An aggregate coating was applied on 

all surfaces of the CFRP channel using epoxy resin 
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Fig. 4.  (a)  Dimensions and arrangement of the CFRP dry fabric sheets for the lipped U-channel 

with intermittent closed loops     (b) Cross section dimensions of the lipped U-channel with 

intermittent closed loops 

 

 572 

 573 

 574 

 575 

 576 



26 
 

 

Fig. 5.  (a) Four-point bending test arrangement  (b) Applied load–midspan deflection relationships 

of the three beams 
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Fig. 6.  (a) Applied load–strain relationships at midspan of the three beams  (b) Failure mode of 

the three beams (top side view of the beams) 
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Fig. 7.  Horizontal ‘splitting’ crack locations on the top and side surfaces of all three beams 
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Fig. 8  (a) Applied load– neutral axis depth relationships of the three test beams  (b) Laterally 

unsupported narrow slither of concrete became the equivalent of a slender concrete ‘column’              
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Fig. 9.  (a) Dimensions of the CFRP reinforcement channel used in beam B4     (b) applied load–

midspan deflection relationships of the B4 and B5 
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Fig. 10. Applied load–strains relationships at midspan of B4 and B5 
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