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Abstract—Continuously powering wireless sensor nodes 
(WSNs) has been one key problem in structural health 
monitoring. Piezoelectric energy harvesting (PEH) from 
environmental vibrations has been a potential way to make low 
power consumption WSNs self-powered. One kind of vibration 
energy harvesting plate with local resonators embedded in 
piezoelectric patches is presented in this paper. Due to its distinct 
dynamic performances: band gaps, we can control wave 
propagating for the purpose of broad band vibration harvesting 
and higher energy conversion efficiency. Distributions and 
characteristics of band gaps are affected by geometric and 
material parameters, thus it's necessary to analyze the effects of 
these key parameters. In this paper, a theoretical calculation 
method of vibration propagation characteristics is developed 
based on finite element method (FEM) and the Floquet-Bloch 
theorem. Then finite element simulations using Comsol software 
are done to analyze the effects of different parameters. The 
results show that we can reduce the beginning frequency of the 
lowest band gap by increasing the length of resonators, while 
broadening band gaps by raising the filling ratio of the 
piezoelectric patches. On the other hand, Young modulus is the 
main factor of material parameters which markedly affects the 
beginning and cutoff frequency. The results provide useful 
theoretical guidelines for optimally designing vibration energy 
harvesting plates in applications. 
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I.  INTRODUCTION  

In structural health monitoring, it has been one key problem 
to make low energy consumption wireless sensor nodes self-
powered. Energy harvesting (EH) has received considerable 
attention[1]due to its ability to collect electric power from 
ambient energy sources. As one of EH technology, 
piezoelectric energy harvesting can harvest electrical energy 
from mechanical vibrations based on the direct piezoelectric 
effect [2]. Piezoelectric energy harvesting is superior to other 
vibration-to-electricity conversion mechanisms due to large 
energy density and ease of implementation, so it has been 
widely studied [3-5]. 

Various models representing the electromechanical 
behavior of piezoelectric energy harvesters are proposed, 
which cover from lumped parameter models [6] to Rayleigh-
Ritz type approximate distributed-parameter models [7,8]along 

with analytical distributed-parameter piezoelectric solution 
attempts [9].Among these models, however, a prominent 
problem has been neglected. Assumptions that vibration 
sources have fixed position, concentrated energy, and single 
direction excitation are oversimplified for real conditions. 
Structural vibrations are usually variable and often exist in the 
form of elastic waves. As a result, the simplification of existing 
methods makes the energy of waves overlooked and lead to a 
relatively low efficiency of energy harvesting. 

To enhance broad band vibration energy harvesting 
efficiency, one kind of vibration energy harvesting plate has 
been proposed. It consists of periodic piezoelectric patches 
equipped with local resonators that act as local absorbers of 
mechanical vibrations [10-12].The dynamic performances of 
this structure, particularly shown as band gaps, depend on the 
geometric and material properties, thus it's necessary to analyze 
the effects of these key parameters. 

The remainder of this paper is organized as follows. In 
Section 2,the proposed plate configuration is firstly presented, 
along with the finite element model and calculations of band 
gaps. Effects of different geometric and material parameters are 
then analyzed through variable controlling method in Section 3. 
Finally, the conclusions of this work are summarized in Section 
4. 

II. THREORETICAL CALCULATIONS OF BAND GAPS 

A. Piezoelectric Energy Harvesting Plate 

Fig.1 shows a thin rectangular plate as the base structure, 
which is a typical configuration for analysis and application, as 
well as a good structure for vibration propagation. Structures of 
piezoelectric patches bonded to the surfaces of base structures 
have been extensively studied [13,14], while the present work 
suggests a new plate structure with square holes filled with 
piezoelectric patches that support a small mass to form a source 
of local resonance. A unit cell consists of a piezoelectric patch 
and a local resonator along with their neighboring base 
structure, as shown in the right of Fig. 1. 

Vibrations of the plate under excitations can propagate 
along the plane of the plate. Because of the existence of local 
resonators, some waves can't propagate along the periodic cells 
within specific frequency bands called the "band gaps". Thus, 
energies of vibrations are localized in unit cells, which can be 
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converted into electricity through piezoelectric patches and 
their connected circuits. 

 
Fig. 1.Schematic diagram of the PEH plate with local resonators. 

B. Theoretical Model 

This part builds a theoretical model of the piezoelectric 
plate based on the finite element method and Floquet-Bloch 
theorem, which can be available for further calculations. 

The equation of harmonic vibrations of plates without 
considering damping can be expressed as 

  2K M u F   

where K and M are stiffness and mass matrices of the whole 
structure respectively, while u and F are generalized 
displacement and force vectors respectively. And is angular 
frequency of harmonic vibrations. 

The stiffness and mass matrices of the PEH plate, however, 
are got in a different way from that of ordinary plates, because 
of the periodic structures of the plate. Due to the discontinuity 
of materials, different materials should be distributed into 
different elements in the division of the plate. In this paper, we 
simplified the model by using the Kirchhoff plate theory firstly. 
Then divide the plate into quadrilateral finite elements with 3 
degrees of freedom (dofs) per node. For each node, the dofs are 
the transverse displacement (ω)and the corresponding angular 
deflections in the x and y directions (θx and θy).  

Calculations of band gaps can be simplified by the FEM 
and Bloch theorem. Due to the periodicity of the structure, it's 
only necessary to build the finite element model of one unit cell 
shown in the right of Fig. 1. 

The equation of harmonic vibrations applied to the cells 
discretized by the FEM can be rewritten as 

  2
c c c cK M u F   

where, Kc and Mc are the stiffness and mass matrices of the 
unit cell respectively, while uc and Fc are the generalized 
displacement and force vectors respectively.  

Fig.2 shows the displacement degrees of freedom and 
forces of the unit cell. 

 
Fig.2. Schematic diagram of displacement degrees of freedom and forces. 

In the diagram, 


TT T T T T T T T

c B T LB LT RB RT L Ru u u u u u u u u     


TT T T T T T T T

c B T LB LT RB RT L RF F F F F F F F F     

where subscripts of displacement and force vectors L, R, B 
and T represent four boundaries of the unit cell, while LB, RB, 
LT and RT represent its four corners. Based on the Bloch 
theorem, displacement vectors on the cell's boundaries must 
compile with the following relations 

 T T
R L ,u u x xik ae  

 T T
T B.u u x xik ae  

Similarly, displacement vectors on the cell's corners can be 
expressed by uLB as 

 T T
RB LB ,u u x xik ae  

 T T
LT LB ,u u x yik ae  

 T T
RT LB.u u  x x y yik a ik ae  

where, kx and ky are component vectors in x and y directions, 
while ax and ay represent lattice constants along x and y 
directions. The former statements can be rewritten in the form 
of matrix as 
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where I is identity matrix, whose subscripts represent its 
dimensions which match the degrees of nodes on 
corresponding boundaries. Relations between the force vectors 
of the unit cell can be acquired through the Bloch theorem and 
equilibrium conditions. According to relations of four adjacent 
unit cells shown in the following figure, the equilibrium 
conditions can be expressed as 

 R L 0F F x xik ae  

 T B 0F F x xik ae  



 
Fig.3. Forces at the boundaries of four connected unit cells. 

Meanwhile, the force equilibrium relation of the common 
point of the four cells is 

 RT LT RB LB 0F F F F
     y y x x y yx x
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then, substituted in harmonic vibration equation 

    2

c c c c,K M T u F x yw k k  

Multiply TH(kx,ky)on both sides of the expression, we have 
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The right side can be expanded as 

  
T B

H
c RT LT RB LB

R L

0

, 0

0

F F

T F F F F F

F F



  



                    

x x

y y x x y yx x

x x

ik a

ik a ik a ik aik a
x y

ik a

e

k k e e e

e
 

Consequently, we turn the problem into a generalized 
eigenvalue problem 

    2

c c c, , 0K M u     x y x yk k w k k  

where 

      H

c c, , ,K T K T x y x y x yk k k k k k  

      H

c c, , ,M T M T x y x y x yk k k k k k  

represent reduced stiffness and mass matrices. 

We can obtain the value of ω from Equation 17 when the 
wave vector  ,x yk k is specified. Generally, the wave vector has 

been always set along the edges of the irreducible part of the 
first Brillouin zone (Μ-Γ-Χ-Μ)shown in Fig. 4. The solution 
is a dispersion curve in the ω-k coordinates. There exist as 
many curves as there are eigenvalues of the problem in 
Equation 17. If two neighboring curves do not overlap each 
other, then there is a gap along the ω axis in which no wave 
propagation will occur. This gap between dispersion curves is 
called the band-gap. The next work of this paper is to calculate 
and analyze band gaps with the help of Comsol software.  

 
Fig. 4. Schematic diagram of the first Brillouin zone (square) and the 
irreducible Brillouin zone(triangle area) . 

 

C. Simulation of Band Gaps 

This part shows an example of finite element simulation 
for the PEH plate, which ends up with a band structure 
diagram, displaying the distribution of band gaps. Materials 
used in simulation for the base, piezoelectric patch and 
resonator are respectively epoxy resin, polyvinylidene fluoride 
(PVDF) and lead. Their properties are shown in the following 
table. The length of the cell (a),the patch (b) and the resonator 
(c) are first set as 0.04m, 0.03m and 0.01m respectively. 

TABLE Ⅰ. MATERIALS'PROPERTIES IN SIMULATIONS 

structure material Young 
module(GPa) 

Poison 
ratio υ density(kg/m3)

base epoxy 0.12 0.33 1180 

patch PVDF 31 0.36 1176 

resonator lead 17 0.42 11600 

The simulation results in dispersion curves under 14kHz as 
shown in Fig. 5 and the shade area represents the lowest band 
gap. The beginning and cutoff frequency of the lowest band 
gap are 6kHz and 9.6kHz respectively, thus the size of it is 
3.6kHz.In this band gap, no dispersion curves occur.Thus 
energies of waves are localized in unit cells, and can be 
converted into electricity through piezoelectric patches and 
their connected circuits. 

 
Fig.5. Simulated band gaps in Comsol 



III. EFFECTS OF GEOMETRIC AND MATERIAL PARAMETERS 

In this section, we use parametric modeling method to 
analyze the effects of different parameters on band gaps. The 
effects are mainly shown in two aspects: the beginning 
frequency and the width of the lowest band gap. 

A. Effects of Geometric Parameters 

Assuming the length of the resonator (c) varies from 3mm-
19mm while other parameters remain unchanged, the 
simulated band gaps show that with the increasing of the 
parameter c, the beginning frequency decreases while the 
cutoff frequency basically stay unchanged and the size of the 
band gap becomes larger. Moreover, parameter scanning using 
Comsol software when wave vector  ,x yk k  is fixed at point 

(0,0) results in agreement with this conclusion, as shown in 
Fig. 6. So, we can conclude that adjustment of the length of 
resonators can help us control the beginning frequency of the 
lowest band gap while keeping the cutoff frequency 
unchanged. 

 
Fig.6.Effects of parameter con the lowest band gap 

Similarly, we analyze effects of the parameters b and a on 
band gaps. 

Fig.7 shows that with the increasing of the variable b, both 
the beginning and cutoff frequency increase. The increasing of 
the latter is much more apparent compared with that of the 
former. Consequently, the size of the band gap becomes larger. 
As a result, we can adjust the cutoff frequency rapidly by 
controlling the length of patches. 

 
Fig.7. Effects of parameter b on the lowest band gap 

On the contrary, as the variable a increases, both the 
beginning and cutoff frequency decrease. Similarly, the 

decreasing of the latter is much more apparent compared with 
that of the former. Thus, the size of the band gap becomes 
smaller. If we define the ratio of b versus a as the filling ratio 
of the piezoelectric patch, we can draw a conclusion from 
Fig.7 and 8 that this filling ratio has a marked impact on the 
size of the lowest band gap. With the increasing of this ratio, 
the size increases significantly. 

 
Fig.8. Effects of parameter a on the lowest band gap 

B. Effects of Material Parameters 

In order to analyze the effects of materials, we change the 
material of the base structure at the beginning. As table 2 
shows, different base materials have different dispersion 
curves which vary in frequency distribute ranges, beginning 
and cutoff frequencies and sizes of band gaps. 

TABLEⅡ.PROPERTIES OF MATERIALS FOR COMPARISON 

Base 
material 

The fourth 
band gap 

range (Hz) 

Beginning 
frequency 

(Hz) 

Cutoff 
frequency 

(Hz) 

Size of 
band 

gap (Hz)

epoxy 9600~10000 6000 9600 3600 

aluminum (4.8~6) ×104 4.8×104 4.8×104 0 

rubber 2500~3000 2400 2500 100 

For the purpose of making a more clear understanding, 
keep the base and resonator materials unchanged and calculate 
band gaps of different material parameters of the piezoelectric 
patch. We only choose the piezoelectric patch to study 
because its properties are not fixed and change easily with 
different experimental and ambient conditions. 

Fig. 9 shows the effects of the Young module (E)of the 
piezoelectric patch on the lowest band gap through parameter 
scanning, where figure a shows the result of epoxy-base and 
figure b shows the result of aluminum-base. 

band gap position

band gap position 

band gap position 



 
 

Fig.9. Effects of Young module on the lowest band gap 

From comparison of the two pictures, we can see that the 
trends of frequencies are completely different due to different 
base materials. Fig. 9(a) shows that the beginning and cutoff 
frequency basically remain unchanged when the Young 
module changes, while Fig. 9(b) shows a uptrend with the 
increasing of the Young module. 

The research of Hirsekorn[15] illustrates the mechanism of 
band gaps of locally resonance and simplifies the unit cell to a 
mass-spring lumped parameter system. The beginning and 
cutoff frequency are evaluated by analyzing resonance mode 
and frequency of this simplified system. Suppose that m1and 
m2 represent respectively the effective mass of the resonator 
and base in a unit cell, and k represents the effective stiffness 
of the coat. At the beginning frequency, the mass m1resonates 
under the spring k as shown in Fig. 11(a); on the other hand, at 
the cutoff frequency, the mass m1and m2resonates under the 
connection of the spring k. The dotted line shows the position 
of the unmoved point. 

 

 
Fig. 10. Simplified mass-spring model 

The beginning frequency evaluated from resonator shown 
in Fig. 10(a) is 

 1

1

1

2


k
f

m
 

The cutoff frequency evaluated from resonator shown in 
Fig. 10(b) is 

 1 2

2

1 2

( )1

2




k m m
f

m m
 

One reasonable explanation of the two different 
phenomena shown in Fig. 9 can be found in the formula of 
effective stiffness of series springs 

 1 2

1 2 1 2

1 1
1 / ( )  



k k
k

k k k k
 

where k1 and k2 represent the coefficient of elasticity of the 
base and patch materials, which are proportional to the Young 
module of the materials. 

Epoxy's Young module is 0.12Gpa, while piezoelectric 
patch is 31Gpa, so that the corresponding stiffness

1 2k k
From the formula above, we can get that

1 2k k ,that is to say 

the effective stiffness basically stay unchanged no matter how 
patch's Young module changes, thus a unchanged eigen 
frequency as displayed in the left of Fig. 9. On the contrary, 
aluminum's Young module is 69Gpa, which is at the same 
order of magnitude compared with that of patch. From the 
formula, we can conclude that with k1unchanged and k2 
increasing, the effective stiffness increases and thus a 
increasing of the beginning and cutoff frequency. 

IV. CONCLUSIONS 

In this paper, a theoretical calculation method of vibration 
propagation characteristics is developed based on finite 
element method (FEM) and Floquet-Bloch theorem. Then 
finite element simulations using Comsol software are done to 
calculate the band gaps of the PEH plate. The result shows that 
energy of propagating waves is indeed localized because of the 
locally resonance structures.  

Analysis of the effects of different parameters using 
variable controlling method is then presented. The results show 
that size of resonator mainly affects the beginning frequency of 
the lowest band gap, while filling ratio of piezoelectric patch 
has a marked impact on the size of it. On the other hand, the 
Young module is the main factor of material parameters which 
markedly affects the beginning and cutoff frequency. A 
reasonable explanation using the effective stiffness of series 
springs is proposed for two different frequency curves of 
different base materials. 

In order to control wave propagation better and improve the 
efficiency of PEH plates, further experimental verifications and 
deeper studies are needed for comprehensive understanding of 
band gaps and their influence factors. 
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