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We present a simple and fast method to simulate spin-torque driven magnetisation dynamics in
nano-pillar spin-valve structures. The approach is based on the coupling between a spin transport
code based on random matrix theory and a micromagnetics finite-elements software. In this way
the spatial dependence of both spin transport and magnetisation dynamics is properly taken into
account. Our results are compared with experiments. The excitation of the spin-wave modes, in-
cluding the threshold current for steady state magnetisation precession and the nonlinear frequency
shift of the modes are reproduced correctly. The giant magneto resistance effect and the magnetisa-
tion switching also agree with experiment. The similarities with recently described spin-caloritronics
devices are also discussed.

I. INTRODUCTION

The orientation of the magnetization in a magnetic film
can be influenced using a spin-polarized current. Conse-
quently, a direct current can transfer spin angular mo-
mentum between magnetic layers, separated by either a
normal metal or a thysichin insulating layer. This ef-
fect is called spin transfer torque (STT) and was first
discussed in the 1970s in the context of moving magnetic
domain walls1 and fully understood in the 1990s2,3. STT
has been of profound importance for the development of
spintronic devices such as read-heads based on the gi-
ant magnetoresitive (GMR) effect4,5, the spin-transfer
torque magnetic random-access memory (STT-MRAM)6

and spin-torque nano-oscillators (STNO)7.
Until very recently8 the approaches to theoretically de-

scribe the magnetization dynamics induced by a spin
torque usually greatly simplified or neglected the de-
scription of either the spatial inhomogeneity of the
spin torque, or the three-dimensional magnetization
texture9–11.

In the present work, we go beyond such approaches by
coupling a finite element micromagnetic method12 to a
numerical solver for spin transport, based on continuous
random matrix theory (CRMT)13,14. In this way the
effect of spin torque is described, with the transport and
magnetic degrees of freedom treated on an equal footing.
The spatial inhomogeneity of both spin transport and
magnetization dynamics is thus explicitly included. In
our implementation, CRMT is parametrised by the same
set of experimentally accessible parameters as in Valet-
Fert theory15, so that our numerical simulations contain
no free parameters.

We demonstrate the capabilities of our computational
method by addressing theoretically the effect of spin
torque on the magnetization dynamics in the perpendic-

ularly magnetized circular spin-valve nanopillar experi-
mentally investigated in Ref. [16]. This configuration is
obtained by saturating the device with a large applied
field perpendicular to the layers. The device setup is
kept very simple and as such serves as a prototype for
spin-valve structures, which find application also in the
emerging field of spin-caloritronics17–20. In particular,
our configuration corresponds to a circular precession of
the magnetisation, allowing for a precise identification of
the spin wave (SW) modes.This is crucial if one wants
to couple the system to an external rf signal, since only
signal with the same symmetries of the SW modes can
excite the magnetisation. Breaking the axial symmetry
results in a more complicated configuration where modes
with different symmetries mix up16.

Moreover, the system can be described using the lan-
guage of coupled oscillators21 and in particular of the dis-
crete nonlinear Schrödinger equation17 (DNLS). Indeed,
this setup corresponds to the simplest realisation of the
DNLS, containing only two elements. Here spin trans-
fer torque physically corresponds to a magnon chemi-
cal potential18 that controls the propagation of the en-
ergy and magnetisation currents between the two layers.
The DNLS appears in many branches of Physics, includ-
ing Bose-Einstein condensates, photonics waveguides and
photosynthetic reactions. Understanding the dynamics
in our setup can therefore shed light on a very general
oscillator model.

The remainder of this paper is organized as follows: in
Sec. II we describe the geometry of the nanopillar and
also briefly review the classification of SW modes in a
perpendicularly magnetised nanopillar. Those modes are
then identified by means of micromagnetic simulations at
zero current (thus without spin torque). This study was
previously performed in Ref. [16], to which we refer for
a thorough discussion. Sec. III reviews key concepts of
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scattering approach and CRMT to describe transport in
magnetic multilayers, and consitutes an extension of the
material presented in Refs. [22] and [13]. In Sec. IV
we describe how to couple the CRMT transport code
to Nmag12, in order to simulate the effect of spatially
inhomogeneous spin transfer torque and magnetisation
dynamics on the same footing. Sec. V contains our mi-
cromagnetic simulations of current driven spin dynamics.
Here we identify the SW modes excited by spin transfer
torque, the critical current for auto oscillations, and the
frequency shift beyond the critical threshold21. Using
CRMT we provide a precise characterisation of the mag-
netoresistance. Our simulations are then compared with
the experimental results found in Ref. 16. Finally, in the
conclusion we summarise the main results of this paper
and point out further possible developments.

II. PHYSICAL SYSTEM AND MODEL

A. Spin valve structure

The nanopillar studied here is displayed in Fig.1(a).
It consists of a trilayer structure made of two Permalloy
(Ni80Fe20 alloy) disks Pya and Pyb separated by a 10
nm Cu spacer. The disks have diameter d = 200 nm
and thicknesses ta = 4 nm (upper disk) and tb = 15 nm
(lower disk). The upper disk is connected to a 25 nm
Au contact and the lower disk to a 60 nm Cu contact.
In the experiment16, the sample was mounted inside a
magnetic resonance force microscope (MRFM) and the
whole apparatus was placed inside a vacuum chamber
operated at room temperature. The external magnetic
field Hext, was oriented along the pillar axis z, which
corresponds to the precession axis of the magnetisation.

The MRFM consists of an ultra-soft cantilever with
a 100 nm diameter magnetic sphere glued to its tip.
The sphere is positioned precisely above the center of
the nano-pillar, so as to retain the axial symmetry. The
mechanical-FMR spectroscopy consists in recording, by
optical means, the vibration amplitude of the cantilever
as a function of the bias out-of-plane magnetic field in the
presence of a RF field with fixed frequency excitation16.
The dynamics can be excited also by injecting a dc cur-
rent along z, which excites the dynamics in the thin
layer due to spin transfer torque. In the steady state,
the combined torques exerted by the RF excitations and
spin transfer compensate the damping, so that the local
magnetization vector precesses regularly at the Larmor
frequency along a circular orbit, see Fig.1a).

The instantaneous magnetization M can be decom-
posed into a large static component M‖ and a small os-
cillating component M⊥, where M‖ is parallel to the
local precession axis (i.e., the direction of the external
magnetic field), and M⊥ is perpendicular to that axis.

An essential feature of our system is that different SW
modes have different spatial distribution of the phase of
M⊥ inside the magnetic disks. Those modes can be ex-

FIG. 1: (Color online) a) Sketch of the nano-pillar under
study, with the arrows representing the magnetisation vec-
tors. In the steady state, the spin transfer torque M × S
compensates the damping torque M × d and the local mag-
netization vector Ms precesses regularly at the Larmor fre-
quency along a circular orbit. (b) The SW modes in each
disk are Bessel functions J`m, with (`) (m) the azimuthal
(radial) index. Modes with ` = 0 correspond to a uniform
in-phase precession of the magnetisation, while modes with
` = 1 correspond to a non-uniform precession, with the mag-
netisation vector rotating along the azimuthal direction. c)
In the case where two disks are coupled through the dipolar

interaction, the SW J
B/A
`m modes separate into binding (B)

and anti-binding (A), which correspond, respectively, to an
anti-phase precession (occurring mainly in the thick layer)
and in-phase precession (occurring mainly in the thin layer).

cited only by RF fields with the same rotational symme-
tries, giving selection rules for the excitation of the SW
modes16.

The dipolar force acting on the cantilever is propor-
tional to the spatially averaged value of the longitudinal
(static) component of the magnetization inside the whole
nanopillar,

〈Mz〉 =
1

V

∫
V

Mz(r)d3r. (1)

The latter is not subject to any selection rule, so that
the the mechanical-FMR setup detects all possible SW
modes. Experimentally, it has been observed that the
presence of the cantilever introduces a shift of +0.57 GHz
in the SW spectrum. This has be taken into account in
our simulations.

The dynamics of the magnetization can be excited also
by means of an rf current flowing along the axis of the
pillar, which generates an rf orthoradial Oersted field,
and by mean of an homogeneous in-plane RF magnetic
field.
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We remark that, although in experiments the dynam-
ics driven by a combination of RF fields and STT, in our
simulations the dynamics is excited by STT only. The ef-
fect of the RF field is modelled by setting different initial
condition for the magnetisation.

In our circuit, a positive current corresponds to a flow
of electrons from the bottom Pyb thick layer to the top
Pya thin layer, and stabilizes the parallel configuration
due to the spin transfer effect. Vice-versa, a negative
current stabilizes the thick layer and destabilizes the thin
one. At low current, thick and thin layer are thus the fix
and free layer correspondingly. However, at high enough
current, both layers precess due to the repulsive dipolar
interaction, as will be discussed later.

B. Magnetization dynamics

In this section, we briefly review the magnetization
dynamics in our system. For a more comprehensive dis-
cussion, see Ref. [16].

The local dynamics of the magnetisation M j , which
depends continuously on the position rj in the layer
j = (a, b), is described by the Landau-Lifshitz-Gilbert
equation23,24:

1

γ
Ṁ j = M j ×Hj

eff + αM j × Ṁ j +M j × Sj . (2)

Here, γ < 0 is the gyromagnetic ratio in the magnetic
layer. The first term on the right-hand side of Eq.(2)
describes the adiabatic torque, that accounts for the pre-
cession of the magnetization vector around the local equi-
librium direction. This precession axis is defined by the
effective magnetic field experienced locally by the mag-
netization, Hj

eff = − ∂F
∂Mj , which contains all the static

contributions to the free energy F of the layers25. In
particular, the effective field contains contributions from
applied field, exchange interaction, and dipolar interac-
tion between the layers. We refer to Refs.14,16,20,25 for
the explicit expressions.

The second terms on the right-hand side of Eq.(2) is
the damping torque

dj = αjṀ j (3)

proportional to the Gilbert damping parameter αj . We
introduce here the notation M j ≡ M j

sm
j , with M j

s the
norm of the magnetization (a constant of the motion)
and mj the unit vector along the magnetization direc-
tion. The dissipative term dj is responsible for the fi-
nite linewidth (full width at half height) of the resonance
peaks, ∆H = 2d. For a normally magnetized nanopillar,
with circular precession of the magnetization, the simple
relation α = |γ|∆H/(2ω) holds21.

If a charge current Idc is flowing between two layers
j and j′, the Slonczewski-Berger2,3 spin transfer torque
reads

Sj =
Idc
2πλ

[
mj ×mj′] . (4)

The latter depends on the relative angle between the
magnetizationmj in the layer j and the spin polarization
of the current, which coincides with the direction of the
magnetization mj′ of the polarizer (here the thick layer).
The term

λj =
2eM j

sV

ηh
(5)

has the dimension of a distance. Here, h is the Planck
constant, e the absolute value of the electron charge. η
is the spin polarisation of the current and V the volume
of the thin layer.

Since dj and Sj are collinear, spin transfer torque
can compensate the damping torque, as shown in Fig.1.
When the dc current through the nano-pillar reaches the
threshold current Ith = −2πλαHeff , the thin layer starts
auto-oscillating. Combining Eqs.(3) and (4), it is possi-
ble to define an effective damping for the thin layer,

d = α(1− Idc/Ith), (6)

which depends linearly on the spin polarized dc
current26,27. The critical thresohold corresponds to the
value of the current Idc at which the effective damping
vanishes and the system starts auto-oscillating.

C. Coupled oscillator model and classification of
the SW modes

Since our layers are thinner than 15 nm, one can as-
sume that the magnetization dynamics is uniform along
the thickness. In this approximation, the linearized LLG
equation simplifies to two equations describing the circu-
lar precession of the transverse magnetization projections
M j
x and M j

y around the z axis, which depends only on

the two spatial variables (x, y) in the layer j16,25. The
two real equations of each layer can be rewritten as one
complex equation for the dimensionless spin-wave ampli-
tude

cj =
M j
x + iM j

y√
2M j

s (M j
s +M j

z )
, (7)

that depends on the polar coordinates (rj , φj) of disk j.
The dynamics of the two disks, written in terms of the

cjs, is described by the equations16,17,21

ċa = iωaca − [Γa− − Γa+]ca + ihabcb (8)

ċb = iωbcb − [Γb− − Γb+]cb + ihbaca, (9)

which are the equations of motion of two coupled non-
linear oscillators with resonance frequency ωj(pj) and
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damping rates Γj(pj). Both depend on the SW power
pj = |cj |2, which describes the amplitude of the oscilla-
tions in each disk. From hereon, to keep the notation
simple we do not write explicitly the dependence on pj .

The frequencies ωj = γ|Hj
eff | are proportional to the lo-

cal magnetic field, while the damping rates Γj− are pro-
portional to αjωj . Both can be therefore controlled by
means of the applied field along z.

The terms Γj+, proportional to Idc are due to spin
transfer torque, which can compensate the damping and
lead to auto oscillations of the layers. In the present
case, those terms do not have the same sign. At positive
current, Γa+ is positive, while Γb+ is negative, favouring
the auto oscillations in the thin layer a, and stabilising
the thick layer b.

The dipolar coupling strength hjj′ is an effective term
obtained by averaging the dipolar field over the volumes
of the samples, see Refs. 16 for the explicit expression.

Eqs. (8) and (9) describe the dynamics of a nonlin-
ear Schrödinger dimer, the simplest realisation of the
discrete nonlinear Schrödinger equation (DNLS)17,18,28.
Upon multiplying Eqs.(8) and (9) respectively by c∗a and
c∗b and summing them with their complex conjugate equa-
tions, one has the following continuity equation for the
SW power

ṗa = −2(Γa− − Γa+)pa + jpab. (10)

and a similar equation for pb. The magnetisation current
jpab = 2Im[habcac

∗
b ] describe the transfer of Mz between

the two layers, and is essentially the SW current writ-
ten for a discrete systems with only two spins17. Upon
writing ca =

√
pa(t)eiφa(t), the current reads

jpab = 2hab
√
papb sin[φa(t)− φb(t) + β]. (11)

The quantity β comes from the condition of dissipative
coupling between the oscillators19,28. When the two os-
cillators are synchronised, φa ≈ φb and the magnetisa-
tion current approaches the constant value jpab ∝ sinβ.
On the other hand, if the oscillators are not synchro-
nised, the magnetisation current oscillates around zero
and vanishes in average. Within this DNLS formulation,
the spin transfer torque that appears in Eq.(10) plays
the role of a magnon chemical potential, that by control-
ling the lifetime of the excitations, controls also the SW
current between them.

The diagonalization of the LLG equation in a con-
fined geometry leads to a discrete series of normal modes
having each a different eigen-value, ω/(2π), the so-called
Larmor precession frequency. The normal modes of the
system are numbered according to the number of half
waves in the vibration. In the case of a 2D axially sym-
metric structure, the normal modes are identified by two
integers: ` and m, respectively the mode number in the
azimuthal and radial directions. The analytical expres-
sion of the normal modes of a perpendicularly magnetized
disk is found in Refs. [16,29]

c`,m(r, φ, t) = J`(k`,mr)e
+i`φe−iω`mt, (12)

where J` are the Bessel functions of the first kind and
k`,m is the modulus of the in-plane SW wave-vector,
which depends on the boundary conditions.

The above labelling can be extended to the case of two
different magnetic disks coupled by dipolar interaction.
In the perpendicular geometry, the strength of the dy-
namical dipolar coupling is attractive (lower in energy)
when both layers vibrate in antiphase, because the dy-
namical dipolar charges in each layer are alternate30,31.
Thus the binding state B corresponds to a collective mo-
tion where the two layers vibrate anti-symmetrically and
the anti-binding state A to a collective motion where the
two layers vibrate symmetrically. The B modes corre-
spond to a precession amplitude that is larger in the thick
layer b, while the A modes correspond to a precession am-
plitude that is larger in the thin layer a16, see Fig.1 for
a cartoon.

The dynamical dipolar coupling does not modify the
nature of the modes hence, in order to describe the dy-
namics of the bi-layer system, we shall just add a new
index B or A indicating if the precession occurs in an-
tiphase (mostly in the thick layer) or in phase (mostly
in the thin layer), respectively. There are thus three in-
dices to label the observed eigen-modes: the usual az-
imuthal and radial indices for a single disk (`,m), plus
an additional index referring to the symmetrical or anti-
symmetrical (A or B) coupling between both layers.

The identification of the SW modes and their sym-
metry is essential to couple the oscillator to an external
source, since SW modes can couple only to a source with
the same symmetry. Here the ` index determines the ro-
tational symmetry of the SW mode. The ` = 0 modes
correspond to SW that do not rotate in the x-y plane and
can be excited only by a spatially uniform in-plane RF
field, while the ` = 1 modes correspond to SW that rotate
around the disk in the same direction as the Larmor pre-
cession, and can be excited only by an RF Oersted field
with orthoradial symmetry. Thus, exciting the system
with these different means gives two different spectra.

III. MICROMAGNETIC SIMULATIONS AT
ZERO CURRENT

In this section we describe the SW spectra by means of
micromagnetic simulations without spin-transfer torque.
Those simulations were performed with the NMAG mi-
cromagnetic software12, where the sample is described by
finite element tetrahedral mesh. The latter has a max-
imum intersite distance of 6 nm, of the order of the Py
exchange length. The micromagnetic parameters are the
same used in Ref.[16] and are reported in Tab.I for con-
venience. The dynamics at each of the i = 1, ..., N nodes
of the mesh of disk j = (a, b) is described by the fol-
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4πMa (G) αa 4πMb (G) αb γ (rad.s−1.G)
8.2× 103 1.5× 10−2 9.6× 103 9× 10−3 1.87× 107

TABLE I: Parameters of thin (a) and thick (b) layer used in
micromagnetics simulations.

FIG. 2: (Color online) SW power spectrum for the ` = 0
(a) and ` = 1 (b) modes, obtained from the volume-averaged
magnetisation. The B (resp. A) modes corresponds to anti
phase (resp. in phase) precession, whose amplitude is larger
in the thick (resp. thin) layer.

lowing LLG equation for the unit magnetisation vector,
mj
i = M j

i /Ms:

ṁj
i = −γ(mi ×Hj

effi) +
α

Ms
(mj

i × ṁ
j
i ) (13)

The integration of the LLG equation at each mesh
site is performed by the Sundials ODE solver32, which
is based on variable steps multistep methods. The field
Hj
i at each mesh node has contributions from applied

field, first neighbour exchange interaction and long range
dipolar interaction, responsible for the coupling between
the layers. The quantity of interest is the space-averaged
magnetisation

〈
mj(t)

〉
= 1

V j

∫
V j
mj(rj , t)d3r, which for

our finite-elements mesh reduces to

mj =
1

N

N∑
i=1

mj
i . (14)

From this quantity, the SW amplitudes cj(t) are cal-
culated. The power spectrum, shown in Fig. 2, is given
by the Fourier transform of the time series of the collec-
tive SW amplitude averaged over the sample thicknesses:
c = (cata + cbtb)/(ta + tb).

The modes with ` = 0 (displayed in blue tones) are
excited starting from an initial condition where the mag-
netization uniformly tilted 8◦ in the x direction with re-
spect to the precession axis z. Instead, the the modes
with ` = +1 (displayed in red tones) are excited by ap-
plying to the magnetization aligned with the z axis the
orthoradial vector field perturbation θ(r, z) = εẑ × ρ̂.
Here ε = 0.01 and ρ̂ is the unit vector in the radial direc-
tion. Starting from these conditions, we have computed

Exp. f (GHz) 6.08 8.95 9.82 11.98
Sim. f (GHz) 6.08 8.94 9.83 12.00

SW modes B00 B01 A00 A01

TABLE II: Comparative table of the resonance fields of the
` = 0 SW modes. Top are the peak locations measured ex-
perimentally in Ref.[16] Bottom are the eigen-frequencies ex-
tracted from the simulation with applied field Hext = 1 T
along z.

Exp. f (GHz) 7.44 10.47 10.85 -
Sim. f (GHz) 7.46 10.46 10.90 13.85

SW modes B10 B11 A10 A11

TABLE III: Comparative table of the resonance fields of the
` = +1 SW modes. Top are the peak locations measured
experimentally in Ref.[16]. The mode A11 is not visible in ex-
perimental data. Bottom are the eigen-frequencies extracted
from the simulation with applied field Hext = 1 T along z.

the time evolution of the system for 120 ns, with an in-
tegration time step of 5 ps. From the Fourier transform,
the maximum frequency is 100 GHz and the frequency
resolution 15 MHz. The frequencies of the SW modes
are displayed in Tab.II and III and compared with the
experimental values.

IV. CONTINUOUS RANDOM MATRIX
THEORY (CRMT) FOR SPIN TRANSPORT

This section contains a thorough review of the CRMT
semi-classical theory of spin-dependent transport in mag-
netic multilayers. We follow closely the material pre-
sented in Refs. [13,14,22] and we extend it by providing
an explicit formula for spin torque, that will be used in
micromagnetics simulations of next section.

A. Scattering matrix approach

Within the scattering matrix formulation developed by
Landauer and Buttiker33, a sample is defined by the scat-
tering matrix S which expresses the outgoing propagat-
ing modes in term of the incoming ones. The incoming
modes are filled according to the Fermi-Dirac distribu-
tion of the leads to which they are connected. From the
elements of the scattering matrix various physical quan-
tities can be calculated, such as the conductance G, the
spin currents J and charge current I.

The system contains Nch � 1 propagating modes (or
channels) per spin. In particular, one has Nch ≈ A/λ2

F ,
where A is the transverse area of the electrode and λF
is the Fermi wavelength. The amplitude of the wave-
function on the different modes is given by the vector
ψi± with Nch elements
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FIG. 3: (a) Scattering matrix relating incoming and outgoing
modes ψn in region n = 0, 1. The + and − sign represent
respectively right and left propagating modes. (b) Cartoon
of the ”hat” matrix approach. We define the region 0, 1 and
2 respectively on the left, middle and right of the two sam-
ples Sa and Sb. In each region the 4-vectors Pi±σ represents
the probability to find right (+) propagating and left (−)
propagating electrons. (c) The CRMT equations allow one to
calculate the hat matrices as a function of the length L of the
sample, using the sum law for hat matrices.

ψi± =

(
ψi±↑
ψi±↓

)
. (15)

The latter contains the amplitudes for the right (+) and
left (-) moving electron direction with spin σ =↑, ↓ along
the z-axis in region i = 0, 2 of the multilayer, see Fig.IV A
for a cartoon. The S matrix is a 4Nch × 4Nch unitary
matrix that relates the outgoing modes to the ingoing
ones:

(
ψ0−
ψ1+

)
= S

(
ψ0+

ψ1−

)
, (16)

see Fig.IV A (a) for a schematic of the system.
and consists of 2Nch × 2Nch transmission t, t′ and re-

flection r, r′ sub-blocks.

S =

(
r′ t
t′ r

)
. (17)

Here the (r, t) and (r′, t′) describe reflection and trans-
mission respectively from left to right and from right to
left. The transmission and reflection matrices have an
internal spin structure:

t =

(
t↑↑ t↑↓
t↓↑ t↓↓

)
(18)

where tσσ′ are Nch×Nch matrices containing amplitudes
for transmission between σ′ and σ spin states, capturing
both spin preserving and spin-flip phenomena.

The conductance of the system is given by the Lan-
dauer formula33

G =
e2

h
Tr
[
t†t
]
, (19)

while the spin current in region 0 reads

∂ ~J0

∂µ
=

1

4π
Tr
[
t~σt†

]
, (20)

µ being the difference of chemical potential between the
two electrodes22.

B. Random Matrix Theory (RMT)

The scattering matrix approach is fully quantum and
contains interference effects such as weak localization
or universal conductance fluctuations22,34. The system
studied in this paper is a nanopillar of 250 nm of diameter
connected to top and bottom electrodes. Those contain
≈ 104 − 105 propagative channels. Here the scattering
is not perfectly ballistic (mismatch at the interfaces, sur-
face roughness or impurity scattering) so that channels
get mixed up. Random Matrix Theory (RMT)22,35,36 as-
sumes that this mixing is ergodic: an electron entering
the system in a given mode will leave it in an arbitrary
mode, acquiring a random phase in the process.

In this case, the transmission and reflection probabili-
ties of an electron are well caracterized by their average
over the propagative channels. This average is obtained
by taking the trace over the Nch of the original reflection
and transmission matrices. For instance, the hat matrix
t̂13,14 is defined as

t̂ση,σ′η′ =
1

Nch
TrNch [tσσ′t†ηη′ ]. (21)

Explicitely, this reads

t̂ =
1

Nch
TrNch


t↑↑t
†
↑↑ t↑↑t

†
↑↓ t↑↓t

†
↑↑ t↑↓t

†
↑↓

t↑↑t
†
↓↑ t↑↑t

†
↓↓ t↑↓t

†
↓↑ t↑↓t

†
↓↓

t↓↑t
†
↑↑ t↓↑t

†
↑↓ t↓↓t

†
↑↑ t↓↓t

†
↑↓

t↓↑t
†
↓↑ t↓↑t

†
↓↓ t↓↓t

†
↓↑ t↓↓t

†
↓↓

 , (22)

with the same structure for the reflection hat matrix.
The elements of this matrix correspond to the proba-

bility for an electron with a given spin to be transmitted
(t̂) or reflected (r̂) by the system. In particular, the terms

(1/Nch)TrNch
(t↑↑t

†
↑↑) ≡ T↑↑ and (1/Nch)TrNch

(t↓↓t
†
↓↓) ≡

T↓↓ correspond to the probability to transmit an electron
with up and down spin correspondingly. The terms at the

corners, (1/Nch)TrNch
(t↑↓t

†
↓↑) ≡ T↑↓ and T↓↑ correspond

to transmission probabilities with spin flip. The so-called

”mixing transmission”, (1/Nch)TrNch
(t↑↑t

†
↓↓) = Tmx is a

complex number whose amplitude measures how much
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of a spin transverse to the magnetic layer can be trans-
mitted through the system, while its phase amounts for
the corresponding precession. Tmx decays exponentially
with the size of the ferromagnet, and accounts for spin
transfer effect14,22.

The other off diagonal elements in the hat matrix
Eq.(21) can be ignored14,22. In the basis parallel to the
magnetisation, Eq.(22) therefore becomes:

t̂ =

 T↑↑ 0 0 T↑↓
0 Tmx 0 0
0 0 T ∗mx 0
T↓↑ 0 0 T↓↓

 , (23)

with the same structure for the reflection matrix r̂.
The hat-matrix Ŝ has a form similar to Eq.(17),

Ŝ =

(
r̂′ t̂
t̂′ r̂

)
. (24)

In order to describe transport in non-collinear mul-
tilayers, where the orientation of the magnetization
changes inside the system, one needs to rotate the orig-

inal S matrix as S̃ = Rθ,~nSR
†
θ,~n in the chosen working

basis. Here the matrix

Rθ,~n = exp(−i~σ · ~n θ/2) (25)

is the rotation matrix of angle θ around the unit vector
~n that brings the magnetization onto the z-axis of the
working basis. In term of hat matrices, this translates
directly into

ˆ̃S = R̂θ,~nŜR̂
†
θ,~n, (26)

with R̂ση,σ′η′ = Rσσ′R∗ηη′ a unitary matrix.

From Eq.(23), the conductance is given by

G =
1

Rsh
(T↑↑ + T↑↓ + T↓↑ + T↓↓) (27)

where the Sharvin resistance Rsh = h
Nche2

, is a material
property that can be experimentally measured, related
to the number Nch of transverse propagative channels for
the electrons crossing the system. Eq.(27) is analogous
to the Landauer formula Eq.(19) and consists of the sum
of all the possible transmission processes (spin preserving
and spin flipping) for an electron.

In analogy with the modes ψi±σ for the scattering ma-
trix, the 4-vectors Pi± are introduced

Pi± =

 Pi±,↑
Pi±,mx
P ∗i±,mx
Pi±,↓

 . (28)

The components oPi±↑,↓ have interpretation in term of
probabilities for an electron to propagate in the region i

of the system. The ”mixing” components, Pmx are com-
plex numbers which correspond to probability to find the
electron with spin along the x (real part) or y (imaginary
part) axis. Inside magnetic layers where the z axis xill
correspond to the direction of the magnetisation, they
will correspond to the probability for the spin to have a
part transverse to the magnetisation.

For the following discussion, it is convenient to consider
a system made of two conductors connected in series,
described by the two hat matrices Ŝa and Ŝb, see Fig.
IV A (b). The space is thus divided into three regions:
region 0 and 2 respectively at the leftmost and rightmost
part of the system, and region 1 in between the two hat
matrices. In analogy with Eq.(17) which expresses the
amplitudes of the outgoing modes in term of the incoming
ones, in subsystems a and b one has respectively(

P0−
P1+

)
= Ŝa

(
P0+

P1−

)
, (29)(

P1−
P2+

)
= Ŝb

(
P1+

P2−

)
, (30)

(31)

while for the total system a+ b

(
P0−
P2+

)
= Ŝa+b

(
P0+

P2−

)
. (32)

Here we have used the addition law of hat matrices, a
fundamental property that will be useful in the deriva-
tion of spin currents and spin torque inside the system.
According to this rule, given the hat matrices for sepa-
rate systems a and b, the hat matrices of the composed
system a+ b read13,14

t̂a+b = t̂a
1

1̂− r̂′br̂a
t̂b (33)

r̂a+b = r̂b + t̂′b
1

1̂− r̂ar̂′b
r̂at̂b (34)

with 1̂ the 4×4 identity matrix. Similar expression holds
for r′a+b and t′a+b.

The main result of Refs.[13,14] is that the spin current
in region i of the system can be expressed in terms of
probability vectors as follows:

Ji =
Nch
4π

~σ · (Pi+ − Pi−), (35)

where ~σ = (~σ↑↑, ~σ↑↓, ~σ↓↑, ~σ↓↓) is the vector of components
of Pauli matrices. To express the spin current in region
1 in between the two conductors as a function of the hat
matrices, we use Eqs.(29)-(34) to eliminate P2+ and P2−
and obtain

(
P1+

P1−

)
=

(
1

1̂−r̂ar̂′b
t̂′a

1
1̂−r̂ar̂′b

r̂at̂b
1

1̂−r̂′br̂a
r̂′bt̂
′
a

1
1̂−r̂′br̂a

t̂b

)(
P0+

P2−

)
(36)
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The theory is completed imposing boundary conditions
on the incoming electrons on both sides of the system.
For normal electrodes one has,

P0+ =

 µ0

0
0
µ0

 , P2− =

 µ2

0
0
µ2

 (37)

where µ0 and µ2 are the respective chemical potentials of
the two electrodes. The generalization to magnetic elec-
trodes is done imposing different chemical potentials for
majority and minority electrons in the leads. By taking
as boundary conditions µ0 = eU , with U the potential
difference between the two sides and µ2 = 0, The spin
current finally reads

J1 =
Nch
4π
JeU (38)

where the spin current per channel and per unit of po-
tential difference reads

J = ~σ · 1− r̂′b
1̂− r̂ar̂′b

t̂a. (39)

Eq.(38) allows one to compute the spin current in the
region between two bulk materials of arbitrary thick-
nesses. In the multilayer considered here, the currents
Ja/b±δ are calculated at positions δ = ±1 nm before and
after the two magnetic layers, as shown in Fig.4. The
torque is the spin current absorbed by each layer, i.e.
the quantity

τ j =
Nch
4π

fjeU (40)

with fj = Jj−δ − Jj+δ, j = a, b.

C. From scattering matrices to CRMT

In order to calculate the current in different regions of
the multilayer, one needs to calculate the matrices Ŝ(L)
as a function of the position L inside the system. The
main result of Refs.[13,14] is that the matrix Ŝ(L+δL) for
an infinitesimal increment of the position δL is entirely
characterised by two matrices Λt and Λr, defined as

t̂(δL) = 1− ΛtδL , r̂(δL) = ΛrδL (41)

Once Ŝ(δL) is known, one can make use of the addition
law Eqs.(33) and (34) to obtain a differential equation to

compute Ŝ(L+δL). By taking the limit δL→ 0 one gets
the two CRMT differential equations that describe hat
matrices as a function of the length of the system:

∂r̂

∂L
= Λr − Λtr̂ − r̂Λt + r̂Λr r̂ (42)

∂t̂

∂L
= −Λtt̂+ r̂Λrt (43)

A bulk magnetic material is characterised by four in-
dependent parameters Γ↑, Γ↓ Γsf and Γmx, which de-
scribe spin preserving and spin flip phenomena. With
this parametrisation, one has for the transmission

Λt =

 Γ↑ + Γsf 0 0 −Γsf

0 Γmx 0 0
0 0 Γ∗mx 0
−Γsf 0 0 Γ↓ + Γsf

 , (44)

(45)

and for the reflection

Λr =

 Γ↑ − Γsf 0 0 Γsf

0 0 0 0
0 0 0 0

Γsf 0 0 Γ↓ − Γsf

 , (46)

These four parameters correspond in turn to 5 different
lengths. The two most important one are the mean free
paths for majority (σ =↑) and minority (σ =↓) electrons
defined as `σ = 1/Γσ. Next comes the spin diffusion
length lsf = [4Γsf(Γ↑+Γ↓)]−1/2. Last come the complex
number Γmx = 1/l⊥ + i/lL where l⊥ is the penetration
length of transverse spin current inside the magnet while
lL is the Larmor precession length. Upon integrating Eq.
(43) one obtains for the mixing transmission.

Tmx(L) = e−L/l⊥−iL/lL . (47)

which shows the exponential decay of the transverse spin
current, absorbed by the layer, giving the phenomenon
of spin transfer torque. The two lengths l⊥ and lL are
of the order of the nm14, since spin transfer torque is
a phenomenon that occurs close to the interface. For
bulk materials, another important quantity is the cur-

rent polarisation, Pσ =
T↑σ−T↓σ
T↑σ+T↓σ

. The latter decays ex-

ponentially as a function of the distance in the material,
with spin-flip length scale of the order of 15 nm for Py,
and reaches a constant value. The behaviour of spin and
charge currents in a multilayer for different magnetic con-
figurations have been extensively studied in Ref.[14], to
which we refer for a thorough discussion.

The CRMT parameters (Γ↑, Γ↓ and Γsf ) are in 1-1
correspondence with the Valet-Fert (VF) parameters15

[ρ↑, ρ↓ (resistivities for majority and minority electrons)
and lsf (spin-flip diffusion length)]. Using the standard
notations for the average resistivity ρ∗ and polarization
β [ρ↑(↓) = 2ρ∗(1∓ β)] one has13:

1

lsf
= 2

√
Γsf

√
Γ↑ + Γ↓ (48)

β =
Γ↓ − Γ↑
Γ↑ + Γ↓

(49)

ρ∗

Rsh
= (Γ↑ + Γ↓)/4 (50)
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FIG. 4: (Color online) Cartoon of the nano-pillar simulated
with CRMT. Electrons enter from the left and are spin-
polarised along the direction of Mb. When they enter the
thin layer, they change their polarisation along the direction
of Ma. Because of the conservation of angular momentum,
the transverse component of the spin-polarisation is trans-
ferred to the thin and thick layers as a spin torque

This parametrization does not fix the mixing coeffi-
cients Γmx, which only play a role in non collinear
configurations22.

In the VF theory, the interfaces are characterised
by the average resistance rb∗ and polarisation γ with
r↑,↓ = 2rb∗(1 ± γ)]. In the CRMT formalism, interfaces
are modelled as a virtual material with their own trans-
mission and reflection hat matrices. Those are related to
the VF parameters as follows

T↑↑ =
(1 + e−δ)/2

1 + 2(rb∗/Rsh)(1− γ)

T↓↑ =
(1− e−δ)/2

1 + 2(rb∗/Rsh)(1− γ)

T↑↓ =
(1 + e−δ)/2

1 + 2(rb∗/Rsh)(1 + γ)

T↓↓ =
(1 + e−δ)/2

1 + 2(rb∗/Rsh)(1 + γ)
(51)

while for the reflection coefficient one has

R↑↑ = 1− 1

1 + 2(rb∗/Rsh)(1− γ)

R↓↓ = 1− 1

1 + 2(rb∗/Rsh)(1 + γ)
(52)

and R↑↓ = R↓↑ = 0.
At this point the parametrisation of CRMT is com-

plete. Eqs.(42) and (43) have been solved numerically
to simulate a one dimensional magnetic multilayer. Each
material and interface are simulated separately, and the
whole system is recovered by applying the addition law
Eqs.(33) and (34).

In order to calculate magnetoresistance and spin
torque as a function of the magnetic configuration, we
simulate transport the nano-pillar depicted in Fig.4 by
keeping the magnetisation Mb fixed and rotating the
magnetisation Ma of an angle θ in spin space. Such ro-
tation is obtained by applying to the hat matrices of the
thin layer the transformation Eq.(26).

Material ρ∗ β 1/lsf
Cu 5 0 0.002
Au 20 0 0.033
Py 291 0.76 0.182

TABLE IV: Bulk VF parameters for the materials which con-
stitute the multilayer. The VF bulk resistivity ρ∗ is expressed
in units 10−9Ωm and the spin-flip lsf length in nm.

Interface r∗b γ
Cu|Py 0.5 0.7
Au|Py 0.5 0.77

TABLE V: VF parameters for the interfaces between mag-
netic and non-magnetic material in our system. The VF in-
terface resistivity is expressed in units of 10−15Ωm2

Fig.5a) and b) shows respectively the angular depen-
dence of spin torque and resistance inside the nanopil-
lar for a single propagative channel and with eU = 1.
The resistance difference between parallel and antiparal-
lel configuration is 27 mΩ. We remark that this calcu-
lation, performed without adjustable parameters, repro-
duces experimental data within the 10%.

We note also that in our system, the current is spin-
polarized by the thick layer and impinges the thin layer,
exerting a torque that destabilizes its magnetization. Be-
cause of multiple reflections of spin polarized electrons
between the two Py layers, STT tends to stabilize the
thick layer, increasing its effective damping. Thus, at low
current, one can consider the thick layer as ”fixed” and
the thin layer as ”free”. However, at high current both
layers undergo a coupled precession (see next section).

V. SIMULATIONS OF CURRENT DRIVEN
DYNAMICS

This section contains the main results of the paper.
Here solve simultaneously the transport equations cou-
pled to the LLG equation with spin transfer torque, by
coupling CRMT to Nmag. The approach described here
is valid for one dimensional systems, where the magneti-
sation varies only along the direction of propagation of
electrons. In the present case the magnetisation is uni-
form along z inside the material, but its dynamics is
different in each layer. A generalization of CRMT for
a fully three dimensional spin transport has been re-
cently developed37. However, for the case considered
here the one dimensional CRMT approach captures the
physics well and is extremely fast. The other advantage
of CRMT is that it is parametrised by the same set of
experimentally accessible parameters as the VF theory
(reported in Tabs.IV and V), so that no free parameter
is needed to characterise realistic systems and materials.

To include the effect of spin transfer torque into Nmag,
the LLG equation Eq.(13) at node i of disk j = a, b needs
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FIG. 5: (Color online) Calculation of the angular dependence
of spin torque (a) and resistance (b) obtained keeping mb

fixed and rotating ma. Magneto-resistance hysteresis curve
of the nanopillar for an in-plane magnetic field. The dark
(respectively light) symbols indicate the magnetic field being
ramped up (respectively down)

to be modified as follows

ṁj
i = −γ(mj

i ×H
j
effi)−

αj

M j
s

(
mj
i × ṁ

j
i

)
+

gµB
~CMs

τ ji ŵ
j
i . (53)

Here g is the Landé factor, µB is the Bohr magneton and
C is the volume associated to each site of the mesh. τ ji
is the torque given by Eq.(40) For our relatively homo-
geneous mesh, we have taken this volume as the total
volume Vj of disk j = a, b divided by the total number
of sites Nj . For simplicity, we have defined the vector

ŵj
i = mj

i × (mj
i ×m

j′

i ).
To include STT in our micromagnetic simulations, we

adopt the following self-consistent loop:

1. At time t and site i in disk j, Nmag computes the
vector mj

i

2. The magnetic configuration is passed to the CRMT
solver which computes the torque τ ji

3. Then the quantitymj
i (t)+τ ji (t)∆t is set as new ini-

tial condition for the Nmag solver, which performs
the time integration of the LLG equation between
times t and t+ ∆t.

At this point spin torque is re-calculated as a function
of the new magnetic configuration and the loop starts
again. The integration time step ∆t is of the order of the
ps.

Since Nmag uses a finite element mesh while CRMT a
finite difference discretisation of space, to implement the
coupling, we divide the mesh into columns of sites, each
column k representing a CRMT pillar with cross section

FIG. 6: Schematic of the method adopted to couple CRMT
to Nmag, with the nano-pillar viewed from profile and the
current flowing along the z axis. a) One considers the sites
lying on the inner surfaces of disks a and b that face each
other. Then one selects a site of surface 1 (thin layer, red
dots) and looks for its nearest neighbour among the sites of
surface 2 (thick layer, blue dots). b) To each couple of such
sites, one associates a column k, that corresponds to a CRMT
system, with magnetisation mk

1 and mk
2 . The system is then

represented as an assembly of CRMT columns connected in
parallel. From the magnetic configuration in each column
k, STT and conductance are computed.(c) Cartoon of the
system divided into CRMT pillars, view from top.

Sk. The whole system is then considered as an assembly
of CRMT pillars connected in parallel, as shown in Fig.6.

Each column contains two sites, lying on surfaces of
thin (a) and thick (b) layer facing each other, with mag-
netizations mak(t), and mbk(t) correspondingly. From
the angle θk between these two sites, one obtains the
torques τ jk (θ) that act on the magnetisation vectors mj

k,
and the resistance Rk(θk).

This procedure takes into account the three dimen-
sional texture of the magnetization, while electronic
transport is along z only, without considering the lat-
eral diffusion of spins.

Since the system is an assembly of columns connected
in parallel, the current Ik flowing in each column is given
by the total current Idc divided by the number of columns
Nk, which in our system corresponds to the number of
sites lying at the surface of each disk. Each column has
a cross section Sk ≈ S/Nk. The current Ik is related
to the potential difference between the conductors via
Ohm’s law: eU = Rk(θ)Idc/Nk, where the resistance Rk
depends on the transmission probability Tk(θ) for an elec-
tron to cross column k:
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FIG. 7: Time evolution ofMz for different values of the dc cur-
rent. a) Subcritical regime, where both magnetisation vectors
are aligned. b) Slightly higher than critical current, where the
thin layer precesses and the thick layer stand still. c) High
current, with reversal of thin layer and coupled precession.

RK =
Rsh

Tk(θ)Sk
. (54)

Inserting Eq.(54) into Eq.(??), and recalling that Rsh =
h/(e2Nch), the torque finally reads

τjk =
gµB
2eVj

Nj
Nk

Idc
fjk(θ)

Tk(θ)
ŵj . (55)

We remark that Eq.(55) is quite general and can be ap-
plied to systems with arbitrary geometry, provided that
electronic transport is one dimensional only.

VI. RESULTS AND DISCUSSION

We turn now to the discussion of the coupled Nmag-
CRMT simulations. A qualitative description of the dif-
ferent dynamical regimes is given by the time evolution
of Mz, displayed in Fig.7. Panel (a) shows the region
beyond critical current, where both the magnetisations
are fixed and aligned with the z axis. Panels (b) shows
the region slightly beyond critical current, where the thin
layer precesses and the thick one remains fixed. Finally,
panel (c) displays the high current regime, where the thin
layer is reversed and both layers undergo coupled preces-
sion. This behaviour is due to the repulsive character
of dipolar interaction: as the magnetisation of the thin
layer reverses, it repels the magnetisation of the thick
one, causing it to precess.

Fig.8 shows the resistance as a function of the dc cur-
rent, for values of the applied field between 1T ands 1.3T.

FIG. 8: Resistance difference ∆R between parallel and anti-
parallel configuration as a function of the dc current Idc, cal-
culated for different values of the applied field Hext.

FIG. 9: SW power spectrum of the ` = 0 (a) and ` = +1 (b)
modes, computed for different values of the dc current. The
yellow squares (resp. circles) indicate the positions of the B
(resp. A) modes.

One can recognise clearly the three dynamical regions
discussed above. In particular, the resistance starts in-
creasing around −6 mA, indicating the region of critical
currents. The resistance increases with the current until
it reaches a peak between −13 and −16 mA, correspond-
ing to the reversal of the magnetisation ma of the thin
layer.

Note that at increasing field the resistivity graph moves
rightwards towards higher currents. This is due to the
fact that the precession frequency increases proportion-
ally to the applied field, so that the damping Γa+ =≈
2αaωa also increases and a higher current is needed to
compensate it.

The power spectrum of the system, with the modes
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FIG. 10: Linewidths (a) and frequencies (b) of the modes
A00 and A10 as a function of the dc current near the criti-
cal threshold. The symbols are numerical calculations, while
dashed lines are linear fits.

` = 0 and +1, is shown respectively in Fig.9 (a) and
(b) in logarithmic scale. The modes A00 and A10, corre-
sponding to the dynamics of the thin layer, increase with
the current and dominate the spectrum around Idc = −5
mA. Beyond the critical threshold, their frequency in-
creases with the field. On the other hand, the modes
B00 and B10, which dominate the spectrum at zero cur-
rents, decrease until they almost disappear near the crit-
ical threshold.

Fig.10 shows the linewidth and frequencies of the
modes A00 and A10 as a function of the dc current. In
panel (a), one can see that the linewidths of both modes
decrease linearly of an order of magnitude at increas-
ing current, and they vanish at the critical threshold,
where the damping is compensated and the system be-
gins to auto oscillate. Note that the two modes have
slightly different critical currents, of about 5 (` = 0)
and 5.5 (` = 1)mA. The behaviour of the spectrum and
the critical currents agree with the experimental result of
Refs.[16,38]. The frequencies of the excited modes remain
constant until the critical threshold, and then starts in-
creasing linearly with a rate around 2 GHz per mA. This
behaviour also agrees with experimental data.

We conclude this section by noting that the physics dis-
cussed here is very similar to that of the spin-caloritronics
diode17. In Fig.11, one can see that increasing the elec-
trical dc current leads to an increase of the magnon cur-
rent between the two disks. This current describes the
transfer of magnetic moment Mz between the two disks,
and corresponds to the usual SW current written for a
system of only two spins17–20.The increase of the SW
current with the dc current is due to the fact that spin
transfer torque excites only one mode, which eventually
dominates the spectrum, inducing a phase locking be-
tween the two disks. In this kind of discrete systems, the

FIG. 11: Magnetisation current from thick to thin layer as
a function of dc current Idc, computed for different values of
the applied field.

magnon current is indeed a measure of the phase syn-
chronisation of the system.

VII. CONCLUSIONS

By coupling CRMT to micromagnetic simulations with
the Nmag code we allow description, on an equal foot-
ing and without free parameters, of both transport and
magnetic degrees of freedom. The results of this work
have important consequences regarding the characteriza-
tion and the optimization of the performance of STNOs.

Using the developed method, we have identified the
nature of the modes that auto-oscillate when the current
exceeds the critical threshold. In particular, we have pre-
dicted different critical currents for the modes A00 and
A10, and a nonlinear frequency shift of the order of 2 GHz
per mA. The precise determination of the SW mode sym-
metry of the auto-oscillating mode is important for the
phase synchronization of a STNO to an external source.
In fact, it will be successful only if the latter can cou-
ple efficiently to the spin transfer driven auto-oscillation
modes, i.e., if it has the appropriate symmetry.

The flexibility of CRMT and of the procedure to cou-
ple it with Nmag allows one to use our numerical tool to
simulate different geometries and materials. Further de-
velopment and investigations are possible. A multiscale
approach which combines systematically CRMT with a
fully quantum approach has been implemented14. This
should allow to compute current driven dynamics in a
large variety of systems, including multi-terminal devices
and tunnel junctions.

We remark that in our simulations we have not taken
into account the lateral diffusion of spins, since the sys-
tem is described using one dimensional CRMT columns,
where electrons propagate only along the z direction.

This 1D model of transport is effective to describe se-
lection rules into a perpendicularly magnetized nanopil-
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lar with magnetic field applied along ez, but more com-
plicated configurations (such as magnetic vortexes and
multi-terminal spin valves) may require a fully three di-
mensional description.

Finally, further investigation is necessary to under-
stand the behaviour of the system at high current, where
nonlinear effects (such as the dependence of the Gilbert
damping on current21) may play an important role. The
present work can be considered as an intermediate step
towards a fully 3D description of transport and magne-
tization dynamics in realistic systems.
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