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80-233, Poland

§Molecular Sciences Software Institute, Virginia Tech, Blacksburg, VA 24060, USA

E-mail: crawdad@vt.edu

Abstract

We present a method for computing excitation energies for molecules in solvent,

based on the combination of a minimal parameter implicit solvent model and the

equation-of-motion coupled-cluster singles and doubles method (EOM-CCSD). In this

method, the solvent medium is represented by a smoothly varying dielectric function,

constructed directly from the quantum mechanical electronic density using only two

tunable parameters. The solvent-solute electrostatic interactions are computed by nu-

merical solution of the nonhomogeneous Poisson equation and incorporated at the

Hartree-Fock stage of the EOM-CCSD calculation by modification of the electrostatic
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potential. We demonstrate the method by computing excited state transition energies

and solvent shifts for several small molecules in water. Results are presented for sol-

vated H2O, formaldehyde, acetone and trans-acrolein, which have low-lying n → π∗

transitions and associated blue shifts in aqueous solution. Comparisons are made with

experimental data and other theoretical approaches, including popular implicit solva-

tion models and QM/MM methods. We find that our approach provides surprisingly

good agreement with both experiment and the other models, despite its comparative

simplicity. This approach only requires modification of the Fock operator and total en-

ergy expressions at the Hartree-Fock level—solvation effects enter into the EOM-CCSD

calculation only through the Hartree-Fock orbitals. Our model provides a theoretically

and computationally simple route for accurate simulations of excited state spectra of

molecules in solution, paving the way for studies of larger and more complex molecules.
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1 Introduction

The fundamental philosophy of quantum mechanical (QM) computational solvation models

is that detailed information of a solvent environment can be reduced to a system with fewer

degrees of freedom that still maintains the essential features relevant to chemical phenomena

of interest. A layered computational approach is utilized, wherein the molecular solute is

treated quantum mechanically. The description of the solvent layer and the coupling be-

tween the solute and solvent distinguishes the different solvation models. Explicit molecules

comprising a solvent environment can be modeled by potentials as in molecular mechanics

(MM) methods, leading to a QM/MM family of solvation models.1,2 These methods can

range in complexity with the simplest being a mechanical embedding of a quantum solute.3

More sophisticated QM/MM approaches introduce point charges for the solvent molecules

to polarize the QM solute via one-electron perturbations to the Hamiltonian.4 Introduc-

ing polarization effects represents a further improvement in QM/MM methods. Polarizable

embedding5–8 (PE or MMpol) uses point dipoles to incorporate polarization into QM/MM

calculations. Polarizable point dipoles are also used in the AMOEBA force field,9,10 which

has been employed to model the solvent layer in QM/MM implementations.11,12 The effective

fragment potential (EFP)13 from Gordon and coworkers aims for high accuracy by deriving

solvent potentials from ab initio calculations specifically for the solvent molecular geometry.

Other polarizable QM/MM methods have used the fluctuating charge (FQ) approach14,15

and the Drude oscillator model.16,17

An alternative to describing explicit QM solvent molecules with force fields is to model

the solvent environment implicitly as a continuous medium, resulting in QM continuum

solvation models.18–20 The central idea in continuum solvation models is that a molecular

solute system is positioned within a cavity surrounded by a dielectric medium representing

the solvent. By this construction, continuum models include no explicit solvent-solvent

interactions, unlike QM/MM approaches. The only solvent-related terms that enter the

Hamiltonian directly are solvent-solute interactions. The physics of the solvation problem
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in continuum methods can be summarized as finding the response of the dielectric medium

to the solute’s molecular charge distribution. The polarized medium also back-polarizes the

solute, resulting in a mutual polarization of the QM solute and the solvent, which must be

calculated in a self-consistent manner. An advantage of modeling the solvent in this manner

is that it avoids the need to average over many configurations of a large number of explicit

solvent molecules.

Continuum solvation models are characterized by their definition of the solute cavity

and their representation of the dielectric. The electrostatic problem can then be cast as an

appropriate formulation of the Poisson equation for a charge distribution in a medium with

a defined dielectric permittivity and solute-solvent interface. Some of the most common

QM continuum solvation models fall under the category of apparent surface charge (ASC)

methods.21–23 In ASC methods, the electrostatic problem is solved by finding polarization

charges at points on a cavity surface. The polarization charges appear on the surface as a

result of a step discontinuity in the permittivity at the boundary between the solute and the

dielectric. These methods typically define a solute cavity to be composed of atom-centered

spheres based on van der Waals radii, although other cavity definitions are used as well to

better approximate the molecular shape. Among the most popular of these methods is the

celebrated polarizable continuum model (PCM),20,21,23,24 which has been applied success-

fully to compute a variety of molecular properties.20 Another method in the ASC family

which has been widely used is the conductor-like screening model (COSMO).22,25 COSMO

differs from the PCM approach by setting the permittivity outside of the cavity to that of

a conductor and then scaling the resulting surface charges to obtain the effective polariza-

tion of a particular solvent, resulting in a simpler implementation relative to PCM. The

treatment of nonelectrostatic interaction energy contributions also differs among particular

implicit solvent model implementations, including terms for the cavity formation, dispersion

and repulsion energies.20

In this work, we implement a continuum solvation model based on nonhomogeneous per-
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mittivity, previously developed for use in plane-wave DFT calculations,26–30 into a Hartree-

Fock framework. This is a minimal parameter model where the solute cavity is defined by the

isosurfaces of the electronic density. The electrostatic potential is obtained by direct solution

of the nonhomogeneous Poisson equation in real space with a multigrid solver. This model is

appealing due to its relative simplicity, its high accuracy29 and its minimal parameter (more

ab initio) character.

In this case, computing the electrostatics for a QM solute in a polarizable dielectric re-

quires the total electrostatic potential in the presence of the solvent to be generated on a

grid and transformed into a suitable representation for Hartree-Fock and subsequent corre-

lated calculations. Here, we apply this solvation procedure to the computation of electronic

excitation energies using the equation-of-motion coupled-cluster method,31–33 restricted to

single and double excitations (EOM-CCSD). For a small set of molecules, we calculate solva-

tochromic shifts for comparison with other QM solvation methods, as well as experimental

data.

2 Theoretical Background

The present solvation model replaces the electrostatics of the Restricted Hartree-Fock (RHF)

self-consistent field (SCF) procedure with the potential of a solute in a polarizable dielectric

medium defined by a density-dependent permittivity. The electrostatics in this implicit

solvent model are described by the nonhomogeneous Poisson Equation (NPE) (Equation 1).

∇ ·
[
ε(r)∇V NPE(r)

]
= −4πρtot(r) (1)

Here, ρtot includes the solute electronic and nuclear charges, and the permittivity ε is a

smooth parameterized function of the solute electronic density, giving the total electrostatic

potential V NPE. This approach was introduced by Fattebert and Gygi26,27 and further ex-

tended by Scherlis et al.,28 Andreussi et al.34 and Skylaris and coworkers29,30,35 for use in
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DFT calculations with a plane-wave-derived basis. Our implementation of this model within

a Hartree-Fock framework utilizing atom-centered Gaussian basis sets follows, specifically,

based upon the developments of Dziedzic et al.29 for this solvation approach.

The parameterized form of the permittivity introduced by Fattebert and Gygi26,27 is as

follows:

ε[ρ(r)] = 1 +
ε∞ − 1

2

[
1 +

1− (ρ(r)/ρ0)
2β

1 + (ρ(r)/ρ0)2β

]
(2)

Here, ε as a function of the electron density ρ depends on the bulk solvent permittivity

ε∞, as well as the parameters ρ0 and β. These parameters effectively define a solute cavity

where ε = 1 surrounded by a smooth transitioning region where the permittivity increases

to its bulk value. In this work, we have adopted the values of 0.00055 a.u. for ρ0 and

1.6 for β. This parameterization of the model has been shown to minimize the root-mean-

square error of calculated DFT solvation free energies relative to experiment for a test set

composed of a variety of solute molecules.29 Since the permittivity evidently depends on

the molecular orbitals, its variation should be included in the SCF procedure. However,

selecting a fixed permittivity based on a reasonable initial density (e.g., a converged vacuum

electronic density) is computationally less demanding and was shown to introduce negligible

errors relative to a DFT calculation in which the cavity responds self-consistently with the

electron density.29

To obtain the potential, V NPE, we have implemented an interface between the Psi4

software package36 and the Poisson equation solver in the DL MG library.37–40 DL MG

employs the multigrid technique41,42 to solve forms of the Poisson-Boltzmann equation on

a real-space grid, achieving efficiency through MPI + OpenMP hybrid parallelism. At each

step of an SCF loop, the current total density is computed on a regular 3-dimensional grid

for input to the Poisson solver. Since the total electrostatic potential of the solute in the
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presence of solvent is the quantity of interest, the total density includes, in addition to the

electronic density, the nuclear density represented as smeared charges in the form of tight

Gaussian functions centered at the nuclei.28,29 The Poisson solver obtains an initial V NPE

solution computing finite difference derivatives to 2nd order in accuracy, which can then be

improved to effective higher orders of accuracy through the method of “defect correction.”

This technique employs higher order discretization of differential operators to iteratively

improve upon the original second order solution.30,43 In this work, we use DL MG to obtain

a defect-corrected 12th order solution to the NPE.

Upon obtaining a solution for the total electrostatic potential, V NPE, the potential is

introduced into the Hamiltonian by a modification of the Fock matrix to include V NPE

numerically integrated into the atomic orbital (AO) basis. The Fock matrix F in the AO

basis {φm} is composed of the usual terms for the kinetic energy and the exchange terms on

the first two lines of Equation 3.

Fmn =

∫
dr1φ

∗
m(r1)

[
−1

2
∇2

]
φn(r1)

− 1

2

∑
ls

Pls

∫ ∫
dr1dr2 φ

∗
m(r1)φl(r1)r−112 φ

∗
s(r2)φn(r2)

+

∫
dr1 φ

∗
m(r1)V NPE(r1)φn(r1)

+

∫
dr1 φ

∗
m(r1)

[∑
A

−ZA
|r1 −RA|

+
ZA

|r1 −RA|
erf

( |r1 −RA|
σ

)]
φn(r1).

(3)

Since the potential due to the smeared charges of the nuclei is already included in V NPE,

the last line of Equation 3 provides a correction by including the difference between the

nuclear potential of point charges in vacuum and that of smeared Gaussian charges in vac-

uum.30

If we substitute the solution of the homogeneous Poisson equation for V NPE(r1), the
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potential from the smeared nuclei on the last line is canceled and the vacuum Coulomb

repulsion appears, bringing Equation 3 in line with the usual expression for the Fock matrix,

albeit with the electrostatics computed numerically on a grid.

If the core Hamiltonian is defined as the sum of lines one and four from Equation 3, then

the total energy is in a slightly different form than the usual RHF energy (Equation 4).

Etotal =
1

2

∑
m,n

Pmn (Hcore
mn + Fmn) +

1

2

∑
A,B

(
ZAZB
RAB

−
∫ ∫

drdr′
ρA(r)ρB(r′)

|r− r′|

)
+

1

2

∑
A

∫
drρA(r)V NPE(r) (4)

The term on the second line of Equation 4 represents the interaction energy of the

smeared Gaussian charge densities, ρA(r), and the total electrostatic potential, V NPE(r).

When combined with the third term on the right of Equation 3 (summed over AOs and

contracted with the density matrix, Pmn), this completes the interaction of the total charge

density (electronic and smeared ion) with V NPE(r).

The usual point-charge representation of nuclear charges is restored in the total energy

expression by the subtraction of interaction energies in the smeared ion representation and

their replacement by the corresponding point-charge interaction energies. The double sum-

mation over nuclear centers on the first line of Equation 4 replaces the interaction between

smeared Gaussian charges with the nuclear repulsion between point charges, while the inter-

action of the electronic density with smeared ions is replaced with the corresponding point

charge interaction within Fmn (in the last line of Equation 3).

Since any solvation calculation requires a proper reference for a meaningful interpretation,

an SCF procedure is first fully converged in vacuum using Equation 3. The total electrostatic

potential is computed using DL MG with unit permittivity at all grid points. This allows

a more straightforward comparison with values computed in the presence of the dielectric.

The converged vacuum electron density is used to construct the permittivity function for the
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subsequent solvent calculation and, thus, fix the dielectric cavity for the duration of the sol-

vent SCF procedure. For open boundary conditions, the Poisson solver requires electrostatic

potential values for the boundary points of the grid, and these are calculated in Psi4 at each

SCF iteration, with the approximation of a homogeneous dielectric equal to the solvent’s

bulk permittivity.

In this work, we apply this solvation procedure to the calculation of electronic excita-

tion energies using the Equation-of-Motion Coupled-Cluster method,31–33 restricted to single

and double excitations (EOM-CCSD). The converged molecular orbitals and Fock matrix

elements from the vacuum and solvent SCF procedures are used in correlated calculations

to obtain excitation energies and, therefore, solvatochromic shifts. In this work, there is

no further modification to the correlation model to account for solvation effects. The sol-

vent could be coupled to the CCSD ground state density and/or to excited state densities,

but the solvation effect here is limited to obtaining the Hartree-Fock reference state, an

approach well understood for implicit models.44 This approximation is analogous to the Per-

turbation Theory on the Energy (PTE)24,44 approach to ground-state PCM calculations and

frozen-reaction-field (FRF)45 approximation to excited states. More advanced treatments of

solute-continuum interactions in excited states have been developed for PCM to account for

the effect of electron correlation on the solvent potential as well as the solvent response to

electronic excitation.45–47 Inclusion of nonequilibrium solvation effects, which, in the context

of vertical electronic excitations, means that only the solvent’s electronic degrees respond to

the excitation, has been implemented in the PCM and SVPE implicit models.20,46,48

3 Computational Methods

EOM-CCSD excitation energies and associated oscillator strengths were computed combining

the Psi4 Hartree-Fock implementation with the DL MG Poisson solver for electrostatics and

polarization in vacuum and with water as a solvent using the experimental value of 78.34
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for the bulk permittivity for four solute molecules – H2O, acetone, formaldehyde and trans-

acrolein. Each of these molecules undergoes a shift in the electronic excitation spectrum when

solvated in aqueous solution. The computations employed Dunning’s double- and triple-ζ

correlation-consistent basis sets, augmented with diffuse functions (aug-cc-pVDZ and aug-

cc-pVTZ).49 All geometries were optimized in vacuum with the B3LYP functional50–52 and a

double-ζ basis set with a set of d polarization functions for non-hydrogen atoms (6-31G*).53

For each molecule, vacuum and solvent calculations used the same optimized geometry. The

EOM-CCSD equations were solved for the two lowest roots of each irreducible representation

of the molecular point group for each solute molecule. For the selection of the regular grids

in the DL MG solver, cubic grids were chosen that reproduce Psi4 EOM-CCSD vacuum

excitations to within 0.05 eV (see Supporting Information for grid details).
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4 Results and Discussion

4.1 H2O Solvated in Water

A single H2O molecule represents a convenient benchmarking case for the solvation model

presented here. The electronic spectra for water in the gas and liquid phases are known

experimentally and have been studied with a variety of theoretical approaches.54–66 Table 1

presents the excitation energies for a single H2O molecule computed with the EOM-CCSD

method using the aug-cc-pVDZ and and aug-cc-pVTZ basis sets. For each basis set, the

lowest two excitations corresponding to each irreducible representation of the final state

symmetry (labeled in the 1st column) are reported in terms of the excitation energy and

the oscillator strength of the transition (f) in parentheses. The 2nd and 4th columns of the

table provide the vacuum values for these excitations, where the vacuum electrostatics are

computed via numerical solution of the homogeneous Poisson equation through the DL MG

library. For each basis set, in the column following the vacuum values, the results are given

for an H2O molecule embedded in a dielectric medium to mimic an aqueous environment.

In the gas phase, peaks at 7.4 eV and 9.7 eV have been assigned to B1 and A1 states,

corresponding to Rydberg transitions of the type n→3s and n→3p, respectively.63 In the

liquid phase, the B1 transition is around 0.8 eV higher than the gas phase, while the A1 state

blue shifts less, by 0.2 eV.56,58 The results on the first and third rows of Table 1 correspond to

these excitations. The diffuse nature of the excited states in these Rydberg-type transitions

requires the use of diffuse basis sets. Upon increasing the quality of the basis set from aug-

cc-pVDZ to aug-cc-pVTZ, the excitation energies are seen to shift on the order of 0.1 to

0.4 eV. For the lowest state (11B1), the double-ζ basis set is actually in better agreement

with the experimental gas phase value, while the aug-cc-pVTZ calculation overestimates

the excitation energy by just over 0.1 eV at 7.54 eV. The solvent shifts for both basis sets

are underestimated for the lowest excitation, both predicting virtually identical shifts near

0.45 eV. For the lowest excited A1 state (21A1), the solvent shifts computed here are more
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in line with experiment, with the EOM-CCSD calculations giving shifts of around 0.35 eV,

a slight overestimation relative to experiment.

These results are in line with the vertical excitation energies computed at similar levels

of theory, shown in Table 1. For those results, excitation energies have been computed in

solution at the CCSD level of theory with the aug-cc-pVDZ and augmented triple-ζ basis

sets using QM/MM (CCSD/MM) or continuum methodologies (CCSD-PCM). The reference

vacuum values for these methods are near the double-ζ or triple-ζ values computed here,

with geometric differences (and extra diffuse functions in the case of triple-ζ) resulting in

excitation energy changes on the order of not more than hundredths of an eV. When available,

the vacuum values are given in the footnotes of Table 1. The CCSD/MM results correspond

to excitations computed within a linear response formalism59,61,63 capturing solvent effects

with a polarizable force field in an implementation of the combined coupled-cluster/molecular

mechanics method (CC/MM). The MD (molecular dynamics) column corresponds to results

obtained by averaging values over configurations of hundreds of MM waters, while the MS

(mean structure) column data corresponds to a calculation on an average structure obtained

from dynamics calculations. These excitation energies are in good agreement for the 11B1

state, but the 21A1 blue shift is too large relative to experiment, with the mean structure

CCSD/MM calculation predicting a blue shift for this state larger than the computed shift

for the 11B1 state.

Both sets of EOM-CCSD solvent shifts computed here are close to those computed with

sophisticated CCSD-PCM excitation calculations.67,68 Solvent terms only enter the EOM-

CCSD computations implicitly in the calculations presented here through their contributions

to the Fock matrix, while the CCSD-PCM linear response (LR) and state-specific (SS) meth-

ods include solvent terms explicitly in the coupled-cluster equations and response function.

These two CCSD-PCM methods give 11B1 shifts of 0.54 and 0.36 eV and 21A1 shifts of

0.39 eV and 0.26 eV, respectively. These methods correspond to the columns of Table 1 la-

beled LR and SS. In another column are the results of a “corrected” linear response PCM
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method (c-LR) ,69 which more accurately treats the excited state solute-solvent polarization

than the LR implementation (the two are equivalent in vacuum). The ω0 values in the last

column of Table 1 correspond to PCM charges fixed to the ground state values within the

excited state calculations.

The oscillator strength for this lowest excitation has an experimental value of 0.06.58 The

EOM-CCSD oscillator strength in water computed here is near 0.072 with the aug-cc-pVTZ

basis set. The oscillator strengths computed with the CCSD/MM and CCSD-PCM methods

compare relatively well, especially for this lowest excitation. For the 21A1 transition, the

oscillator strengths computed here with both basis sets also compare well to the CCSD-PCM

value (0.122).
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4.2 Carbonyl Compounds Solvated in Water

The electronic excitation spectra of formaldehyde, acetone and trans-acrolein have drawn

considerable interest for their low-lying n→ π∗ excitations, which undergo solvatochromic

blue shifts in aqueous solution.5,57,64,68,70–88 Table 2 presents the EOM-CCSD results for

a single formaldehyde molecule. The lowest transition shown on the first row of data in

Table 2 corresponds to the n→ π∗ transition, which has been the focus of many investiga-

tions.5,64,71,75,76,78,79 The vacuum values for the double-ζ and triple-ζ basis sets are both in

good agreement with the experimental value of 4.07 eV.57 For the higher energy excitations,

the vacuum EOM-CCSD values differ on the order of tenths of an eV. The excitation values

differ between the aug-cc-pVDZ and aug-cc-pVTZ basis set from hundredths to tenths of an

eV, depending on the nature of the transition. For example, the n→ π∗ valence transition is

nearly identical between the two basis sets, while Rydberg transitions see larger deviations,

similar to the results for H2O.

The n→ π∗ excitation is slightly blue-shifted in aqueous solution to 4.28 eV.71 The shifted

n→ π∗ excitation energy is in good agreement for the EOM-CCSD solvent calculations in

Table 2. Overall, this small experimental blue shift is overestimated by close to 0.1 eV

in the present calculations. Kongsted et al.76 have investigated the n→ π∗ transition in

formaldehyde utilizing CCSD/MM calculations and found that a large sampling of solvent

configurations is essential to reach a converged transition energy, which is nearly identical

to the EOM-CCSD aug-cc-pVDZ value computed in solution here (Table 2). The need for

such sampling is obviously avoided in an implicit solvent model, although the inclusion of

specific solute-solvent interactions would likely improve the accuracy of the EOM-CCSD

shifts (if properly averaged). In addition to the CCSD/MM n→ π∗ excitation, Table 2

presents micro-solvated CCSD computations for a series of solvated systems of one, two and

four water molecules. While those values are not directly comparable to the CCSD/MM or

the solvent calculations presented here, they are among the only results at the CCSD level,

and capturing the intermolecular interactions at the full quantum level in this case leads
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to shifts in very good agreement with the ≈0.2 eV shift seen in experiment. In addition to

the lowest n→ π∗ transition, the only other excitation with a shift larger than 0.1 eV is the

transition to the 11B1 state, another n→ π∗ transition with a blue shift of 0.44 eV predicted

here.

Table 3 collects the EOM-CCSD excitation energies and oscillator strengths for acetone.

Experimentally, the n→ π∗ transition occurs in the vapor phase around 4.5 eV89,90 and is

shifted to around 4.7 eV when solvated in water.89,91–95 As can be seen in the first row for

the aug-cc-pVDZ and aug-cc-pVTZ results in Table 3, the EOM-CCSD method accurately

predicts the vapor excitation energy in the 11A2 state corresponding to the n→ π∗ excitation.

The collection of experimental gas phase values in Table 3 indicate that the EOM-CCSD

vacuum vertical excitation energies are in good agreement with the available measurements.

The double-ζ values, in particular, compare (fortuitously) well with experiment, with only

the 21B2 excitation energy differing from the reference values by more than 0.1 eV. The basis-

set dependence in acetone reflects the nature of the excited states, as with formaldehyde.

The n→ π∗ transition differs by only 0.01 eV from the aug-cc-pVDZ basis set to the aug-cc-

pVTZ basis set, while the largest difference is 0.2 eV for the Rydberg transition to the 11B2

state. The accuracy of the double-ζ basis set relative to the larger aug-cc-pVTZ basis set

is a reflection of the nature of the transition, with the valence-type excitations apparently

already well-described with the smaller basis set used here.

The implicit solvent model here overshifts the n→ π∗ excitation relative to experiment,

with a calculated blue shift in solution close to 0.3 eV with either basis set. Note that the

symmetry of the transition makes it dipole-forbidden, even in solution for a solvent modeled

strictly as a continuum. The CCSD/MM calculations of Aidas et al.80 approaches in Table 3

results above predict a shift smaller than the experimental value, at around 0.14 eV. Explicit

solvation of acetone with up to five H2O molecules yields an n→ π∗ excitation energy close to

that computed in this work.88 The CCSD-PCM methods in Table 3 predicted solvatochromic

shifts close to the experimental value, all falling in the range of 4.62 eV to 4.66 eV for the

16



absolute energies. We note that a CC-in-DFT effort from Gomes et al.81 utilizing CC2

in conjunction with embedded potentials from many averaged solvent configurations from

molecular dynamics simulations successfully predicts the experimentally observed blue shift

of 0.2 eV.

For the 11B2 excitation on the second row of data in Table 3, the state-specific CCSD-

PCM result is in good agreement with the double-ζ results computed here, differing by only

0.02 eV. In addition, the PCM oscillator strength of 0.047 can be compared to the value of

0.045 from the EOM-CCSD aug-cc-pVDZ solvent result from this work. For the higher-lying

excitations, the EOM-CCSD aug-cc-pVDZ values in solvent are consistently larger compared

to SS-CCSD-PCM, with the deviations increasing for the excitations near 9 eV to 0.2 and

0.3 eV.
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The absorption spectrum of trans-acrolein features two absorption maxima which un-

dergo solvent shifts in aqueous solution.87,96–98 In addition to the n → π∗ transition near

3.7 eV, which shifts to 3.94 eV in solution, a π → π∗ excitation shifts lower in energy in water

solvent, from around 6.4 eV to 5.9 eV. The vacuum excitation energies for these two tran-

sitions are in the first two rows of Table 4. The vacuum values here show larger deviations

from experiments than seen for acetone. For either basis set, the predicted vacuum excita-

tion energies are overestimated by 0.2 eV and more than 0.4 eV for the n→ π∗ and π → π∗

transitions, respectively. However, even when setting aside the complications introduced by

a solvent environment, comparing these vacuum values to the experiment must come with

the usual caveats including that these are vertical excitation energies, and vibronic effects

have not been considered. For the vacuum excitation energies, the results obtained with the

two basis sets used in this work do not differ by more than 0.13 eV, with the two lowest-lying

excitations agreeing to within 0.02 eV.

For the n → π∗ excitation, the EOM-CCSD computations predict a blue shift of about

0.33 eV in solution, almost 0.1 eV larger than the experimental shift. The dielectric model

here does correctly predict a red shift of the π → π∗ excitation, although the 0.2 eV solvent

shift is less than half that observed by experiment. Part of the discrepancy can be attributed

to the use of the solute’s vacuum geometry in the solvent calculations. CC and DFT com-

putations have demonstrated that the n → π∗ excitation energy is reduced in magnitude

when employing an acrolein molecular geometry optimized in the presence of explicit wa-

ters and a PCM environment due to the sensitive nature of this excitation to the carbonyl

bond length.80 The solvent’s ground state geometric effect on acrolein shifts can also be seen

from the results of the PCM methods in Table 4. These computations utilize CCSD-PCM

geometries, and the n→ π∗ shifts are close to 0.2 eV for any of the particular PCM imple-

mentations, in good agreement with the measured values. Both of the CCSD/MM shifts

reported by Aidas et al.87 are in good agreement with experiment, with the π → π∗ red shift

just slightly underestimated.
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For these three molecules, we have also investigated the effects of short-range hydrogen

bonding interactions which are absent in continuum solvation calculations. The dielectric

model was combined with explicitly hydrated structures to compute solvatochromic shifts

at the EOM-CCSD/aug-cc-pVDZ level. Excitation energies were computed for minimum-

energy geometries of each compound with a single water molecule. These calculations should

not be expected to improve comparisons to experimental values since a proper accounting

of the interactions in the first solvation shell requires sampling over many configurations for

each molecule to obtain statistically converged excitation energies. In fact, the addition of

a single ab initio water molecule increases the n→ π∗ blue shift in each case, moving the

n→ π∗ transition energy further away from the experimental value. The 0.28 eV dielectric

shift in formaldehyde relative to the isolated molecule increases to 0.38 eV with the addition

of an H2O molecule. For acetone and acrolein, the 0.28 eV and 0.32 eV n→ π∗ blue shifts,

respectively, increase to 0.37 eV and 0.39 eV. For the π → π∗ red shift in acrolein, the

magnitude of the shift is also increased relative to the calculation with only the dielectric

solvent, in this case representing an improvement over the underestimated dielectric shift

(−0.25 eV vs. −0.14 eV with the aug-cc-pVDZ basis set). Geometries, excitation energies

and oscillator strengths for these calculations can be found in the Supporting Information.
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The solvatochromic blue shifts in these molecules can be rationalized by the differences

in dipoles found in the ground and excited states. The n → π∗ excitation energy shifts are

summarized by Table 5, along with the associated dipole moments for the ground and excited

states in vacuum and solution. For all three molecules, the differences in the ground state

dipole moments (µgs) and excited state dipole moments (µex) are roughly the same in vacuum

and solution. The larger magnitude of the ground state dipole moment relative to the excited

state in each molecule leads to a larger electrostatic interaction for the ground state and the

associated blue shift seen in solvent. In the Onsager model, this blue shift is proportional

to µgs · (µgs − µex).99 The first and third columns of data in Table 5 demonstrate that the

µgs values are significantly increased by the presence of the dielectric. The computed dipole

moments for acetone in solution are very similar to those predicted by CC/MM calculations87

with the polarizable SPCpol potential, within 0.1 D, while the formaldehyde dipole moments

are smaller here by 0.3 D – 0.4 D.76 The largest change in dipole moment due to the presence

of dielectric here is for acrolein in water, where the ground and excited state dipole moments

are increased by between 1.6 and 1.7 D with the aug-cc-pVTZ basis set.

Table 5: EOM-CCSD n→ π∗ ground and excited state dipole moments (D) in vacuum and
solution and excitation energy shifts in solution (eV) computed with the aug-cc-pVTZ basis
set

Vacuum Solvent
µgs µex µgs µex ∆Eex

Formaldehyde 2.39 1.17 3.49 2.29 0.28
Acetone 2.96 1.51 4.40 3.00 0.29
Acrolein 3.18 0.60 4.86 2.22 0.33
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5 Conclusions

We have presented a method for computing excited state energies of molecules in the presence

of solvent based on the EOM-CCSD method. The emphasis of our work was to include the

effects of the solvent in a simple and efficient way. To this end, we implemented a smooth,

polarizable continuum model within a Hartree-Fock framework, utilizing an interface to the

DL MG multigrid real-space solver library to capture all electrostatic interactions through

numerical solution of the non-homogeneous Poisson equation. SCF orbitals for the cases

of vacuum permittivity and bulk water permittivity are used in subsequent coupled-cluster

calculations to model solvatochromic shifts for vertical electronic excitation energies with

the EOM-CCSD method.

For the molecules of water, formaldehyde, acetone and trans-acrolein, our model reliably

reproduces all experimental shifts in aqueous solution. For the low-lying n→ π∗ blue shifts,

the EOM-CCSD results differ from experimental measures by around 0.1 eV, while the shifts

predicted for the Rydberg-type transitions in solvated water deviate slightly more from ex-

periment, by as much as 0.3 eV. Both excitation energies as well as oscillator strengths

computed here with the EOM-CCSD method compare well to other contemporary solvation

models, including QM/MM and continuum techniques. The major advantages of our ap-

proach are that (i) it is simple to implement as the solvent effect on EOM-CCSD portion

of calculation is purely via Hartree-Fock orbitals (no modification of the post-HF method

is necessary), and (ii) it does not require explicit modeling of solvent molecules or solvent-

solvent interactions, which is computationally less demanding and avoids dealing with the

averaging of solvent degrees-of-freedom.
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