
Efficient Local Search Heuristics for Packing
Irregular Shapes in Two-Dimensional

Heterogeneous Bins

Ranga P. Abeysooriya1, Julia A. Bennell1, and Antonio Martinez-Sykora1

Business School, University of Southampton, SO17 1BJ, Southampton, UK

Abstract. In this paper we proposed a local search heuristic and a ge-
netic algorithm to solve the two-dimensional irregular multiple bin-size
bin packing problem. The problem consists of placing a set of pieces rep-
resented as 2D polygons in rectangular bins with different dimensions
such that the total area of bins used is minimized. Most packing algo-
rithms available in the literature for 2D irregular bin packing consider
single size bins only. However, for many industries the material can be
supplied in a number of standard size sheets, for example, metal, foam,
plastic and timber sheets. For this problem, the cut plans must decide
the set of standard size stock sheets as well as which pieces to cut from
each bin and how to arrange them in order to minimise waste material.
Moreover, the literature constrains the orientation of pieces to a single
or finite set of angles. This is often an artificial constraint that makes
the solution space easier to navigate. In this paper we do not restrict
the orientation of the pieces. We show that the local search heuristic and
the genetic algorithm can address all of these decisions and obtain good
solutions, with the local search performing better. We also discuss the
affect of different groups of stock sheet sizes.

Keywords: Irregular shapes, Multiple bin size bin packing, Jostle Al-
gorithm

1 Introduction

The two dimensional bin packing problem consists of placing a set of pieces,
usually represented as rectangles or polygons, in one or several stock sheets
(bins) in such a way the total waste generated is minimized. This problem arises
in several industries where metal, foam, wood, plastic, paper or leather need to
be cut. Depending on the industrial application this problem has several variants
described by the properties of both the pieces to be placed and the bins. In this
paper we address the problem where the pieces to be cut are irregular and may
have concavities. Pieces can be placed in any orientation within rectangular bins
that have a variety of different dimensions (heterogeneous bin sizes). We assume
that there are a limited number of bin types and there are enough bins of each
type to place all the demanded pieces in any set of bins. In this paper we denote
this problem as the two-dimensional irregular shape multiple bin size bin packing

problem (2D-IMBSBPP) and propose a local search heuristic, called jostle, and
a genetic algorithm to find efficient solutions.

Most of the publications in the literature that consider heterogeneous bins
are focused on packing rectangular pieces. Pisinger and Sigurad [19] consider a
variable bin cost when solving this problem. They propose a MILP model which
is then solved by column generation. The model is intractable for large instances
and difficult to solve even for small instances. Ortmann et al. [18] propose a
two-phase approach. During the first phase they use first-fit decreasing with the
largest bins first. A second phase repacks bins into smaller bins. The two phase
algorithm is implemented with different bin sizes and aims to minimise the total
area of the occupied bins. Wei et al. [21] propose a tabu search that uses a
sequential packing heuristic, a local search, and a post-improvement procedure
to reduce the total area of used bins in a feasible solution. Alvarez-Valdes et
al. [2] implement meta-heuristic algorithms with variable bin costs which are
not proportional to the size of the bin. The objective is to minimize the cost of
the occupied bins, and the authors employ a greedy randomized adaptive search
procedure with path re-linking strategies to combine the best solutions obtained
in the iterative process. In order to compare their results with Ortmann et al.
[18]’s, they modify the objective function to maximize the overall utilization of
the occupied bins.

The vast majority of research publications considering the packing of 2D
irregular shapes address the 2D strip packing problem, also known as the nesting
problem. Instead of placing pieces into bins the aim is to place all the pieces into
a strip with fixed width and infinite length in such a way the total required length
is minimized. However, recent publications of packing algorithms for irregular
pieces consider the bin packing problem with homogeneous bins, see [14], [20],
[16] and [1]. However, in many situations bins are readily available to purchase
as rectangular sheets in different standard sizes. In these industries companies
usually handle several bin sizes in order to satisfy customer demand. The aim of
the companies is not only to reduce the waste generated in the cutting process,
but also charge a competitive price to the customers, which usually depends on
the area of material needed to meet the demand. There are several publications
considering heterogeneous irregular bins, see [4] and [5], who solve an applied
problem which arises in the leather industry. In these publications the pieces
are approximated by grid squares or pixels rather than polygons. While this
simplifies the geometry, solutions suffer from inaccuracy in shape representation.

It is important to highlight that in this paper we use the direct representa-
tions of the pieces as polygons and do not restrict the rotation of pieces to a
predefined set of angles. Han et al. [13] and Martinez-Sykora et al. [15] considered
free rotation for the 2D irregular bin packing problem with guillotine cuts, solving
an application derived from the glass industry. More recently, Martinez-Sykora
et al. [16] and Abeysooriya et al. [1] considered free rotation for the problem with
homogeneous bins and also report results with restricted and fixed rotations. For
comparison purposes, we also address the problem where a finite set of rotations
are allowed.

The main contribution of this paper is to efficiently solve the 2D-IMBSBPP
considering continuous rotation of pieces by using an adaptation of the jostle
procedure. Jostle was first proposed by Dowsland et al. [10] for the strip packing
problem and then used in [1] in bin packing problems with homogeneous bins.
One of the most important properties of the jostle procedure is that it explores
efficient solutions with a relatively low computational effort, compared with other
available algorithms. The jostle procedure works over the sequence of pieces that
represents the order pieces are inserted in the layout. The constructive heuristic
iterates between packing from one end of the strip and then the other end taking
the sequence from the last iteration. The results presented in this paper show
a considerable improvement when using a heterogeneous set of bin sizes, which
demonstrates the efficiency of the algorithms presented.

The paper is organized as follows. In Section 2 we describe the problem and
we discuss the measure of performance used to evaluate the quality of feasible
solutions. Section 3 explains the jostle algorithms and the genetic algorithm to
solve 2D-IMBSBPP. Computational tests are presented in Section 4. Finally, in
Section 5 we present the conclusions of the paper.

2 Problem Description

Let N ′ be the number of rectangular bin types (stock sheets) and let Lk and
Wk be, respectively, the length and the width of bin type k ∈ {1, . . . , N ′}. Let
P = {p1, . . . , pn} be the set of pieces to be cut from the bins, where n is the
number of pieces. We assume that all the pieces may have a different shape.

A solution s = {Bs
k| k = 1, . . . , N ′} is represented by a set of bins of each

type used in the solution, where each single bin bsjk(Pjk, Ojk, Xjk, Yjk) ∈ Bs
k is

determined by the subset of pieces placed in the bin (Pjk), the set of orientations
used for each piece (Ojk) and the X and Y coordinates of the reference point
of each piece. A solution s is a feasible solution if all the pieces are placed, i.e,⋃N ′

k=1

⋃
j| bjk∈Bs

k
P jk = P , there is no overlapping between each pair of pieces

placed in the same bin and no piece exceeds the bins dimensions.
Initially we consider an unlimited number of bins of each type k. We denote

by Ns
k the number of occupied bins of type k in solution s.

The position of the pieces into the bins is given by the coordinates of the ref-
erence point, which we assume it is the bottom-left corner point of the enclosing
rectangle whose edges are orthogonal to the edges of the bin.

The aim is to minimize the waste generated when placing all the demand
pieces. However, this measure could lead to many ties. In order to guide the
search, we propose a second measure, which is the standard deviation of absolute
bin waste, where a larger standard deviation indicates the potential to empty
poorly packed bins.

2.1 Evaluation function of a solution

We use two measurements to evaluate the quality of a complete solution s.

1) The overall utilization Us is defined as;

Us =
∑n

i=1 Area(pi)∑N
′

k=1 WkLkNs
k

where Area(pi) denote the area of the ith piece. Since
∑n

i=1Area(pi) is constant
then maximizing the utilization is equivalent to minimize to total area of bins
used in s. In this paper the aim is to maximize Us.

2) The standard deviation of absolute bin waste of the occupied bins (σs).
This measurement is used during the algorithm to break ties when two solutions
have the same overall utilization. A low σs value shares the waste among the
bins with low variance and balances individual bin utility. A higher σs leads to
a higher variation in bin space utilization. We encourage this type of solution
during the search process of the algorithm to move the few pieces packed inside
a large bin (i.e, a lower utilized bin) to another occupied bin.

3 Packing procedure

In this section we introduce two heuristic algorithms to solve 2D-IMBSBPP.
The first algorithm is an iterated jostle approach with random assignment of
bins (IJRAB), and the second is a hybrid genetic algorithm with iterated jostle
(HGAIJ). Jostle iteratively applies a fast constructive procedure and searches
over the sequence of pieces. Jostle was first used to solve strip packing problems
in [10]. In [1], this idea was extended to the bin packing problem by placing bins
consecutively simulating a strip, and adding the constraint that no piece can be
placed across the boundary of two bins. However, with heterogeneous bin sizes
the available width depends on the bin type and, therefore, may change from
one part of the strip to another.

Most of the state of the art algorithms to solve the strip packing problem with
irregular pieces works with infeasible solutions. The main idea, first proposed in
[6], is to fix the strip length, randomly place the pieces within the strip and then
solve the overlapping problem. Once a feasible solution is found, the strip length
is reduced and the search starts again. While effective at finding good solutions,
it is slow. The heterogeneous bin packing problem, requires finding feasible so-
lutions for different bin combinations. Hence, fast constructive approaches like
jostle that work with feasible solutions are a more reasonable option.

3.1 Iterated Jostling approach with Random Assignment of Bins
(IJRAB)

IJRAB is an iterative procedure that uses a constructive algorithm (CA) within
a local search. The fast constructive procedure allows us to build a feasible
solution given a permutation of bins and pieces. The local search works over the
sequence of pieces and bins.

Layout construction The constructive algorithm (CA) is based on placing
the pieces sequentially, according to a given placement rule. We first select a
set of bins which are placed concurrently in a given order, in such a way the
bottom edge of a bins are aligned, as is depicted in Figure 1. Given the different
bin dimensions, the strip width is set to be the same as the widest bin. Note
that there will be areas of the strip where pieces cannot be placed, shown by
shaded areas in Figure 1. Finally, the strategy to place the pieces is inspired
by the TOPOS algorithm proposed in [17] and improved by Bennell and Song
[9]. Therefore, for a given order of bins and a given order of pieces with a given
orientation we use this fast CA to build a solution.

Fig. 1. Packing Layout

In the following description of the CA we assume we have a given ordered
combination of bin types and a given permutation of all the pieces.

First we setup the strip of bins. Let τ (t) ∈ Nn×N ′
be a vector with values

corresponding to the bin types used in the solution in the given order. This
vector represents n × N ′ bins in order to guarantee that all the pieces can be
placed. Since jostle packs from both ends of the strip alternately, we arrange the
n ×N ′ bins on the strip and arrange another n ×N ′ bins following the mirror
order as illustrated in Figure 1.

Then, for each piece, we determine the placement position and orientation.
Assuming a given orientation, the CA generates non-overlapping placement po-
sitions following the improved TOPOS approach that was adapted for bin pack-
ing by Abeysooriya et al. [1]. This approach uses the no-fit polygon (NFP) and
inner-fit polygon (IFP), see [8], to identify all feasible touching positions be-
tween pieces. New pieces are inserted in the layout in a touching position with
pieces already placed. Once a position and orientation is selected, the new piece
is merged with the already placed pieces. Any space between pieces that could
be used to place another piece is a hole and is recorded into a list of holes. At
each piece insertion, the partial solution is represented by a merged polygon, for
each occupied bin, and a list of holes. When placing the next piece, we first try
the holes, sorted by non-increasing area. If the piece does not fit in any of the

holes, then we try placing the piece on the boundary of the merged polygons
starting with the first bin. If this fails, the new piece is placed in a new bin.

The above assumes a fixed orientation, whereas we are permitted to use any
orientation. The placement angle of a piece is determined by an angle tuning
strategy. First we identify the candidate placements by finding the best place-
ment position for each of the pre-assigned angles, which are oi = 0, 90, 180, 270.
Then we pick the position and orientation angle from these candidates according
to the Maximum Utilization (MU) placement policy described below. Note that
up to this point, this is also the method CA applies if the rotation of pieces is
restricted to a predefined set of angles. When the rotation is not restricted, we
try alternative angles by rotating the piece so that one of its edges are concurrent
to the edge of the merged piece. These are determined by the touching points
between the new piece and the merged polygon or edges of the bin. Figure 2,
illustrates where new angles θ and ϕ are obtained and highlights all the possi-
ble edge-vertex, vertex-vertex and edge-edge combinations which can occur. In
each case, piece p is rotated in a counter-clockwise direction by angle θ and in
a clockwise direction by angle φ. If none of these new angles provide a better
placement position then the algorithm takes the best corresponding predefined
angle position and angle as the placement of the piece. If the next piece touches
the boundary of a bin, then the same procedure is followed considering the angles
created by considering the edges of the bin.

Fig. 2. Angle Tuning

The algorithm uses the Maximum Utilization (MU) placement policy as pro-
posed in [1] since their results show it is more efficient than the bottom-left and
minimum length placement rules. The MU rule places the next piece in the po-
sition that maximises the area utilisation of the convex hull of the layout in the
first bin the piece fits. Let ml be the merged polygon of the placed pieces in the
lth bin in the order. For each feasible position, the area utilisation is calculated as
(CHull(ml) +Area(pi))/CHull(ml + pi), where CHull(ml) denotes the convex

hull area of the placed pieces ml, Area(pi) denotes area of the new piece and
CHull(ml + pi) denotes area of the convex hull of both ml and pi once placed
in a feasible position. The placement position corresponds to the maximum area
utilisation is selected as the placement position for the new piece.

Solution improvement phase - Jostle The improvement mechanism works
over the sequence of bins and pieces. IJRAB starts with a solution generated
by the CA using an arbitrary order of pieces and an arbitrary order of bins and
packs the pieces from the left end of the bin strip towards the right along the
strip. Given this solution, all the pieces are re-ordered according to the right-most
x-coordinates position of the pieces continuing to the left-most. Following this
order, pieces are packed starting at the right-most position of the strip building
the packing layout from right to left. The idea is to shake pieces from left to
right and right to left along the bin order, so that each jostle iteration generates
a new sequence of the pieces. This approach has been proven to be more efficient
than a multi-start approach randomizing over the sequence of pieces (see [1]).

Abeysooriya et al. [1] points out that jostle gets stuck in local optima and sug-
gests an iterated jostle approach where they apply a kick, analogous to iterated
local search. We design two types of kick, which are applied after a predefined
number of jostle cycles with no improvement. The first kick is called piece kick,
applied to the current locally optimal solution, where a random piece is removed
and reinserted in a random position in the sequence (used in [7] and [1]). The
second kick is the Bin kick, applied to the best solution found so far, where a
random bin is selected from the occupied bins of this solution and is replaced
with a random bin selected from the other bin types. The corresponding change
is applied to the mirror bin position of the bin order as well, so that the same bin
configuration is retained at both ends of the strip. We denote Kp as the number
of jostle cycles with no improvement before performing a piece kick, and Kb as
the number of piece kicks performed with no improvement before performing a
bin kick.

Algorithm 1 provides the steps of the IJRAB algorithm. We use P (L,t) to
denote the piece order used at the tth iteration of the algorithm, which packs
pieces from left to right. Similarly, P (R,t) denotes the piece order, which packs
pieces from right to left at the tth iteration. We use τ (L,t) to denote bin order
at tth iteration where the bin arrangement is considered from left to right when
placing pieces. The bin arrangement τ (R,t) is the mirror arrangement of τ (L,t).
As explained before, a certain bin order is considered at a time. Depending on
the best solution found so far (see Algorithm 1), the leading bin order τ∗ is
updated.

The algorithm terminates after a given maximum computation time. At each
local optima leading to a bin kick, we apply post processing to improve the
best solution found within each bin configuration (see line 25). We propose the
following post processing strategies.

– Strategy 1 (S1): Attempt to repack pieces in the least utilized bin into the
smallest possible bin.

Algorithm 1: IJRAB

1 Set number of iterations t = 1;

2 Set P (L,t) as a random permutation of the pieces;

3 Set τ (L,t) as a random order of bins;
4 Initialize best utilization and best standard deviation U∗ = 0, σ∗ = 0;
5 Initialize counters for piece kicks and bin kicks qp = 0; qb = 0;
6 while termination condition is not met do

7 Generate solution layout, sL, from P (L,t) and τ (L,t);
8 Evaluate UsL and σsL ;

9 Derive P (R,t) from the solution;

10 Generate solution layout, sR, from P (R,t) and τ (R,t);
11 Evaluate UsR and σsR ;
12 Set s the best solution between sL and sR taking into account utilization

(U) and breaking ties with the standard deviation (σ);
13 if Us > U∗ OR (Us = U∗ AND σs > σ∗) then
14 Set U∗ = Us, σ∗ = σs; Reset qp = 0;
15 else
16 qp = qp + 1;
17 end
18 if qb < Kb then
19 if qp > Kp then
20 Apply piece kick. Change the position of one piece in the current

solution piece sequence;
21 qb = qb + 1;
22 Reset qp = 0;

23 end

24 else
25 Apply post processing to the best solution;
26 Apply bin kick. Return to the best solution found so far and change one

bin type;
27 Reset qb = 0, qp = 0;

28 end
29 t = t+ 1;

30 end

– Strategy 2 (S2): Attempt to repack pieces in each of occupied bins into the
smallest possible bin.

For the experimental investigation we compare the effectiveness of each post
processing strategy based on the solution quality and computational time. Specif-
ically we run the following three variants:

– IJRAB : Implement Algorithm 1 with no post processing.
– IJRAB-A2 : Implement Algorithm 1 applying S1 for the best solution found

at each bin configuration.
– IJRAB-A3 : Implement Algorithm 1 applying S2 for the best solution found

at each bin configuration.

3.2 GA/Jostle approach (HGAIJ)

Our second computational method combines a Genetic Algorithm (GA) and the
Iterated Jostle (IJ). GAs have been successfully implemented for the single bin
size bin packing problem with rectangular pieces (SBSBPP) in [12], multiple bin
size bin packing problem (MBSBPP) with rectangular pieces in [3], and irregular
pieces packing problems with irregular bins in [4].

A solution is encoded as a chromosome by a permutation of bins followed by
a permutation of pieces. This is decoded using the CA to produce the packing
layout and evaluate the fitness, Us. The coding structure of HGAIJ is illustrated
in Figure 3 along with the decoded solution, which packs 16 pieces into four
types (sizes) of input bins. In order to guarantee all the pieces can be packed,
the length of bin permutation is n × N

′
. Note that when we use the jostle

operation the strip is twice as long to include the mirror bin order.

Fig. 3. Representation of solutions

The initial population contains S solutions generated by applying the CA
to S random permutations of bins and pieces. Each piece permutation contains
all the pieces to be packed. For each generation, we execute the main loop in
Algorithm 2. A pool of solutions is populated at each iteration of the main-loop.
This contains solutions of the current population (parents) as well as the new
solutions (offspring) created by the crossover and mutation operators. The se-
lection mechanism selects S solutions from the pool to enter the next generation.

Crossover: Crossover creates two offspring from two parent chromosomes using
two type of crossover operator. We use the uniform crossover, see [11] for the bin
part of the chromosome. The operator first constructs a random binary mask.
Using the mask, the first child inherits the genes (in the bin order) of the first
parent if there is a “1”in the mask and from the second parent if there is a “0”in
the mask. The second child is formed in a similar way by reversing the role of
mask. Step 1 in figure 4 shows an example of the crossover operator for the bin
part of the chromosome.

The second crossover operator changes the piece permutation. Given a ran-
domly selected point in the permutation the genes before this point are copied
from the first parent to the first offspring as illustrated in step 2 of figure 4. The
second parent’s piece permutation is then scanned and the missing genes in the

Algorithm 2: General structure of HGAIJ

1 Initialization;
2 Main loop: Generations;
3 GenN = 1;
4 while GenN < MaxGen do
5 Populate the pool;
6 - crossover;
7 - mutation;
8 - generate offspring solutions using the constructive algorithm CA;
9 - improve offspring solutions by jostling with piece kicks;

10 Sort the pool according to solution quality;
11 Select solutions for nest population;
12 GenN = GenN + 1;

13 end

offspring are inserted in the order they appear in the second parent. The same
procedure is used to generate the second offspring, where each parent has the
opposite role. All parents are selected without replacement for crossover gener-
ating an equal number of offspring to parents.

Fig. 4. Crossover operation

Mutation: The purpose of mutation is to provide greater diversity within the
population and inhibit premature convergence. Each offspring will be mutated
with probability Pmu. If an offspring is selected for mutation, then randomly
select two points in the part of the bin permutation that contains pieces and
reverse the order of bins between these two points. Note that this mutation gen-
erates a major change in the corresponding solution as bin spaces of the layout
change dramatically.

Improving offspring solutions by jostling with piece kicks: In this step, the child
chromosomes are improved with the help of the iterated jostle procedure (with

piece kicks) discussed in Section 3.1. Initially, we applied IJ to all offspring, how-
ever the computation time was too long. In our final experiments we only apply
IJ to the fittest solution.

Selection for the next population: The next population is selected from the pool
that currently contains both the parent and offspring solutions. The selection
strategy aims to ensure both quality and diversity of the next population using
elitist and tournament selection methods. Solution quality is measured by utili-
sation, Us. For diversity we define the distance (dist) of a solution, x, from the
best solution in the population, y, where the best solution has the largest Us:

dist(x) = |x1 − y1|+ |x2 − y2|++ |xNx − yNx|

where xi denotes the area of the ith bin located in the bin permutation of the
chromosome for solution x, yi denotes the area of the ith bin located in the bin
permutation of the chromosome with best U . In the case that chromosomes x
and y have a different number of used bins (Nx 6= Ny), then the distance is
calculated up to min{Nx, Ny}.

The selection process sorts the chromosomes in the pool in descending order
of their Us value. We compare the bin permutation of chromosomes that have the
same Us value. Those with identical occupied bin permutations are compared by
their dist value. Since we wish to maintain diversity in the population, we retain
only one of these chromosomes, keeping the one with the largest value of dist.
Given the sorted list of offspring and parents, the elitist selection scheme copies γ
of the best chromosomes in pool to the new population. The population is made
up to S by tournament selection, where it randomly selects two chromosomes
and selects the best by Us breaking ties by σs.

Based on different computational test we performed we found the following
best set of parameters. For the GA, S is set to 16, γ = 2 and Pmu = 0.025. For
IJ within the GA, Kp = 4 and the search terminates after 12 cycles. Similarly,
for IJRAB approach we found that Kp = 4 and Kb = 3 produce better results.

4 Computational Experiments

The algorithms described above were coded in Visual C++ 2012 as a sequential
program. All experiments were carried out using an Intel 2.60 GHz processor
and 4GB RAM. The algorithms do not contain parallel processing and therefore
can be run using a single processor.

The data instances are taken from the benchmark nesting instances published
on ESICUP (EURO Special Interest Group on Cutting and Packing) website.
We used 14 irregular shape instances representing both convex and non-convex
polygons. Since these are defined for strip packing problems, we define a set
of bin sizes. In this case, for each instance, we identify parameter dmax as the
maximum length or width among the pieces in their initial orientation. Using
dmax we generate nine different bin sizes and define four subsets of bin sizes;

Table 1. Instances

Instance No.of Pieces Instance No.of Pieces
Shapes2 28 2×Jakobs2 50

3×Dighe1 48 Poly3a 45
3×Dighe2 30 Poly3b 45

Poly4a 60 Poly4b 60
3×Fu 36 Poly5a 75

2×Han 46 Poly5b 75
2×Jakobs1 50 Shapes 43

Table 2. Bin Configurations

Configuration No. of Bin types Input bin sizes Bin type ID

SB 5 0.5dmax, 0.75dmax, 1.0dmax, 1.25dmax,1.5dmax 1,2,3,4,5
MB 5 1.0dmax, 1.25dmax, 1.5dmax, 1.75dmax,2.0dmax 3,4,5,6,7
LB 5 1.5dmax, 1.75dmax, 2.0dmax, 2.25dmax,2.5dmax 5,6,7,8,9
Mix 9 0.5dmax, 0.75dmax, 1.0dmax, 1.25dmax,1.5dmax 1,2,3,4,5

1.75dmax, 2.0dmax, 2.25dmax, 2.5dmax 6,7,8,9

small (SB), medium (MB), large (LB) and mixed, which contains all nine bin
sizes, as illustrated in tables 1 and 2.

We test IJRAB and HGAIJ using the 14 data instances combined with each
set of bin sizes and run our experiments for variants where we restrict the allowed
rotation angles (RR) and also allow unrestricted rotation (UR) of the pieces. For
RR the permitted angles of orientation are 0, 90, 180, 270 degrees. Since there are
random elements in the algorithm, we run each algorithm test for 10 trials and
report the average. Previous research into the irregular bin packing problem have
only used homogeneous bins, hence there are no benchmark results. In order to
validate our search mechanism, we compare with the best result from repeated
runs of the constructive algorithm with random permutations of bins and pieces
(CA (Rnd)). The termination condition for all algorithms is 800 seconds.

In Table 3 we compare the different implementations of IJRAB for RR and
UR. For each bin configuration report the average Us, percentage improvement
over IJRAB-A1, and the average number of jostle cycles performed in the 800
seconds (Avg. cycles). We can observe that IJRAB-A3 performs better, although
the difference between IJRAB-A2 and IJRAB-A3 for Mix, LB and MB bin size
configurations is small. For SB, since bins will contain very few pieces the bin
allocation is more critical, hence there being greater value in trying to reduce
the size of all bins.

In Table 4 we compare the two algorithms, IJRAB-A3 and HGAIJ along
with CA (Rnd). CA (Rnd) performs least well, as expected. Although the per-
formance gap is less than 5% showing that the CA is optimising well. IJRAB
performs better than HGAIJ. This may be because a change in the bin or piece
permutation can lead to a significant change in the decoded solution, hence the
crossover operators are not able to retain good parts of the solution.

Table 3. Performance comparison of IJRAB algorithms for different bin configurations

Restricted Rotation of pieces Unrestricted Rotation of pieces
Bin Config. IJRAB-A1 IJRAB-A2 IJRAB-A3 IJRAB-A1 IJRAB-A2 IJRAB-A3

Mix Avg. U 0.692 0.700 0.703 0.699 0.706 0.708
Impv % 0% 1.16% 1.59% 0% 1.00% 1.29%
Avg. cycles 1202.2 1156.5 1123.4 802.0 764.9 744.1

LB Avg. U 0.667 0.687 0.689 0.680 0.695 0.696
Impv % 0% 3.00% 3.30% 0% 2.21% 2.35%
Avg. cycles 1117.3 1072.4 1041.7 717.4 695.6 660.7

MB Avg. U 0.671 0.684 0.686 0.684 0.692 0.693
Impv % 0% 1.94% 2.24% 0% 1.17% 1.32%
Avg. cycles 1275.9 1215.8 1176.4 814.7 789.8 776.7

SB Avg. U 0.656 0.662 0.677 0.668 0.675 0.685
Impv % 0% 0.91% 3.20% 0% 1.05% 2.54%
Avg. cycles 1584.2 1506.6 1365.2 956.9 909.1 862.1

Table 4. Performance comparison of IJRAB and HGAIJ methods

Bins Config.
Restricted Rot. Avg. U Unrestricted Rot. Avg. U

CA (Rand) IJRAB HGAIJ CA(Rand) IJRAB HGAIJ

Mix. 0.678 0.703 0.693 0.682 0.708 0.699
Impr. % - 3.69% 2.21% - 3.81% 2.49%

LB 0.665 0.689 0.686 0.675 0.696 0.690
Impr. % - 3.61% 3.16% - 3.11% 2.22%

MB 0.663 0.686 0.681 0.671 0.693 0.687
Impr. % - 3.47% 2.71% - 3.28% 2.38%

SB 0.650 0.677 0.659 0.657 0.685 0.666
Impr. % - 4.15% 1.38% - 4.26% 1.37%

5 Concluding Remarks and future work

In this paper, we develop solutions methods for the two dimensional bin pack-
ing problem with irregular pieces and multiple bins sizes, also known as 2D-
IMBSBPP, where the objective is to maximize the overall utilisation of bins.
This problem is practical in several material cutting industries yet new to the
research literature.

We demonstrate that the iterated jostle algorithm outperforms an adapted
genetic algorithm and simple repeated random construction. Our results also
show that a greater selection of bins provides more efficient packing and, when
restricting the subset of bins, large bins are more useful. Moreover, for smaller
bins, the bin selection is more important than with larger bins.

Our algorithms support the objectives of efficient material use and material
procurement decisions. Being able to solve bin packing over heterogeneous bins
means that retaining and re-using residual material becomes possible within
the cutting planning system. We notes that other costs in addition to material
waste affect production cost. Our method is also robust to implement different
objective functions such as including set-up and inventory costs.

References

[1] Abeysooriya, R. P., Bennell, J. A., and Martinez-Sykora, A. (2015). Jostle heuris-
tic for 2D-Irregular shaped Packing Problems with Free Rotation. 27th European
Conference on Operational Research.

[2] Alvarez-Valdes, R., Parreño, F., and Tamarit, J. M. (2013). A GRASP/Path Relink-
ing algorithm for two- and three-dimensional multiple bin-size bin packing problems.
Computers & Operations Research, 40:3081–3090.

[3] Babu, A. R. and Babu, N. R. (1999). Effective nesting of rectangular parts in
multiple rectangular sheets using genetic and heuristic algorithms. International
Journal of Production Research, 37(7):1625–1643.

[4] Babu, A. R. and Babu, N. R. (2001). A generic approach for nesting of 2-D
parts in 2-D sheets using genetic and heuristic algorithms. Computer-Aided De-
sign, 33(12):879–891.

[5] Baldacci, R., Boschetti, M. A., Ganovelli, M., and Maniezzo, V. (2014). Algorithms
for nesting with defects. Discrete Applied Mathematics, 163, Part 1:17–33.

[6] Bennell, J. A. and Dowsland, K. A. (2001). Hybridising Tabu Search with Optimisa-
tion Techniques for Irregular Stock Cutting. Management Science, 47(8):1160–1172.

[7] Bennell, J. A. and Oliveira, J. F. (2009). A Tutorial in Irregular Shape Packing
Problems. The Journal of the Operational Research Society, 60:s93–s105.

[8] Bennell, J. A. and Song, X. (2008). A comprehensive and robust procedure for ob-
taining the nofit polygon using Minkowski sums. Computers & Operations Research,
35(1):267–281.

[9] Bennell, J. A. and Song, X. (2010). A beam search implementation for the irregular
shape packing problem. Journal of Heuristics, 16(2):167–188.

[10] Dowsland, K. A., Dowsland, W. B., and Bennell, J. A. (1998). Jostling for position:
local improvement for irregular cutting patterns. Journal of the Operational Research
Society, 49(6):647–658.

[11] Falkenauer, E. (1999). The worth of the uniform [uniform crossover]. In Pro-
ceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), volume 1, page 782 Vol. 1.

[12] Gonçalves, J. F. and Resende, M. G. C. (2013). A biased random key genetic
algorithm for 2D and 3D bin packing problems. International Journal of Production
Economics, 145(2):500–510.

[13] Han, W., Bennell, J. A., Zhao, X., and Song, X. (2013). Construction heuristics for
two-dimensional irregular shape bin packing with guillotine constraints. European
Journal of Operational Research, 230(3):495–504.

[14] Lopez-Camacho, E., Ochoa, G., Terashima-Marin, H., and Burke, E. K. (2013).
An effective heuristic for the two-dimensional irregular bin packing problem. Annals
of Operations Research, 206(1):241–264.

[15] Martinez-Sykora, A., Alvarez-Valdes, R., Bennell, J., and Tamarit, J. M. (2015).
Constructive procedures to solve 2-dimensional bin packing problems with irregular
pieces and guillotine cuts. Omega, 52:15–32.

[16] Martinez-Sykora, A., Alvarez-Valdes, R., Bennell, J. A., Ruiz, R., and Tamarit,
J. M. (2017). Matheuristics for the irregular bin packing problem with free rotations.
European Journal of Operational Research, 258(2):440–455.

[17] Oliveira, J. F., Gomes, A. M., and Ferreira, J. S. (2000). TOPOS – A new con-
structive algorithm for nesting problems. OR-Spektrum, 22(2):263–284.

[18] Ortmann, F. G., Ntene, N., and van Vuuren, J. H. (2010). New and improved level
heuristics for the rectangular strip packing and variable-sized bin packing problems.
European Journal of Operational Research, 203(2):306–315.

[19] Pisinger, D. and Sigurd, M. (2005). The two-dimensional bin packing problem
with variable bin sizes and costs. Discrete Optimization, 2(2):154–167.

[20] Song, X. and Bennell, J. A. (2014). Column generation and sequential heuris-
tic procedure for solving an irregular shape cutting stock problem. Journal of the
Operational Research Society, 65(7):1037–1052.

[21] Wei, L., Oon, W., Zhu, W., and Lim, A. (2013). A goal-driven approach to
the 2D bin packing and variable-sized bin packing problems. European Journal of
Operational Research, 224:110–121.

