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ABSTRACT
Energy harvesters arewidely used to powerwireless sensor systems,
but the produced power is generally low, and can vary abruptly
due to changes in the environment or the device’s location. Energy
buffers (batteries or supercapacitors) are normally incorporated
into systems to smooth out these variations. However, they have a
limited lifetime and increase system size and cost. Transient com-
puting aims to address these issues by removing the energy buffer,
and powering the system directly from the energy harvester. Ap-
proaches such as Hibernus++ deal with the resultant power inter-
mittency by ‘hibernating’, i.e. saving a snapshot of the system state
to non-volatile memory before a power failure, and restoring it
after the power recovers. The overheads of this can be particularly
costly with a low-current harvester, as the system may wake up
and hibernate at a high frequency, doing little useful work in each
power cycle.

This paper proposes an enhancement to these approaches, pro-
viding an efficient method to avoid repeated hibernation. The intro-
duction of a ‘sleep’ state, which is entered when the power supply
is detected to be failing, allows the system’s supply voltage to re-
cover without taking a snapshot. Thus, the application can spend
more time on useful work rather than checkpointing. If the supply
voltage continues to decline, a snapshot will then be taken. The
approach has been simulated and experimentally validated, with
results demonstrating that the proposed scheme provides up to
a 65% improvement in system active run-time with low-current
harvesters vs. conventional Hibernus++.
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Figure 1: Hibernus++ response to a fully rectified sinusoidal
signal (modified from Balsamo, et al. [2]).
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1 INTRODUCTION
As the interest in Energy Harvesting (EH) systems integrating with
small low-power embedded devices continues to grow, many new
technologies which incorporate efficient ways to utilize the har-
vested energy are being developed. However, batteries and super-
capacitors are required to ‘buffer’ harvested energy to smooth out
variations in supply. These energy storage devices increase sys-
tem size and cost, and have a limited operational lifetime. Remov-
ing the energy storage and powering a system directly from an
EH source would likely cause the system to become unstable, re-
peatedly restart, or otherwise malfunction. An emerging concept,
termed transient computing, enables systems to be directly powered
by the EH source without the need for energy storage. Existing
approaches including Mementos [1], QuickRecall [3] and Hypnos
[4] typically save a snapshot of the system state into a non-volatile
memory (NVM), e.g. ferroelectric RAM (FRAM) or flash, before a
supply interruption. Thus, when power recovers, the system’s state
is restored from the saved copy. The general operation of such a
scheme is illustrated in Figure 1.

A state-of-the-art approach for transient computing is Hiber-
nus++ [2], which self-calibrates its voltage thresholds to match the
platform it is deployed on. However, even with this self-calibration
capability, it tends err on the side of caution and hibernate more
than necessary; this is a particular problem with low-current power
sources. Saving a snapshot of system state each time it hibernates
introduces significant time and energy overheads [1].
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This paper proposes an algorithm to counter this issue. When the
supply voltage is detected to be approaching the hibernate voltage
threshold, the system is put into a sleep mode (without taking a
snapshot). Provided that the harvested current is higher than the
system’s sleep current, it will remain in sleep mode until the supply
voltage rises to a certain threshold. This avoids a time and energy-
intensive snapshot being taken, and maximizes the active time of
the system. Should the harvested current be lower than the sleep
current, the supply voltage will continue to drop, and prompt a
‘fail-safe’ hibernation where a snapshot is saved before the power
supply is lost.

The novel contributions of this paper are:

• Presentation of an approach to greatly reduce costly system
hibernation with low-current EH sources (Section 3).
• A mathematical analysis of the operation of the proposed
approach, considering threshold voltages and transitions
between states (Section 4).
• Simulation (Section 5) and experimental validation (Section
6) in terms of active run-time of the proposed approach
compared to original Hibernus++.

While the paper is pitched as an enhancement toHibernus++, it is
applicable to any transient computing approach that uses threshold
voltages to prompt or control checkpointing/hibernation.

2 EXISTING TRANSIENT COMPUTING
APPROACHES

This section will explore the various approaches to transient com-
puting. However, it is first useful to define the terminology used:

• Threshold: a defined voltage value which triggers a change
of state, e.g. to hibernate or restore.
• Active: the system being awake and in active mode, carrying
out useful work (e.g. processing data).
• Snapshot: saving a copy of system state into non-volatile
memory (NVM). This is typically the processor registers
(e.g. program counter, stack pointer, status register, general
purpose registers), along with any volatile memory.
• Checkpoint: for some transient computing schemes, the act
of checking supply voltage so that a snapshot can be saved
if necessary (supply voltage is below a threshold value).
• Sleep: entering a low-power mode with the processor inac-
tive and some peripherals/timers/clocks disabled, depending
on mode.
• Hibernate: to take a snapshot before entering sleep.
• Restore: restore state by copying snapshot data from NVM
to processor registers and volatile memory, then returning
to active mode.

A number of approaches to transient computing have been pro-
posed in the literature:

• Mementos [5] places checkpoints at compile-time inside
the program, typically before function calls or loops. When
the trigger point is reached during program run-time, the
execution of it is suspended and a voltage check is performed.
If the voltage is found to be below a certain threshold, a
snapshot is saved.

Figure 2: Supply voltage behavior with original Hibernus++,
with low current continuous power source.

• QuickRecall [3] proposes a ‘unified processor’ approach,
where the system uses a unified memory in FRAM, meaning
that when taking a snapshot, only the processor registers
need to be saved to NVM. Upon triggering a preset volt-
age threshold, the system saves the processor registers into
FRAM, and the program hibernates.
• Hypnos [4] combines on-chip SRAM together with intense
voltage scaling techniques during sleep cycle of the micro-
controller (MCU) to achieve a reduction in time and energy
overheads. However, as it will irreplaceably lose data if the
power supply fails, it cannot be considered suitable for tran-
sient systems with rapidly-varying supply inputs.
• Hibernus++ [2] overcomes the limitations of previous tran-
sient computing systems by saving a snapshot only before
an expected power failure. Using voltage comparator inter-
rupts, the supply voltage is monitored against hibernate and
restore voltage thresholds. When the input voltage drops
below the hibernate voltage threshold, the system hibernates
by saving a snapshot and entering a deep sleep mode right
before a potential power failure. Contrarily, as the power
supply recovers from a recent failure, a restore is performed
once the voltage rises above the restore threshold.

In addition to these features, Hibernus++ is application and
platform agnostic. During the initial self-calibration process, it
intelligently sets its restore and hibernate thresholds according
to the energy harvesting source’s characteristics and system load
properties. Every time the system hibernates, it reevaluates its
performance and adjusts the thresholds if necessary.

Figure 1 showed an example response of Hibernus++ to a fully
rectified sinusoidal input. As can be seen, the system hibernates
(taking a snapshot in the process), and when the power supply
recovers the system state is restored from the snapshot.

As illustrated in Figure 2, when powered by a low-current source,
the system supply voltage can stay above its minimum operating
voltage Vmin . Therefore, when the supply voltage recovers, it is
not necessary to restore the state. In effect, the energy expended
in taking the snapshot has been wasted. This can cause systems
to repeatedly oscillate between hibernate and active modes, with
snapshots being taken but not required. This type of problem is a
significant issue when the system is powered by low-current energy
harvesters, e.g. photovoltaic cells whose output is low-current and
relatively slowly varying.

While Hibernus++ identifies whether a source is high-current or
low-current, and adjusts thresholds to allow the supply voltage to
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Figure 3: High-level system state diagram for proposed en-
hancement to Hibernus++ scheme.

build to a higher level for a low-current source (thus increasing the
active time of the system), it will still hibernate after the system has
been active for a while and the supply voltage has dropped to the
hibernate threshold. In most cases, with a low-current harvester, the
supply voltage does not drop below Vmin , therefore the snapshot
taken will not be needed. As a result, useful energy is wasted doing
very little useful work. Doing this many times without a real power
failure incurs comparatively large delays which waste operating
time that could be better utilized running the main application.

3 SLEEPING TO AVOID HIBERNATION
As observed in Section 2, a substantial amount of time and energy
is wasted by transient computing approaches taking snapshots
when they end up not being needed. Figure 3 shows a simplified
flow-chart of an approach to address the limitations of Hibernus++
when powered by a low-current energy harvester. In essence, the
proposed enhancement enables the system to go to sleep before
its supply voltage (Vcc ) drops below the hibernate threshold (Vh ),
hoping that it will recover so that this threshold will not be reached.

The system cycle begins inActivemode, while the program is exe-
cuting the application. IfVcc is found to be below the sleep threshold
(Vs ), the program suspends execution and enters Sleep mode with-
out saving a snapshot. While in sleep mode, Vcc is checked against
two thresholds: Vh and Vr (hibernate and restore, respectively). A
higher priority is given for Vh , as missing it would delay system
hibernation, which could result in a system malfunction. In case
the harvested current levels are not sufficient to remain in the sleep
state, i.e. if Vcc < Vh , the system hibernates.

From either Sleep or Hibernation, if Vcc > Vr , the system is
allowed to go back to Active mode. No system restore is required to
be performed since the power was not lost at any time. Should Vcc

Figure 4: Supply voltage behavior with Enhanced Hiber-
nus++, with low current continuous power source.

have dropped below Vmin , the system would restore from a valid
snapshot if available. Further detail on this behavior is shown later.

Entering Sleep avoids the need to hibernate the system, provided
that the current generated by EH is less than the sleep-mode cur-
rent consumption of the system. Voltage thresholds, except for the
newly-added Vs , remain the same as in original Hibernus++ [2].
Three states representing different operating modes are shown:
Active, Sleep and Hibernate. Throughout different stages of pro-
gram flow, Vcc is being compared against one of the three voltage
thresholds: Vs , Vh and Vr .

Figure 4 illustrates the concept of the enhanced approach, with
the additional threshold (Vs ) using the same low current EH source
shown in Figure 2. In contrast to the original Hibernus++, the
system is not waiting in Active mode until stored voltage levels
become critical. Instead, after crossing Vs the system’s reduced
current consumption in Sleep allows Vcc to recover. As a result Vcc
remains above Vh and therefore no snapshot needs to be saved.

In summary, the proposed enhancement allows oscillation be-
tween Sleep and Active modes, rather than Hibernate and Active
modes. Moving from Sleep to Active is faster and more power-
efficient than saving a checkpoint, when entering Hibernate, re-
ducing the likelihood of power losses. It should however be noted
that the proposed enhancement brings no benefits if the harvesting
source is highly variant (e.g. a pulsed source with enough time
between each pulse to force hibernation).

4 ALGORITHM DETAILS AND
MATHEMATICAL ANALYSIS

Due to the unpredictable behavior of energy harvesters, it is im-
portant for the system to switch between different Sleep and Active
modes as quickly as possible. Additionally, to optimize the system’s
performance, it is desirable for the wake-up time and output current
to be as small possible. Therefore a specific low-power mode for
the Sleep state must be carefully selected.

The MSP430FR5739 development board is selected as the test
platform for this work, and is used in the following sections. It was
used in the original Hibernus++ paper [2], due to its low power
operating modes and built-in FRAM. To implement a Sleep state,
low-power mode 2 (LPM2) was chosen because it offers a reasonable
compromise between current draw and wake-up time.

In this section, the algorithm and design choices are explored
using mathematical analysis. The current drawn by the system, Io ,
is inversely proportional to the discharge time tdis , which is desired
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Figure 5: Enhanced Hibernus++ system voltage thresholds,
for mathematical analysis.

to be as long as possible. Conversely, the wake-up time twake−up is
directly proportional to the resume time tr es , which is required to
be as short as possible. By choosing a particular low-power mode, it
is impossible to optimise the performance of one parameter without
reducing the performance of another.

Figure 5 illustrates an arbitrary voltage input, highlighting Vr ,
Vs , andVh thresholds as well as times t1, t2, t3 and t4. This behavior
is analyzed mathematically, based on the equations presented in
[2]. Firstly, the time taken to charge the internal capacitance from
Vs to Vr is given by:

tch = t2 − t1 =
1

4fsource
−

sin−1 V s
V r

2π fsource
(1)

Here fsource is the frequency of the input power source. The
time it takes for a microcontroller to go from Vs to Vh , regardless
of the power source frequency is given by:

tdis = t4 − t3 =
C (Vs −Vh )

Io
(2)

The maximum time needed for a microcontroller to fully rsume
to Active mode from Sleep (without hibernating) is given by tr es =
tch+twake−up . Every time the voltage threshold is crossed, program
appears in the interrupt handler, which temporary disables voltage
comparator related interrupts. As a result, additional delays for
enabling the comparator and resistor ladder, as well as propagation,
need to be taken into account to give the full voltage comparator
enable time:

ten = max{ten,comp + ten,r ladder } + tpd (3)
When the system is powered for the first time, a calibration

routine is performed to evaluate the power supply characteristics in
order to determine the most suitableVh value [2]. For the system to
remain in active mode for as long as possible,Vs−Vh (From equation
(1)) is desired to be small. On the other hand, if it is too small, by
the time the new threshold parameters are properly configured in
hardware, Vcc may have already jumped over Vh , in which case
system might get stuck in an infinite loop. To avoid this potential
problem, combining Equations (2) and (3), the minimum discharge
value can be found, which satisfies the following equation:

C (Vs −Vh)min
Io

< tAct→Sleep + ten (4)

Table 1: Results from 10-minute Simulation

Scheme
Active
mode
(s)

Sleep
mode
(s)

Hibernate
mode
(s)

Active
run-
time

Original Hiber-
nus++ 224.1 - 375.9 37.4%

Enhanced
Hibernus++ 343.2 275.9 - 57.2%

HereC represents the sum of the MSP430FR5739 board’s internal
capacitances (characterized by the sum of all system decoupling
capacitances), which is found to be 16µF. (Vs −Vh)min is the theo-
retical minimum difference between the sleep and hibernate voltage
thresholds. tAct→Sleep is the time delay to move from Active mode
to Sleep mode (LPM2).

Assuming that the delay to switch off the processor, system clock
generators and oscillator peripherals combined is not greater than
two clock cycles (based on the fact that when the clock gating signal
is disabled there is no current drawn from the flip-flop), the time
it takes to move from Active to Sleep is less or equal to two high
frequency peripheral clock (SMCLK) cycles. This is calculated to
be 250 ns.

Expressing the minimum sleep state and hibernate state volt-
age difference and substituting the values using Equation (4), the
minimum difference between voltages is found to be 17.53nV. The
MSP430FR5739’s internal comparator has a built-in 32-tap resistor
ladder which, assuming the absolute maximum voltage threshold
for the chosen development board is 3.6V, based on the smallest
resolution availableVs = Vh + 0.11. As a result,Vs can be safely set
to this value, as it is significantly higher than the theoretically calcu-
lated minimum value. The system’s full state diagram is illustrated
in Figure 6.

Voltage comparator interrupts are used to detect when certain
voltage thresholds are crossed, depending on the current state of
the system. The program starts when power is first applied. After
performing self-calibration, power supply and recent failure tests,
the program is set to execute the application normally. If the voltage
drops belowVs , program execution is suspended and it enters Sleep.
At this point, if Vcc drops below Vh the system will hibernate:
i.e. save a snapshot and enter deep sleep mode (LPM4). On the
other hand, if Vcc rises above Vr , the system will resume to Active
mode and the whole cycle restarted. If at any time a severe power
loss occurs, Vcc will drop below Vh , the system will end up in the
Hibernate state and eventually Vcc will drop below Vmin , meaning
that the system state must be restored when the system recovers.

5 SIMULATION
A MATLAB Simulink simulation was used to compare the perfor-
mance of the proposed Enhanced Hibernus++ system against the
original Hibernus++. The simulated system was being powered
from a 2 mA Direct Current (DC) current source. The current con-
sumption of the MSP430FR5739 in each power mode was emulated
by the circuit in Figure 7; each power mode was assigned a switch
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Figure 6: Detailed state diagram for the proposed Enhanced Hibernus++ approach.

Figure 7: High-level system model schematic, the behavior
of the system in each state is represented by a switch and
resistor.

and resistor combination. Separate combinational blocks consist-
ing of various control components, such as voltage monitors, edge
detectors, and counters were incorporated into the circuit to record
the time spent in each mode. Delays (as discussed in Section 4)
for switching between power modes, voltage comparator enable
times, and system wake-up times were accounted for by MATLAB
functions.

The simulation was run for 10 minutes of simulated time, with
the results shown in Table 1. Using original Hibernus++ the system
spent 37.4% of the time in Active mode, while using the Enhanced
Hibernus++ approach this increased to 57.2%; this yields an overall
65% improvement in Active run-time.

6 EXPERIMENTAL VALIDATION
The program was implemented and evaluated on an MSP430FR5739
development board, connected as shown in Figure 8. The low-
dropout (LDO) voltage regulator limits the maximum voltage from
the energy harvester, and a Schottky diode prevents the energy
harvester from discharging the system capacitance during each

Figure 8: Schematic of test platform circuitry (reproduced
from Balsamo, et al. [2]).

negative power cycle. A voltage switch is used to short-circuit
the source during the Hibernus++ calibration routine in order to
determine Vh and resultantly Vs , as described in Section 4.

To test the system with a representative workload, an 8-bit FFT
analysis algorithm was used. The mean Active current consumption
during algorithm execution was measured as 0.71 mA.

Figure 9 shows the platform’s response to a sinusoidal 6 Hz input
from a signal generator. Digital output pins were used to indicate
the system’s operating state (going high when it enters a certain
state, and reverting to low after it leaves the state). During the
negative power cycle, Vcc is discharged to 1.5V. As a result, the
system goes through the cycle of Active→ Sleep→ Hibernate, until
it shuts down completely when Vcc < Vmin .

Figure 10 shows the performance of the systemwhen powered by
a 2 mA DC source (identical to that used in the MATLAB Simulink
simulation). Since the supplied current is smaller than the current
required to operate the system continuously in Active mode, the
system oscillates between Sleep and Active modes. This shows the
system operates as predicted by the simulations in Section 5.

Figure 11 shows the performance of the system when powered
directly from Schott Solar indoor photovoltaic (PV) module using a
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Figure 9: Enhanced Hibernus++ system response to sinu-
soidal variation in incoming supply voltage.

Figure 10: Enhanced Hibernus++ system response to 2 mA
constant-current source.

Figure 11: Enhanced Hibernus++ system response when
powered from photovoltaic cell.

halogen desk lamp. The maximum voltage was limited to 4 V by the
LDO regulator. The light source intensity was set to supply enough
power for the system to reach Active mode, but not enough to stay
in that mode indefinitely. Some variation was added by adjusting
the proximity of the lamp to the PV module.

As can be seen from Figure 11, the system oscillates between
Active and Sleep modes, with Hibernation completely avoided. As
a result, the system was able to spend more time in Active mode
carrying out useful work, than would otherwise have been the case
with the original Hibernus++.

7 CONCLUSIONS
The original Hibernus++ approach is relatively inefficient with
low-current harvesting sources, as a substantial proportion of time
and energy is wasted in taking snapshots which are not used. The
proposed enhancement avoids excessive hibernation cycles by sim-
ply going to sleep, reducing the system power consumption and
allowing Vcc to recover without needing to hibernate.

The enhanced approach adds a sleep mode to Hibernus++, pro-
viding a smaller wake-up delay, and avoids saving a redundant
snapshot without a power failure. This was found through sim-
ulation to be particularly beneficial when the system is powered
from low current DC sources, e.g. PV modules. In the simulated
scenario, the application run-time was 65% higher than original
Hibernus++, indicating that such a system could do substantially
more useful work, making more forward progress through an appli-
cation. This contributes to future improvements of other transient
computing systems, e.g. Mementos, where a similar enhancement
can be applied.

The proposed method brings benefits where the harvester output
is consistently above the system’s sleep current draw. In this case,
Vs can be set very close to Vh . If the harvesting source output is
expected to regularly drop below this value, this could either require
Vs to be increased, or result in the system hibernating frequently;
either could reduce the active time of the system per cycle. Trade-
offs between these have not yet been fully evaluated, and are the
subject of future work to find the best way to set Vs for variable
harvesting conditions.
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