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The free loops space ΛX of a space X has become an important object of study par-

ticularly in the case when X is a manifold. The study of free loop spaces is motivated

in particular by two main examples. The �rst is their relation to geometrically distinct

periodic geodesics on a manifold, originally studied by Gromoll and Meyer in 1969. More

recently the study of string topology and in particular the Chas-Sullivan loop product

has been an active area of research.

A complete �ag manifold is the quotient of a Lie group by its maximal torus and is one

of the nicer examples of a homogeneous space. Both the cohomology and Chas-Sullivan

product structure are understood for spaces Sn, CPn and most simple Lie groups. Hence

studying the topology of the free loops space on homogeneous space is a natural next

step.

In the thesis we compute the di�erentials in the integral Leray-Serre spectral sequence

associated to the free loops space �brations in the cases of SU(n+1)/Tn and Sp(n)/Tn.
Study in detail the structure of the third page of the spectral sequence in the case of

SU(n) and give the module structure ofH∗(Λ(SU(3)/T 2);Z) andH∗(Λ(Sp(2)/T 2);Z).
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Introduction

The free loop space of a topological spaceX is de�ned to be the mapping spaceMap(S1,X),
the space of all unpointed maps from the circle to X. This di�ers from the based loops

space ΩX = Map∗(S1,X), the space of all pointed maps from the circle to X. The

based loop space functor is an important classical object in algebraic topology and has

been well studied. The topology of free loop spaces is much less well behaved and is

still only well understood in a handful of examples. In this thesis we will explore the

cohomology of the free loop space of homogeneous spaces. In doing so we will uncover

some surprising combinatorial connections and we will compute the cohomology algebras

for some �ag manifolds of low rank Lie groups.

There are two main motivations behind the study of the topology of the free loop space,

which we now discuss. It is a classical question to ask about the closed geodesics on a

closed manifold M . In particular how many distinct closed geodesics are there on M .

In general the answer to this question is not fully understood, however some problems

we can answer by understanding the topology of M . If M is not simply connected

then information on its geodesics can be obtained by studying the conjugacy classes of

π1(M). IfM is simply connected one can consider the free loop space ofM . In particular

Gromoll and Meyer prove in [13], that for simply connected closed manifold M , if the

Betti numbers are unbounded then M has in�nitely many distinct closed geodesics. For

more information on this subject see for example [29].

String topology in its most general sense is the study of algebraic structure on the

homology of the space of free loops. The area of study began with the unpublished

paper [7] of Chas and Sullivan, released in 1999. In the paper new algebraic structures

were presented concerning the homology of free loop spaces of a manifold. In particular

for a manifold M of dimension d, there is an intersection product

○ ∶Hp(ΛM) ⊗Hq(ΛM) →Hp+q−d(ΛM)

for each p, q ≥ 0, which has become know as the Chas-Sullivan loop product. More

recently much work has been done on the subject and connections with many other in-

teresting areas in algebraic topology including topological quantum �eld theory, operads
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2 Introduction

and topological cyclic homology have been established. For more information see for

example [33].

In 2002 Cohen, Jones and Yan [32] gave a homotopy theoretic interpretation of the

Chas-Sullivan product based on earlier work of Cohen and Jones [8]. They then used

this description of the Chas-Sullivan product to produce a second quadrant homology

spectral sequence, converging to the Chas-Sullivan product. As a consequence of these

results, the cohomology of the free loop space would give us the module structure of the

homology, hence could help us understanding the Chas-Sullivan structure.

A manifold is called homogeneous if it comes equipped with a transitive Lie group action.

This captures the intuitive idea that a homogeneous space looks the same wherever on

it you are. Under loose conditions all homogeneous space are the quotient of a Lie

groups by a closed subgroup. One of the nicest examples of a homogeneous space are

the complete �ag manifolds, the quotient of a Lie group by its maximal torus. When

studying Lie groups as a consequence of the classi�cation, it is most important to study

the simple Lie groups. Hence when studying homogeneous spaces it is most important

to study the homogeneous space obtained as the quotient of a simple Lie group.

The Chas-Sullivan products for some low dimensional spheres were computed by Menichi

in [25]. Then in 2002 the loop product of spheres and projective spaces was given in full

by Cohen, Jones and Yan, in [32]. More recently Hepworth [17] worked on the string

topology of simple Lie group and in particular gave the Chas-Sullivan product. Kupers

[21] has also worked on the string topology of simple Lie groups. Therefore it would be

a natural next step to investigate the free loop space of homogeneous spaces.

In this thesis our primary goal is the investigate the cohomology algebra of the free loop

space complete �ag manifolds. Our main tool to achieve this is the cohomology Leray-

Serre spectral sequence associated with the free loop �bration of the �ag manifolds.

We give constructions in the cases SU(n + 1)/Tn and Sp(n)/Tn, though our methods

should be applicable more generally. In both cases our �rst main result is the explicit

calculation of all non-trivial di�erentials in the spectral sequences. For the Leray-Serre

spectral sequence associated with the free loop �bration of SU(n+1)/Tn, we investigate
in detail the structure of the third page of the spectral sequence. These more general

results allow us to deduce the cohomology of SU(3)/T 2 and Sp(2)/T 2 as Z-modules,

which we give in Theorems 5.1 and 6.1.

Theorem 5.1. The free loop cohomology of SU(3)/T 2 is given by

H∗(Λ(SU(3)/T 2);Z) = A/I,

where

A = ΛZ(γi, (x4)m, yi, (x2)m(y1(γ1 + γ2) − y2γ2), (x2)my2(γ2
1 − γ1γ2), (x2)mγ2

1γ2)
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and

I = [(x2)m1 −m!(x2)m, (x4)m1 −m!(x4)m, γ2
1 + γ2

2 + γ1γ2, γ
3
1 , y1(2γ1 + γ2) − y2(γ1 + 2γ2),

3(x2)m(y1γ
2
1 + y2γ

2
2), 3(x2)my1y2(γ1 − γ2), 3(x2)my1y2γ1, (x2)my1y2γ

2
1γ2]

where 1 ≤ i, j ≤ n, m ≥ 1, ∣γi∣ = 2, ∣yi∣ = 1, ∣(x2)k∣ = 2k and ∣(x4)k∣ = 4k.

Theorem 6.1. The integral cohomology of the free loop space of the complete �ag man-

ifold of Sp(2) is given by

H∗(Λ(Sp(2)/T 2);Z) = A/I,

where

A = ΛZ((x6)bγi, y1y2(x2)a(x6)b, (x6)byi, (x2)m(x6)b(y1γ2 + y2γ1),
(x2)m(x6)b(y1γ1 − y2γ2), (x2)a(x6)bγ3

1γ2)

and

I = [(x2)m1 −m!(x2)m, (x6)m1 −m!(x6)m, γ2
1 + γ2

2 , γ
2
1γ

2
2 , 2(y1γ1 + y2γ2), jy1(x2)aγ3

1)]

for i, j = 1,2, m ≥ 1, a, b ≥ 1 either j = 2 or j = 4 and where ∣(x2)m∣ = 2m, ∣(x6)m∣ = 6m,

∣yi∣ = 1 and ∣γi∣ = 2.

In Chapters 1, we discuss the relevant algebraic topology that we will use in latter

chapters. In particular basic techniques for �nding homotopy splitting of spaces, applying

the universal coe�cient theorems to deduce the relationship of the module structure

between cohomology with integral coe�cients and cohomology with coe�cients over

�eld of zero or prime characteristic and set out the essential properties of the cohomology

Leray-Serre spectral sequence. This is our main tool for investigating the cohomology of

free loop space of homogeneous spaces.

In Chapter 2, we review the basic theory of symmetric polynomials. This is particularly

relevant for our work in Chapter 4. In particular we discuss elementary symmetric, com-

plete homogeneous symmetric polynomials and the fundamental theorem of symmetric

polynomials.

Chapter 3 is the �nal background chapter, in which we give an overview of the homology

and cohomology of of Lie groups, their complete manifolds and based loop spaces. We

will present the results we intend to use in later chapters but also try to give the picture

for all simple Lie groups.

Chapter 4 contains our main combinatorial work and is primarily concerned with under-

standing the structure of the quotient of the polynomial algebra by the ideal generated

by symmetric polynomials. The chapter contains some known and some new results.
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We present a method for �nding a simple additive basis of the polynomial symmetric

quotient. Investigate the degree-wise size of this bases, before making a few remarks

about the multiplication of basis element. Which we put to use at the end of Chapter 5.

In Chapter 5, we investigate the cohomology Leray-Serre spectral sequence associated

with the free loop space �bration of the complete �ag manifold of SU(n). First we

derive a formula for the di�erentials in the spectral sequence, then investigating in de-

tail the structure of the the third page. Lastly we calculate the module structure of

H∗(Λ(SU(3)/T 2);Z) by describing the algebra structure of of the E∞-page of Leray-

Serre spectral sequence of the free loop �bration of Λ(SU(3)/T 2) in terms of generators

and relations.

We start Chapter 6 by describing the di�erentials of the Leray-Serre spectral sequence

associated with the free loop �bration of Sp(n)/Tn. As a �nal result we calculate the

module structure of H∗(Λ(Sp(2)/T 2);Z) by describing the algebra structure of of the

E∞-page of Leray-Serre spectral sequence of the free loop �bration of Λ(Sp(2)/T 2) in

terms of generators and relations.



Methods in algebraic topology

In this chapter we introduce the notions from algebraic topology necessary for obtaining

our main results.

1.1 Homotopy theory

In this section we give the notions from homotopy theory that are used in the work of

this thesis.

De�nition 1.1. A map of spaces p∶E → B is called a �brations if for any other space

W , homotopy G∶ I ×W → B and map h∶W → E there exists a homotopy H ∶ I ×W → E

such that H0 = h. In this case we call the pre-image F = p−1(∗), the �ber and usually

write the �bration as

F → E
pÐ→ B.

The map f ∶X → Y is homotopy �bration if there is a homotopy equivalents to a �bration.

That is there is a �bration p∶E → B and homotopy equivalences a and b such that the

diagram

X
f //

b

��

Y

a

��
E

p // B

commutes. The homotopy �ber of f is de�ned to be F = p−1∗, where ∗ is the base-point.

For the remainder of this section assume all spaces are path connected and have the

homotopy type of a CW-complex.

De�nition 1.2. Given a pointed space X, de�ne the path space PX to be Map∗(I,X)
the space of all paths in X ending at the base point.

The space PX is contractible and is the total space in the path space �bration

ΩX → PX
pÐ→X, (1.1)

where p maps each path to its starting point.

5



6 Methods in algebraic topology

The next two Lemmas give some of the properties of the homotopy �ber, for proofs see

[1, �3] Propositions 3.3.12 and 3.5.10.

Lemma 1.3. Given a homotopy �bration f ∶X → Y , the pullback If of f in the pullback

diagram below has the homotopy type of the homotopy �ber F of f . That is there is a

homotopy equivalence α such that diagram

If //

q

��

PY

p′

��
F //

α
??

X
f // Y

(1.2)

commutes and where p∶PY → Y is the path space �bration.

Lemma 1.4. Let f ∶X → Y be a homotopy �bration and let F → E
p′Ð→ B be a �bration.

The sequence of maps

ΩY → If
qÐ→X,

where q is induced by the pullback in (1.2), is a �bration sequence.

As a consequence of Lemma 1.4, we many extend any homotopy �bration sequence

F →X → Y to a sequence of homotopy �brations

⋯ → Ω2Y → ΩF → ΩX → ΩY → F →X → Y.

The next two propositions are a common tool used to obtain a splitting of topological

spaces.

Proposition 1.5. Let F
iÐ→ E

pÐ→ B be a �bration sequence such that p∶E → B is null-

homotopic. Then there exists a homotopy section s∶E → F .

Proof. Consider diagram (1.2) in Lemma 1.4 with f = p. Since p ≃ ∗, there exists a

section s̄∶E → Ip and s = α−1 ○ s̄∶E → F is the required section.

Proposition 1.6. If ΩB → F
pÐ→ E is a principle �bration arising from �bration F →

E
qÐ→ B with B simply connected and homotopy section s∶E → F , then

F ≃ ΩB ×E.

Proof. Consider the maps of homotopy �brations

ΩB //

i

��

ΩB ×E //

1×s
��

E

id

��
ΩB ×ΩB //

m

��

ΩB × F //

φ

��

E

id

��
ΩB // F // E,
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where i is the inclusion into the �rst component, m is the loop multiplication map and

φ the action of ΩB on F . More precisely since p∶F → E is a �bration, for any x ∈ F
and γ∶S1 → B there is a lift γ̄∶ I → E such that γ̄(0) = x. In which case we may de�ne

φ∶ΩB × F → F by φ(γ, x)) = γ̄(1). The induced maps in the associated long exact

sequences of homotopy groups give us a commutative diagram

⋯ // πn+1E

��

// πnΩB

��

// πnΩB × πnE

��

// πnE

��

// πn−1ΩB

��

// ⋯

⋯ // πn+1E

��

// πnΩB × πnΩB

��

// πnΩB × πnF

��

// πnE

��

// πn−1ΩB × πn−1ΩB

��

// ⋯

⋯ // πn+1E // πnΩB // πnF // πnE // πn−1ΩB // ⋯.

Using the �ve lemma and Whiteheads theorem we obtain the desired result.

De�nition 1.7. For a space X, de�ne the free loop space ΛX to be be the space

Map(S1,X) of non-pointed maps from the unit circle to X.

It can be show directly using De�nition 1.1 that

ΩX → ΛX
evalÐÐ→X (1.3)

where eval is the maps sending a loop to the image of its base-point, is a �bration

sequence called the free loop �bration of X.

There is a canonical section s∶X → Λ of �bration (1.3), given by sending a point to

the constant loop at that point. However we cannot apply Proposition 1.6 to obtain a

splitting since �bration (1.3) need not be a principle �bration.

1.2 The universal coe�cients theorems

In this section we discusses the universal coe�cient theorems, which give the exact rela-

tionship between the module structure of the homology and cohomology of a space with

respect to di�erent coe�cient rings. In particular we look at the relationship between

cohomology with integral coe�cients and cohomology over a �nite �eld of prime char-

acteristic. The relationships in the Universal coe�cients theorems are given in terms of

functors Ext and Tor, for more informational and de�nition see for example [35, Chapter

7]. The next two theorems are known as the universal coe�cients theorems, for proofs

see for example [14, �3.1 and 3.A] Theorems 3.2 and 3A.3.

Theorem 1.1 (Universal coe�cients theorem). Given any topological space X, an

abelian group G and an integer n ≥ 1, there is a split exact sequence of abelian groups
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0→ Ext(Hn−1(X;Z),G) →Hn(X;G) → Hom(Hn(X;Z),G) → 0,

which is natural with respect to continuous maps between spaces.

Theorem 1.2 (Universal coe�cients theorem for homology). Given a topological

space X, an abelian group G and an integer n ≥ 1, there is an exact sequence of abelian

groups

0→Hn(X;Z) ⊗G αnÐ→Hn(X;G) → Tor(Hn−1(X;Z),G) → 0,

which is natural with respect to continuous maps between spaces.

In particular the module structure of the homology and cohomology with respect to

any coe�cient ring is completely determined by the homology or cohomology over the

integers. In the case of coe�cients over a �nite �eld of prime order or the rationals, we

have the following explicit relationship.

Corollary 1.3. For any topological space X and for any i ≥ 0, if

H i(X;Z) ≅ Za ⊕Za1p1 ⊕⋯⊕Zajpj

where j ≥ 0 , p1, . . . , pj are distinct primes and a, a1, . . . , aj non-negative integers, then

for each 1 ≤ k ≤ j the cohomology of X with coe�cients in Zpk is given by

H i(X;Zpk) ≅ Za+akpk

and H i−1(X;Zpk) ≅ (H i−1(X;Z) ⊗Zpk) ⊕Zakpk .

For prime p ≠ pk for any 1 ≤ k ≤ j

H i(X;Zp) ≅ Zap

and

H i(X;Q) ≅ Qa.

1.3 The Leray-Serre spectral sequence

In this section we give the structure of the Leray-Serre spectral sequence for cohomology,

a powerful tool for studying the cohomology algebra of spaces that sit in a �brations

sequence F → E
pÐ→ B.

Given a commutative ring R, a bigraded module M is an R-module with an index

structure of the form
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M = ⊕i,j∈ZM
i,j

where each M i,j is an R-module. A bigraded algebra is a bigraded module with an

additional multiplicative structure such that if a ∈M i,j and b ∈Mk,l then ab ∈M i+k,j+l.

A di�erential d of bidegree (a, b) on a bigraded module E is a collection of maps d =
di,j ∶Ei,j → Ei+a,j+b such that dd = 0. A di�erential bigraded module is a bigraded module

with a di�erential, often denoted by (E∗,∗, d).

De�nition 1.1. A spectral sequence is a sequence of di�erential bigraded modules

(E∗,∗
r , dr)r≥1, where for each r ≥ 2, E∗,∗

r+1 is obtained from (E∗,∗
r , dr) by E∗,∗

r+1 =H(E∗,∗
r , dr),

that is, the homology of the previous di�erential bigraded modules. We shall often refer

to (E∗,∗
r , dr) as the rth page of the spectral sequence.

There is a standard construction which for each �bration F → E
pÐ→ B produces a

spectral sequence. Which are proven in [24, �5] Theorem 5.2 and Proposition 5.6 or [15,

�1.2]. A spectral sequence exits for any arbitrary �bration however only under certain

conditions are they useful; these conditions are speci�ed by the next two theorems on

the convergence of a spectral sequence.

Theorem 1.2. Given a �bration F → E
pÐ→ B such that B is simply connected, there is

a spectral sequence (E∗,∗
r , dr) satisfying the following:

1. Ei,jr = 0 for all r ≥ 2 and i < 0 or j < 0, that is, the spectral sequence is only non-zero

in the �rst quadrant.

2. Each di�erential dr has bidegree (r,1 − r).

3. There is an integer 1 ≤ e < ∞ for each i, j ∈ Z, such that for each r ≥ e, dr = 0 and

so Ei,jr+1 = Ei,jr . If H∗(B) or H∗(F ) is bounded then such an e exists for all i, j

simultaneously, in which case we denote E∗,∗
e by E∗,∗

∞ .

4. There is a �ltration by subgroups of Hn(E;R), 0 ⊆ F 0
n ⊆ ⋯ ⊆ Fnn = Hn(E;R) such

that Ep,n−p∞ ≅ F pn/F p−1
n .

A spectral sequence is said to converge if it satis�es 3. and 4. above. From now on, we will

assume that R = Z unless otherwise stated. The next theorem gives us the Leray-Serre

spectral sequence for cohomology.

Theorem 1.3. The cohomology spectral sequence (E∗,∗
r , dr) associated to the �bration

F → E
pÐ→ B where B is simply connected, converges to H∗(E) as an algebra. In addition

it satis�es the following properties:

1. Ep,q2 ≅Hp(B;Hq(F )) for each p, q ∈ Z.
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2. The product in E∗,∗
2 is the maps Hp(B;Hq(F ))×Hs(B;Ht(F )) →Hp+s(B;Hq+t(F ))

for each p, q, s, t ∈ Z, given by ([∑i aiui], [∑j bivi]) ↦ [∑i,j (−1)qs(ai ⌣ bj)(ui ⌣ vj)],
for cocycles ui,vi and coe�cients ai ∈Hq(F ), bj ∈Ht(F ), where ⌣ is the cup prod-

uct in cohomology.

3. All di�erentials satisfy the Leibniz rule.

In a cohomology Leray-Serre spectral sequence on page E∗,∗
2 the vertical axis is E0,∗

2 ≅
H0(B;H∗(F )) ≅ H∗(F ), so we will identify it with H∗(F ). Similarly the horizontal

axis is E∗,0
2 ≅H∗(B;H0(F )) ≅H∗(B), so is identi�ed with H∗(B). In particular by the

formula given in the second part of Theorem 1.3, the cup product structure in these axis

agrees with multiplication on E∗,∗
2 .



Symmetric polynomials

A polynomial in Z[γ1, . . . , γn] is called symmetric if it is invariant under permutations

of the indices of variables γ1, . . . , γn. The study of symmetric polynomials goes back

more than three hundred years, originally used in the study of roots of single variable

polynomials. Today symmetric polynomials have applications in a diverse range of areas

of mathematics. In the thesis the relevance of the symmetric polynomials is brought by

their presence in the cohomology rings of complete �ag manifolds, in Section 3.3. In this

chapter we summarise some basic concepts from the theory of symmetric polynomially

that will be essential for our later work. A compete introduction to the topic can be see

in [39, �7] or [22, �I].

2.1 Elementary symmetric polynomials

Much of the language used to described symmetric polynomials is the language of parti-

tions. So before describing the symmetric polynomials it is �rst necessary to introduce

partitions.

De�nition 2.1. An n partition λ is a sequence of non-negative integers (λ1, . . . , λk), for
some integer k ≥ 1, such that

λ1 ≥ ⋯ ≥ λk and λ1 +⋯ + λk = n.

By convention we consider partition (λ1, . . . , λk) and (λ1, . . . , λk,0, . . . ,0) to be equal

and abbreviate an n partition λ by λ ⊢ n.

The elementary symmetric polynomials are for any given n, a given collection of n sym-

metric polynomials in n variables. In the next theorem, we see that the elementary

symmetric polynomials form a basis of the symmetric polynomials. That is any sym-

metric polynomials can be expressed as a unique polynomial in elementary symmetric

polynomials.

11
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De�nition 2.2. For each n ≥ 1 and 1 ≤ l ≤ n, de�ne the elementary symmetric polyno-

mials σl ∈ Z[γ1, . . . , γn] in n variables by

σl = ∑
1≤i1<⋯<il≤n

γi1⋯γil .

For an partition λ = (λ1, . . . , λk) denote by σλ the symmetric polynomial σλ1⋯σλk .

Example 2.3. When n = 3

σ1 = γ1 + γ2 + γ3,

σ2 = γ1γ2 + γ1γ3 + γ2γ3

and σ3 = γ1γ2γ3.

The following theorem is sometimes known as the fundamental theorem of symmetric

polynomials. For a proof see for example [39, �7.4].

Theorem 2.4. For each n ≥ 1, the set of σλ where λ ranges over all n partitions forms

an additive basis of all symmetric functions. That is for 1 ≤ i ≤ n, the set of σi form a

multiplicative basis of all symmetric functions.

2.2 Complete homogeneous symmetric polynomials

The complete homologous symmetric functions are another collection of n symmetric

polynomials in n variables for each n ≥ 1. In a sense which is made explicit in [39,

�7.6], the complete homogeneous symmetric polynomials can be thought of as dual to

the elementary symmetric polynomials.

De�nition 2.1. For each n ≥ 1 and 1 ≤ l ≤ n, de�ne the complete homogeneous sym-

metric polynomials hl ∈ Z[γ1, . . . , γn] in n variables by

hl = ∑
1≤i1≤⋯≤il≤n

γi1⋯γil .

For a partition λ = (λ1, . . . , λk), denote by hλ the symmetric polynomial hλ1⋯hλk .

Example 2.2. When n = 3

h1 = γ1 + γ2 + γ3,

h2 = γ2
1 + γ2

2 + γ2
3 + γ1γ2 + γ1γ3 + γ2γ3

and h3 = γ3
1 + γ3

2 + γ3
3 + γ2

1γ2 + γ2
1γ3 + γ2

2γ1 + γ2
2γ3 + γ2

3γ1 + γ2
3γ2 + γ1γ2γ3.
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Given an n × n matrix M with entries in the non-negative integers, denote the row and

column sums by

row(M) = (r1, . . . , rn)
and col(M) = (c1, . . . , cn).

For n partitions λ and µ denote by Mλµ, the number of n × n matrices M with

row(M) = λ
and col(M) = µ.

The next theorem gives the relationship between the elementary symmetric and complete

homogeneous symmetric polynomials. For a proof see for example[39, �7.5].

Theorem 2.3. Let λ be an m partition. Then for each n ≥ 1, the elementary symmetric

and complete homogeneous polynomials in n variables satisfy the following relationship

hλ = ∑
µ⊢m

Mλµσµ.

As as consequence of Theorem 2.3, any polynomial in elementary symmetric polyno-

mials can be replaced with a unique polynomial in complete homogeneous symmetric

polynomials. Hence Theorem 2.4 could equally well be stated in terms of hλ rather than

σλ. That is the complete homogeneous symmetric polynomials also form a basis of the

symmetric polynomials.





Topology of Lie groups and homogeneous

space

In this chapter we discuss the cohomology of simple Lie groups and some homogeneous

space relevant to our later work. In addition we present the homology and cohomology

of the based loop spaces of some such spaces.

3.1 Lie groups

A Lie groups is a manifold with a group structure such that the operations of multiplica-

tion and inversion are smooth maps of the manifold. A compact connected Lie group is

called simple if it is non-abelian, simply connected and has no non-trivial connected nor-

mal subgroups. The classi�cation of simple Lie groups is equivalent to the classi�cation

of simple Lie algebras and was �rst attempted by Killing [18], later improved by Cartan

[6], with the modern classi�cation by Dynkin diagrams being completed by Dynkin in

1947.

De�nition 3.1. Given a �eld K, a Lie algebra over K is a K-vectors space V with a

Lie bracket [, ]∶V × V → V such that

1. [aX + bY,Z] = a[X,Z] + b[Y,Z] and [Z,aX + bY ] = a[Z,X] + b[Z,Y ],

2. [X,X] = 0,

3. [X, [Y,Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0

for all a, b ∈K and X,Y,Z ∈ V .

For each n ≥ 1, the classical Lie groups SO(n), SU(n) and Sp(n) are de�ned by the

following sets of matrices, group operation matrix multiplication and subspace topology

in Rn2
,R2n2

and R4n2
respectively.

SO(n) = {A ∈Mn(R) ∣ A⊺A = In, det(A) = 1},

15
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SU(n) = {A ∈Mn(C) ∣ Ā⊺A = In, det(A) = 1},

Sp(n) = {A ∈Mn(H) ∣ Ā⊺A = In,},

where Mn(R) denotes the set of n × n matrices over real division algebra R. The Lie

group Spin(n) is de�ned to be the universal cover of SO(n)

Let O denote the octonion real division algebra, the 8-dimensional vector space with

basis 1, e1, e2, e3, e4, e5, e6, e7 and multiplication given in Table 3.1. Conjugation on O is

de�ned in the same way as the complex numbers and the quaternions.

Table 3.1: Multiplication in the octonion division algebra

1 e1 e2 e3 e4 e5 e6 e7

1 −1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

We can de�ne the exceptional Lie group G2 to be the set of automorphism of the octonion

R-algebra O. That is treating elements of O, as 8-dimensional column vectors over R,

G2 = {g ∈ GL(n,R) ∣ g(oo′) = g(o)g(o′) for all o, o′ ∈ O}.

Given an R-algebra A its complexi�cation AC is de�ned to be {a + ib ∣ a, b ∈ A}, such
that i2 = −1. Conjugation is given by τ(a + ib) = a − ib for each a + ib ∈ AC . Let

J = {X ∈M(3,O) ∣ X̄⊺ =X} with multiplication X ○Y = 1
2(XY +Y X), be the Jordan R-

algebra. We also de�ne X×Y = 1
2(2X ○Y )−tr(X)Y −tr(Y )X+(tr(X)tr(Y )−(X,Y ))I3,

inner product (X,Y ) = tr(X ○ Y ) and Hermitian inner product ⟨X,Y ⟩ = (τX,Y ) for

all X,Y ∈ J . The operations ○, ×, (, ) and ⟨, ⟩ are de�ned in the same way in the

complementation JC . We de�ne the exceptions Lie groups F4 and E6 by

F4 = {α ∈ IsoR(J) ∣ α(X ○ Y ) = αX ○ αY for allX,Y ∈ J},

E6 = {α ∈ IsoR(JC) ∣ α(X × Y )α−1 = αX × αY, ⟨αX,αY ⟩ = ⟨X,Y ⟩ for allX,Y ∈ JC}.

ForA,B ∈ JC , let Ã in the dual space JC
∗
be given by ÃX = A○X and let [, ]∶JC∗×JC∗ →

JC
∗
be [Ã, B̃]X = Ã(B̃X) − B̃(ÃX) for all X ∈ JC . De�ne ∨∶JC × JC → JC

∗
by

X ∨ Y = [X̃, Ỹ ] + (X ○ Y − 1

3
(X,Y )I3)∼.
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We de�ne a C-algebra B = JC ⊕ JC ⊕ C ⊕ C. Given φ ∈ JC∗, L,F ∈ JC and v ∈ C, let
Φ(φ,L,F, v)∶B → B be give by

Φ(φ,L,F, v)(X,Y, ξ, η) =

(φX − 1

3
vX + 2F × Y + ηA, 2L ×X − φY + 1

3
vY + ξF, (L,Y ) − vξ, (F,X) − vη).

Multiplication in B will be given by

P ×Q = Φ(φ,A,B, v)

for

φ = −1

2
(X ∨W +Z ∨ Y ),

A = −1

4
(2Y ×W − ξZ − ζX),

B = 1

4
(2X ×Z − ηW − ωY ),

C = 1

8
((X,Y ) − (Z,Y ) + ξω − ζη)

for all P = (X,Y, ξ, η),Q = (W,Z, ζ, ω) ∈ B. We de�ne the exceptional Lie group E7

E7 = {α ∈ IsoC(B) ∣ det(αP ) = detP, ⟨αP,αQ⟩ = ⟨P,Q⟩ for all P,Q ∈ B},

where the Hermitian inner product is de�ned ⟨P,Q⟩ = ⟨X,Z⟩ − ⟨Y,W ⟩ + ξ̄ζ − η̄ω for all

for all P = (X,Y, ξ, η),Q = (W,Z, ζ, ω) ∈ B.

De�ne {,}∶B ×B → B by

{P,Q} = (X,W ) − (Z,Y ) + ξω − ζη

for all P = (X,Y, ξ, η),Q = (W,Z, ζ, ω) ∈ B. We will de�ne C-Lie algebra D = B∗ ⊕B ⊕
B ⊕C⊕C⊕C. With Lie bracket

[(φ1, P1,Q1, r1, s1, t1), (φ2, P2,Q2, r2, s2, t2)] = (φ,P,Q, r, s, t)



18 Topology of Lie groups and homogeneous space

where

φ = [φ1, φ2] + P1 ×Q2 − P2 ×Q1

P = φ1P2 − φ2P1 + r2P2 − r2P1 + S1Q2 − S2Q1

Q = φ1Q2 − φ2Q1 − r1Q2 − r2Q1 + t1P2 − t2P1

r = 1

8
(−{P1,Q2} + {P2Q1}) + s1t2 − s2t1

s = 1

4
{P1, P2} + 2r1s2 − 2r2s1

t = −1

4
{Q1,Q2} − 2r1t2 + 2r2t1.

De�ne involutions λ, λ′ and τ on D by

λ(φ,P,Q, r, s, t) = (λφλ,λP,λQ, r, s, t),
λ′(φ,P,Q, r, s, t) = (φ,Q,−P,−r,−t,−s),

τ(φ,P,Q, r, s, t) = (τφτ, τP, τQ, τr, τs, τt)

for each (φ,P,Q, r, s, t) ∈D and involution λ in B is de�ned λ(X,Y, ξ, η) = (Y,−X,η,−ξ)
for each (X,Y, ξ, η) ∈ B. Let ⟨, ⟩∶D ×D → C be given by

(R1,R2) = (φ1, φ2) − {Q1, P2} + {P1,Q2} − 8r1r2 − 4t1s2 − s1t2,

then

⟨R1,R2⟩ = (τλ′λR1,R2)

for each D1 = (φ1, P1,Q1, r1, s1, t1),D2(φ2, P2,Q2, r2, s2, t2) =∈D. De�ne the exceptional

complex Lie group EC8 by

EC8 = {α ∈ IsoC(D) ∣[αD1, αD2⟩] = α[D1,D2] for allD1,D2 ∈D}.

We de�ne the exceptional Lie group E8 as a subgroups of EC8 by

E8 = {α ∈ EC8 ∣ ⟨αX,αY ⟩ = ⟨X,Y ⟩ for allX,Y ∈ EC8 }

The classi�cations of Lie groups states that the Lie groups de�ned above are the only

simple Lie groups, see for example [26, �5] Theorem 6.27.

Theorem 3.2. The only compact connected simple Lie groups are

Spin(m), SU(n), Sp(n), G2, F4, E6, E7, E8

for n ≥ 1 and m ≥ 2.

The next theorem gives a consequence of the classi�cation of Lie groups which is a

phrasing that better describes the importance in our situation, see [30].
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Theorem 3.3. Any compact connect Lie group is covered by a product of simple Lie

groups and circles.

As a consequence of Theorem 3.3, when studying the topology of Lie groups and other

related structures it is important to understand the topology of those associated with

the classical and exceptional simple Lie groups.

3.2 Cohomology of simple Lie groups

While the simple Lie groups are some of the most important spaces in topology, their

cohomology rings in many cases are far from easily described. With coe�cients in a �eld

of characteristic 0, the problem can be approached using methods utilizing de Rham

cohomology, see for example [34] and these algebras were the �rst to be found. Integrally

or over an arbitrary �eld the problem is more subtle and much work has been done by

many mathematician including Borel, Araki, Toda, Kono, Mimura and Shimada so today

much is known.

De�nition 3.1. Given a ring R, de�ne the tensor algebra TV over R-module V to have

module structure

TV = ⊕∞i=0T
iV

where

T i = V ⊗ ⋅ ⋅ ⋅ ⊗ V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i

.

Graded structure on TV is given by deg (v1 ⊗⋯⊗ vk) = ∑i deg vi for vi ∈ V and multi-

plication is given by v ⋅w = v ⊗w for each v,w ∈ TV . De�ne ΛV = TV /I where I is the

ideal generated by elements of the form

v ⊗w − (−1)deg v degww ⊗ v

with v,w ∈ TV . Given a set of elements {a1, . . . , am} with given degrees, let V be the free

graded R-module generated by this set. In this case we may denote TV by T (a1, . . . , am)
and ΛV by Λ(a1, . . . , am). In particular if all generators are of odd degree this algebra

coincides with that of the exterior algebra. If all generators have even degree then ΛV

is a polynomial algebra.

The integral cohomology of SU(n) and Sp(n) can be determined inductively using the

Leray-Serre spectral sequence associated to the �brations

SU(n) → SU(n + 1) → S2n+1 (3.1)

and

Sp(n) → Sp(n + 1) → S4n+3. (3.2)
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For the construction of these �brations see for example [1, �3.4].

Theorem 3.2. For each n ≥ 1, the cohomology of SU(n) is given by

H∗(SU(n);Z) = Λ(x3, x5, . . . , x2n−1),

where ∣xi∣ = i for i = 3,5, . . . ,2n − 1.

Proof. We know SU(2) is di�eomorphic to S3, hence

H∗(SU(3)) = Λ(x3)

where ∣x3∣ = 3. For each m ≥ 2, Sm is simply connected, hence n ≥ 1 the Leray-Serre

spectral sequence associated to �bration (3.1) converges. We proceed by induction on n.

As shown in Figure 3.1, on the E∗,∗
2 page of the spectral sequence, due to the module

structure of H∗(S2n−1), the only non-zero columns are at 0 and 2n−1. Since di�erentials

have bidegree (r,1 − r) all di�erential on pages other than E∗,∗
2n−1 are zero, so

E∗,∗
2n−1 = E

∗,∗
2 and E∗,∗

2n = E∗,∗
∞ .

Assuming inductively that H∗(SU(n − 1)) ≅ Λ(x3, x5, . . . , x2n−3) with deg(xi) = i. The
only non-zero entries of E∗,∗

2n−1 are in E
0,∗
2n−1 = Λ(x3, x5, . . . , x2n−3) or E2n−1,∗

2n−1 =H∗(SU(n−
1)) as a module. The highest degree non-zero E0,q

2n−1, is when q = 3 ⋅5⋯2n−1. However as

the bidegree of d2n−1 is (2n−1,2−2n) and the highest degree generator of H∗(SU(n−1)
is in dimension 2(n − 1) − 1. di�erential d2n−1 sends all generator in column E0,∗

2n−1 to 0.

Therefore d2n−1 is zero and E∗,∗
2 = E∗,∗

∞ .

Each negatively sloped diagonal of E∗,∗
∞ contains only one non-zero element. Such non-

zero elements occur only in odd entries of E
2(n−1),∗
∞ except for E2n−1,0

∞ lying in the

negatively sloped diagonal containing E
0,2(n−1)
∞ , which is zero since the �rst generator

of H∗(SU(n − 1)) occurs in degree 3. Therefore there are no extension problems and

the module structure of H∗(SU(n)) is clear. The multiplication in H∗(SU(n)) is freely
generated with one additional algebra generator then H∗(SU(n−1)), which comes from

E2n−1,0
∞ and hence this has degree 2n − 1 as required.
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⋮ ⋮ ⋮

2(n − 1) − 1 ⋅ ⋅
⋮ ⋮ ⋮

H∗(SU(n − 1)) 5 ⋅ ⋅
3 ⋅ ⋅
0 ⋅ ⋅
−1 0 0

0 . . . 2n − 1

H∗(S2n−1)

Figure 3.1: Leray-Serre spectral sequence associated to �bration (3.1)

Theorem 3.3. For each n ≥ 1, the cohomology of Sp(n) is given by

H∗(Sp(n);Z) = Λ(x3, x7, . . . , x4n−1),

where ∣xi∣ = i for i = 3,7, . . . ,4n − 1.

Proof. Using Fibration (3.2) and the fact that Sp(1) is di�eomorphic to S3, the proof is

the same as that of Theorem 3.2 with the exception that degree of the spheres increased.

With coe�cients over a �eld of characteristic 0 or Z2 the cohomology has an easily

presented form. The integral cohomology of SO(n) contains 2-torsion and cannot be

straightforwardly deduced from the characteristic 0 and Z2 cases in anything but low

dimensions. However the integral cohomology for any n ≥ 1 has been described in [31].

The rational and Z2 cohomology are as follows and can be found in [26, �3.6,7.5] Corollary

1.14 and Theorem 1.18 or in [11].

Theorem 3.4. For each n ≥ 1, the cohomology of SO(2n + 1) with rational coe�cients

is given by

H∗(SO(2n + 1);Q) = Λ[x3, x7, . . . , x4n−1],
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where ∣xi∣ = i for i = 3,7, . . . ,4n − 1. With Z2 coe�cients the cohomology of SO(2n + 1)
is given by

H∗(SO(2n + 1);Z2) =
Z2[x1, x3, . . . , x2n−1]

[xaii ] ,

where ∣xi∣ = i and ai is the smallest power of two such that iai ≥ 2n−1 for i = 3,5, . . . ,4n−
1.

Theorem 3.5. For each n ≥ 1, the cohomology of SO(2n) with rational coe�cients is

given by

H∗(SO(2n);Q) = Λ[x3, x7, . . . , x4n−3, x2n−1],

where ∣xi∣ = i for i = 3,7, . . . ,4n−1,2n−1. With Z2 coe�cients the cohomology of SO(2n)
is given by

H∗(SO(2n);Z2) =
Z2[x1, x3, . . . , x2n−1]

[xaii ] ,

where ∣xi∣ = i and ai is the smallest power of two such that iai ≥ 2n−1 for i = 3,5, . . . ,2n−
3.

The integral cohomology of G2 also contains 2-torsion, a proof of the following theorem

can be found in [11] Theorem 2.14.

Theorem 3.6. The cohomology of G2 is given by

H∗(G2;Z) = Z[x3, x11]
[x4

3, x
2
11, x

2
3x11,2x2

3]
,

where ∣x3∣ = 3 and ∣x11∣ = 11 .

Much is also known about the cohomology of the other exceptional Lie groups. In [26,

�7] it is shown the groups F4, E6 and E7 have 2 and 3-torsion, while E8 has 2, 3 and

5-torsion. The cohomology algebras over �eld of these theses characteristics can also be

found in [26, �7].

3.3 Cohomology of complete �ag manifolds

A manifold M is called a homogeneous space if it can be equipped with a transitive G

action for some Lie groups G. In this case we haveM ≅ G/H for some Lie subgroup H of

G isomorphic to the orbit of a point in M . A Lie subgroup T of Lie group G isomorphic

to a torus is called maximal if any Lie subgroup also isomorphic to a torus containing T

coincidences with T . The next proposition is straightforward to show, see for example

[26, �5.3] Theorem 3.15.

Proposition 3.1. All maximal tori in G are conjugate and the conjugate of a torus is a

torus. In addition given a maximal torus T , for all x ∈ G there exists an element g ∈ G
such that g−1xg ∈ T . Hence the union of all maximal tori is G.
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It is therefore unambiguous to refer to maximal torus T of G and consider the quotient

G/T , which is isomorphic regardless of the choice of T . The homogeneous space G/T is

called the complete �ag manifold of G. The rank of Lie group G is the dimension of a

maximal torus T . The ranks of classical simple Lie groups can be deduced by considering

the standard maximal tori of SU(n), SO(n) and Sp(n) see for example [10, Chapter 7].

For the ranks of the exception simple Lie groups see [43].

Proposition 3.2. For n ≥ 1, the ranks of SU(n + 1), Sp(n), SO(2n) and SO(2n + 1)
are n. The ranks of G2, F4,E6,E7 and E8 are 2,4,6,7 and 8 respectively.

De�ne the Weyl group of Lie groupG with maximal torus T to beWG = NG(T )/Z(T ) the
normalizer of T in G quotient the centraliser of T in G. The cohomology of homogeneous

spaces was studied in detail by Borel in [2]. In particular, from Borel's work it was

possible to deduce the rational cohomology of G/T .

Theorem 3.3. For compact connected Lie group G with maximal torus T

H∗(G/T ;Q) ≅ H∗(BT ;Q)
H̃∗(BT ;Q)WG

where BT is the classifying space of T .

In [4] Bott and Samelson, using Morse theory, extended Borel's work by showing that

there is no torsion in H∗(G/T ;Z). This made it easier to deduced the integral structure

of the cohomology of complete �ag manifolds in the cases of SU(n), Sp(n) and G2. Toda

later in [41] studied again the cohomology of homogeneous spaces, looking at the mod

p cohomology for prime p. In particular Toda was able to deduce in a nice form the

integral cohomology algebras of complete �ag manifolds in the case of SO(n). Then in

[42], Toda andWatanabe computed the cohomology in the cases of F4 and E6. Finally the

cohomology of complete �ag manifolds of simple Lie groups was completed by Nakagawa

in [27] and [28], �nishing the cases E7 and E8.

Theorem 3.4 ([2], [5]). For each n ≥ 0, the cohomology of the complete �ag manifold of

the simple Lie group SU(n + 1) is given by

H∗(SU(n + 1)/Tn;Z) = Z[γ1, . . . , γn+1]
[σ1, . . . , σn+1]

,

where ∣γi∣ = 2.

Sketch proof. By Theorem 3.3

H∗(SU(n + 1)/Tn;Q) ≅ H∗(BTn;Q)
H̃∗(BTn;Q)WSU∗n+1)

.

The cohomology of the classifying space of the n-torus BTn is Q[x1, . . . , xn] where

∣xi∣ = 2. The Weyl group WSU(n+1) is the symmetric group Sn+1. WSU(n+1) acts on the
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indices x1, . . . , xn, xn+1, where xn+1 = −x1 − ⋅ ⋅ ⋅ − xn. Hence the rational version of the

theorem is proved. In [5] Bott and Samelson showed that the integral cohomology of

complete �ag manifolds is concentrated in even degrees and is torsion free. Therefore

the problem of �nding the integral cohomology to considering the map H∗(SU(n +
1)/Tn;Z) → H∗(SU(n + 1)/Tn;Q), induced by the universal coe�cients theorem. This

problem is easily resolved in the cases of SU(n) and Sp(n) but not for other simple Lie

groups.

Theorem 3.5 ([42], Theorem 2.1). For each n ≥ 1, the cohomology of the complete �ag

manifold of the simple Lie group SO(2n + 1) is given by

H∗(SO(2n + 1)/Tn;Z) = Z[γ1, . . . , γn, t1, . . . , tn]
[σi − 2ti, t2i +∑2i−1

j=1 (−1)jtjt2i−j]
,

where 1 ≤ i ≤ n − 1, ∣γi∣ = 2 and ∣ti∣ = 2i.

Theorem 3.6 ([42], Corollary 2.2). For each n ≥ 1, the cohomology of the complete �ag

manifold of the simple Lie group SO(2n) is given by

H∗(SO(2n)/Tn;Z) = Z[γ1, . . . , γn, t1, . . . , tn−1]
[σi − 2ti, σn, t2i +∑2i−1

j=1 (−1j)tjt2i−j]
,

where 1 ≤ i ≤ n, ∣γi∣ = 2, ∣γn∣ = 2 and ∣ti∣ = 2i.

Theorem 3.7 ([2], [5]). For each n ≥ 1, the cohomology of the complete �ag manifold of

the simple Lie group Sp(n) is given by

H∗(Sp(n)/Tn;Z) = Z[γ1, . . . , γn]
[σ2

1, . . . , σ
2
n]
,

where ∣γi∣ = 2 and σ2
i denotes elementary symmetric polynomial σi in variables γ2

1 , . . . , γ
2
n.

Theorem 3.8 ([5], Theorem III ′). The cohomology of the complete �ag manifold of the

exceptional simple Lie group G2 is given by

H∗(G2/T 2;Z) = Z[γ1, γ2, γ3, t3]
[σ1, σ2, σ3 − 2t3, t23]

,

where ∣γi∣ = 2 for i = 1,2,3, ∣t3∣ = 6 and σ2
3 denotes elementary symmetric polynomial σ3

in variables γ2
1 , γ

2
2 , γ

2
3 .

Theorem 3.9 ([42]). The cohomology of the complete �ag manifold of the exceptional

simple Lie group F4 is given by

H∗(F4/T 4;Z) = Z[γ1, γ2, γ3, γ4, γ, t3, t4]
I

,
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where ∣γi∣ = 2 for i = 1,2,3,4, ∣γ∣ = 2, ∣t3∣ = 6, ∣t4∣ = 8 and

I = [σ1 − 2γ, σ2 − 2γ2, σ3 − 2γ3, σ4 − 4γt3 + 8γ4 − 3t4, t
2
3 − 3γ2t4 − 4γ3t3 + 8γ6,

3t24 − 6γt3t4 − 3γ4t4 − 13γ8, t34 − 6γ4t24 + 12γ8t4 − 8γ12].

Theorem 3.10 ([42]). The cohomology of the complete �ag manifold of the exceptional

simple Lie group E6 is given by

H∗(E6/T 6;Z) = Z[γ1, γ2, γ3, γ4, γ5, γ6, t1, t3, t4]
I

,

where ∣γi∣ = 2, 1 ≤ i ≤ 6, ∣t1∣ = 2, ∣t3∣ = 6, ∣t4∣ = 8 and

I = [σ1 − 3t1, σ2 − 4t21, σ3 − 2t3, σ4 + 2t41 − 3t4, σ5 − σ4t1 + σ3t
2
1 − 2t51,

2σ6 − σ4t
2
1 − t61 + t23, 9σ6t

2
1 + 3σ5t

3
1 − t81 + 3t4(t4 − σ3t1 + 2t41),

t9 − 3w2t, w3 + 15w2t4 − 9wt8],

where t = t1 − γ1 and w = t1 − σ3t1 + 2t41 + t(t3 − 2t31 + t21t − t1t2 + t3).

Theorem 3.11 ([27]). The cohomology of the complete �ag manifold of the exceptional

simple Lie group E7 is given by

H∗(E7/T 7;Z) = Z[γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ, t3, t4, t5, t9]
I

,

where ∣γi∣ = 2 = ∣γ∣, 1 ≤ i ≤ 7, ∣t3∣ = 6, ∣t4∣ = 8, ∣t5∣ = 10, ∣t9∣ = 18 and

I = [σ1 − 3γ,

σ2 − 4γ2,

σ3 − 2t3,

σ4 + 2γ4 − 3t4,

σ5 − 3γt4 + 2γ2t3 − 2t5,

t23 + 2σ6 − 2γt5 − 3γ3t4 + γ6,

3t24 − 2t3t5 + 2γσ7 − 6γt3t4 − 9γ2σ6 + 12γ3t5 + 15γ4t4 − 6γ5t3 − γ8,

2σ6t3 + γ2σ7 − 3γ3σ6 − 2t9,

t25 − 2σ7t3 + 3γ3σ7

− 6γ8
0u + 9γ4

0u
2 + 2γ6

0u
2 − 12γ2

0uv + u3 + 3v2,

γ1
04 − 6γ1

00u − 3γ6
0u

2 + 4γ8
0uv − 3u2v + 3γ2

0v
2,

− 2γ1
04u + 6t60u

3 + 9w2 − 2γ8
0uv − 12γ4

0u
2v − 3u3v − γ6

0v
2 + 6γ2

)uv
2 − 2v3],

where γ0 = γ − γ1, u = t4 − (2γ1 + γ0)t3 + 2γ4
1 + 6γ3

1γ
2
0 + 7γ2

1γ
2
0 + 3γ1γ

3
0 ,

v = σ6 −(2γ1 +γ0)t5 − 3γ1γ0t4 +(4γ2
1γ0 + 2γ1γ

2
0)t3 − 3γ5

1γ0 − 8γ4
1γ

2
0 − 8γ3

1γ
3
0 and w = 1

2γ0u
2.
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Theorem 3.12 ([28]). The cohomology of the complete �ag manifold of the exceptional

simple Lie group E8 is given by

H∗(E8/T 8;Z) = Z[γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ, t3, t4, t5, t6, t9, t10, t15]
I

,

where ∣γi∣ = 2 = ∣γ∣ for 1 ≤ i ≤ 8, ∣tj ∣ = 2j for j = 3,4,5,6,9,10,15 and

I = [σ1 − 3γ, σ2 − 4γ, σ3 − 2t3, σ4 + 2γ4 − 3t3, σ5 − 3γt4 + 2γ2t3 − 2t5,

σ6 − 2t23 − γt5 + γ2t4 − γ6 − 5t6, −3σ8 + 3t24 − 2t3t5 + γ(2σ7 − 6t3t4),
2σ6t3 + γσ8 + γ2σ7 − 3γ3σ6 − 2t9, t

2
5 − 2σ7t3 − γ2σ8 + 3γ3σ7 − 3t10,

15t26 + 2t3t4t5 − 2σ7t5 + 2t43 + 10t23t6 − 3σ8t4 − 2t34 + γ(σ8t3 − 2t23t5 + 4σ7t4 + 6t3t
2
4)

+ γ2(3t10 − 25t4t6 − σ7t4 + 6t3t
2
4) + γ3(25t3t6 − 3t4t5 + 10t33) + γ4(3σ8 + 3t3t5 + 5t24)

+ γ5(−3σ7 − 5t3t4) + 4γ6t23 − 7γ8t4 + 4γ9t3,

σ2
7 − 3σ8t6 + 6t4t10 − 4σ8t

2
3 + 6σ7t3t4 − 6t23t

2
4 − 12t24t6 − 2t3t5t6

+ γ(24t3t4t6 − 8σ7t
2
3 − 8σ7t6 + 4σ8t5 − 6t3t10 + 12t33t4)

+ γ2(−2t3t4t5 + 6t34 + 2t23t6 + 20t26 − 4t43 − σ7t5) + γ3(−12t3t
2
4 + 8σ8t3 − 5σ7t4 + 3t5t6)

+ γ4(3t10 − 26t4t6 + 6σ7t3 − 4t23t4) + γ5(24t3t6 + 3t4t5 + 12t33) + γ6(−6σ8 + 2t24)
− 2(t23 + σ6)(t9 − σ6t3) − 2t15,

t29 − 9σ8t10 − 6t24t10 − 4t33t9 − 10t3t6t9 + 2t3t5t10 − 2t3t4t5t6 − 6σ7t
2
4 + 3σ8t4t6

+ σ8t
2
3t4 + 6t23t

3
4 + 12t34t6 + 2σ2

7t4 + 2σ7t
2
3t5 − 2t33t4t5 + 2σ − 7t5t6 + 4t63 − 10t36

+ 18t43t6 + 15t23t
2
6 − 9σ7σ8t3 + γ(−2t3t5t9 − 24σ7t4t6 + 8σ8t4t5 + 4σ7t

2
3t4 + 4σ7t10

− σ8t9 + 2σ2
7t3 + 4σ8t3t6 + 12t3t4t10 − 36t3t

2
4t6 + 12t23t5t6 + σ8t

3
3 + 6t43t5 − 18t33t

2
4)

+ γ2(24t43t4 − 2σ2
8 − σ7t9 − 11t23t10 + 2t3t4t9 − 2σ8t3t5 + 16σ7t3t6 − 3σ7t4t5

+ 75t4t
2
6 − 6t44 − 9σ8t

2
4 + 81t23t4t6 − 13t6t10 + 4t3t

2
4 + t5 − σ7t

3
3)

+ γ3(−3t5t10 − 150t3t
2
6 − 135t33t6 + 6t23t9 − 2σ7t3t5 + 21σ7t

2
4 + 15σ7σ8 + 3t4t5t6

− 3t23t4t5 + 18t3t
3
4 + 15t6t9 + 14σ8t3t4 − 30t53)

+ γ4(−13σ8t6 + 2t4t10 − 5σ2
7 − 33t23t

2
4 + 3t5t9 − 28t3t5t6 − 45t24t6 − 41σ7t3t4

− 13t33t5 − 9σ8σ
2
8) + γ5(3σ7t6 − 6t24t5 + 23σ7t

2
3 + 105t3t4t6 − 6σ8t5 − 3t4t9 + 45t33t4)

+ γ6(11t34 − 4t3t9 + 4σ7t5 + 9t3t4t5 + 12t43 + 66t23 + 75t26 + 2σ8t4)
+ γ7(−33t3t

2
4 + 12t23 + 15t5t6) + γ8(−4t10 + 21t23t4 − 5σ7t3 − 3t4t6)

+ γ9(6t9 − 42t33 − 99t3t6) + γ10(−4σ8 − 6t24 − 13t3t5) + γ11(3σ7 + 27t3t4)
+ γ12(60t6 + 18t23) + 6γ13t5 − 9γ14t4 − 12γ15t3 + 10γ2

3 ,

9γ2
80 + 45γ14

8 v + 12γ10
8 w + 60γ8

8v
2 + 30γ4

8vw + 10γ2
8v

3 + 3w2,

11γ24
8 + 60γ18

8 v + 21γ14
8 w + 105γ1

82v2 + 60γ8
8vw + 60γ6

8v
3 + 9γ4

8w
2 + 30γ2

8v
2w + 5v4,

− 9x2 − 12γ9
8vx − 6γ5

8wx + 9γ14
8 vw − 10γ12

8 v3 − 3γ10
8 w2 + 30γ8

8v
2w − 35γ6

8v
4

+ 6γ4
8vw

2 − 10γ2
8v

3w − 4v5 − 2w3].
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where

v =2t6 + t23 − γ8t5 + t4(−γ4 + γ2
8) − γ3

8t3 + γ6 − γ4γ2
8 + γ3γ3

8 + γ2γ4
8 − γγ5

8 ,

w =t10 + γ8t9 − γ3
8σ7γ8t4t5 + 2γ2

8t
2
4 − 2γ2

8t3t5

+ t3t4(−6γγ2
8 + 2γ3

8) + t23(2γ2γ2
8 + 2γγ3

8 − 2γ4
8) + t6(−5γ2γ2

8 + 5γγ3
8)

+ t5(γ4γ8 + 3γ3γ2
8 + γ2γ3

8) + t4(6γ4γ2
8 − 3γ3γ3

8 − 2γ2γ4
8 − γγ5

8 − γγ5
8 + γ6

8)
+ t3(−6γ5γ2

8 − 2γ4γ3
8 + 4γ3γ4

8 + 6γ2γ5
8 − 4γγ6

8 + γ7
8)

+ 4γ7γ3
8 − 6γ6γ5

8 + 2γ4γ6
8 + γ3γ7

8 − γ2γ8
8 ,

x =t15 − 20t3t
2
6 + 3t23t9 − 23t33t6 − 6t53 + 4t6t9 + 3γ8t4t10 − γ8t5t9 − 3γ8t

2
3t

2
4 + 3γ8σ7t3t4

− 6γ8t
2
4t6 + t33t5(−3γ + 2γ8) + t3t5t6(−4γ + 4γ8) + t4t9(−γ2 − γ2

8) + σ7t
2
3(γ2 + γγ8 − γ2

8)
+ t3t4t6(9γ2 + 12γγ8 + 5γ2

8) + t33t4(5γ2 + 6γγ8 + 2γ2
8) + σ7t6(3γ2 + 4γγ8 + γ2

8) − γ3
8t3t9

+ t43(−6γ3 − 2γγ8 − 6γγ2
8 + 5γ3

8) + t34(3γ2γ8 + γ3
8) + σ7t5(2γ2γ8 + 3γγ2

8)
+ t26(−45γ3 + 10γ2γ8 − 40γγ2

8) + t3t4t5(γ3 − 2γ2γ8 + γγ2
8 − γ3

8)
+ t23t6(−33γ3 + γ2γ8 − 31γγ2

8 + 13γ3
8) + σ7t4(−2γ4 − 4γ3γ8 − 3γγ3

8 + 3γ4
8)

+ t5t6(−9γ4 − 6γ3γ8 − 18γ2γ2
8 + 5γγ3

8 − 3γ4
8) + t23t5(−3γ4 − 3γ3γ8 − 7γ2γ2

8 + 5γγ3
8 − 4γ4

8)
+ t3t24(−γ4 − 6γ3γ8 − γ2γ2

8 − 3γγ3
8) + t10(−3γ4γ8 − 6γ3γ2

8 + 3γ2γ3
8 + 15γγ4

8)
+ σ7t3(−3γ4γ8 + γ3γ2

8 + 5γ2γ3
8 + 10γγ4

8 − γ5
8)

+ t23t4(15γ5 − 2γ4γ8 + 3γ3γ2
8 + 14γ2γ3

8 − 16γγ4
8 + 3γ5

8)
+ t4t6(39γ5 − 13γ4γ8 + 8γ3γ2

8 + 35γ2γ3
8 − 31γγ4

8 − 3γ5
8)

+ t9(γ6 − γ4γ2
8 − γ3γ3

8 − γ2γ4
8 − γγ5

8 − γ6
8)

+ t3t6(−13γ6 + 12γ5γ8 + 5γ4γ2
8 − 56γ3γ3

8 + 8γ2γ4
8 + 21γγ5

8 + 2γ6
8)

+ t4t5(6γ6 + 3γ5γ8 + 2γ4γ2
8 + 7γ3γ3

8 + γ2γ4
8 − 8γγ5

8 + 3γ6
8)

+ t33(−8γ6 + 6γ5γ8 + 2γ4γ2
8 − 22γ3γ3

8 + 6γ2γ4
8 + 8γγ5

8 − 2γ6
8)

+ t24(−6γ7 + γ6γ8 − 7γ4γ3
8 + 5γ3γ4

8 + 3γ2γ5
8 + 3γγ6

8 − 63γ7
8)

+ t3t5(−γ7 + 2γ6γ8 + γ5γ2
8 − 11γ4γ3

8 + 6γ3γ4
8 + 5γ2γ5

8 + 6γγ6
8 + 39γ7

8)
+ σ7(2γ8 + 6γ7γ8 + 3γ6γ2

8 − 4γ5γ3
8 − 15γ4γ4

8 + 6γ3γ5
8 + 3γ2γ6

8 − 40γγ7
8 + 59γ8

8)
+ t3t4(3γ8 + γ6γ2

8 + 11γ5γ3
8 + 14γ4γ4

8 − 20γ3γ5
8 − 4γ2γ6

8 + 118γγ7
8 + 3γ8

8)
+ t6(−48γ9 + 3γ8γ8 − 41γ7γ2

8 + 18γ6γ3
8 + 16γ5γ4

8 − 13γ4γ5
8 − 67γ3γ6

8 + 125γ2γ7
8

− 15γγ8
8 − 291γ9

8) + t23(−18γ9 − 3γ8γ8 − 16γ7γ2
8 + 10γ6γ3

8 − 4γ5γ4
8 − 8γ4γ5

8 − 16γ3γ6
8

− 23γ2γ7
8 − 10γγ8

8 − 115γ9
8) + t5(−6γ10 − 3γ9γ8 − 9γ8γ2

8 + 5γ7γ3
8 − 5γ6γ4

8 − 14γ4γ6
8

− 52γ3γ7
8 + 6γ2γ8

8 − 60γγ9
8 + 117γ1

80) + t4(18γ11 − 3γ10γ + 5γ9γ2
8 + 11γ8γ3

8 − 28γ7γ4
8

+ 8γ6γ5
8 + 20γ5γ6

8 − 64γ4γ7
8 − 15γ3γ8

8 + 54γ2γ9
8 + 178γγ10

8 − 177γ11
8 )

+ t3(−2γ12 + 6γ11γ8 + 2γ10γ2
8 − 20γ9γ3

8 + 11γ8γ4
8 + 22γ7γ5

8 − 8γ6γ6
8

+ 83γ5γ7
8 + 15γ4γ8

8 + 5γ3γ9
8 − 116γ2γ10

8 + γγ11
8 + 117γ12

8 )
− 12γ15 − γ14γ8 − 10γ13γ2

8 + 6γ12γ3
8 + 7γ11γ4

8 − 13γ10γ5
8 − 31γ9γ6

8 + 9γ8γ7
8 − γ7γ8

8

− 118γ6γ9
8 − 18γ5γ10

8 + 131γ4γ11
8 − 6γ3γ12

8 − 233γ2γ13
8 + 175γγ14

8 − 58γ15
8 .
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3.4 Based loop space cohomology of Lie groups

The Hopf algebra of the based loop space of Lie groups were studied by Bott in [3]. Here

we give just the more straight forwardly produced results which we intend to use latter

in this thesis.

De�nition 3.1. De�ne the integral divided polynomial algebra on variables x1, . . . , xn

by

ΓZ[x1, . . . , xn] =
Z[(xi)1, (xi)2, . . . ]

[(xi)k − k!xki ]
,

for 1 ≤ i ≤ n and k ≥ 1 and where xi = (xi)1.

The following two theorems follow from Theorem 3.2 and 3.3, using a Leray-Serre spectral

sequence argument with the path space �brations ΩSU(n) → PSU(n) → SU(n) and

ΩSp(n) → PSp(n) → Sp(n).

Theorem 3.2. For each n ≥ 1, the cohomology of the based loop space of the classical

simple Lie group SU(n) is given by

H∗(Ω(SU(n));Z) = ΓZ[x2, x4, . . . , x2n−2],

where ∣xi∣ = i for i = 2,4, . . . ,2n − 2.

Proof. We proceed by induction on n. We have that SU(1) = {pt} hence by de�nition

ΩSU(1) = {pt}, so has trivial cohomology ring.

Now assume that n ≥ 2. We will apply the Leray-Serre spectral sequence to the path

space �bration (1.1) for X = SU(n),

ΩSU(n) → PSU(n) → SU(n).

Denote this spectral sequence by {Er, dr}. Since PSU(n) is contractible the spectral

sequence will converge to the trivial algebra, which is 0 in all entities except for E0,0
∞ .

Hence all non-zero entries are in the image of some di�erential dr.

In Figure 3.2 below, we identify the horizontal axis withH∗(SU(n)) and the vertical axis
with H∗(ΩSU(n)). Throughout the induction argument we obtain additional algebra

generators of ΓZ(x2n−2) in H∗(ΩSU(n);Z) not in H∗(ΩSU(n − 1);Z) using only the

di�erential of degree n. Hence we can assume all elements associated to generators of

lower degree have all been annihilated before the E∗,∗
n page.

When n = 2 there are no non-zero di�erentials before page E∗,∗
3 as the �rst non-trivial

generator of H∗(SU(2)) has degree 3. The only new generator of H∗(SU(n)) not in

H∗SU(n − 1) is xn. Since di�erentials have bidegree (r,1 − r), the only di�erential

with domain in column E0,∗
r to have image in column E2n−1,∗

r is d2n−1. The di�erential
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with image E2n−1,0
2n−1 therefore must be an isomorphism and so we get a new generator of

H∗(ΩSU(n)) in dimension 2n−2 = 2(n−1), which we will denote by b1 with d2n−1(b1) =
x1.

Note that all products of x2n−1 with the other generators x3, . . . x2n−3 are annihilated

by di�erentials of degree less than n, with codomain b1 multiplied byother elements in

the multiplicative structure of E∗,∗
2 , which we will denote by ⋅. Annihilated by this

di�erential due to the Leibnitz rule on di�erentials. Hence the only other potently non-

zero entries on page E∗,∗
2n−1 are in entries in E0,∗

2n−1 and E2n−1,q
2n−1 where q = 2(n − 1),4(n −

1),6(n − 1), . . . . As all other entries are zero, the di�erentials with image E2n−1,q
2n−1 on

E∗,∗
2n−1 are all isomorphisms. This gives new elements bi with d2n−1(bi) = x2n−1 ⋅ bi−1 for

each i ≥ 2. We know that bi1 and bi have the same degree.

From multiplication in E∗,∗
2 and graded commutativity of the cup product, we deduce

that
d2n−1(b21) = d2n−1(b1) ⋅ b1 + (−1)0⋅2(n−1)b1d2n−1(b1)

= x2n−1 ⋅ b1 + b1 ⋅ x2n−1

= x2n−1 ⋅ b1 + (−1)2(n−1)(2n−1)x2n−1 ⋅ b1
= 2x2n−1 ⋅ b1

so d2n−1(b21) = 2x2n−1 ⋅ b1. Next we show by induction on i that for each i ≥ 2, bi1 = i!bi.
Note that by de�nition of generators and applying isomorphisms d2n−1, we have b

i
1 = i!xi

is equivalent to d2n−1(bi1) = i!x2n−1 ⋅bi−1 and bi = ibi−1 ⋅b1. Hence the following calculation
is the induction step.

d2n−1(bi1) = d2n−1(bi−1
1 ) ⋅ b1 + (−1)0⋅2(n−1)bi−1

1 d2n−1(b1)
= (i − 1)!x2n−1 ⋅ bi−2 ⋅ b1 + bi−1 ⋅ (i − 1)!x2n−1

= (i − 1)!x2n−1 ⋅ (i − 1)bi−1 + (i − 1)!bi−1 ⋅ x2n−1

= i!x2n−1 ⋅ bi−1

This means that ⟨b1, b2, b3 . . . ⟩ = ΓZ(b1). In addition these generators interact freely with

all previous generators, as they are annihilated by di�erential of di�erent degrees. There-

fore b1 is the additional element x2n−2 in ΓZ(x2, x4, . . . , x2n−2) not in ΓZ(x2, x4, . . . , x2n−4)
for H∗(SU(n − 1)), as in the statement of the theorem.
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⋮ ⋮ ⋮

6(n − 1) ⟨b3⟩ ⟨x2n−1 ⋅ b3⟩

H∗(ΩSU(n)) 4(n − 1) ⟨b2⟩ ⟨x2n−1 ⋅ b2⟩

2(n − 1) ⟨b1⟩ ⟨x2n−1 ⋅ b1⟩

0 ⟨x2n−1⟩

0 2n − 1

H∗SU(n) = Λ(x3, x5, . . . , x2n−1)

Figure 3.2: Serre spectral sequence for ΩSU(n) → PSU(n) → SU(n), E2n−1-page.

Theorem 3.3. For each n ≥ 1, the cohomology of the based loop space of the classical

simple Lie group Sp(n) is given by

H∗(Ω(Sp(n));Z) = ΓZ[x2, x6, . . . , x4n−2],

where ∣xi∣ = i for i = 2,6, . . . ,4n − 2.

Proof. The proof is the same as that of Theorem 3.2 with the degrees of the xi shifted.

3.5 Based loop space homology of complete �ag manifolds

In [12], Grbi¢ and Terzi¢ showed that the integral homology of the based loop space

of a complete �ag manifold is torsion free and found the integral Pontrjagin homology

algebras the complete �ag manifolds of compact connected simple Lie groups SU(n),
Sp(n), SO(n), G2, F4 and E6. They achieved this by �rst using Sullivan minimal model

theory to produce the rational homology algebras then used homotopy theory to extend

these results to the integral case. The integral homology algebras are as follows.

Theorem 3.1 ([12], Theorem 4.1). The integral Pontrjagin homology ring of the based

loop space on SU(n + 1)/Tn is given by

H∗(Ω(SU(n + 1)/Tn);Z) = T (x1, . . . , xn) ⊗Z[y1, . . . , yn]
[x2
k − xpxq − xqxp, x2

k − 2y1]
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for 1 ≤ k, p, q ≤ n and p ≠ q where ∣xi∣ = 1 and ∣yi∣ = 2i for each 1 ≤ i ≤ n.

Theorem 3.2 ([12], Theorem 4.2). For each n ≥ 1 the integral Pontrjagin homology ring

of the based loop space on Sp(n)/Tn is given by

H∗(Ω(Sp(n)/Tn);Z) = T (x1, . . . , xn) ⊗Z[y2, . . . , yn]
[x2
k − x2

l , xkxl + xlxk]

for 1 ≤ k < l ≤ n where ∣xi∣ = 1 and ∣yj ∣ = 4j − 2 for each 1 ≤ i ≤ n and 2 ≤ j ≤ n.

Theorem 3.3 ([12], Theorem 4.3). For each n ≥ 1 the integral Pontrjagin homology ring

of the based loop space on SO(2n + 1)/Tn is given by

H∗(Ω(SO(2n + 1)/Tn);Z) = T (x1, . . . , xn) ⊗Z[1, . . . , yn−1,2yn, . . . ,2y2n−1]
[x2

1 − y1, x2
i − x2

i+1, xkxl + xlxk, y2
i − 2yi−1yi+1 +⋯ ± 2y2i]

for 1 ≤ i ≤ n − 1 and 1 ≤ k < l ≤ n where y0 = 1, ∣xa∣ = 1, ∣yb∣ = 2b and ∣2yc∣ = 2c for each

1 ≤ a ≤ n, 1 ≤ b ≤ 2n − 1 and n ≤ c ≤ 2n − 1.

Theorem 3.4 ([12], Theorem 4.4). For each n ≥ 1 the integral Pontrjagin homology ring

of the based loop space on SO(2n)/Tn is given by

H∗(Ω(SO(2n)/Tn);Z) =
T (x1, . . . , xn) ⊗Z[y1, . . . , yn−2, yn−1 + z, yn−1 − z,2yn, . . . ,2y2(n−1)]

I

where

I = [x2
1 − y1, x

2
i − x2

i+1, xkxl + xlxk,
y2
j yj−1yj+1 + 2yj−2yj+2 −⋯ ± 2y2i,

(yn−1 + z)(yn−1−z) − 2yn−1yn+1 +⋯ ± y2(n−1)]

for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2 and 1 ≤ k < l ≤ n where y0 = 1, ∣xa∣ = 1, ∣yb∣ = 2b,

∣yn−1 + z∣ = 2(n − 1) = ∣yn−1 − z∣ and ∣2yc∣ = 2c for each 1 ≤ a ≤ n, 1 ≤ b ≤ n − 2 and

n ≤ c ≤ 2(n − 1).

Theorem 3.5 ([12], Theorem 4.5). The integral Pontrjagin homology ring of the based

loop space on G2/T 2 is given by

H∗(Ω(G2/T 2);Z) = T (x1, x2) ⊗Z[y1, y2, y3]
[x2

1 − x2
2, x

2
1 − x1x2 + x2x1, x2

1 − 2y1, 2y2 − x4
1]

where ∣x1∣ = 1 = ∣x2∣, ∣y1∣ = 2, ∣y2∣ = 4 and ∣y5∣ = 10.

Theorem 3.6 ([12], Theorem 4.6). The integral Pontrjagin homology ring of the based

loop space on F4/T 4 is given by

H∗(Ω(F4/T 4);Z) = T (x1, x2, x3, x4) ⊗Z[y1, y2, y3, y5, y7, y11]
[x2
i − 3y1, xpxq − xqxp, 2y2 − x4

1, 3y3 − x2
1y2]
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for 1 ≤ i ≤ 4 and 1 ≤ p < q ≤ 4 where ∣x1∣ = ∣x2∣ = ∣x3∣ = ∣x4∣ = 1 and ∣ya∣ = 2a for each

a = 1,2,3,5,7,11.

Theorem 3.7 ([12], Theorem 4.7). The integral Pontrjagin homology ring of the based

loop space on E6/T 6 is given by

H∗(Ω(E6/T 6);Z) = T (x1, x2, x3, x4, x5, x6) ⊗Z[y1, y2, y3, y4, y5, y7, y8, yll]
[x2
i − xpxq − xqxp, x2

i − 12y1, 2y2 − x4
1, 3y3 − x2

1y2]

for 1 ≤ i ≤ 6 and 1 ≤ p < q ≤ 6 where ∣xa∣ = 1 and ∣yb∣ = 2b for each 1 ≤ a ≤ 6 and

b = 1,2,3,4,5,7,8,11.



Combinatorics of polynomial symmetric quo-

tients

Before studying the the cohomology of the free loop space of G/T in Sections 5 and 6 we

�rst analyse some of the combinatorial structure of the cohomology algebras of the �ag

manifolds themselves. Understanding the structure of these algebras will be a major key

to understanding the structure of the free loop cohomology.

4.1 Multiset coe�cients

Recall that the binomial coe�cients (n
k
) are de�ned to be the number of size k subsets of

an n set. By separating the choice of an element of the n set it is clear binomial coe�cients

satisfy the inductive formula (n
k
) = (n−1

k
) + (n−1

k−1
). It is easily shown by induction on n

that for 0 ≤ k ≤ n, (n
k
) = n!

(n−k)!(k)! and is zero otherwise. Also by induction on n, it is

shown that binomial coe�cients satisfy the well known formulas

n

∑
k=0

(n
k
) = 2n,

n

∑
k=0

(−1)k(n
k
) = 0. (4.1)

De�nition 4.1. A multiset, unlike a set, can contain more than one of the same element.

The number of size k multisets that can be formed from elements of a size n set is denoted

((n
k
)) and are called the multiset coe�cients.

It is well know that ((n
k
)) = (n+k−1

k
), hence ((n

k
)) = ((n−1

k
)) + (( n

k−1
)). To the best of my

knowledge the identity in the next Lemma has not been shown before.

Lemma 4.2. For each n,m ≥ 1,

n

∑
k=0

(−1)k(n
k
)(( n

m − k)) = 0.

Proof. We proceed by induction on n. When n = 1,

n

∑
k=0

(−1)k(n
k
)(( n

m − k)) = (1

0
)(( 1

m
)) − (1

1
)(( 1

m − 1
)) = (m

m
) − (m − 1

m − 1
) = 0.

33
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Suppose the lemma holds for n = t − 1 ≥ 1, then

t

∑
k=0

(−1)k(t
k
)(( t

m − k)) =
t

∑
k=0

(−1)k((t − 1

k
) + (t − 1

k − 1
))(( t

m − k))

=
t

∑
k=0

(−1)k((t − 1

k − 1
)(( t

m − k)) + (t − 1

k
)(( t − 1

m − k)) + (t − 1

k
)(( t

m − k − 1
))) = 0

as all terms cancel except for (t−1
−1

) (( t
m
)), (t−1

t
) (( t−1

m−t)) and (t−1
t
) (( t

m−t−1
)) all of which are

zero, the middle sum ∑t−1
k=0 (

t−1
k
) (( t−1

m−k)) = 0 by assumption.

4.2 Alternative forms of the symmetric ideal

Recall from Section 2.1 that for n ≥ 1 in Z[x1, . . . , xn], we de�ne the elementary sym-

metric polynomials for 1 ≤ l ≤ n to be σl = ∑1≤i1<⋯<il≤n xi1⋯xil and the elementary

symmetric polynomials form a basis of the symmetric polynomials. We now consider

two alternative expressions for the ideal [σ1, . . . , σn].

Lemma 4.1. For each n ≥ 1,

[σ1, . . . , σn+1] = [σ1, ξ2, . . . , ξn+1],

where for each 1 ≤ l ≤ n + 1

ξl = (1 − l) ∑
1≤i1<⋯<il≤n+1

xi1⋯xil − ∑
1≤i1<⋯<il−2≤n+1

1≤k≤n+1, k≠ij

xi1⋯xil−2x2
k.

In particular
Z[x1, . . . , xn+1]
[σ1, . . . , σn+1]

= Z[x1, . . . , xn]
[ξ2, . . . , ξn+1]

.

Proof. Rewrite σl as

σl = ∑
1≤i1<⋯<il≤n+1

xi1⋯xil

= ∑
1≤i1<⋯<il≤n

xi1⋯xil + ∑
1≤i1<⋯<il−1≤n

xi1⋯xil−1xn+1.
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By subtracting ∑1≤i1<⋯<il−1≤n xi1⋯xil−1σ1 from both sides we obtain

∑
1≤i1<⋯<il≤n

xi1⋯xil + ∑
1≤i1<⋯<il−1≤n

xi1⋯xil−1(−x1 −⋯ − xn)

= ∑
1≤i1<⋯<il≤n

xi1⋯xil − l ∑
1≤i1<⋯<il≤n

xi1⋯xil − ∑
1≤i1<⋯<il−2≤n

1≤k≤n, k≠ij

xi1⋯xil−2x2
k

= (1 − l) ∑
1≤i1<⋯<il≤n

xi1⋯xil − ∑
1≤i1<⋯<il−2≤n

1≤k≤n, k≠ij

xi1⋯xil−2x2
k = ξl.

This proves that [σ1, . . . , σn+1] = [σ1, ξ2, . . . , ξn+1]. The �nal statement of the lemma is

obtained by rearranging the ideal as above and then removing the generator xn+1 and

ideal generator σ1, which can be done since xn+1 = σ1 −x1 −⋯−xn after quotienting out

by σ1.

In addition to the elementary symmetric polynomials, recall from Section 2.2 another

basis of the symmetric polynomials on Z[x1, . . . , xn] is given by the compete homoge-

neous symmetric polynomials, hl = ∑1≤i1,...,il≤n xi1⋯xil for each 1 ≤ l ≤ n. Starting with

hl as generators of the of the symmetric ideal, leads to another simpli�cation of the

expression of the symmetric quotient, the usefulness of which will be demonstrated in

the next section.

For each integer n ≥ 1 and all integers 1 ≤ k′ ≤ k ≤ n, de�ne Φ(k, k′) to be the sum of all

monomials in Z[x1, . . . , xn] of degree k in variables x1, . . . , xn−k′+1.

Theorem 4.2. In the ring Z[x1,...,xn]
[h1,...,hn] , for each 1 ≤ k′ ≤ k ≤ n, Φ(k, k′) = 0. In addition

[h1, . . . , hn] = [Φ(1,1), . . . ,Φ(n,n)]. (4.2)

Proof. We replace the basis σ1, . . . , σn of symmetric polynomials by the complete homo-

geneous symmetric polynomials, where hk = Φ(k,1). We will prove by induction on k

that, for each 1 ≤ k′ ≤ k ≤ n, Φ(k, k′) ∈ [h1, . . . , hn]. When k = 1, by de�nition

h1 = Φ(1,1).

Assume the theorem is true for all k < m ≤ n. By induction Φ(m − 1,m′) ∈ [h1, . . . , hn]
for all 1 ≤ m′ ≤ m − 1. Note that Φ(m − 1,m′)xn−m′+1 is the sum of all monomials of

degree m in variables x1, . . . , xn−m′+1 divisible by xn−m′+1. Hence, for each 1 ≤m′ ≤m−1

hm −Φ(m − 1,1)xn −⋯ −Φ(m − 1,m′ − 1)xn−m′+2 = Φ(m,m′).

At each stage of the proof the next Φ(k, k) is obtained as a sum of hk and polynomials

obtained from h1, . . . , hk−1. Hence [Φ(1,1), . . . ,Φ(n,n)] and [h1, . . . , hn] are equal.
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For integers 0 ≤ a ≤ b, denote by hba the complete homogeneous polynomial in variables

x1, . . . , xb of degree a. Then equation (4.2) can be written as

[hn1 , . . . , hnn] = [hn1 , . . . , h1
n]. (4.3)

A useful intermediate form of Proposition 4.2 is given next.

Proposition 4.3. For each n ≥ 1,

[hn1 , . . . , hnn] = [hn1 , hn−1
2 . . . , hn−1

n ].

Proof. For each 1 ≤ i ≤ n − 1

hni+1 − xnhni = hn−1
i+1 .

We can rearrange the ideal to achieve the desired result by performing the above elimi-

nation in sequence on the ideal for i = n − 1 to i = 1.

Remark 4.4. By Theorem 4.2 and Proposition 4.3 eliminating the last variable in

Z[x1, . . . , xn], by rewriting h1 as xn = −x1 −⋯ − xn−1 gives us

Z[x1, . . . , xn]
[hn1 , . . . , hnn]

≅ Z[x1, . . . , xn−1]
[hn−1

2 , . . . , hn−1
n ] ≅

Z[x1, . . . , xn−1]
[hn−1

2 , . . . , h1
n]
.

4.3 Basis of representatives and degree-wise number of el-

ements

Using Remark 4.4 following from Theorem 4.2, we can deduce an additive basis of the

symmetric quotient
Z[x1,...,xn]
[hn1 ,...,hnn]

.

Theorem 4.1. The elements xa11 ⋯xan−1n−1 such that 0 ≤ ai ≤ n − i, form an additive basis

of Z[x1,...,xn]
[hn1 ,...,hnn]

.

Proof. By Theorem 4.2,
Z[x1,...,xn]
[hn1 ,...,hnn]

≅ Z[x1,...,xn]
[hn1 ,...,h1n]

. hn1 is the only generator of the ideal in

which a summand is divisible by xn and xn is the unique summand in hn1 divisible by xn.

Hence any elements of
Z[x1,...,xn]
[hn1 ,...,hnn]

can be expressed with a representative not containing

xn by replacing xn with −hn1 +xn. Similarly apart from a multiple of hn1 , h
n−1
2 is the only

generator of the ideal containing a summand divisible x2
n−1 and h

n−1
2 contains the unique

summand x2
n−1 divisible by x2

n−1. Hence any elements of
Z[x1,...,xn]
[hn1 ,...,hnn]

can be expressed by

a representative not containing xn or x2
n−1. The process can be continued with hn−1

3 and

x3
n−3 through to h1

n and xn1 to give the desired result.

Remark 4.2. The symmetry of the variables x1, . . . , xn in hn1 , . . . , h
n
n implies that the

basis of Theorem 4.1 can be chosen using any permutations of {1, . . . , n}. That is the
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elements xa1
σ(1)⋯x

an−1
σ(n−1) such that 0 ≤ ai ≤ n − i form an additive basis of

Z[x1,...,xn]
[hn1 ,...,hnn]

for

any σ ∈ Sn.

We now address the problem of counting the number of elements in each degree of
Z[x1,...,xn+1]
[σ1,...,σn+1] . These numbers are the Betti numbers of H

∗(SU(n + 1)/Tn) ≅ Z[x1,...,xn+1]
[σ1,...,σn+1] .

and have been well studied. In particular as a consequence or work of Kostant, Macdon-

ald and Steinberg in [20], [23] and [40] respectively, for simple Lie group G with maximal

torus T the following are forms of the Poincaré series for G/T

∑
w∈W

t2l(w) = ∏
α∈Φ+

1 − t2ht(α)+2

1 − t2ht(α)
=

l

∏
i=1

(1 + t2 +⋯ + t2mi),

where W = NG(T )/T The Weyl group of G, l(w) the length of w ∈W , Φ+ is the set of

positive roots of G, ht(α) the hight of α ∈ Φ+ and m1, . . . ,ml the exponents of G.

De�nition 4.3. Denote by ⟨n
k
⟩ the number of degree k monomials of the form xa11 ⋯xann

such that 0 ≤ ai ≤ n − i.

Remark 4.4. Alternatively ⟨n
k
⟩ can be described as the number of ways to construct a

k multiset X from elements of {1, . . . , n} such that the element i appear no more than i

times in X.

It is clear that if k < 0 or k > n(n+1)
2 then ⟨n

k
⟩ = 0, since in either case such a multiset

X cannot exist. ⟨n
k
⟩ are known as the Mahonian numbers and were originally de�ned in

terms of the inversion numbers of permutations, see for example [9, page 239]. The next

two propositions are well known properties of ⟨nk ⟩, the second gives an inductive rule for

computing ⟨n
k
⟩. In Theorem 4.7 we give an explicit formula for ⟨n

k
⟩, which is similar to

the one given in [19]. Through here in all cases I have given my own proofs.

Proposition 4.5. For each n ≥ 0 and 0 ≤ k ≤ n(n+1)
2 ,

⟨n
k
⟩ = ⟨ n

n(n+1)
2 − k⟩ ,

n(n+1)
2

∑
i=0

⟨n
i
⟩ = (n + 1)!.

Proof. Both statements follow from Remark 4.4. The �rst is given by the clear bijection

between the two multiset descriptions that replaces the number of occurrences of i in

the multiset by i minus this number. The second statement follows from the fact that

there are (n + 1)! ways to form any multiset from elements of {1, . . . , n} such that the

element i appear no more than i times.

Proposition 4.6. The numbers ⟨n
k
⟩ for n ≥ 0 and 0 ≤ k ≤ n(n+1)

2 are completely deter-

mined by the following inductive rule.

⟨0

k
⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, k = 0

0, k ≠ 0
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For each n ≥ 1 and 0 ≤ k ≤ n(n+1)
2 ,

⟨n
k
⟩ =

n

∑
i=0

⟨n − 1

k − i ⟩ .

Proof. The case when n = 0 is clear from the de�nition. Using the description from

Remark 4.4, any k multiset on 1, . . . , n satisfying the conditions can be obtained from a

(k − i)-multiset on 1, . . . , n − 1 satisfying the conditions, by adding i, n's to the multiset

for some 0 ≤ i ≤ n.

Theorem 4.7. For each n ≥ 1 and 0 ≤ k ≤ n(n+1)
2 ,

⟨n
k
⟩ = ((n

k
)) +

n

∑
a=1

(−1)a ∑
2≤i1<⋯<ia≤n+1
i1+⋯+ia≤k

(( n

k − i1 −⋯ − ia
)).

Proof. Beginning with ((n
k
)), the number of k multisets on {1, . . . , n} we subtract the

number of multisets not satisfying the condition element i appear no more than i times.

For 2 ≤ i1 ≤ n + 1, (( n
k−i1 )) corresponds to the number of multisets in which there are at

lest i1 occurrences of the element i1 − 1. However if we subtract

∑
2≤i1≤n+1
i1≤k

(( n

k − i1
)) (4.4)

from ((n
k
)), we do not obtain the desired results because we have counted multiple combi-

nations where more than i of element i occur in the multiset. For any 2 ≤ i1 < i2 ≤ n+ 1,

in equation (4.4), the number of multisets in which elements i1 −1 and i2 −1 occur more

than i1 and i2 times respectively are counted twice. Hence subtracting from ((n
k
)),

∑
2≤i1≤n+1
i1≤k

(( n

k − i1
)) − ∑

2≤i1<i2≤n+1
i1+i2≤k

(( n

k − i1 − i2
)) (4.5)

counts correctly the number of multisets in which for any 2 ≤ i1 < i2 ≤ n+1, only elements

i1 − 1 and i2 − 1 occur more than i1 and i2 times. However equation (4.5) still counts

multisets in which three or more elements occur more times than their value. For any

2 ≤ i1 < i2 < i3 ≤ n+1 in equation (4.4), the number of multisets in which elements i1 −1,

i2 − 1 and i3 − 1 occur more than i1, i2 and i3 times respectively are counted (3
1
) = 3

times. In

∑
2≤i1<i2≤n+1
i1+i2≤k

(( n

k − i1 − i2
))

the number of multisets in which elements i1 − 1, i2 − 1 and i3 − 1 occur more than i1, i2

and i3 times respectively is counted (3
2
) = 3 times and once in ((n

k
)). Therefore in order
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to correct the count on triple occurrences we need to add

∑
2≤i1<i2<i3≤n+1
i1+i2+i3≤k

(( n

k − i1 − i2 − i3
))

to equation (4.5). We continue this processes until we have considered combinations of

all n variables. At each stage, since ∑nk=0 (−1)k(nk) = 0, the multiplicity of the number of

terms that need to be corrected is always one, hence we obtain the desired result.

4.4 Multiplicative rules

In this section we try to understand some of the multiplicative structure of the additive

basis given in Theorem 4.1.

Proposition 4.1. A representative γc11 ⋯γcnn represents the zero class, if for any 1 ≤ k ≤ n
and 1 ≤ i1 < ⋯ < ik ≤ n,

k

∑
j=1

cij >
k

∑
j=1

n − ij + 1.

Proof. By symmetry of the variable γ1, . . . , γn, the arguments of Theorem 4.2 and The-

orem 4.1 can be applied to any permutation of the indices. Therefore we take a permu-

tation φ ∈ Sn and denote bj = φ(j) with φ(1) = i1, . . . , φ(k) = ik. Using the augment

from Theorem 4.1, the representative γ
cb1
b1
⋯γcbnbn can be expressed as a sum of monomials

γa1b1 ⋯γ
an
bn

such that 0 ≤ ai ≤ n−i. In particular using the method given in the proof of The-

orem 4.2 if ai ≤ ci then a1+⋯ai−1 ≥ ci−ai+c1+⋯+ci−1. So if ∑kj=1 cij > ∑kj=1 n − ij + 1 then

the sum of γa1b1 ⋯γ
an
bn

must be empty. Hence ∑kj=1 cij ≤ ∑kj=1 n − ij + 1 or the expression is

zero.

We denote the representative γn1⋯γ2
n−2γn−1 of the unique

(n+1)n
2 degree class by γ̂∅.

Denote by γ̂i the class of γn1⋯γn−i+2
i+1 γn−ii γn−ii−1⋯γn−1 in

Z[γ1,...,γn]
[σ2,...,σn+1] . That is the unique

class of degree
(n+1)n

2 − 1 represented by the monomial γ̂∅/γi.

Lemma 4.2. For any 1 ≤ i, j ≤ n,

[γ̂iγj] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0] if j < i or j ≥ i + 2

[γ̂∅] if j = i
−[γ̂∅] if j = i + 1

.

Proof. If j < i, then γ̂iγj = 0 by Proposition 4.1. If i = j then γ̂iγj = γ̂∅ by de�nition. So

for the rest of the proof assume j > i. By Theorem 4.2 we have hn−j+1
j ∈ [σ2, . . . , σn+1].

Hence we may replace γn−j+2
j by

γn−j+2
j − ∑

1≤i1≤⋯≤in−j+1≤j
γi1⋯γin−j+2 . (4.6)
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If any of the ik in equation (4.6) are greater than i or ik ≠ j for k ≥ 2, then multiplying

that term by γ̂iγj/γn−jj will result in a representative of the zero class by Proposition 4.1.

If j ≥ i+1, again we may replace γn−j+2
j with the expression in (4.6). By Proposition 4.1

the only possible non-zero summand when this is multiplied by γ̂i/γn−j+2
j are

−γ̂iγj−1 −⋯ − γ̂iγi+1 − γ̂φ.

If j = i − 1, then this is just γ̂∅. If j ≥ i + 2, then replace −γ̂iγj−1 with

γ̂iγj−2 +⋯ + γ̂iγi+1 + γ̂φ,

which cancels with the other terms.



Cohomology of the free loop space of the

complete �ag manifold of SU(n)

In this chapter we investigate the cohomology of the free loop space of SU(n + 1)/Tn

by studying the Leary-Serre spectral sequence associated to the free loop space �bration

of Λ(SU(n + 1)/Tn). In particular in Section 5.6, we give the algebra structure of the

E∞-page in the case when n = 2 and the module structure of H∗(Λ(SU(3)/T 2);Z).

5.1 Di�erentials in the path space spectral sequence

In this section we study H∗(Λ(SU(n + 1)/Tn);Z) for n ≥ 1. The case when n = 0 being

trivial as SU(1) is a point. The approach of the argument is similar to that of [36], in

which the cohomology of the free loop spaces of spheres and complex projective space

are calculated using spectral sequence techniques. However the details in the case of the

complete �ag of the special unitary group are considerably more complex.

For any space X, the map eval∶Map(I,X) → X × X is given by α ↦ (α(0), α(1)).
It can be shown directly that eval is a �bration with �ber ΩX. In this section we

compute the di�erentials in the cohomology Serre spectral sequence of this �bration for

the case X = SU(n+1)/Tn. The aim is to compute H∗(Λ(SU(n+1)/Tn);Z). The map

eval∶ΛX →X given by evaluation at the base point of a free loop is also a �bration with

�ber ΩX. This is studied in section 5.2 by considering a map of �brations from the free

loop �bration for SU(n + 1)/Tn to the evaluation �bration and hence the induced map

on spectral sequences. For the rest of this section we consider the �bration

Ω(SU(n + 1)/Tn) →Map(I, SU(n + 1)/Tn) evalÐÐ→ SU(n + 1)/Tn × SU(n + 1)/Tn. (5.1)

By extending the �bration Tn → SU(n + 1) → SU(n + 1)/Tn, we obtain the homotopy

�bration sequence

41
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Ω(SU(n + 1)) → Ω(SU(n + 1)/Tn) → Tn → SU(n + 1). (5.2)

It is well known see [37], that the furthest right map above of the inclusion of the

maximal torus into SU(n + 1) is null-homotopic. Hence there is a homotopy section

Tn → Ω(SU(n+1)/Tn). Therefore, as the �bration Ω(SU(n+1)/Tn) → Tn is a principle

�bration, so Ω(SU(n + 1)/Tn) ≃ Ω(SU(n + 1)) × Tn. Using the Künneth formula and

Theorem 3.2 we obtain the algebra isomorphism

H∗(Ω(SU(n + 1)/Tn);Z) ≅H∗(Ω(SU(n + 1);Z) ⊗H∗(Tn;Z) ≅
ΓZ[x2, x4, . . . , x2n] ⊗ΛZ(y1, . . . , yn),

where ΓZ[x2, x4, . . . , x2n] is the integral divided polynomial algebra on x2, . . . , x2n with

∣xi∣ = i for each i = 2, . . . ,2n. Λ(y1, . . . , yn) is an exterior algebra generated by y1, . . . , yn

with ∣yj ∣ = 1 for each j = 1, . . . , n. It is well known that

Map(I, SU(n + 1)/Tn) ≃ SU(n + 1)/Tn,

therefore by Theorem 3.4 all cohomology algebras of spaces in �bration (5.1) are known.

By studying the long exact sequence of homotopy groups associated to the �bration

Tn → SU(n + 1) → SU(n + 1)/Tn, we obtain that SU(n + 1)/Tn hence SU(n + 1)/Tn ×
SU(n + 1)/Tn are simply connected. Therefore the cohomology Serre spectral sequence

of �bration (5.1), which we denote by {Er, dr}, converges to H∗(SU(n+ 1)/Tn;Z) with
E2-page E

p,q
2 = Hp(SU(n + 1)/Tn × SU(n + 1)/Tn;Hq(Ω(SU(n + 1)/Tn);Z)), both of

which are known. In the following arguments we will use the notation

H∗(Map(I, SU(n + 1)/Tn);Z) ≅ Z[λ1,...,λn+1]
[σλ1 ,...,σλn+1]

and

H∗(SU(n + 1)/Tn × SU(n + 1)/Tn;Z) ≅ Z[α1,...,αn+1]
[σα1 ,...,σαn+1]

⊗ Z[β1,...,βn+1]
[σβ1 ,...,σ

β
n+1]

,

where ∣αi∣ = ∣βi∣ = ∣λi∣ = 2 for each i = 1, . . . , n + 1 and σλi , σ
α
i and σβi are the elementary

symmetric polynomials in λi, αi and βi, respectively.
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⋮ ⋮

2n ⟨x2n⟩

⋮ ⋮

6 ⟨x6⟩ ⋰

H∗(Ω(SU(n + 1)/Tn;Z)) 4 ⟨x4⟩

2 ⟨x2⟩ ⋰

1 ⟨yi⟩ ⋅ ⋅ ⋅ ⋯ ⋅ ⋯

0 ⟨αi, βi⟩ ⋅ ⋅ ⋯ ⋅ ⋯

0 2 4 6 ⋯ 2n ⋯

H∗(SU(n + 1)/Tn × SU(n + 1)/Tn;Z)

Figure 5.1: Generators in integral cohomology Leray-Serre spectral sequence {Er, d
r}

converging to H∗(Map(I, SU(n + 1));Z).

In the remainder of this section we will describe explicitly the images of di�erentials

shown in Figure 5.1 and show that all other di�erential not generated by these di�er-

entials using the Leibniz rule are zero. It will often be useful to use the alternative

basis

vi = αi − βi and ui = βi

for H∗(SU(n + 1)/Tn × SU(n + 1)/Tn;Z), where i = 1, . . . , n + 1. The following lemma

determines completely the d2 di�erential on E∗,1
2 .

Lemma 5.1. With the notation above, in the cohomology Leray-Serre spectral sequence

of �bration (5.1), there is a choice of basis y1, . . . , yn such that

d2(yi) = vi
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for each i = 1, . . . , n.

Proof. We have the homotopy commutative diagram

SU(n + 1)/Tn ∆ // SU(n + 1)/Tn × SU(n + 1)/Tn

Map(I, SU(n + 1)/Tn)
eval

//

p0

OO

SU(n + 1)/Tn × SU(n + 1)/Tn,

where p0, given by ψ ↦ ψ(0), is a homotopy equivalence and ∆ is the diagonal map. As

the cup product is induced by the diagonal map eval∗ has the same image as the cup

product. For dimensional reasons, d2 is the only possible non-zero di�erential ending at

any E2,0
∗ and no non-zero di�erential have domain in any E2,0

∗ . Therefore in order for the

spectral sequence to converge toH∗(Map(I, SU(n+1)/Tn)), the image of d2∶E0,1
2 → E2,0

2

must be the kernel of the cup product on H∗(SU(n + 1)/Tn × SU(n + 1)/Tn;Z), which
is generated by v1, . . . , vn.

Remark 5.2. The only remaining di�erentials on generators left to determine are those

with domain in ⟨x2, x4 . . . , x2n⟩, on some page Er for r ≥ 2. For dimensional reasons,

the elements x2, x4, . . . , x2n cannot be the image of any di�erential. By Lemma 5.1, the

generators u1, . . . , un must survive to the E∞-page, so generators x2, x4, . . . , x2n cannot.

This is due to dimensional reasons combined with the fact that the spectral sequence

must converge to H∗(SU(n + 1)/Tn). Now assume inductively for each i = 1, . . . , n that

for each 1 ≤ j < i, d2j is constructed. For dimensional reasons and due to all lower rows

except E∗,2
r and E∗,1

r being annihilated by di�erentials already determined at lower values

of 1 ≤ j < i, the only possible non-zero di�erential beginning at x2i, is d
2i ∶ E0,2i

2i → E2i,1
2i .

The image of each of the di�erentials d2i will therefore be a unique class in E2i,1
2i in the

kernel of d2 not already contained in the image of any dr for r < 2i.

We have d2(ui) = 0 = d2(vi) and by Lemma 5.1 we may assume that d2(yi) = vi for each
i = 1, . . . , n. All non-zero generators γ ∈ E∗,1

2 can be expressed in form

γ = ykui1⋯uisvj1⋯vjt

for some 1 ≤ k ≤ n, 1 ≤ i1 < ⋯ < is ≤ n and 1 ≤ j1 < ⋯ < jt ≤ n. Therefore d2(γ) is zero

only if it is contained in [σα1 , . . . , σαn+1, σ
β
1 , . . . , σ

β
n+1]. Hence it is important to understand

the structure of the symmetric polynomials σα1 , . . . , σ
α
n+1, σ

β
1 , . . . , σ

β
n+1. σ

α
1 and σβ1 simply

express αn+1 and βn+1 in terms of the other generators of the ideal. Lemma 4.1 describes

explicitly what the structure of σα2 , . . . , σ
α
n+1, σ

β
2 , . . . , σ

β
n+1 is in terms of α1, . . . , αn and

β1, . . . , βn.

Using the next two lemmas, we will determine how σαl and σβl lie in the image of d2 and

so determine other di�erentials. For each n ≥ 1, 2 ≤ l ≤ n+1 and 1 ≤m ≤ l, de�ne element
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sml,n of E2l−1,1
2 by

sml,n = ∑
1≤i1<⋯<im≤n

1≤im+1<⋯<il≤n
ij≠ij′ for j≠j′

yi1vi2⋯vimuim+1⋯uil .

De�ne also Sl,n = s1
l,n +⋯ + sll,n.

Lemma 5.3. For each n ≥ 1, 2 ≤ l ≤ n + 1 and 1 ≤m ≤ l,

d2(Sl,n) = ∑
1≤i1<⋯<il≤n

αi1⋯αil − ∑
1≤i1<⋯<il≤n

βi1⋯βil .

Remark 5.4. In the course of the proof of the Lemma it is shown that

∑
1≤i1<⋯<il≤n

αi1⋯αil − ∑
1≤i1<⋯<il≤n

βi1⋯βil

is up to sign the unique generator for elements E2
2l,0 in the image of d2 containing either

the terms ∑1≤i1<⋯<il≤n αi1⋯αil or ∑1≤i1<⋯<il≤n βi1⋯βil .

Proof. First note that

d2(sml,n) = ∑
1≤i1<⋯<im≤n

1≤im+1<⋯<il≤n
iσ≠iσ′ for σ≠σ′

vi1vi2⋯vimuim+1⋯uil = ∑
1≤i1<⋯<im≤n

1≤im+1<⋯<il≤n
iσ≠iσ′ for σ≠σ′

(αi1 − βi1)⋯(αim − βim)βim+1⋯βil

= ∑
0≤t≤m

1≤i1<⋯<im≤n
1≤im+1<⋯<il≤n
iσ≠iσ′ for σ≠σ′

(−1)m−tαi1⋯αitβit+1⋯βil = ∑
0≤t≤m

1≤i1<⋯<it≤n
1≤it+1<⋯<il≤n
iσ≠iσ′ for σ≠σ′

(−1)m−t( l − t
m − t)αi1⋯αitβit+1⋯βil .

For each 1 ≤ m ≤ l, element d2(sml,n) contains a term αi1⋯αitβit+1⋯βil only when 0 ≤
t ≤ m. None of the d2(sml,n) are zero as they all at least contain a non-zero term of the

form αi1βi2⋯βil which is not contained in [σα1 , . . . , σαl+1, σ
β
1 , . . . , σ

β
l+1]. The di�erential d

2

preserves the indices i1, . . . , il. Hence the d2 image of an element in E2l−1,1
2 is given in

terms of elements of the form

∑
1≤i1<⋯<it≤n
1≤it+1<⋯<il≤l
iσ≠iσ′ for σ≠σ′

αi1⋯αitβit+1⋯βil

if and only if it is a sum of elements of the form sml,n for 1 ≤m ≤ l. As m increases from

1 to l, each successive d2(sml,n) contains a new term of the form

∑
1≤i1<⋯<im≤n
1≤im+1<⋯<il≤l
iσ≠iσ′ for σ≠σ′

αi1⋯αimβim+1⋯βil ,
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which did not appear in any previous d2(sil,n) for i < m. When m = l, this new term is

∑1≤i1<⋯<il≤n αi1 , . . . , αil . In order to cancel all terms not of the form∑1≤i1<⋯<il≤n αi1 , . . . , αil
or ∑1≤i1<⋯<il≤n βi1 , . . . , βil , we need a sum c1d

2(s1
l,n) + ⋯ + cld2(sll,n) where c1, . . . , cl ∈

Z∖{0}. Since each successive d2(sml,n) contains a new term, the choice of c1 = 1 uniquely

determines c2, . . . , cl. Recall from the calculation at the beginning of the proof that if

d2(sml,n) contains terms of the form

∑
1≤i1<⋯<it≤n
1≤it+1<⋯<il≤l
iσ≠iσ′ for σ≠σ′

αi1⋯αitβit+1⋯βil

and the constant multiplied by each of these terms is (−1)m−t( l−tm−t). It is well know that

the alternating sum of rows greater than 0 in Pascal's triangle is zero, more precisely

this is ∑ni=0 (−1)n−i(ni) = 0 for n ≥ 1. Hence c2, . . . , cl are also 1 and therefore Sl,n is the

unique sum in sml,n such that Sl,n has no cancellation but d2(Sl,n) can be expressed with

a single term of the form ∑1≤i1<⋯<il≤n αi1⋯αil , only containing other terms of the form

∑1≤i1<⋯<il≤n βi1⋯βil . Finally the constant for the ∑1≤i1<⋯<il≤n βi1⋯βil terms in d2(Sl,n)
is −1 as

(−1)l( l0) + (−1)l−1( l
1
) +⋯ + (−1)i( l

l−1
) = ∑l−1

i=0 (−1)l−i(li) = ∑
l
i=0 (−1)l−i(li) − 1 = −1.

For each n ≥ 2, 2 ≤ l ≤ n + 1 and 0 ≤m ≤ l − 2, de�ne elements s̃ml,n, s̃
′m
l,n of E2l,1

2 by

s̃ml,n = ∑
1≤k≤n

1≤i1<⋯<im≤n
1≤im+1<⋯<il−2≤n
k≠ij≠ij′ for j≠j′

ykvkvi1⋯vimuim+1⋯uil−2 , s̃
′m
l,n = ∑

1≤k≤n
1≤i1<⋯<im≤n

1≤im+1<⋯<il−2≤n
k≠ij≠ij′ for j≠j′

ykukvi1⋯vimuim+1⋯uil−2 .

For each 1 ≤m ≤ l − 2 and 3 ≤ l ≤ n + 1, de�ne

s̃
′′m
l,n = ∑

1≤k≤n
1≤i1<⋯<im≤n

1≤im+1<⋯<il−2≤n
k≠ij≠ij′ for j≠j′

u2
kyi1vi2⋯vimuim+1⋯uil−2 ,

in addition set s̃
′′m
2,n = 0. De�ne also S̃l,n = s̃0

l,n + ⋯ + s̃l−2
l,n , S̃

′

l,n = s̃
′0
l,n + ⋯ + s̃′l−2

l,n and

S̃
′′

l,n = s̃
′′1
l,n +⋯ + s̃′′l−2

l,n with S̄l,n = S̃l,n + 2S̃
′

l,n + S̃
′′

l,n.

Lemma 5.5. For each n ≥ 1, 2 ≤ l ≤ n − 1,

d2(S̄l,n) = d2(S̃l,n + 2S̃
′

l,n + S̃
′′

l,n) = ∑
1≤i1<⋯<il≤n
1≤k≤n,ik≠ij

α2
kαi1⋯αil−2 − ∑

1≤i1<⋯<il≤n
1≤k≤n,ik≠ij

β2
kβi1⋯βil−2 .
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Remark 5.6. In the course of the proof of the Lemma it is shown that

∑
1≤i1<⋯<il≤n
1≤k≤n,ik≠ij

α2
kαi1⋯αil−2 − ∑

1≤i1<⋯<il≤n
1≤k≤nik≠ij

β2
kβi1⋯βil−2 ,

is up to sign the unique generator for elements E2l,0
2 in the image of d2 containing either

the terms

∑
1≤i1<⋯<il≤n
1≤k≤n,ik≠ij

α2
kαi1⋯αil−2 or ∑

1≤i1<⋯<il≤n
1≤k≤n,ik≠ij

β2
kβi1⋯βil−2 .

Proof. The proof of the lemma will in places be similar to the proof of Lemma 5.3, hence

in these parts details will be omitted. First note that for each 0 ≤m ≤ l − 2,

d2(s̃ml,n) = ∑
1≤i1<⋯<it≤n

1≤it+1<⋯<il−2≤n
0≤t≤m,0≤k≤n

k≠ij≠ij′ for j≠j′

(α2
k − 2αkβk + β2

k)(−1)m−t( m − t
l − t − 2

)αi1⋯αitβit+1⋯βl−2,

d2(s̃′ml,n) = ∑
1≤i1<⋯<it≤n

1≤it+1<⋯<il−2≤n
0≤t≤m,0≤k≤n

k≠ij≠ij′ for j≠j′

(αkβk − β2
k)(−1)m−t( m − t

l − t − 2
)αi1⋯αitβit+1⋯βl−2,

d2(s̃′′ml,n ) = ∑
1≤i1<⋯<it≤n

1≤it+1<⋯<il−2≤n
0≤t≤m,0≤k≤n

k≠ij≠ij′ for j≠j′

β2
k(−1)m−t( m − t

l − t − 2
)αi1⋯αitβit+1⋯βl−2.

Using the same argument given in Lemma 5.3, we obtain d2(S̃l,n), d2(S̃′

l,n) and d2(S̃′′

l,n).
The only di�erence is for d2(S̃l,n) and d2(S̃′

l,n), where we begin with s̃0
l,n and s̃

′0
l,n rather

than s̃1
l,n and s̃

′1
l,n. Hence the βi1 , . . . , βil−2 terms give the alternating sum over the entire

row of Pascal's triangle, so all such terms cancel. Therefore

d2(S̃l,n) = ∑
1≤i1<⋯<il−2≤n

0≤k≤n,k≠iσ

(α2
k − 2αkβk + β2

k)αi1⋯αil−2 ,

d2(S̃′

l,n) = ∑
1≤i1<⋯<il−2≤n

0≤k≤n,k≠iσ

(αkβk − β2
k)αi1⋯αil−2 ,
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d2(S̃′′

l,n) = ∑
1≤i1<⋯<il−2≤n

0≤k≤n,k≠iσ

β2
k(αi1⋯αil−2 − βi1⋯βil−2).

In addition, as Remark 5.4 was respected in Lemma 5.3, so the statements are maintained

in the expressions above. Finally calculating d2(S̃l,n + 2S̃
′

l,n + S̃
′′

l,n) using the expressions
above proves the lemma.

Theorem 5.7. For each n ≥ 1 and 2 ≤ l ≤ n+ 1, in the spectral sequence {En, dn}, up to

class representative in E2l,1
2 , we have

d2(l−1)(x2(l−1)) = (1 − l)Sl,n − S̄l,n

using the notation preceding Lemmas 5.3 and 5.5. More precisely, for 3 ≤ l ≤ n + 1

d2(l−1)(x2(l−1)) = (1 − l) ∑
1≤m≤l

1≤i1<⋯<im≤n
1≤im+1<⋯<il≤n
ij≠ij′ for j≠j′

yi1vi2⋯vimuim+1⋯uil − ∑
1≤m≤l,1≤k≤n
1≤i1<⋯<im≤n

1≤im+1<⋯<il−2≤n
k≠ij≠ij′ for j≠j′

u2
kyi1vi2⋯vimuim+1⋯uil−2

− ∑
0≤m≤l,1≤k≤n
1≤i1<⋯<im≤n

1≤im+1<⋯<il−2≤n
k≠ij≠ij′ for j≠j′

(2ykukvi1⋯vimuim+1⋯uil−2 + ykvkvi1⋯vimuim+1⋯uil−2)

and

d2(x2) = − ∑
1≤i1<i2≤n

yi1vi2 − ∑
1≤i1,i2≤n,i1≠i2

yi1ui2 − ∑
1≤k≤n

(2ykuk + ykvk).

Proof. The generators σα1 and σβ1 in the ideals [σα1 , . . . , σαn+1] and [σβ1 , . . . , σ
β
n+1] are

α1 + ⋯ + αn+1 and β1 + ⋯ + βn+1, receptively. So σ
α
1 and σβ1 just express elements αn+1

and βn+1 in terms of minimal generating sets α1, . . . , αn and β1, . . . , βn of
Z[α1,...,αn+1]
[σα1 ,...,σαn+1]

and
Z[β1,...,βn+1]
[σβ1 ,...,σ

β
n+1]

, respectively. Each σαl and σβl has degree 2l. Since each E2l,0
2 contains

only the elements of
Z[α1,...,αn+1]
[σα1 ,...,σαn+1]

⊗ Z[β1,...,βn+1]
[σβ1 ,...,σ

β
n+1]

of degree 2l, so generators σαl and σβl only

become relevant to E2i,0
2 if i ≥ l. By Lemmas 5.3, 5.5 and 4.1 we have

d2((1 − l)Sl,n − S̄l,n) = σβl,n − σ
α
l,n = 0.

Recall from Remark 5.2 that the image of each of the di�erentials d2i, i ≥ 1 in E2i,1
2i will be

a unique class in the kernel of d2 not already contained in the image of any dr for r < 2i.

The simplicity conditions of Remarks 5.4 and 5.6 will ensure that if (1 − l)Sl,n − S̄l,n is

in the kernel of d2 previously mentioned, then it will be a generator. We now proceed to

determine d2(l−1)(x2(l−1)) by induction for 2 ≤ l ≤ n+1. First note that the only non-zero
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elements of E∗,1
2 mapped identically to zero in ⟨u1, . . . , un, v1, . . . , vn⟩ are those obtained

from elements of the form

yγvγ′ − yγ′vγ
for some 1 ≤ γ < γ′ ≤ n. Since σαl and σβl only become relevant to E0,2i

2 if i ≥ l, the
element (1 − l)Sl,n − S̄l,n is not contained in the image of d2i for i < 2l. For l = 2, the

only relevant σαi , σ
β
i are σα2 , σ

β
2 . Since −S1,n − S̄1,n is not a sum containing any terms of

the form yγvγ′ − yγ′vγ , so d2(x2) is −S1,n − S̄1,n up to sign. For l > 2, by induction and

the Leibniz rule, the images of di�erentials d2(i−1) for 2 ≤ i < l, correspond to σαi , σ
β
i for

2 ≤ i < l or yγvγ′ − yγ′vγ for some 1 ≤ γ < γ′ ≤ n and σαl , σ
β
l cannot be expressed in terms

of σα1 , . . . , σ
α
l−1, σ

β
1 , . . . , σ

β
l−1. Hence (1− l)Sl,n−S̄l,n must be d2(l−1)(x2(l−1)) up to a choice

of class representative and sign. Therefore by changing the sign of x2l if necessary we

obtain d2(l−1)(x2(l−1)) = (1 − l)Sl,n − S̄l,n.

5.2 Di�erentials for the free loop spectral sequence

Throughout the following arguments we consider the map φ of �brations between the

free loop �bration of SU(n + 1)/Tn for n ≥ 1 and the evaluation �bration studied in

section 5.1, given by the following commutative diagram

Ω(SU(n + 1)/Tn) //

id

��

Λ(SU(n + 1)/Tn) eval //

exp

��

SU(n + 1)/Tn

∆

��
Ω(SU(n + 1)/Tn) //Map(I, SU(n + 1)/Tn) eval // SU(n + 1)/Tn × SU(n + 1)/Tn,

where exp is given on elements by exp(α)(t) = α(e2πit). As SU(n + 1)/Tn is simply

connected, the free loop �bration induces a cohomology Leray-Serre spectral sequence

{Ēr, d̄r}. Hence φ indices a map of spectral sequences φ∗ ∶ {Er, dr} → {Ēr, d̄r}. More

precisely for each r ≥ 2 and a, b ∈ Z, we have the commutative diagram

Ea,br
dr //

φ∗

��

Ea+r,b−r+1
r

φ∗

��

Ēa,br
d̄r // Ēa+r,b−r+1

r ,

(5.3)

where φ∗ for each successive r is the induced map on the homology of the previous page,

beginning as the map induced on the tensor on the E2-pages by the maps id∶Ω(SU(n +
1)/Tn) → Ω(SU(n+ 1)/Tn) and ∆∶SU(n+ 1)/Tn → SU(n+ 1)/Tn ×SU(n+ 1)/Tn. For
the rest of the section we will use the notation

H∗(Ω(SU(n + 1)/Tn);Z) ≅ ΓZ(x′2, x′4, . . . , x′2n) ⊗ΛZ(y′1, . . . , y′n),
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H∗(SU(n + 1)/Tn;Z) ≅ Z[γ1,...,γn+1]
[σγ1 ,...,σ

γ
n+1]

,

where ∣y′i∣ = 1, ∣γj ∣ = 2, ∣x′2i∣ = 2i for each 1 ≤ i ≤ n,1 ≤ j ≤ n+1 and σγ1 , . . . , σ
γ
n+1 are a basis

of the symmetric functions on γi. Now we determine all the di�erentials in {Ēr, d̄r}.

Theorem 5.1. For each n ≥ 1, the only non-zero di�erentials on generators of the

Ē2-page of {Ēr, d̄r} are up to class representative and sign,

d̄2(x′2) = − ∑
1≤i1,i2≤n,i1≠i2

y′i1γi2 − ∑
1≤k≤n

2y′kγk

and for 3 ≤ l ≤ n + 1,

d̄2(l−1)(x′2(l−1)) =

(1 − l) ∑
1≤i1<⋯<il−1≤n

1≤k≤n, ij≠k

y′kγi1⋯γil−1 − ∑
1≤i1<⋯<il−3≤n

1≤k,k′≤n, ij≠k≠k′

y′kγ
2
k′γi1⋯γil−3 − 2 ∑

1≤i1<⋯<il−2≤n
1≤k≤n, ij≠k

y′kγkγi1⋯γil−2 .

Proof. Throughout the proof it may be useful to refer to Figure 5.2, showing di�erentials

in the spectral sequence. The identity id∶Ω(SU(n+ 1)/Tn) → Ω(SU(n+ 1)/Tn) induces
the identity map on cohomology. The diagonal map ∆∶SU(n+ 1)/Tn → SU(n+ 1)/Tn ×
SU(n+1)/Tn induces the cup product on cohomology. Hence by choosing generators in

{Ēr, d̄r}, we may assume that

φ∗(yi) = y′i, φ∗(xi) = x′i and φ∗(αi) = γi = φ∗(βi) = φ∗(ui), so φ∗(vi) = 0.

For dimensional reasons, the only possibly non-zero di�erential on generators y′i in

{Ēr, d̄r} is d̄2. However for each 1 ≤ i ≤ n using commutative diagram (5.3) and Lemma

5.1, we have

d̄2(y′i) = d̄2(φ∗(yi)) = φ∗(d2(yi)) = φ∗(vi) = 0.

Hence all elements of Ē
(∗,1)
2 and Ē

(∗,0)
2 survive to Ē∞, unless they are in the image of

some di�erential d̄r for r ≥ 2. Using commutative diagram (5.3) and Theorem 5.7, we

have up to class representative and sign

d̄2(x′2) = φ∗(d2(x2)) = φ∗(−S2,n − S̄2,n) = − ∑
1≤i1,i2≤n,i1≠i2

y′i1γi2 − ∑
1≤k≤n

2y′kγk

and for 3 ≤ l ≤ n + 1,

d̄2(l−1)(x′2(l−1)) = φ
∗(d2(x2(l−1))) = φ∗((1 − l)Sl,n − S̄l,n)

= (1 − l) ∑
1≤i1<⋯<il−1≤n

1≤k≤n, ij≠k

y′kγi1⋯γil−1 − ∑
1≤i1<⋯<il−3≤n

1≤k,k′≤n, ij≠k≠k′

y′kγ
2
k′γi1⋯γil−3 − 2 ∑

1≤i1<⋯<il−2≤n
1≤k≤n, ij≠k

y′kγkγi1⋯γil−2 .

All di�erentials on generators γi, for each 1 ≤ i ≤ n + 1, are zero for dimensional reasons.
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⋮ ⋮

2n ⟨x′2n⟩

⋮ ⋮

6 ⟨x′6⟩ ⋰

H∗(Ω(SU(n + 1)/Tn);Z) 4 ⟨x′4⟩

2 ⟨x′2⟩ ⋰

1 ⟨y′i⟩ ⋅ ⋅ ⋅ ⋯ ⋅ ⋯

0 ⟨γi⟩ ⋅ ⋅ ⋯ ⋅ ⋯

0 2 4 6 ⋯ 2n ⋯

H∗(SU(n + 1)/Tn;Z)

Figure 5.2: Generators in integral cohomology Leray-Serre spectral sequence {Ēr, d̄
r}

converging to H∗(Λ(SU(n + 1)/Tn);Z).

5.3 Basis

By considering a basis of Z[γ1, . . . , γn] that resembles the image of the d2 di�erential in

Theorem 5.1, it becomes easier to study the E3-page of the spectral sequence.

Remark 5.1. In Z[γ1, . . . , γn], let γ̄ = γ1 + ⋯ + γn and γ̃i = γ̄ + γi for each 1 ≤ i ≤ n.
We may rearrange the standard basis γ1, . . . , γn of Z[γ1, . . . , γn] to γ1, . . . , γn−1, γ̄. Then

rearrange to γ̃1, . . . , γ̃n−1, γ̄, by adding γ̄ to all other basis elements. Notice that the

replacement γi ↦ γ̃i for 1 ≤ i ≤ n − 1, γn ↦ γ̄ could have been chosen γj ↦ γ̄ for any

1 ≤ j ≤ n and γi ↦ γ̃i for any i ≠ j instead.

Replacing γ̄ by (n+ 1)γ̄ − γ̃1 −⋯− γ̃n−1 gives γ̃n, hence γ̃1, . . . , γ̃n forms a rational basis.
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Proposition 5.2. Using the notion of (4.3), we can rewrite hn−l+2
i for each 3 ≤ l ≤ n in

the basis of Remark 5.1 as

hn2 = ∑
0≤k≤2

1≤ij≤n−1

(−1)2−k(n + 1

2 − k)γ̃i1⋯γ̃ik γ̄
2−k

and

hn−l+2
l = ∑

0≤k≤l
1≤ij≤n−l+2

(−1)l−k(n + 1

l − k)γ̃i1⋯γ̃ik γ̄
l−k

Proof. First note that in the basis of Remark 5.1 we can rewrite the original basis in

terms of the new one

γi = γ̃i − γ̄ for 1 ≤ i ≤ n − 1, γn = nγ̄ −
n−1

∑
i=1

γ̃i. (5.4)

When l = 2 using (5.4)

hn2 =
2

∑
a=0

((nγ̄ −
n−1

∑
j=1

γ̃j)2−a ∑
1≤i1≤i2≤n−1

a

∏
k=1

(γ̃ik − γ̄))

= (nγ̄ −
n−1

∑
j=1

γ̃j)2 +
n−1

∑
a=1

(nγ̄ −
n−1

∑
j=1

γ̃j)(γ̃a − γ̄) +
n−1

∑
a=1

(γ̃a − γ̄)2 + ∑
1≤i1<i2≤n−1

(γ̃i1 − γ̄)(γ̃i2 − γ̄).

(5.5)

For 1 ≤ k, k1, k2 ≤ n − 1, k1 ≠ k2, we consider the terms of the form

γ̄2, γ̃kγ̄, γ̃
2
k , γ̃k1 γ̃k2

in tern and count their occurrences in the summands of (5.5). In total n2 element of the

form γ̄2 are produced by the �rst summand of (5.5), minus n(n−1) times in the second,

n − 1 in the third and (n−1
2

) in the last. Hence in total

n2 − n(n − 1) + (n − 1) + (n − 1

2
) = n + (n − 1

1
) + (n − 1

2
) = (n

1
) + (n

2
) = (n + 1

2
).

In total −2n elements of the form γ̃kγ̄ are produced in the �rst summand of (5.5), 2n−1

in the second, minus 2 in the third and 2 − n in the last. Hence in total

−2n + (2n − 1) − 2 + (2 − n) = n + 1 = (n + 1

1
).

The terms γ̃2
k are produced once in the �rst summand of (5.5), once in the third and

negative once in the second, hence once in total. The terms γ̃k1 γ̃k2 are produced twice

in the �rst summand, minus twice in the the second and once in the last, hence once in

total. Therefore the conditions of the proposition are satis�ed.
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For l ≥ 3 using (5.4)

hn−l+2
l = ∑

1≤i1≤⋯≤il≤n−l+2

l

∏
k=1

(γ̃ik − γ̄). (5.6)

For any choice of 1 ≤ i1 ≤ ⋯ ≤ ik ≤ n − l + 2 and non-negative integers b, a1, . . . , ak such

that b + a1 +⋯ + ak = l, terms of the form

γ̃a1i1 ⋯γ̃
ak
ik
γ̄b (5.7)

describe up to multiplicity all possible summand in the expansion of equation (5.6).

De�ne hn−l+2
l {γ̃a1i1 ⋯γ̃

ak
ik
γ̄b} to be the multiplicity of the summand containing γ̃a1i1 ⋯γ̃

ak
ik
γ̄b

in the expansion of equation (5.6). We will show that if hn−l+2
l has of the form of

equation (5.6) for all n + 1 ≥ l ≥ 2 satis�es the statement of the proposition for 3 ≥ l ≥ n.
In particular

hn−l+2
l {γ̃a1i1 ⋯γ̃

ak
ik
γ̄b} = (−1)b(n + 1

b
) (5.8)

where k + b = l, which would complete the proof of the proposition.

Considering each summand of equation (5.6) in tern and counting the number of γ̃a1i1 ⋯γ̃
ak
ik
γ̄b

produced in each product, we obtain

hn−l+2
l {γ̃a1i1 ⋯γ̃

ak
ik
γ̄b} = (−1)b

b

∑
θ=0

((n − l + 2 − k
b − θ )) ∑

α1+⋯+αk=θ
αj≥0

θ

∏
β=1

(aβ + αβ
αβ

).

We proceed by induction on n and will prove (5.8) for all n ≥ 1 and 2 ≤ l ≤ n + 1. When

n = 1, the only valid value of l is 2 and hn−l+2
l = (γ̃1 − γ̄)2 whose expansions satis�es

(5.8). Assume that (5.8) holds for all φ ≤ n. It is clear that hn−l+1
l {γ̄n+1} = (−1)n+1 and

hn−l+1
l {γ̃a1i1 ⋯γ̃

ak
ik

} = 1 for any choice of a1, . . . , ak since in the expansion of equation (5.8)

there would be only one way to obtain the element. For 1 ≤ b ≤ n, by induction

(n
b
) =

b

∑
θ=0

((n − l + 1 − k
b − θ )) ∑

α1+⋯+αk=θ
αj≥0

θ

∏
β=1

(aβ + αβ
αβ

) (5.9)

and

( n

b − 1
) = (−1)b−1hn−l+2

l−1 {γ̃a1i1 ⋯γ̃
ak
ik
γ̄b−1} =

b−1

∑
θ=0

((n − l + 2 − k
b − 1 − θ )) ∑

α1+⋯+αk=θ
αj≥0

θ

∏
β=1

(aβ + αβ
αβ

).

(5.10)

For each 0 ≤ θ ≤ b − 1 the sum of values from (5.9) and (5.10) corresponds to the θ

summand in the expression for hn−l+2
l {γ̃a1i1 ⋯γ̃

ak
ik
γ̄b}, since the binomial expressions agree

and the multi set expression sum to the correct result. The only reaming summand in

hn−l+2
l {γ̃a1i1 ⋯γ̃

ak
ik
γ̄b} is the one corresponding to θ = b. However this is same as that in

(5.10) because ((n−l+2−k
0

)) = 1 = ((n−l+1−k
0

)) and the binomial parts agree.
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5.4 Pre-quotient spectral sequence

In this section we simplify the problem of studying the E3-page of {Er, dr} by considering
the di�erential bigraded algebra E2 with di�erential d2, factored thorough the polyno-

mial algebra, removing the quotient by symmetric ideal. In section 5.4.1 we consider a

di�erential bigraded algebra that turns out to be a rational version of the this di�erential

bigraded algebra. In the rational case the problem is further simpli�ed and so is more

easily dealt with. Then in section 5.4.2 we extend the rational result to the integral

situation.

5.4.1 Rational pre-quotient spectral sequence

Given a sequence indexed by natural numbers i1, . . . , ij , we denote by i1, . . . , îs, . . . , ij

the same sequence with is missing. In the free commutative graded algebra Λ(y1, . . . , yn)
for any 1 ≤ i1 < ⋯ < ij ≤ n, denote by ŷi1,...,ij the elements of Λ(y1, . . . , yn) given by the

multiplication in ascending order of indices of all elements yk except yi1 , . . . , yij .

Let (E,d) be a di�erential bigraded algebra with Ep,q = Ap ⊗ Bq, where A and B

are graded algebras. Given elements x1, . . . , xn ∈ E2
0,q = Bq, we will want to refer to

all elements in the row E∗,q involving generators x1, . . . , xn and hence we denote by

Ep,q(x1, . . . , xn) the graded algebra Ap⊗⟨x1, . . . , xn⟩q and let H∗Ep,q(x1, . . . , xn) be the
image of the inclusion of Ep,q(x1, . . . , xn) into the homology of (E,d). Similarly we may

extend this notation to as spectral sequence where the second pages statistics the initial

condition.

Lemma 5.1. For any n ≥ 1, let A = Z[γ1, . . . , γn] and B = ΛZ(y1, . . . , yn) ⊗ ΓZ(x) be

the graded algebras with ∣γi∣ = 2 = ∣x∣ and ∣yi∣ = 1. For each integer i ≥ 1, denote by xi
the element of ΓZ(x) such that xi = i!xi. There is a di�erential bigraded algebra (E,d)
with Ep,q = Ap ⊗ Bq, di�erential of bidegree (2,−1) given by d(x) = y1γ1 − y2γ2 + ⋅ ⋅ ⋅ +
(−1)n+1ynγn. The homology of (E,d) is given by

H∗E0,n+2m(xmy1⋯yn) ≅ Z,

H∗Ep,n−j(ŷi1,...,ij) ≅ Z∑
n−j
k=0

(−1)k( n
j+k

) (( n
p−k

))
,

H∗Ep,0(1) ≅ Z ((n
p
))

for each m,p ≥ 0, 1 ≤ j ≤ n − 1, 1 ≤ i1 < ⋯ < ij ≤ n and all other elements are trivial.

Proof. For m ≥ 1, due to the divide polynomial structure on ΓZ(x),

d(xm) = 1

m!
d(xm) = 1

(m − 1)!x
m−1d(x) = xm−1d(x). (5.11)
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Algebraa E is generated additively by elements of the form xmŷi1,...ijP with m ≥ 0,

0 ≤ j ≤ n, 1 ≤ i1 < ⋯ < ij ≤ n and P ∈ Z[γ1, . . . , γn]. For 1 ≤ j ≤ n and m ≥ 1,

d(xmŷi1,...,ijP ) = xm−1d
2(x)ŷi1,...,ijP

=
j

∑
t=1

(−1)it+1(−1)it+t−2xm−1ŷi1,...,̂it,...,ijγitP

=
j

∑
t=1

(−1)t−1xm−1ŷi1,...,̂it,...,ijγtP ,

(5.12)

where the additional (−1)it+t−2 sign changes come from reordering the yi. The generator

yt swaps places with yi, it − 1 times for i < t changing the sign each time, however t − 1

of these yi are missing.

Ignoring xm, xm−1, γt and P in (5.12) and thinking of ŷi1,...,ij as simplices in an n vertex

simplicial complex, d is the usual boundary map. In particular, this implies that the

di�erential and hence the di�erential bigraded algebra is well de�ned. With this idea in

mind, we construct the following CW-complex X. For each m ≥ 0, 1 ≤ j ≤ n, 1 ≤ i1 <
⋯ < ij ≤ n and P ∈ Z[γ1, . . . , γn], there is a corresponding cell of dimension j − 1 and

one additional zero-cell ∗. For each cell of dimension ≥ 1, if m = 0 the attaching map

for the boundary of the cell will be ∗, as d of these element in E is zero. For m ≥ 1, the

attaching map is given by the d in (5.12) tacking the cell as a simplex of corresponding

dimension.

For j ≥ 3, every xmŷi1,...,ijP has the image of its d di�erential represented in X. So

for j ≥ 3, a non-zero element in the homology of (E,d) corresponds to an element in

Hj(X;Z).

First consider the cells corresponding to generators

xmŷi1,...,ijP,

where 2 ≤ j ≤ n, 0 ≤m ≤ j −1, 1 ≤ i1 < ⋯ < ij ≤ n and P ∈ Z[γ1, . . . , γn]. In this case some

boundary component of the cell will be attached to ∗. If m > j − 1 or j = 1, then the

cell is not connected to ∗ since all 0-cells in its boundary are not ∗ and all cells with ∗
in their boundary have ∗ as their only 0-cell in the boundary. Let X∗ be the connected

component of ∗ in X.

Now consider cells corresponding to generators

xmŷi1,...,ijγa1⋯γabP, (5.13)

where 2 ≤ j ≤ n, 0 ≤ b ≤ n, 1 ≤ i1 < ⋯ < ij ≤ n, 1 ≤ a1 < ⋯ < ab ≤ n, is ≠ at,

P ∈ Z[γi1 , . . . , γij , γa1 , . . . , γab] and m > j − 1. Notice that all elements can be expressed

uniquely in this form. In this form the corresponding cell is contained in the boundary
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of the unique (b + j)-cell corresponding to xm+bŷi1,...,ij ,a1,...,abP . Therefore all connected

component other than X∗ are contractable. Hence for j ≥ 3, the only non-trivial elements

in Hj(X;Z) correspond to cycles in Hj(X∗;Z).

All cells of X∗ correspond to an element of the form of (5.13) but with m ≤ j − 1. Again

each such cell is contained in the boundary of a unique (b + j)-cell corresponding to

xm+bŷi1,...,ij ,a1,...,abP . Each such top cell is a simplex whose j −m − 1 faces have been

identi�ed to ∗. Hence all homology classes of X are generated by cells whose boundary

is exactly ∗. These correspond to generators of the form

ŷi1,...,ijP,

where j ≥ 2, 1 ≤ i1 < ⋯ < ij ≤ n and P ∈ Z[γ1, . . . , γn]. For j ≥ 3, at Ep,n−j(ŷi1,...,ij) there
are (n

j
) possible choices for i1, . . . , ij and ((np )) choices for P . However if j ≤ n−1, there are

( n
j+1

) (( n
p−1)) cells of dimension one higher whose boundary contain cells corresponding to

generators of the form xŷi1,...,ij+1P , where P has degree p − 1. Again if j ≤ n − 2, in one

dimension higher there are ( n
j+2

) (( n
p−2)) cells with boundary contained in the previous

cells and so on until the top cells in dimension n − 1. The lemma is now proved for all

elements containing a multiple of ŷi1,...,ij when j ≥ 3. It remains to be deduced what

happens to generators with 0 ≤ j ≤ 2.

For m ≥ 1, 1 ≤ i ≤ n and P ∈ Z[γ1, . . . , γn], using (5.12)

d(xmŷiP ) = xm−1γiP.

Therefore the kernel of d on generators of the form xmŷiP is generated by elements of

the form xm(ŷiγj − ŷjγi)P for some 1 ≤ j ≤ n and j ≠ i. Again from (5.12) this is exactly

the image of generators of the form xm+1ŷi,jP . Therefore the only elements that may

survive in the homology of (E,d) are generated by those of the form

ŷi1,i2P , ŷiP or xmy1 . . . ynP

for m ≥ 1, 1 ≤ i1 < i2 ≤ n, 1 ≤ i ≤ n and P ∈ Z[γ1, . . . , γn]. The generators of the form

ŷi1,i2P correspond to 1-cells in X∗ and since they are not a�ected by ŷi1,...,ijP for j ≤ 2

they can be dealt with in the same way we did for j ≥ 3. At (En−j2 (ŷi))p there are

(n
1
) ((np )) generators of the form ŷiP . The image of d is generated by (n

2
) (( n

p−1)) elements

of the form d(x1ŷi1,i2)P . In X there are (n
1
) ((np )) 2-cells in X ∖X∗ whose boundary lie in

cells corresponding to the generators of the form x1ŷi1,i2 and so on as in previous cases.

Finally at Ep,n−j(xmy1⋯yn)p there are (n
0
) ((np )) generators of the form xmy1⋯ynP . The

image of d is generated by (n
1
) (( n

p−1)) elements of the form d(xm+1ŷi)P and so on as in

previous cases. Hence En+2m,p(xmy1⋯yn)p ≅ Z∑
n
k=0 (−1)k(n

k
) (( n
p−k

))
. However for p ≥ 1, by

Lemma 4.2, we have ∑nk=0 (−1)k(nk) ((
n
p−k)) = 0.
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5.4.2 Integral pre-quotient spectral sequence

We now continue the study of the cohomology Leray-Serre spectral sequence associated

to the free loop �bration of SU(n + 1)/Tn for n ≥ 2 we began in section 5.2. We now

refer to the Serre spectral sequence associated to the free loop �bration as (Er, dr). In
addition to simplify notation, we remove the notation required to di�erentiate elements

in the free loop spectral sequence from those of the path space spectral sequence, letting

H∗(Ω(SU(n + 1)/Tn);Z) = ΓZ(x2, x4, . . . , x2n) ⊗ΛZ(y1, . . . , yn),

H∗(SU(n + 1)/Tn;Z) = Z[γ1,...,γn+1]
[σγ1 ,...,σ

γ
n+1]

,

where ∣yi∣ = 1, ∣γj ∣ = 2, ∣x2i∣ = 2i for each 1 ≤ i ≤ n,1 ≤ j ≤ n + 1 and σγ1 , . . . , σ
γ
n+1 the

elementary symmetric polynomials in γi. Recall that in Theorem 5.1 all di�erentials of

(Er, dr) were determined. In particular by choosing the sign of our generators, we may

assume

d2(x2) =
n

∑
i=1

(−1)i+1yi(γ1 +⋯ + γ̂i +⋯ + γn + 2γi). (5.14)

To begin with we ignore the symmetric quotient by the ideal [σ1, . . . , σn] and study the

di�erential bigraded algebra (Ē,D), with

Ē =H∗(Ω(SU(n + 1)/Tn);Z) ⊗ Z(γ1,...,γn+1)
[σγ1 ]

=H∗(Ω(SU(n + 1)/Tn);Z) ⊗Z(γ1, . . . , γn)

and D is de�ned as d2.

Theorem 5.1. The homology of (Ē,D), as a module is given by

H∗Ē0,n+2m+dim(X)((x2)mXy1⋯yn) ≅ Z,

H∗Ēp,n+2m+dim(X)((x2)mXy1⋯yn) ≅ Zn+1 for p > 0,

H∗Ēp,n−j+dim(X)(Xŷi1,...,ij) ≅ Z∑
n−j
k=0

(−1)k( n
j−k

) (( n
p−k

))
,

H∗Ēp,dim(X)(X) ≅ Z ((n
p
))

for each m ≥ 1, p ≥ 0, 1 ≤ j ≤ n− 1, 1 ≤ i1 < ⋯ < ij ≤ n, X ∈ ⟨ΓZ[x4, . . . , x2n]⟩ a monomial

and all other elements trivial.

Proof. Consider the homomorphism of abelian groups f ∶Z[γ1, . . . , γn] → Z[γ1, . . . , γn]
given by

γi ↦ γ1 +⋯γ̂i +⋯ + γn + 2γi.

For simplicity we use the notation γ̃i = γ1 +⋯γ̂i +⋯ + γn + 2γi. The matrix with respect

to basis γ1, . . . , γn of f is given by the top left hand n × n matrix below.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

1
⋱

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋯ ⋯ 1 2

⋮ 2 1 1

⋮ ⋱ ⋮
1 1 2 ⋮
2 1 ⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ⋯ 1 2

0 1 0 −1

⋮ ⋱ ⋮
0 0 1 −1

0 −1 ⋯ −1 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 n

⋱ 0 −1

⋱ ⋮
0 1 −1

0 ⋯ ⋯ 0 −(n + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 n

⋱ 0 0

⋱ ⋮
0 1 0

0 ⋯ ⋯ 0 −(n + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⋱ 0
⋱

0 1

n + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Obtain the second matrix from the �rst matrix by swapping the �rst and last rows.

Obtain the third matrix from the second by eliminating all entries in the �rst column

except the �rst, by row operations using the top row. Obtain the fourth matrix from the

third by row operations on the middle n−2 rows to eliminate the 1's and −1's in the top

and bottom rows. Obtain the �fth matrix from the fourth by using column operations

on the middle n − 2 columns to eliminate the −1's in the �nal column. Finally obtain

the sixth matrix from the �fth by subtracting n times the �rst column from the last and

changing the sign on the �nal row.

Over a �eld of characteristic 0, f would be an isomorphism of vector spaces. Hence

considering (Ē,D) with coe�cients in Q instead of Z, up to multiplication by a factor

in ΓQ[x4, x6, . . . , x2n], the homology of (Ē,D) is described exactly as the one in Lemma

5.1, since rationally the D di�erential is the same up to isomorphism f .

Integrally the image and kernel of D are �nite, so D still has the same rank as the

di�erential in Lemma 5.1. In particular, consider the case of generators of the form

(x2)mŷi1,...,ijP,

for m ≥ 1, 1 ≤ j ≤ n − 1 and P ∈ Z[γ1, . . . , γn] ⊗ ΓZ[x4, . . . , x2n]. The image of D is a

subgroup of the kernel. Using (5.12), the image of D from the span of such elements and

is of the form

⟨D(xmŷi1,...,ijP )⟩ = ⟨
j

∑
t=1

(−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP ⟩, (5.15)

where we consider 2 ≤ j ≤ n. Since the elements of the Ē are additivity generated as

⟨xm−1ŷi1,...,ij−1 γ̃tP ⟩Z, both the image and kernel are subgroups. We will show that

⟨xm−1ŷi1,...,ij−1 γ̃tP ⟩Z⋂⟨∑jt=1 (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP ⟩Q = ⟨∑jt=1 (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP ⟩Z,
(5.16)

where for ring R, ⟨z1, . . . , za⟩R means the linear span of elements z1, . . . , za as an R-

module. (5.16) implies that the kernel must be equal to the image.
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Take any element A ∈ ⟨xm−1ŷi1,...,ij−1 γ̃tP ⟩Z⋂⟨∑jt=1 (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP ⟩Q. Then

there are ai1,...,ij ∈ Q such that

A = ∑
1≤i1<⋯<ij≤n

ai1,...,ij

j

∑
t=1

(−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP ∈ ⟨xm−1ŷi1,...,ij−1 γ̃itP ⟩Z.

We will show that for any choice of 1 ≤ k1 < ⋯ < kj ≤ n, ak1,...,kj ∈ Z. Since j ≥ 2,

we can consider the non-empty set B = {(i1, . . . , ij)∣1 ≤ i1 < ⋯ < ij ≤ n, {k1, . . . , kj−1} ⊆
{i1, . . . , ij}}. Note that ∑jt=1 (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP contains a term with ŷk1,...,kj−1 if

and only if (i1, . . . , ij) ∈ B. Assume that we have chosen the signs of xm−1ŷi1,...,̂it,...,ij γ̃itP

so that (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP have positive sign and change the signs on the ai1,...,ij
accordingly.

Recall that γ̃t = γ1 + ⋯ + γ̂t + ⋯ + γn + 2γt. So for each (i1, . . . , ij) ∈ B ∖ (k1, . . . , kj),
±∑jt=1 (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP contains a unique term xm−1ŷk1,...,kj−1 γ̃kjP .

±∑jt=1 (−1)t−1xm−1ŷk1,...,k̂t,...,kj γ̃ktP contains a unique term 2xm−1ŷk1,...,kj−1 γ̃kjP . There-

fore

2ak1,...,kj + ∑
b∈B∖(k1,...,kj)

ab ∈ Z. (5.17)

In addition for each (i1, . . . , ij) ∈ B, since j ≥ 2, ±∑jt=1 (−1)t−1xm−1ŷi1,...,̂it,...,ij γ̃itP con-

tains a unique term xm−1ŷk1,...,kj−1 γ̃k1P . Therefore

∑
b∈B

ab ∈ Z. (5.18)

Subtracting (5.18) from (5.17) gives ak1,...,kj ∈ Z.

It remains to deduce what e�ect D2 has on generators of the form

(x2)mP, ŷi1,...,ijP and (x2)my1⋯ynP

for m ≥ 0, 1 ≤ j ≤ n − 1, 1 ≤ i1 < ⋯, ij ≤ n and P ∈ Z[γ1, . . . , γn] ⊗ ΓZ[x4, . . . , x2n].

Considering generators (x2)mP for m > 0. Since the equivalent elements in Lemma 5.1

are not contained in the kernel of D, the kernel is zero rationally therefore must also be

zero integrally. If m = 0, then all elements are sent to zero by D and there are ((np )) in

each horizontal dimension p.

In the case m = 1 the image of D in ⟨ŷi1,...,ijP ⟩ will be the same as in (5.15). We

will show that the quotient by the image still contains no torsion, hence has the same

structure as Lemma 5.1. For each j ≥ 1, suppose P is of the degree p and P ′ is of degree

p − 1 in their Z[γ1, . . . , γn] components, with P,P ′ ∈ Z[γ1, . . . , γn] ⊗ Γ(x4, x6, . . . , x2n)
monomials. After a choice of basis, the di�erential D whose image lies in ⟨ŷi1,...,ijP ⟩ is
represented by a matrix whose rows represent the image of a basis of the domain and

columns a basis of the co-domain. The quotient of the co-domain by the image is torsion
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free if and only if the the integral Smith normal form of this matrix has only ones and

zeros on the leading diagonal.

Recall from Remark 5.1 that

Z[γ1, . . . , γn] = Z[γ̃1, . . . , γ̃n−1, γ̄] and Q[γ1, . . . , γn] = Q[γ̃1, . . . , γ̃n].

Choosing the rational basis of the domain {x2ŷi1,...,ij+1 γ̃a1⋯γ̃ap−1}, where 1 ≤ a1 ≤ ⋯ ≤
ap−1 ≤ n and the rational basis {ŷi1,...,ij γ̃a1⋯γ̃ap} for the image, where 1 ≤ a1 ≤ ⋯ ≤ ap ≤ n.
With this choice of basis the image of the di�erential are the same as that of d in Lemma

5.1 given in equation (5.12), when γi are replaced by γ̃i. As there is no torsion in Lemma

5.1, using integral row and column operations the matrix corresponding to these basis can

be brought to the smith normal form with only ones and zeros on the leading diagonal.

Now choose a basis of the image using the integral basis of Remark 5.1 generated by

x2ŷi1,...,ij+1 γ̃a1⋯γ̃ap−k γ̄k

with 0 ≤ k ≤ p for the domain and

ŷi1,...,ij γ̃a1⋯γ̃ap−k′−1 γ̄
k′

with 1 ≤ k′ ≤ p − 1 for the co-domain. Rearrange the rows and columns of the matrix

corresponding to these bases such that the columns of the form ŷi1,...,ijP for ik ≠ n are on

the left and the columns of the form ŷi1,...,ij−1,nP are on the right. The rows of the form

x2ŷi1,...,ij+1P
′ are at the top and the rows of the form x2ŷi1,...,ij ,nP

′ are at the bottom.

The sub-matrix in the intersection of rows x2ŷi1,...,ij+1P
′ and columns ŷi1,...,ij−1,nP is zero

because none of the ik are equal to n, hence the image of the di�erential contains no

summand divisible by a ŷi1,...,ij−1,n. Label the remaining three sub-matrices A, B and C

as in the diagram below.

ŷi1,...,ijP ŷi1,...,ij−1,nP

( )x2ŷi1,...,ij+1P
′ A 0

x2ŷi1,...,ij ,nP
′ B C

The sub-matrix A can be further broken down as a diagonal sum as follows

ŷi1,...,ij P̃ ŷi1,...,ij P̃ γ̄ ⋯ ŷi1,...,ij P̃ γ̄
p−2 ŷi1,...,ij P̃ γ̄

p−1

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

x2ŷi1,...,ij+1P̃ A0 0 ⋯ 0 0

x2ŷi1,...,ij+1P̃ γ̄ 0 A1 0 0

⋮ ⋮ ⋱ ⋮
x2ŷi1,...,ij+1P̃ γ̄

p−2 0 0 Ad−2 0

x2ŷi1,...,ij+1P̃ γ̄
p−1 0 0 ⋯ 0 Ad−1
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where P̃ is some monomial in Z[γ̃1, . . . , γ̃n−1] ⊗ Γ[x2, x4, . . . , x2n]. The sub-matrix in

the intersection of x2ŷi1,...,ij+1P̃ γ̄
a and ŷi1,...,ij P̃ γ̄

b for a ≠ b will be zero since the image

of D on x2ŷi1,...,ij+1 in the basis ŷi1,...,ijP will not be divisible by γ̄, hence summands

in the image of d2 on x2ŷi1,...,ij+1P̃ γ̄
a will each contain a multiple of exactly γ̄a. After

dividing the Ak by γ̄k, each Ak is the same as the matrix with respect to the rational

basis γ̃1, . . . , γ̃n−1 if we reduce the value of n by 1 and the degree of the polynomial

components in Z[γ̃1, . . . γ̃n−1] by k.

Similarly the sub-matrices C is the same as a diagonal sum of matrices with respect

to the rational basis with rows interchanged x2ŷi1,...,ij ,nP ↦ x2ŷi1,...,ijP and columns

interchanged ŷi1,...,ij−1,nP ↦ ŷi1,...,ij−1P .

Hence there exists integral row and column operations on the whole matrix that bring

A and C to the Smith normal form with only ones and zeros on the leading diagonal.

Every row of the form x2ŷi1,...,ij ,nP has a non-zero entry in C. Every row reduced to zero

while putting C into its Smith normal form corresponds to an element of the image of

d2. Using the previous part of the proof, we know that the kernel of D on x2ŷi1,...,ij ,nP

is exactly the image of D whose image is the previous domain. Given a row in C that

was in the kernel implies it is the image of some element of the form x2∑ ŷi1,...,ij P̃ of the

previous di�erential under the correspondence used to obtain the Smith normal form.

In this case for some 1 ≤ k ≤ p − 1, the image of x2∑ ŷi1,...,ij ,nP̃ γ̄k under d2 is the row

inducing this row of C in the larger matrix. Hence corresponding row in the larger

matrix will still be in the image of D and therefore in the kernel. So the whole row in

the matrix can be is reduced to zero not just the row in C. Any remaining entries in B

can then be reduced to zero by column operations cancelling them with using a column

in C. Therefore B is reduced to zero, while A and C are reduced to the Smith normal

form with only ones and zeros on the leading diagonal. Hence the whole matrix has a

Smith normal form with only ones and zeros on the leading diagonal so has the same

Smith normal form as that with respect to the rational basis.

Finally consider generators of the form (x2)my1⋯ynP . Their image under D is also zero.

When deg(P ) = 0, there is no di�erential with image in (x2)my1⋯ynP , so it contributes
a copy of Z to the homology of Ē. Note that up to sign for m′ ≥ 1, 1 ≤ i ≤ n and

P ′ ∈ Z[γ1, . . . , γn] ⊗ ΓZ[x4, . . . , x2n] a monomial,

D((x2)m′ ŷiP ) = (x2)m′−1γ̃iP
′.

In particular D((x2)m′(ŷi − ŷj)P ) = (x2)m′−1(γi − γj)P ′. So for �xed degP ≥ 1 on in

the homology of (Ē,D), all elements of the form (x2)my1⋯, ynP become identi�ed. The

number of terms in D((x2)m′ ŷiP ) is the number of terms in γ̃i, is n+1. So the elements

(x2)my1⋯, ynP contribute a copy of Zn+1 in the homology of (Ē,D).
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5.5 Third page

We now turn our attention to applying the results of sections 5.3, 5.4 and 4.2 to produce

information about the spectral sequence {Er, dr}. Determining The E3-page every-

where would be di�cult, however in special cases the problem is considerably simpli�ed.

Throughout this section assume X ∈ ΓZ[x4, . . . , x2n] is a monomial.

Theorem 5.1. For each m ≥ 0,

E
0,n+2m+dim(X)
3 ((x2)mXy1⋯yn) ≅ Z,

E
p,n+2m+dim(X)
3 ((x2)mXy1⋯yn) ≅ Zgcd((n+1

1
),...,(n+1

p
)) for p > 0.

Proof. By Theorem 5.1, in the di�erential bigraded algebra (Ē,D), which is the same

as {E2, d
2} before quotienting out by the symmetric ideal

Ē
0,n+2m+dim(X)
3 ((x2)mXy1⋯yn) ≅ Z,

Ē
p,n+2m+dim(X)
3 ((x2)mXy1⋯yn) ≅ Zn+1 for p > 0.

Since the smallest degree of σ2, . . . , σn is degree 2, Ē
0,n+2m+dim(X)
3 will remain unchanged

after tacking the symmetric quotient. Recall from (5.14) that for any 1 ≤ i ≤ n

d2((x2)m+1Xŷi) = (x2)mXγ̃i.

In particular this implies that for any 1 ≤ i, j ≤ n

d2((x2)m+1X(ŷi − ŷj)) = (x2)mX(γi − γj). (5.19)

Hence in the quotient by the image of the di�erential there is at most one genera-

tor, as all generators of the from (x2)mXγi are identi�ed. This remains true for all

E
p,n+2m+dim(X)
3 ((x2)mXy1⋯yn) when p > 0 since (5.19) can be multiplied by any ele-

ment of Z[γ1, . . . , γn]. Consequently in the quotient by the image of the di�erential the

expressions for σ1, . . . , σn+1 can be identi�es with an expression in just one generator.

Such an expression would consist of the number of summands in σi times a generator for

each 1 ≤ i ≤ n + 1. By Remark 4.4, we may assume that σ2, . . . , σn+1 = hn2 , . . . , h1
n+1. The

number of summand in hn−j+2
j is ((n−j+2

j )) = (n+1
j
). Tacking into account the degrees of

hn−1
2 , . . . , h1

n, we arrive at the statement of the theorem.
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Theorem 5.2. For each 2 ≤ k ≤ n, 1 ≤ i1 < ⋯ < ik ≤ n, 1 ≤ i ≤ n and m ≥ 0

E
(n+1)n/2,2m+dim(X)
3 ((x2)mX) ≅ Z,

E
(n+1)n/2,n−1+2m+dim(X)
3 ((x2)mXyi) ≅ Zn+1,

E
(n+1)n/2,k+2m+dim(X)
3 ((x2)mXyi1⋯yik) ≅ 0.

Proof. By Theorem 4.1 any element in E
(n+1)n/2,∗
2 is always in the kernel of d2, since the

domain of the di�erentiate will be zero. Hence we consider the quotient of E
(n+1)n/2,−
2

by the image of d2. Using (5.12) in the proof of Lemma 5.1, for any 1 ≤ b ≤ n

d2((x2)mXŷi1,...,ij γ̂b) = (x2)m−1X
j

∑
a=1

(−1)aŷi1,...̂ia,...,ij γ̃aγ̂b.

Recall from Lemma 4.2, that for any 1 ≤ i, j ≤ n

γj γ̂i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0] if j < i or j ≥ i + 2

[γ̂∅] if j = i
−[γ̂∅] if j = i + 1.

Therefore for any 1 ≤ i,≤ n and 1 ≤ j ≤ n − 1

γ̃j γ̂i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0] if j < i or j ≥ i + 2

[γ̂∅] if j = i
−[γ̂∅] if j = i + 1.

Hence we deduce that for each 2 ≤ j ≤ n, 1 ≤ i1 < ⋯ < ij ≤ n, m ≥ 1 and 1 ≤ b ≤ n − 1 such

that b ≠ ik, n for any 1 ≤ k ≤ j,

d2([x2mXŷi1,...,ik,b,ik+2,...,ij γ̂b])

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[γ̂∅(−1)k(ŷi1,...,ij − ŷi1,...,ik−2,b,ik,...,ij)] if ik = b + 1 for some 1 ≤ k ≤ j
[γ̂∅(−1)kŷi1,...,ij)] if ik ≠ b + 1 for some 1 ≤ k ≤ j.

Therefore for j ≤ n − 2, in the quotient by the image, if there exits 1 ≤ b ≤ n − 1 such

that for all 1 ≤ k ≤ j, ik ≠ b and ik ≠ b + 1 then [ŷi1,...,ij ] = 0. If not, then there exists a

smallest 1 ≤ b ≤ n − 1 such that for any 1 ≤ k ≤ j, ik ≠ b in which case

[ŷi1,...,ij ] = [ŷi1,...,ik,b,ik+1,...,ij ]. (5.20)

We can think of this as moving up the position of the missing integer in sequence

i1, . . . , ij . Since we assume j ≤ n − 2, there are at least 2 integers between 1 and n

that do not occur in the sequence i1, . . . , ij . The index b was chosen to be the smallest
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such integer so if in i1, . . . , ij does not have two missing elements next to each other

by repeated application of (5.20), [ŷi1,...,ij ]=[ŷs1,...,sj ] where s1, . . . , sj does have two

consecutive gaps and therefore [ŷi1,...,ij ] = 0. Hence [γ̂i1,...,ij ] = 0 for any choice of

i1, . . . , ij . Which proves that E
(n+1)n/2,k+2m+dim(X)
3 ((x2)mXyi1⋯yik) = 0 since γ̂i1,...,ij

span E
(n+1)n/2,k+2m+dim(X)
3 ((x2)mXyi1⋯yik).

For each 1 ≤ i ≤ n,

d2((x2)mXγ̂i) = γ̂∅ ∑
1≤j≤n,j≠i

(−1)j ŷ1,...,ĵ,...,n + 2(−1)iŷ1,...,̂i,...,n,

Therefore, for each 1 ≤ i < j ≤ n

d2((x2)mXγ̂i − γ̂j) = γ̂∅((−1)j ŷ1,...,ĵ,...,n + (−1)iŷ1,...,̂i,...,n).

HenceE
(n+1)n/2,n−1+2m+dim(X)
3 ((x2)mXyi) has a single generator of which each (x2)mXγ̂i

is a representative. As the number of summands in the image of the di�erential on

each generator (x2)mXγ̂i of E(n+1)n/2−2,2m+dim(X)
2 ((x2)mX) is n + 1, the generator of

E
(n+1)n/2,n−1+2m+dim(X)
3 ((x2)mXyi) is torsion and has multiplicity n+ 1. A generator of

E
(n+1)n/2,2m+dim(X)
2 ((x2)mX) is not in the image of any di�erential hence survives to

the next page.

5.6 Free loop cohomology of SU(3)/T 2

When n = 0, SU(n + 1)/Tn is a point and when n = 1, it has the homotopy type of

S2. Hence in the �rst case the free loops cohomology is trivial and in the second the

cohomology ring is known. We now use some of the tools developed in Sections 4.3, 4.2

and Section 5.2, 5.4 and 5.5 to study H∗(Λ(SU(3)/T 2);Z).

Theorem 5.1. The integral algebra structure of the E∞-page of the Leray-Serre spectral

sequence associated to the free loop space �bration of Λ(SU(3)/T 2) is A/I, where

A = ΛZ(γi, (x4)m, yi, (x2)m(y1(γ1 + γ2) − y2γ2), (x2)my2(γ2
1 − γ1γ2), (x2)mγ2

1γ2)

and

I = [(x2)a((x2)m1 −m!(x2)m), (x2)a((x4)m1 −m!(x4)m), (x2)a((x2)aγ2
1 + γ2

2 + γ1γ2),
(x2)aγ3

1 , (x2)a(y1(2γ1 + γ2) − y2(γ1 + 2γ2)), (x2)my1y2γ
2
1γ2]

where m ≥ 1, a ≥ 0 ∣γi∣ = 2, ∣yi∣ = 1, ∣(x2)k∣ = 2k and ∣(x4)k∣ = 4k for 1 ≤ i ≤ n and 1 ≤ k.
Furthermore all additive extension problems are trivial, hence the algebra has the same

module structure as H∗(Λ(SU(3)/T 2);Z).
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Proof. We consider the cohomology Leray-Serre spectral {Er, dr} sequence associated to

the free loop �bration of SU(n + 1) studies in section 5.2, in the case n = 2, that is

Ω(SU(3)/T 2) → Λ(SU(3)/T 2) → SU(3)/T 2.

The cohomology of the base space SU(3)/T 2 is
Z[γ1,γ2]
[σ2,σ3] , where ∣γ1∣ = 2 = ∣γ2∣. By Remark

4.4 we may replace σ2 with γ2
1 + γ2

2 + γ1γ2 and σ3 with γ3
1 . Noteing also by symmetry

that γ3
2 ∈ [σ2, σ3] and that γ2

1γ2 + γ1γ
2
2 = γ1σ2 − σ3 ∈ [σ2, σ3].

The cohomology of the �bre Ω(SU(3)/T 2) is Λ(y1, y2) ⊗ Γ[x2, x4] where ∣y1∣ = 1 = ∣y2∣,
∣x2∣ = 2 and ∣x4∣ = 4. In particular Λ(y1, y2) is an exterior algebra and

Γ[x2, x4] =
Z[(x2)1, (x2)2, . . . , (x4)1, (x4)2, . . . ]
[(x2)m1 −m!(x2)m, (x4)m1 −m!(x4)m]

is a divided polynomial algebra, where (x2)1 = x2 and (x4)1 = x4. Hence elements on the

E2-page of the spectral sequence are generated additively by representative elements of

the form

(x2)a(x4)bP, (x2)a(x4)byiP, (x2)a(x4)by1y2P

where 0 ≤ a, b, 1 ≤ i ≤ n and P ∈ Z[γ1, γ2] is a monomial of degree between 0 and 3. By

Theorem, 5.1 the only non-zero di�erentials are d2 and d4, which are non-zero only on

generators x2 and x4 respectively. The di�erentials up to sign are given by

d2([x2]) = [y1(2γ1 + γ2) + y2(γ1 + 2γ2)], d4([x4]) = [y1(γ2
1 + 2γ1γ2) + y2(γ2

2 + 2γ1γ2)].

However,

d2([x2(γ1 + γ2)])
= [y1(2γ2

1 + 3γ1γ2 + γ2
2) + y2(γ2

1 + 3γ1γ2 + 2γ2
2)]

= [y1(γ2
1 + 2γ1γ2) + y2(γ2

2 + 2γ1γ2)]
= d4([x4])

where the second equality is given by subtracting element of the symmetric ideal yi(γ2
1 +

γ2
2 + γ1γ2) for i = 1,2, from y1(2γ2

1 + 3γ1γ2 + γ2
2) + y2(γ2

1 + 3γ1γ2 + 2γ2
2). Hence d4 is

trivial, and the spectral sequence converges by the third page. The generators γi, x4

and yi occur in E
∗,0
2 and are always in the kernel of the di�erentials, so are generators

of the E∞-page. The relations xm2 −m!(x2)m, xm4 −m!(x4)m from the divide polynomial

algebra in H∗(Ω(SU(3)/T 2);Z) γ2
1 + γ2

2 + γ1γ2, γ
3
1 generators of the symmetric ideal in

H∗(SU(3)/T 2;Z) and y1(γ1 + 2γ2) + y2(2γ1 + γ2) the generator of the image of the d2

di�erential will also be relations in H∗(Λ(SU(3)/T 2);Z), so are generators of the ideal

I. It remains to determine all generators of A and the torsion present on the E∞-page..
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We choose the opposite sign on y1 so that

d2([x2]) = [y2(γ1 + 2γ2) − y1(2γ1 + γ2)], (5.21)

which means that

d2([x2y1]) = [y1y2(γ1 + 2γ2)], d2([x2y2]) = [y1y2(2γ1 + γ2)]. (5.22)

We �rst consider the image and kernel of the di�erential d2 on elements of the E2-page

of the form

[(x2)a(x4)by1y2P ].

By Theorem 5.1, on the E3-page when the degree of P is zero all generators of the

E2-page survive. When the degree of P is the 1 or 2 the only non-trivial elements

are 3-torsions generated by the class of any non-trivial representative from the E2-page

and when the degree of p is 3 all elements represent the trivial element. Hence on the

E∞-page requires generator of the form

(x2)ay1y2.

It remains to deduce the kernel of d2 with codomain in ⟨(x2)a(x4)by1y2P ⟩.

By Theorem 5.1, before the quotient of the symmetric ideal on subgroups of Ep,q2 where

d2 is non-trivial for both the di�erentials

d2∶Ep−2,q+1
2 → Ep,q2

and d2∶Ep,q2 → Ep+2,q−1
2

the kernel of d2 is exactly the image of d2. Hence kernel elements that can be represented

by a non-trivial element on the E3-page are those that have image under d2 of summands

dividable by non-trivial element of the symmetric ideal.

For elements of the form [(x2)a(x4)by1y2P ], when the degree of P is 0 or 1, the kernel

of d2 quotient the image of d2 must be trivial since the degree of the �rst generator of

the symmetric ideal has degree 2. When the degree of P is 2, by (5.22), the image of d2

is generated by

d2([(x2)a+1(x4)by2γ1]) = [(x2)a(x4)by1y2(2γ2
1 + γ1γ2)], (5.23)

d2([(x2)a+1(x4)by2γ2]) = [(x2)a(x4)by1y2(2γ1γ2 + γ2
2)], (5.24)

d2([(x2)a+1(x4)by1γ1]) = [(x2)a(x4)by1y2(γ2
1 + 2γ1γ2)], (5.25)

d2([(x2)a+1(x4)by1γ2]) = [(x2)a(x4)by1y2(γ1γ2 + 2γ2
2)]. (5.26)
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The rank of the codomain is ⟨2
2
⟩ = 2 and the dimension of the domain 2 ⟨2

1
⟩ = 4. We know

that the dimension of the image is 2, so by the rank nullity theorem the dimension of the

kernel must be 2. By (5.21), [(x2)a+1(x4)b(y2(2γ1+γ2)−y1(γ1+2γ2))] is the image of the

previous di�erential and so is in the kernel. Since d2([(x2)a+1(x4)b(y1(γ1+γ2)−y2γ2)]) =
h2

2, [(x2)a+1(x4)b(y1(γ1+γ2)−y2γ2)] can be taken to be the other generator of the kernel.
Hence

(x2)m(y1(γ1 + γ2) − y2γ2)

is a generator of A. When the degree of P is 3, by (5.22) the image of d2 is generated by

d2([(x2)a+1(x4)by1γ
2
1]) = [(x2)a(x4)by1y2(γ3

1 + 2γ2
1γ2)] =[2(x2)a(x4)by1y2γ

2
1γ2],
(5.27)

d2([(x2)a+1(x4)by1γ1γ2]) = [(x2)a(x4)by1y2(γ2
1γ2 + 2γ1γ

2
2)] =[−(x2)a(x4)by1y2γ

2
1γ2],
(5.28)

d2([(x2)a+1(x4)by1γ
2
2]) = [(x2)a(x4)by1y2(γ1γ

2
2 + 2γ3

2)] =[−(x2)a(x4)by1y2γ
2
1γ2],
(5.29)

d2([(x2)a+1(x4)by2γ
2
1]) = [(x2)a(x4)by1y2(2γ3

1 + γ2
1γ2)] =[(x2)a(x4)by1y2γ

2
1γ2],
(5.30)

d2([(x2)a+1(x4)by2γ1γ2]) = [(x2)a(x4)by1y2(2γ2
1γ2 + γ1γ

2
2)] =[(x2)a(x4)by1y2γ

2
1γ2],
(5.31)

d2([(x2)a+1(x4)by2γ
2
2]) = [(x2)a(x4)by1y2(2γ1γ

2
2 + γ3

2)] =[−2(x2)a(x4)by1y2γ
2
1γ2]
(5.32)

where the last equalities are given by adding an element of the symmetric ideal to the

representatives. Using the numbering of the equations to represent the generators in the

domain of d2, we may take the kernel to be generated by

(5.32)+(5.27), (5.31)+(5.29), (5.30)+(5.28), (5.30)−(5.31), (5.30)+(5.31)+(5.32).

The symmetric ideal in the domain is generated by

(5.27) + (5.28) + (5.29), (5.30) + (5.31) + (5.32).

By (5.21), the image of the previous di�erential is generated by

d2([(x2)a+1(x4)bγ1]) = [(x2)a(x4)b(y2(γ2
1 + 2γ1γ2) − y1(2γ2

1 + γ1γ2))]
= [(x2)a(x4)b(y2(γ1γ2 − γ2

2) − y1(γ2
1 − γ2

2))]
= (5.31) + (5.29) − (5.32) − (5.27),

d2([(x2)a+1(x4)bγ2]) = [(x2)a(x4)b(y2(γ1γ2 + 2γ2
2) − y1(2γ1γ2 + γ2

2))]
= [(x2)a(x4)b(y2(γ2

2 − γ2
1) − y1(γ1γ2 − γ2

1))]
= (5.32) + (5.27) − (5.30) − (5.28).
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Hence the quotient of the kernel by the image is given by

⟨(5.32)+(5.27), (5.31)+(5.29), (5.30)+(5.28), (5.30)−(5.31), (5.30)+(5.31)+(5.32)⟩
⟨(5.27)+(5.28)+(5.29), (5.30)+(5.31)+(5.32), (5.32)+(5.27)−(5.30)−(5.28), (5.31)+(5.29)−(5.32)−(5.27)⟩ .

Subtracting (5.32)+(5.27) from (5.31)+(5.29), adding (5.32)+(5.27) to −((5.30)+(5.28))
in the generators of the kernel and adding (5.27)+(5.28)+(5.29), (5.31)+(5.29)−(5.32)−
(5.27) and −((5.32) + (5.27) − (5.30)) to (5.30) + (5.31) + (5.32) in the generators of the

image gives

⟨(5.32)+(5.27), (5.31)+(5.29)−(5.32)−(5.27), (5.32)+(5.27)−(5.30)−(5.28), (5.30)−(5.31), (5.30)+(5.31)+(5.32)⟩
⟨(5.27)+(5.28)+(5.29), 3((5.32)+(5.27)), (5.32)+(5.27)−(5.30)−(5.28), (5.31)+(5.29)−(5.32)−(5.27)⟩ .

Therefore the kernel of d2 is generated by

(5.32) + (5.27) and (5.30) − (5.31).

Recall that [(y1(γ1 + γ2) − y2γ2)(x2)m] generated the kernel when the degree of P was

2. Notice that

[γ2(y1(γ1 + γ2) − y2γ2)(x2)m] = [(y1(γ1γ2 + γ2
2) − y2γ

2
2)(x2)m]

= [−y1γ
2
1 − y2(γ2

2))(x2)m]
= −(5.32) + (5.27)

hence the generator (5.32) + (5.27) is algebraically redundant. So A has generator

(x2)my2(γ2
1 − γ1γ2)

Next we consider elements of the E2-page of the form

[(x2)a(x4)byiP ].

We have already considered the case when a ≥ 1 and deg(P ) ≤ 2 by studying the quotient

of the kernel of d2 on elements of the form [(x2)a(x4)by1y2P ]. When a = 0 or deg(p) = 3

all elements of the form [(x2)a(x4)byiP ] are in the kernel of d2. It remains to deduce

the quotient of such generators by the image of d2 and the kernel of d2 whose codomain

lies in the span of such elements.

When the degree of P is 0, [(x4)byi] is not in the image of d2, so services to the third

page. However (x4)byi is already a product of generators (x4)m and yi. When the

degree of P is 1, the image of d2 on x2(x4)b is given by (5.22). Since the image is

spanned by just the one generator [(x4)b(y2(2γ1 + γ2) − y1(γ1 + 2γ2))], the kernel is

trivial and the quotient is generated by [y2γ1(x4)b], [y2γ2(x4)b] and [y1γ2(x4)b] all of
which are products of (x4)m, yi and γi. Since the image of d2 and the symmetric ideal

are in I and (x4)m, yi, γi are generators of the algebra any generator of I not containing
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an (x2)m term is redundant. When the degree of P is 2, by (5.22) the image of d2 with

codomain in [(x4)byiP ] is generated by

d2([x2(x4)bγ1]) = [(x4)b(y2(γ2
1 + 2γ1γ2) − y1(2γ2

1 + γ1γ2))]
= [(x4)b(y2(γ1γ2 − γ2

2) − y1(2γ2
1 + γ1γ2))],

d2([x2(x4)bγ2]) = [(x4)b(y2(γ1γ2 + 2γ2
2) − y1(2γ1γ2 + γ2

2))]
= [(x4)b(y2(γ1γ2 + 2γ2

2) − y1(γ1γ2 − γ2
1))].

Subtracting the second generator from the �rst gives

[3(y1γ
2
1 + y2γ

2
2)(x4)b].

Hence the generators of the image are independent and the kernel of d2 with codomain

in ⟨[(x4)byiP ]⟩ is trivial. In addition the quotient by the image is isomorphic to Z2⊕Z3

as a group and assuming all 3-torsion survives the cohomology algebra already contained

all necessary generators and relations. When the degree of P is 3, by Theorem 5.2 the

quotient by the image of d2 is isomorphic to Z3, generated by any [(x2)a(x4)byiγ2
1γ2] or

−[(x2)a(x4)byiγ1γ
2
2]. However

[(x2)a(x4)bγ2(y1γ
2
1 + y2γ

2
2)] = [(x2)a(x4)b(y1γ

2
1γ2 + y2γ

3
2] = [(x2)a(x4)byiγ2

1γ2].

So [(x2)a(x4)byiγ2
1γ2] is contained on the E∞-page.Since ⟨2

2
⟩ = 2 = 2 ⟨2

3
⟩ the kernel of

d2 with codomain in ⟨[(x2)a(x4)byiP ]⟩ is trivial. All necessary generators and relations

are already contained in the algebra.

Finally elements of the form [(x2)m(x4)bP ] in the E3-page are all trivial, since the kernel

of d2 on elements of the form [(x2)a(x4)by1yP ] was always trivial. Elements of the form

[(x4)bP ] survive to the third page and are already included on the E∞-page as a product
of generators (x4)m and γi.

All the torsion on the E∞-page of the spectral sequence is 3 torsion. In order to resolve

any extension problems that arise, we will consider the spectral sequence {Er, dr} over

the �eld of order 3.

None of the generators in the integral spectral sequence are divisible by 3, hence in the

modulo 3 spectral sequence all of the integral generators remain non-trivial. In addition

when the kernel of d2 at Ep,q2 is all of Ep,q2 , the rank plus rank of the torsion in the integral

spectral sequence must be greater than or equal to the rank in the modulo 3 spectral

sequence. So in these cases the rank in modulo 3 spectral sequence is exactly the rank

plus the rank of the torsion in the integral case. Hence it remains to consider the kernels

of the d2 di�erential in the cases when the integral kernel is not the entire domain. By

the rank nullity theorem, the rank of the image plus the nullity, the dimension of the

kernel is the dimension of the domain.



70 Cohomology of the free loop space of the complete �ag manifold of SU(n)

When considering the spectral sequence modulo 3 the rank of any di�erential is the same

as in the integral case when the quotient of the preceding kernel by the image contains

no torsion. When integral 3-torsion exists, there is are generators of the image which are

3 times a generators of the kernel. In the modulo 3 spectral sequence these generators of

the image are now generators of the kernel. Hence in the modulo 3 sepulchral sequence

the rank is reduced by the dimension of the integral torsion and the nullity increased by

the same number.

Since the modulo 3 spectral sequence has coe�cients in a �eld, there are no exten-

sion problems. As the the total degree of the d2 di�erential is −1 and E3 = E∞,

dim(H i(SU(3)/T 2;Z3)) is the sum of the ranks of the total degree i coordinated of

the integral E3-page plus the sum of the torsion rank in total degrees i and i + 1. By

Corollary 1.3, the modulo 3 cohomology algebra is only consistent with the case when

all torsion on the E∞-page of the spectral sequence is contained in the integral coho-

mology moduleTherefore all additive extension problems are resolved and all the torsion

elements in the spectral sequence are present in the integral cohomology.



Cohomology of the free loop space of the

complete �ag manifold of Sp(n)

In this chapter we apply the method used in Chapter 5 to study the free loop cohomology

of SU(n+ 1)/Tn and apply them to study the free loops cohomology of Sp(n)/Tn. The
Lie groups Sp(n) is simply connected, hence Sp(n)/Tn is too. In addition the integral

cohomology of Sp(n) like that of SU(n) has no torsion, so the process of adapting the

methods is relatively straightforward. However these properties are not shared by the

other simple Lie groups, meaning that generalising the arguments of Chapter 5 to their

cases would require more work.

6.1 Di�erentials in the path space spectral sequence

Just as in Section 5 we begin by studying the cohomology Leray-Serre spectral sequence

associated to the �bration

Ω(Sp(n)/Tn) →Map(I, Sp(n)/Tn) evalÐÐ→ Sp(n)/Tn × Sp(n)/Tn, (6.1)

where eval∶Map(I, Sp(n)/Tn) → Sp(n)/Tn × Sp(n)/Tn is given by α ↦ (α(0), α(1))
and Map(I, Sp(n)/Tn) ≃ Sp(n)/Tn. By the same reasoning as for Ω(SU(n + 1)/Tn),

Ω(Sp(n)/Tn) ≃ ΩSp(n) × Tn.

Using the Künneth formula and Theorem 3.3, we obtain the algebra isomorphism

H∗(Ω(Sp(n)/Tn);Z) ≅ ΓZ[x2, x6, . . . , x4n−2] ⊗ΛZ(y1, . . . , yn),

where ΓZ[x2, x4, . . . , x4n−2] is the integral divided polynomial algebra on variables x2, x6, . . . , x4n−2

with ∣xi∣ = i for each i = 2,6, . . . ,4n−2 and Λ(y1, . . . , yn) is an exterior algebra generated

by y1, . . . , yn with ∣yj ∣ = 1 for each j = 1, . . . , n. The cohomology of Sp(n)/Tn is given in

Theorem 3.7, as

H∗(Sp(n)/Tn;Z) = Z[γ1, . . . , γn]
[σλ21 , . . . , σλ2n ]

,

71
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where ∣γi∣ = 2 and σλ
2

1 , . . . , σλ
2

n are the elementary symmetric polynomials in γ2
1 , . . . , γ

2
n.

In this section we use the notation

H∗(Map(I, Sp(n)/Tn);Z) = Z[λ1, . . . , λn]
[σλ21 , . . . , σλ2n ]

and

H∗(Sp(n)/Tn × Sp(n)/Tn;Z) = Z[α1, . . . , αn]
[σα2

1 , . . . , σα
2

n+1]
⊗ Z[β1, . . . , βn]

[σβ2

1 , . . . , σβ
2

n+1]

for the cohomology of the base space and �ber of �bration (6.1). Where ∣λ1∣ = ∣αi∣ =
∣βi∣ = 2 for 1 ≤ i ≤ n and σλ

2

i , σα
2

i and σβ
2

i are the complete homogeneous symmetric

polynomials in variables λ2
1, . . . , λ

2
n, α

2
1, . . . , α

2
n and β2

1 , . . . , β
2
n respectively. Denote by

{Er, dr} the cohomology Leray-Serre spectral sequence associated to �bration (6.1). We

again use the altenative basis

vi = αi − βi and ui = βi

for 1 ≤ i ≤ n. For exactly the same reasons as Lemma 5.1, we get an equivalent lemma

in case of {Er, dr}

Lemma 6.1. With the notation above, in the cohomology Leray-Serre spectral sequence

of �bration (6.1), there is a choice of basis y1, . . . , yn such that

d2(yi) = vi

for each i = 1, . . . , n.

Remark 6.2. Similarly to Remark 5.2, the image of each of the di�erentials d4i−2 for

1 ≤ i ≤ n will be a unique class in E4i−2,1
4i−2 in the kernel of d2 not already contained in the

image of any dr for r < 4i − 2.

Let S be the subalgebra of
Λ(y1,...,yn)⊗Z[α1,...,αn,β1,...,βn]

[σα21 ,...,σα2n ,σβ
2

1 ,...,σβ
2
n ]

generated by elements of the form

gu,l,t,s = ∑
1≤i1<⋯<it−1≤n
1≤it<⋯<is−1≤n
1≤is<⋯<il−1≤n
1≤k≤n, k≠ij≠ij′

ykukui1vi1⋯uit−1vit−1u2
it⋯u

2
is−1v

2
is⋯v

2
l−1,

or gv,l,t,s = ∑
1≤i1<⋯<it−1≤n
1≤it<⋯<is−1≤n
1≤is<⋯<il−1≤n
1≤k≤n, k≠ij≠ij′

ykvkui1vi1⋯uit−1vit−1u2
it⋯u

2
is−1v

2
is⋯v

2
l−1
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for any 1 ≤ t < s < l. De�ne an operations ψu2 , ψuv and ψv2 on S by

ψu2(gu,l,t,s) = gu,l+1,t,s+1, ψu2(gv,l,t,s) = gu,l+1,t,s+1,

ψv2(gu,l,t,s) = gu,l+1,t,s, ψv2(gv,l,t,s) = gu,l+1,t,s,

ψuv(gu,l,t,s) = gu,l+1,t+1,s+1, ψu2(gv,l,t,s) = gu,l+1,t+1,s+1.

We now prove an equivalent of Theorem 5.7, for Sp(n)/Tn.

Theorem 6.3. For each n ≥ 1 and 1 ≤ l ≤ n in the spectral sequence {Er, dr} up to class

representative on E2
4l−2,1, we have

d4l−2(x4l−2) = A + 2 ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−1
,

where A is an element of S for which each summand is divisible by vi for some 1 ≤ i ≤ n
and

d2(A + 2 ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−1

) = σαl
2 − σβl

2
.

Proof. We proceed by induction on l. When l = 1, by Lemma 6.1

d2( ∑
1≤k≤n

ykvk + 2ykuk) = ∑
1≤k≤n

v2
k + 2vkuk

= ∑
1≤k≤n

(αk − βk)2 + 2(αk − βk)βk

= ∑
1≤k≤n

(α2
k − 2αkβk + β2

k) + 2(αkβk − β2
k)

= ∑
1≤k≤n

α2
k − β2

k.

As σα
2

1 = ∑1≤k≤n α
2
k and σ

β2

1 = ∑1≤k≤n β
2
k, ∑1≤k≤n ykvk + 2ykuk represents the image of d2

by Remark 6.2.

Now assume the statement of the theorem is true for all d4i−2 for i < l. Hence the by

inductive hypothesis, there is an A represented by an element of E4l−6,1
2 for which each

summand is divisible by vi for some 1 ≤ i ≤ n such that

d4l−6(x4l−6) = A + 2 ∑
1≤i1<⋯<il−2≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−2

and

d2(A + 2 ∑
1≤i1<⋯<il−2≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−2

) = σα2

l−1 − σ
β2

l−1 = ∑
1≤i1<⋯<il−1≤n

α2
i1⋯α

2
il−1

− β2
i1⋯β

2
il−1
.
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Notice that

d2ψv2(A + 2 ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−1

)

= ∑
1≤i1<⋯<il≤n

1≤k≤l

(α2
i1⋯α̂

2
ik
⋯α2

il
− β2

i1⋯β̂
2
ik
⋯β2

il
)(α2

ik
− 2αikβik + β2

ik
), (6.2)

d2ψuv(A + 2 ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−2

)

= ∑
1≤i1<⋯<il≤n

1≤k≤l

(α2
i1⋯α̂

2
ik
⋯α2

il
− β2

i1⋯β̂
2
ik
⋯β2

il
)(αikβik − β2

ik
), (6.3)

d2ψu2(A + 2 ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−2

)

= ∑
1≤i1<⋯<il≤n

1≤k≤l

(α2
i1⋯α̂

2
ik
⋯α2

il
− β2

i1⋯β̂
2
ik
⋯β2

il
)β2
ik
, (6.4)

d2( ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykvku
2
i1⋯u

2
il−1

) = ∑
1≤i1<⋯<il≤n

1≤k≤l

β2
i1⋯β̂

2
ik
⋯β2

il
(α2

ik
− 2αikβik − β2

ik
), (6.5)

d2( ∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−1

) = ∑
1≤i1<⋯<il≤n

1≤k≤l

β2
i1⋯β̂

2
ik
⋯β2

il
(αikβik − β2

ik
). (6.6)

Therefore

(6.2) + 2(6.3) + (6.4) + (6.5) + (6.6) (6.7)

= ∑
1≤i1<⋯<il≤n

1≤k≤l

α2
i1⋯α̂

2
ik
⋯α2

il−1
α2
ik
− β2

i1⋯β̂
2
ik
⋯β2

il−1
β2
ik

= ∑
1≤i1<⋯<il≤n

α2
i1⋯α

2
il
− β2

i1⋯β
2
il

= σα2

l − σβ
2

l .

Since (6.4) and (6.6) are the only terms obtained as the image under d2 using

∑
1≤i1<⋯<il−1≤n

1≤k≤n, k≠ij

ykuku
2
i1⋯u

2
il−1

and the expression (6.7) is obtained as the image under d2 of an element in S. So (6.7)

is obtained as the image under d2 of an expression having the required form.

For dimensional reason for each r ≥ 2 and 1 ≤ i ≤ n,

dr(ui) = 0 = dr(vi).

Therefore all the dr is determined on all generators of the E2-page, so the di�erential is

determined everywhere in {Er, dr}.
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6.2 Di�erentials in the free loop spectral sequence

Just as we did in Section 5.2, we can now use the results of Theorem 6.3 to deduce the

di�erentials in the cohomology Leray-Serre spectral sequence associated to the free loop

�bration of Sp(n)/Tn. Similarly to Section 5.2, consider the map φ of �brations

Ω(Sp(n)/Tn) //

id

��

Λ(Sp(n)/Tn) eval //

exp

��

Sp(n)/Tn

∆

��
Ω(Sp(n)/Tn) //Map(I, Sp(n)/Tn) eval // Sp(n)/Tn × Sp(n + 1)/Tn

between the free loop space �bration on Sp(n)/Tn and the path space �bration on

Sp(n)/Tn, where exp is given on elements by exp(α)(t) = α(e2πit). Since Sp(n)/Tn

like SU(n + 1)/Tn is simply connected, the free loop �bration induces a cohomology

Leray-Serre spectral sequence {Ēr, d̄r}. Hence φ indices a map of spectral sequences

φ∗∶ {Er, dr} → {Ēr, d̄r}. For the rest of the section we denote the cohomology algebras

of the base space and �ber of the free loop �bration Ω(Sp(n)/Tn) → Λ(Sp(n)/Tn →
Sp(n)/Tn by

H∗(Ω(Sp(n)/Tn);Z) = ΓZ(x′2, x′6, . . . , x′4n−2) ⊗ΛZ(y′1, . . . , y′n) (6.8)

and

H∗(Sp(n)/Tn;Z) = Z[γ1, . . . , γn]
[σ2

1, . . . , σ
2
n]

where ∣y′i∣ = 1, ∣γi∣ = 2, ∣x′4i−2∣ = 4i−2 for each 1 ≤ i ≤ n and σ2
1, . . . , σ

2
n are the elementary

symmetric polynomials in variables γ2
1 , . . . , γ

2
n.

Theorem 6.1. For each n ≥ 1 and 1 ≤ l ≤ n, the only non-zero di�erentials on generators

of the Ē2-page of {Ēr, d̄r} are up to class representative and sign,

d̄2(x4l−2) = 2 ∑
1≤i1<⋯<il≤n

yi1γi1γ
2
i2⋯γ

2
il

Proof. For the same reasons as in the proof of Theorem 5.1, we have

φ∗(yi) = y′i, φ∗(xi) = x′i and φ∗(αi) = γi = φ∗(βi) = φ∗(ui), so φ∗(vi) = 0.

Hence by exactly the same arguments used in the proof of Theorem 5.1, we have

d̄2(y′i) = 0

and the image of d̄r on generators x′2, x
′
6, . . . , x

′
4n−2 is determined by those summands in

the image of d2 on x2, x6, . . . , x4n−2 containing no vi, replacing ui with γi and yi with y
′
i.

This gives us the result stated in the theorem.
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6.3 Free loop cohomology of Sp(2)/T 2

The group Sp(1) = SU(2), hence the �rst new case for H∗(Λ(Sp(n)/Tn);Z) is when

n = 2. So in this section we study, the cohomology algebra of the free loop space of

Sp(2)/T 2.

Theorem 6.1. The integral algebra structure of the E∞-page of the Leray-Serre spectral

sequence associated to the free loop space �bration of Λ(Sp(2)/T 2) is A/I, where

A = ΛZ((x6)bγi, y1y2(x2)a(x6)b, (x6)byi, (x2)m(x6)b(y1γ2 + y2γ1), (x2)m(x6)by2γ
2
1γ2,

(x2)m(x6)b(y1γ1 − y2γ2), (x2)a(x6)bγ3
1γ2)

and

I = [(x2)a(x6)b((x2)m1 −m!(x2)m), (x2)a(x6)b((x6)m1 −m!(x6)m), (x2)a(x6)b(γ2
1+γ2

2), (x2)a(x6)b(γ2
1γ

2
2), 2(x2)a(x6)b(y1γ1+y2γ2), 4y1(x2)a(x6)bγ3

1)]

for i = 1,2, m ≥ 1, a, b ≥ 0 and where ∣(x2)m∣ = 2m, ∣(x6)m∣ = 6m, ∣yi∣ = 1 and ∣γi∣ = 2.

Furthermore all additive extension problems with the exception of di�erentiating be-

tween 2 and 4-torsion, are trivial. Hence the algebra is the same module structure as

H∗(Λ(Sp(2)/T 2);Z) up to the value of j.

Proof. We consider the cohomology Leray-Serre spectral sequence {Er, dr} associated to

the free loop �bration of Sp(2)/T 2,

Ω(Sp(2)/T 2) → Λ(Sp(2)/T 2) → Sp(2)/T 2.

By Theorem 3.7, the cohomology of the base space Sp(2)/T 2 is

H∗(Sp(2)/T 2;Z) = Z[γ1, γ2]
[γ2

1 + γ2
2 , γ

2
1γ

2
2]
.

From (6.8), the cohomology of the �ber Ω(Sp(2)/T 2) is

H∗(Ω(Sp(2)/T 2);Z) = ΛZ(y1, y2) ⊗ ΓZ[x2, x6],

where ∣y1∣ = 1 = ∣y2∣, ∣x2∣ = 2, ∣x6∣ = 6, ΛZ(y1, y2) is an exterior algebra and ΓZ[x2, x6] is
a divide polynomial algebra. That is

Γ[x2, x6]Z = Z[(x2)1, (x2)2, . . . , (x6)1, (x6)2, . . . ]
[(x2)m1 −m!(x2)m, (x6)m1 −m!(x6)m] ,

where (x1)2 = x2 and (x6)1 = x6.
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The elements on the E2-page of the spectral sequence are generated additively by rep-

resentative elements of the form

(x2)a(x6)bP, (x2)a(x6)byiP, (x2)a(x6)by1y2P

where 0 ≤ a, b, 1 ≤ i ≤ n and P ∈ Z[γ1, γ2] is a monomial. The generators of the ideal in

H∗(Ω(Sp(2)/T 2);Z) are the squares of the elementary symmetric polynomials. We may

replace the generator γ2
1γ

2
2 of the ideal with γ4

1 , by adding γ2
1(γ2

1 + γ2
2) to the negative of

this generator. Hence the monomials

γi1γ
j
2 (6.9)

form an additive basis of H∗(Ω(Sp(2)/T 2);Z), for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 1. Therefore P

has degree between 0 and 4.

By Theorem, 6.1 the only non-zero di�erentials in {Er, dr} are d2 and d6, which are non-

zero only on generators x2 and x6 respectively. Hence the spectral sequence converges

on the seventh page. The di�erentials up to sign are given by

d2([x2]) = 2[y1γ1 + y2γ2], d4([x6]) = 2[y1γ1γ
2
2 + y2γ2γ

2
1]. (6.10)

Since these are representatives over the symmetric ideal,

d4([x6]) + d2([x2])γ2
1 = 2[y1γ1γ

2
2 + y2γ

2
1γ2] + 2[y1γ

3
1 + y2γ

2
1γ2]

= 2[y1γ
3
1 − y2γ

2
1γ2] + 2[y1γ

3
1 + y2γ

2
1γ2]

= 4[y1γ
3
1]. (6.11)

Hence assuming that all extension problems are trivially resolved

2(x2)a(y1γ1 + y2γ2) and 4(x2)ay1γ
3
1

are included as relations on the E∞-page.The generators γi, and yi occur in E
∗,0
2 and

are always in the kernel of the di�erentials, so are free generators of the E∞-page.The

relation xm2 −m!(x2)m, xm6 −m!(x6)m from the divide polynomial algebra and γ2
1 + γ2

2 ,

γ2
1 , γ

2
2 generators of the symmetric ideal remain as relations on the E∞-page.

We �rst consider the image and kernel of the di�erential d2 on generators of the E2-page

of the form

y1y2(x2)a(x6)bP.

Using (6.10) the image of d2 on such elements is generated by [γi],

−d2([(x2)m(x6)by1]) = 2(x2)m−1(x6)b[y1y2γ2]
and d2([(x2)m(x6)by2]) = 2(x2)m−1(x6)b[y1y2γ1].
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Hence on the E3-page all element of the form [y1y2(x2)a(x6)bP ] are generated by

[y1y2(x2)a(x6)b] and [γi] with all elements 2-torsion except [y1y2(x2)a(x6)b] itself,

which additively generates a copy of Z. The kernel of d2 on generators of the form

[y1y2(x2)a(x6)bP ] is generated by [γi] and

[(x2)m(y1γ1 + y2γ2)], [(x2)m(y2γ1 − y1γ2)], [(x2)m(y2γ2γ
2
1)] (6.12)

The �rst is the kernel of the di�erential without considering the symmetric ideal, the

second the kernel due to symmetric ideal generator γ2
1+γ2

2 and the third due to symmetric

ideal generator γ2
1γ

2
2 .

Next we consider the image and kernel of the di�erential d2 on generators of the E2-page

of the form

(x2)m(x6)byiP and (x6)byiP.

By (6.10) the image of the d2 di�erential on such generators is generated by [γi] and

d2([(x2)m(x6)b]) = 2(x2)m−1(x6)b[y1γ1 + y2γ2],

Which is exactly twice the �rst generator of the previous kernel in (6.12). Hence The

elements of the form [yi(x2)m(x6)bP ] and [yi(x6)bP ] on the E3-page are either non-

torsion or 2-torsion. Multiplicatively such class are generated by [γi],

[(x2)m(x6)b(y1γ2 + y2γ1)], [(x2)m(x6)b(y1γ1 − y2γ2)]

and

[(x6)byi]

since [(x2)m(x6)byi] is not in the kernel of d2. Assuming all extension problems are

resolved trivially and these are not in the image of d6 these generators will be genera-

tors of H∗(Λ(Sp(n)/T 2);Z). Notice that the previous generator [y1y2(x2)a(x6)b] is a
product of generators [yi] and [(x6)byi] when a = 0, so is redundant in this case. The

d2 di�erential is twice the di�erential of the spectral sequence in Lemma 5.1. Hence

since in {Er, dr} we must also conditioner the symmetric ideal, any elements of the form

[(x2)a(x6)bP ] in the kernel of d2 have image in ideal J = [(x2)m, (x6)m, yi, γ2
1 +γ2

2 , γ
2
1γ

2
2].

When the degree of P is 0 the image of d2 is [2(x2)a(x6)b(y1γ1 + y2γ2)] which does not

lie in ideal, since the monomials in gamma have only degree 1. We will Express the

remaining cases for the degree of P in terms of the additive basis of (6.9). When the

degree of P is 1 the image of d2 is

d2([(x2)m(x6)bγ1]) = [2(x2)a(x6)b(y1γ
2
1 + y2γ1γ2)]

and d2([(x2)m(x6)bγ2]) = [2(x2)a(x6)b(y1γ1γ2 + y2γ
2
2)] = [2(x2)a(x6)b(y1γ1γ2 − y2γ

2
1)]
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which are linearly independent over Z. When the degree of P is 2 the image of d2 is

d2([(x2)m(x6)bγ2
1]) = [2(x2)a(x6)b(y1γ

3
1 + y2γ

2
1γ2)]

and d2([(x2)m(x6)bγ1γ2]) = [2(x2)a(x6)b(y1γ
2
1γ2 + y2γ1γ

2
2)]

= [2(x2)a(x6)b(y1γ
2
1γ2 − y2γ

3
1)]

which are linearly independent over Z. When the degree of P is 3 the image of d2 is

d2([(x2)m(x6)bγ3
1]) = [2(x2)a(x6)b(y1γ

4
1 + y2γ

3
1γ2)] = [(x2)a(x6)by2γ

3
1γ2]

and d2([(x2)m(x6)bγ2γ
2
1]) = [2(x2)a(x6)b(y1γ

3
1γ2 + y2γ

2
1γ

2
2)] = [2(x2)a(x6)by1γ

3
1γ2]
(6.13)

which are linearly independent over Z. So the image of d2 does not lie in J till the degree

of P is 4 and d2 is trivial. Therefore on the E3-page the only non-trivial element of the

form [(x2)a(x6)bP ] is [(x2)a(x6)bγ3
1γ2]. Assuming these generators are not in the image

of d6, they will be generators of the E∞-page.

When the image of d6 lies in the span of [(x2)a(x6)by1y2P ] and [γi], by (6.10) the image

d6 is generated by

−d6([(x2)a(x6)my1]) = 2(x2)a(x6)m−1[y1y2γ2γ
2
1]

and d6([(x2)a(x6)my2]) = 2(x2)a(x6)m−1[y1y2γ1γ
2
2]

which is exactly the same as the image of d2. Hence d6 is always trivial in this case.

The image of d6 in lying in the span, of [(x2)a(x6)by1y2P ] and [γi], is the image of

generators [(x2)a(x6)m] and [(x2)a(x6)mγi]. In the case when a ≥ 1, these generators

are trivial on the E6-page. In (6.11) we have already shown that the image of [(x6)m]
is non-trivial. The image of [(x6)mγi] is generated by [γi],

d6([(x6)mγ1]) = 2(x6)m−1[y1γ
2
1γ

2
2 + y2γ2γ

3
1] = 2[y2γ2γ

3
1]

and d6([(x6)mγ2]) = 2(x6)m−1[y1γ1γ
3
2 + y2γ

2
2γ

2
1] = −2[1γ

3
1γ

2
2]

which by (6.13) is already in the image of d2. Hence d6([(x6)mγi]) is trivial. Therefore
assuming all extension problems are resolved triviality, (x6)m is not a generator of A

but may appear on the E∞-pageas a multiple of any other generator.

All torsion on the E∞-page of {Er, dr} is a power of 2, hence we consider the spectral

sequence {Er, dr} over the �eld of characteristic 2. Since the only non-zero di�erentials

d2 and d6 have bidegree (2,−1) and (6,−5) respectively, for exactly the same reasons as

for the modulo 3 spectral sequence in Theorem 5.1, all torsion on the E∞-page services

the addative extension problems over Z. The only remaining additive extension problem

is weather the 4-torsion generated by [(x2)ay1γ
3
1] on the E∞, is 2-torsion or 4-torsion in

H∗(ΛSp(2)/T 2;Z).
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In Section 5.5, we studied the third page of the Leray-Serre spectral sequence {Er, dr}
associated to the free loop �bration

Ω(SU(n + 1)/Tn) → Λ(SU(n + 1)/Tn) → SU(n + 1)/Tn.

A consequence of Theorem 5.1 is that the elements in

E
p,n−j+2m+dim(X)
3 ((x2)mXŷi1,...,ij)

for 0 ≤ j ≤ n − 1, m ≥ 1 and X a monomial in ΓZ(x4, x6, . . . , x2n), are trivial unless

they are contained in the kernel of a d2 di�erential with image divisible by a non-trivial

element of the symmetric ideal. For the remaining cases when m = 0 or j ≠ n, where all
elements were in the kernel of the d2 di�erential, there is a lot of structure left on the

E3-page. Theorems 5.1 and 5.2 solved the general problem of �nding these quotients in

the relatively simple cases but elsewhere the problem is more complicated.

In this appendix we demonstrate how to construct an algorithm to obtain the torsion on

the E3-page at

E
p,n−j+dim(X)
3 (Xŷi1,...,ij) and E

p,n+2m+dim(X)
3 ((x2)mXy1⋯yn) (7.1)

for 1 ≤ j ≤ n − 1, m ≥ 0 and X a monomial in ΓZ(x4, x6, . . . , x2n). These are elements

obtained from the E2-page of the spectral sequence where the kernel of d
2 is trivial but

the image is not. While this does not take into account any of elements in a non-trivial

kernel of d2, we demonstrate interesting patterns in the torsion which currently cannot

be supported by a theorem.

To achieve this we �rst in Section 7.1, construct an algorithm that given a coordinate

corresponding to one in (7.1), output a matrix whose rows correspond to the image of the

d2 di�erential and generators of symmetric ideal. The torsion at this coordinate can then

be found by �nding the integer Smith normal form of this matrix, which we discuses in

Section 7.2. Unfortunate the size of the matrices means that a straightforward algorithm

for computing the Smith normal form will only produce results for cases that could have

been computed by hand, since the integers in intermediary forms of the matrix during

81
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the normalization procedure become too large or too small for the computer to cope

with.

In order to over come this in Subsection 7.2.1 we describe an algorithm found in [16],

which reduces the matrix in a more intelligent fashion, keeping entries closes to 0. This is

e�ective at the expense of computation time. This approach produces many more results,

however eventually the matrices become so large that the computer cannot produce the

Smith normal form in a reasonable amount of time.

Another approach attempted in Subsection 7.2.2 is to compute the Smith normal form

of the matrix modulo a prime. This is the computationally most e�ective technique,

however this method will not detect the multiplicity of the torsion as a power of the

prime.

In the �nale section, Section 7.3 we present the results of our algorithms and discuss the

patterns observed.

7.1 Image matrix

In this section we present an algorithm to produce a matrix X associated with the image

of the d2 di�erential at a particular coordinate on the E2-page of the spectral sequence.

In subsection 7.1.1 we describe the structure of X in terms matrices Ei,x,Ei and F . In

subsection 7.1.2, 7.1.3 and 7.1.4 we present the algorithms to produce matrices E,Ei and

F . Finally in subsection 7.1.5 we present the algorithms that produces X. Throughout

this section we use Proposition 4.3 and assume that the symmetric ideal is generated by

complete homogeneous symmetric polynomials h1, . . . , hn in n variables.

7.1.1 Matrix structure

For n ≥ 1, 0 ≤ x ≤ n(n+1)/2 and 1 ≤ y ≤ n the matrix X to be produced by our algorithm

will have the following form

ŷi1,...,iyXP̃

( )x2ŷi1,...,iy+1XP A

hiXP̄ B

where P, P̃ , P̄ ∈ Z[γ1, . . . , γn] have degrees x + 1, x, x − deghi respectively, 1 ≤ i ≤
max(x,n + 1), 1 ≤ i1 < ⋯ < iy+1 ≤ n and 1 ≤ i1 < ⋯ < iy ≤ n. The matrix A has rows

representing the image of the d2 di�erential and B is the matrix whose rows representing

a spanning set of of the symmetric ideal in degree x. The ordering on the basis of
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elements of P, P̃ , P̄ and ŷi1,...,iy is not important as long as the same order is consistently

used.

Let F be the ( n
y−1

) by (n
y
) matrix whose rows represent size y − 1 subset of an n set and

whose columns represent size y subset of an n set, with an entry 1 if the size y−1 subset

is contained in the size y subset and 0 otherwise.

Recall that there is a bijection between monomials in n variables of a given degree and

multisets of the same size. For 0 ≤ i ≤ x− 1, let Ei,x be the matrix whose rows represent

size i submultisets of an n set and whose columns represent size x submultisets of an n

set, with an entry 1 if the size i submultiset is contained in the size x submultiset and

0 otherwise. Note that if i = 0 then Ei,x will be a 1 by ((n
x
)) matrix of ones since the

empty multiset is contained in all multisets. Let Ei for 1 ≤ i ≤ n, be the matrix whose

rows represent size x submultiset of an n set containing at least one i and columns

represent size x submultiset of an n set, with an entry 1 if the submultisets are equal

and 0 otherwise. The matrix Ei,x is a ((n
i
)) by ((n

x
)) matrix and Ei is a (( n

x−1
)) by ((n

x
))

matrix.

From equation (5.12) Lemma 5.1, we have

d2(x2ŷi1,...,iy−1XP ) =
y−1

∑
t=1

(−1)t+1ŷi1,...,̂it,...,iyXγtP .

Hence matrix A can be further broken down into (( n
x−1

)) by ((n
x
)) sub matrices A

i′1,...,i
′
y

i1,...,iy+1

corresponding to rows x2ŷi1,...,iy+1X and columns ŷi′1,...,i′yX for 1 ≤ i1 < ⋯ < iy+1 ≤ n and

1 ≤ i′1 < ⋯ < i′y ≤ n where

A
i′1,...,i

′
y

i1,...,iy+1
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if {i′1, . . . , i′y} ⊈ {i1, . . . , iy+1}
(−1)j+1Ex−1,x +Ei if {i′1, . . . , i′y, i} = {i1, . . . , iy+1} and i = ij .

The position of the non-zero A
i′1,...,i

′
y

i1,...,iy+1
is determined with respect to i′1, . . . , i′y and

i1, . . . , iy+1 by non-zero entries of the matrix F .

The matrix B can be further broken down into the diagonal sum

ŷi1,...,iy

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

B′ 0 ⋯ 0 0

0 B′ 0 0

hiX ⋮ ⋱ ⋮
0 0 B′ 0

0 0 ⋯ 0 B′ .

Where B′ is given by
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⎛
⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟
⎠

h2P̄ Ex−2,x

h3P̄ Ex−3,x

⋮ ⋮
hmax(x,n+1)P̄ Ex−max(x,n+1),x .

7.1.2 Subset matrix

In this section we present an algorithm that will produce an array of two matrices,

E{2} which is the matrix F described in Subsection 7.1 and an (n
y
) by n non-negative

integer matrix E{1}, where rows represent y element subsets of an n set and columns

the elements of the n set. Matrix E{1} has a zero entry if the set element corresponding

to the column is contained in the set otherwise E{1} has positive integer entry, the

position (in the ordering of the basis) of the corresponding y+1 element subset obtained

by adding the element corresponding to the column to the y subset.

The steps in the algorithm are as follows.

1. If y = 0, then output E{1} as a vertical n-vector of ones and E{2} as a row n-vector

of 1 to n, then terminate the algorithm.

2. If y ≠ 0, then generate two matrices p and q whose rows are all y + 1 and y subsets

of an n set respectively.

3. Set E{1} and E{2} to be zero matrices of the correct size.

4. For each row i of the matrix p compare with row a of q with a column element j

removed. If they are equal set coordinate (i, j) of E{2} equal to one and coordinate
(i, a) of E{1} to be the jth element of row a in q.

The Matlab program "Subsets(n, y)" to implement the procedure is given below.

1

2 f unc t i on E = Subsets (n , y )

3

4 E={0};%de f i n e s E as an array

5

6 %check f o r ex c ep t i ona l f i r s t f o r empty s e t case o the rw i s e

proceeds with the gene ra l case

7

8 i f y==0

9
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10 E{2}=ones (n , 1 ) ;

11 E{1}=transpose ( 1 : n ) ;

12

13 e l s e

14 w=nchoosek (n , y ) ;%s e t s the width o f the matrix E{1}

15 h=nchoosek (n , y+1) ;%s e t s the he ight o f E{1} and E{2}

16 P=ze ro s (h , y+1) ; %reco rd s the po s i t i o n o f subse t s

i n t e r s e c t i o n s , w i l l ev en tua l l y be E{1}

17 D=ze ro s (h ,w) ; %reco rd s the rows o f h at which an

i n t e r s e c t i o n occurs , matrix w i l l ev en tua l l y be E{2}

18 p = nchoosek ( 1 : n , y+1) ;%l i s t o f a l l y+1 subset o f s e t {1 ,2 ,

dots , n}

19 q = nchoosek ( 1 : n , y ) ;%l i s t o f a l l y subset o f s e t {1 ,2 , dots ,

n}

20 f o r i = 1 : h %i corresponds to row o f the matrix p

21 r=y ( i , : ) ;%s e l e c t s i −th row o f p (d+1 subset o f n

s e t ) and s t o r e s as r

22 f o r j =1:y+1 %j corresponds to which element i s

removed from the y+1 subset o f the n s e t

23 rtemp=ze ro s (1 , y ) ;

24 %the next two loops s t o r e in rtemp the row o f p

miss ing the j th entry

25 f o r a=1: j −1
26 rtemp ( a )=r ( a ) ;

27 end ;

28 f o r a=j +1:y+1

29 rtemp (a−1)=r ( a ) ;
30 end ;

31 f o r a=1:w %check rtemp (d+1 subset o f n s e t

without entry j ) to see which row o f q (y

subset o f n s e t ) i t i and re co rd s t h i s

in fo rmat ion in to P and D

32 i f rtemp==q(a , : )

33 P( i , j )=r ( j ) ;%reco rd s cor re spond ing row

o f q (y subset o f an n s e t )

34 D( i , a )=1; %1 placed in the row

correspond ing to y subset o f n s e t

column corre spond ing to y+1 subset o f

n s e t

35 break %end "a" loop s i n c e the re i s only

one case to f i nd
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36 end ;

37 end ;

38 end ;

39 end ;

40

41 %the completed matr i ce s are recorded as E{1} and E{2}

42 E{1}=P;

43 E{2}=D;

44

45 end ;

7.1.3 Submultiset matrix

In this subsection we present an algorithm to produce the matrices Ei,x de�ned in Sub-

section 7.1. Before this we require a algorithm to produce for 1 ≤ d ≤ n, a ((n
d
)) by n

non-negative integer matrix whose rows represent multisets of size d from an n set and

columns the elements of the n set. This is the same problem as forming a non-negative

integer matrix whose rows are all n vectors with row sum d. The following Matlab

program which can be found at [38] achieves this.

1 f unc t i on M = Mult i s e t (n , d)

2

3 %d The requ i r ed sum ( dimension )

4 %n The number o f e lements in the rows (number o f v a r i a b l e s )

5 %produces a matrix o f a l l n−vec to r in non−negat ive i n t e g e r s

whose sum i s d

6 %with rows r ep r e s en t i n g monmials in n v a r a i b l e s o f degree d

7

8 d=d+n ;

9

10 c = nchoosek ( 2 : d , n−1) ;
11 m = s i z e ( c , 1 ) ;

12 M = zero s (m, n) ;

13 f o r i x = 1 :m

14 M( ix , : ) = d i f f ( [ 1 , c ( ix , : ) ,d+1]) ;

15 end ;

16

17 M=M−ones ( s i z e (M, 1 ) , s i z e (M, 2 ) ) ;

Now we present and algorithm that outputs Ei,x. Given n ≥ 1 and 1 ≤ a ≤ b, the program
outputs an array of matrices C{i + 1} for i between a and b. Where each Ci + 1 is an
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(n+i−1
i

) by (n+b−1
b

) matrix with rows corresponding to size i multiset of an n set and

columns size b multisets of an n-set. Each C{i + 1} has entry 1 if the size i multiset is

contained in the size b multiset and is 0 otherwise. The steps in the algorithm are as

follows.

1. Using the previous function, generate for each value i between and including a and

b, generate an ((n
i
)) by i matrix B{i + 1} of i multisets of an n set.

2. Form for each i between and including a and b create zero matrices matrices C{i+1}
of size ((n

i
)) by ((n

b
)).

3. For each i between and inducing a to b do, for j from 1 to ((n
i
)) and k from 1

to ((n
b
)), in position (j, k) of C{i + 1} put a 1 if multiset on row j of B{i + 1} is

contained in the multiset on row k of B{b + 1}.

The Matlab program "Submultiset(a, b, n)" to implement the procedure is given below.

1 f unc t i on [C] = Submult i set ( a , b , n )

2

3 B={0};%de f i n e s B to be an array

4

5 %Ass igns to B{ i } the p o s i t i v e i n t e g e r matrix whose rows

r ep r e s en t a l l mu l t i s e t o f s i z e i o f an n s e t

6 f o r i=a+1:b+1

7 B{ i}=Mult i s e t (n , i −1) ;
8 end ;

9

10 C={0};%de f i n e s C to be an array

11

12 %vecto r l s t o r e s the s i z e o f matr i ce s B{ i } in column i

13 l =0:b ;

14 f o r i=a+1:b+1

15 l ( i )=s i z e (B{ i } ,1) ;

16 end ;

17

18 %cr e a t e s an array o f ze ro matr i ce s C o f c o r r e c t s i z e f o r output

19 f o r i=a+1:b+1

20 C{ i}=ze ro s ( l ( i ) , l (b+1) ) ;

21 end ;

22

23 %fo r each i p lace a 1 at p o s i t i o n ( j , k ) o f C{ i } i f the j th s i z e

i −1 mu l t i s e t i s conta ined in the kth s i z e b mu l t i s e t

24 f o r i=a+1:b+1
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25 f o r j =1: l ( i )

26 f o r k=1: l (b+1)

27 C{ i }( j , k )=a l l ( (B{b+1}(k , : ) −B{ i }( j , : ) )>=0) ;
28 end ;

29 end ;

30 end ;

7.1.4 Fixed element submultiset matrix

In this subsection we present an algorithm to produce matrices C{i}, which are the

martrices Ei de�ed in Subsection 7.1.1, for each 1 ≤ i ≤ x. This is a (( n
x−1

)) by ((n
x
))

matrix whose rows represent size x multisets of an n set containing at least one of

element i. and columns represent size x multisets of an n set. The matrix has an entry

1 is the multiset of row is equal to the the multiset of the column. The steps in the

algorithm are as follows.

1. Using the function "Multiset" of Subsection 7.1.3, generate an ((n
x
)) by x matrix

W of size x multisets of an n set an generate an (( n
x−1

)) by x − 1 matrix H of size

x − 1 multisets of an n set.

2. For each i from 1 to n create a (( n
x−1

)) by ((n
x
)) matrix M of zeros.

3. For each size x−1 multiset j of H add in addition element i and check to see which

which size x multiset k of W it is. Change element (j, k) of M to a 1.

4. Record the current M at C{i} before moving to the next i.

The Matlab program FixedSubmultiset(x,n) to implement the procedure is given below.

1 f unc t i on [C] = FixedSubmult i set (x , n )

2

3 C{1}=0;%de f i n e s C as an array

4

5 %Ass igns to W the p o s i t i v e i n t e g e r matrix whose rows r ep r e s en t

a l l mu l t i s e t o f

6 s i z e x in o f n s e t

7 W = Mult i s e t (n , x ) ;

8

9 %Ass igns to H the p o s i t i v e i n t e g e r matrix whose rows r ep r e s en t

a l l mu l t i s e t o f

10 s i z e x−1 in o f n s e t

11 H = monomials (n , x−1) ;
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12

13 h=s i z e (H, 1 ) ;

14 w=s i z e (W, 1 ) ;

15

16 f o r i =1:n%i i s the element o f the n s e t that w i l l be inc luded

in to each s i z e x−1 mu l t i s e t

17 M=zero s (h ,w) ;%c r e a t e s a zero matrix o f the c o r r e c t s i z e

18 Htemp=H;

19 f o r j =1:h

20 Htemp( j , i )=Htemp( j , i )+1;%add in the ext ra element i to

each row j o f H

21 f o r k=1:w

22 i f Htemp( j , : )==W(k , : )%t e s t to see which s i x e x

mu l t i s e t the new mu l t i s e t i s

23 M( j , k )=1; %and re co rd s the r e s u l t with a

1 in the c o r r e c t column

24 end ;

25 end ;

26 end ;

27 C{ i}=M;%reco rd s the f i n a l matrix as C{ i }

28 end ;

7.1.5 Di�erential matrix

In this �nal subsection we present an algorithm using the programs of Subsection 7.1.2,

7.1.3 and 7.1.4 given n ≥ 2, x ≥ 1 and y ≥ 0 to produce a matrix A which is the one

described in Subsection 7.1.1. The steps in the algorithm are as follows.

1. Calculate the number of generators in the symmetric ideal sl by setting sl =
min(x, , n + 1).

2. Generate in array C{i + 1} the "Submultiset" matrices for i between x − sl and x
for a set of size n.

3. Create the part of the output matrix A corresponding to the symmetric ideal as a

matrix B by for each i between x − sl and x stacking the C{i + 1} on top of each

over and forming a diagonal sum of (ny) of these matrices.

4. Generate for i between 1 and n an array of matrices E{i} the "FixedSubmultiset"

matrices for multisets of size x and set of size n.

5. Generate in a matrices M{1} and M{2}, the "Subsets" matrix for value x and set

of size n.
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6. Create a ( n
y+1

) ((n−1
x−1

)) by (n
y
) ((n

x
)) zero matrix A to hold the image of the d2 di�er-

ential.

7. For each row of M{2} set or a value k starting at 0, moving along rows the row

for each entry (i, a) of M{2} that is a 1 increase the value of k by 1. Each

time the value of k increases place in A with its top left had entry at position

((i + 1) ((nx)) , (a − 1) ((nx))), a copy of (−1)k+1(C{x} +E{M{1}(i, y + 1 − k)}).

8. Extend A by stacking it on top of the matrix B, to form the �nal output.

The Matlab program "Di�erentialMatrix(n,x, y)" to implement the procedure is given

below.

1 f unc t i on [A] = D i f f e r e n t i a lMa t r i x (n , x , y )

2

3 %forms a zero matrix A o f the c o r r e c t s i z e , he ight h width w

4

5 s l=min ( [ x , n+1]) ; %s l i s the number o f g ene ra to r s in the

symmetric i d e a l o f dgree l e s s than or equal to n

6

7 %s w i l l hold in each entry the number o f mu l t i p l e s o f h_i by a

monomial f o r i=2 to the minimum of x and n+1

8 s=ze ro s ( s l , 1 ) ;

9 f o r i =2: s l

10 s ( i )=nchoosek (n , y ) *nchoosek (n+x− i −1 ,x− i )+s ( i −1) ;%number o f

monomials o f degr re x− i
11 end ;

12

13

14 h=nchoosek (n , y+1)*nchoosek (n+x−2 ,x−1)+s ( s l ) ;%the t o t a l he ight

o f the outputs matrix

15

16 wHat=nchoosek (n , y ) ;%the number o f \hat{y_{i_1 , \ dots , i_y}} in

t o t a l

17

18 wMon=nchoosek (n+x−1 ,x ) ;%the number o f monomials o f degree x in

n v a r i a b l e s

19

20 w=wMon*wHat ;%the t o t a l width o f the output matrix

21

22 ns=h−s ( s l ) ;%ns i s the number o f g ene ra to r s o f the image as rows

in the matrix

23
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24 A=ze ro s ( ns ,w) ;%c r e a t e s a zero matrix o f the c o r r e c t s i z e

25

26 %Fi r s t p lace the symmetric func t i on rows at the bottom of the

matrix

27

28 C=Submult i set (x− s l , x , n ) ;
29

30 D=ze ro s (1 ,wMon) ;%c r e a t e s ze ro row o f the same width as the C

31

32 f o r i =2: s l%i r ep r e s en t s the degree o f the symmetric genera to r

33 D=[D; C{x+1− i } ] ;%s tack s submultset matr i ce s f o r d i f f e r e n t

gene ra to r s

34 end ;

35

36 D=D( [ 2 : s i z e (D, 1 ) ] , [ 1 :wMon] ) ;%removes zero row

37 B=D;

38

39 f o r i =2:wHat%repea t s the matrix D f o r each \hat{Y}_{i_1 , \ dots ,

i_y} along d iagona l

40 B=blkd iag (B,D) ;

41 end ;

42

43 %place the d2 image rows

44

45 E=FixedSubmult i set (x , n ) ;

46

47 Ctemp=C{x } ;

48 hMon=s i z e (Ctemp , 1 ) ;

49

50 M=Subsets (n , y ) ;

51 hHatsType=M{2} ;

52 hHatsPos i t ion=M{1} ;

53 hHats=s i z e ( hHatsType , 1 ) ;

54

55 f o r i =1:hHats

56 temph=(i −1)*hMon ;%record the top row−1 o f the cur rent

p o s i t i o n being cons ide r ed

57 temp=0;

58 f o r a=1:wHat

59 tempw=(a−1)*wMon;%record the l e f t most column−1 o f the

cur r ent p o s i t i o n being cons ide r ed
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60 i f hHatsType ( i , a )==1

61 Etemp=E{hHatsPos i t ion ( i , y+1−temp) } ;

62 A( [ temph+1:temph+hMon ] , [ tempw+1:tempw+wMon] ) =(−1)^(
temp) *(Ctemp+Etemp) ;

63 temp=temp+1;

64 end ;

65 end ;

66 end ;

67

68 A=[A;B ] ;%combines the image matrix v e r t i c a l l y with the

symmetric i d e a l matrix

7.2 Normal form

The integral Smith normal form of an integral matrixM is the unique diagonal matrix N

obtained from M by integral row an column operations such that entries on the leading

diagonal are non-negative integers in decreasing order of size. The most straightforward

process to obtain matrix N from matrix M is as follows.

1. Set the current position at the top left hand entry of the matrix.

2. Compute R, the greatest common divisor the the row containing the current posi-

tion.

3. Use integral column operation to reduce the current position to R and then all

other entries on that row to 0.

4. Compute C the greatest common divisor the the column containing the current

position.

5. Use integral row operation to reduce the current position to C and then all other

entries on that column to 0.

6. Repeat steps 2, 3, 4 and 5 with the current position at each entry on the lending

diagonal in turn.

7. Reorder the leading diagonal with the largest values �rst.

In Subsection 7.2.1 we discuss how the procedure can be improved to avoid very large or

very small values occurring during it implementation. In Subsection 7.2.2 we show how

to adapted the procure to compute the Smith normal form modulo p, for some prime p.
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7.2.1 Ranked normal form

In this subsection we describe a procedure from [16] which improves the elementary

procedure outlined at the begging of the section. The the main problem that can occur

during the implementation of an algorithm computing the Smith normal form is at a

intermediary stages the entries of the matrix become too large or too small for the

computer to handle, causing rounding errors or a crash. The idea of the solution is

rather than just reducing the matrix along the leading diagonal, before performing the

row and column reductions move to the current position to the entry of the matrix which

after the reduction, will minimise the maximal magnitude of entries in the matrix.

Suppose we have a matrixM = (mi,j), on which we want to perform steps 2, 3, 4 and 5 in

the process above from a position that minimises the magnitude of values in the resulting

matrix. For each column m∗,1 and m∗,j of M , step 3 repeats the process of replacing

column m∗,1 with x1m∗,1 + x2m∗,j and column m∗,j with m1,j gcd(m1,1,m1,j)m∗,1 −
m1,1 gcd(m1,1,m1,j)m∗,j , where x1, x2 ∈ Z are such that gcd(m1,1,m1,j) = x1m1,1 +
x2m1,j . Hence if the �rst k columns have �rst value m1,1, . . . ,m1,k such that for each

l less than k, gcd(m1,1, . . . ,m1,l−1) > gcd(m1,1, . . . ,m1,l). Then after k interactions the

�rst column is

m∗,1
k−1

∏
t=1

x2t−1 +
k

∑
l=2

(m∗,lx2(l−1)
k−1

∏
t=l
x2l−1)

where x2l−1 and x2l are such that x2l−1 gcd(m1,1, . . . ,m1,l−1)+x2lm1,l = gcd(m1,1, . . .m1,l).
These values are then used in subsequent steps, so if they become large entry in the ma-

trix become cumulatively large over those subsequence steps.

Given a vector X such that X ⋅m∗,1 = gcd(m1,1, . . . ,mm,1), in general we would like to

minimize

max
i,j

∣mi,j −
X ⋅m∗,j
X ⋅m∗,1

mi,1∣

which we call the pivot value on the �rst column of M . Clearly we could calculate this

pivot value for any column of M . We could also calculate in the same way a pivot value

for the rows of M and multiply the pivot value for each column by the pivot value for

row of each entry. This gives us the matrix of the same size asM which we call the pivot

value matrix. The entries with the smallest values in the pivot value matrix should be

the best candidates to use as the current positions in our standard Smith normal form

procedure. Hence given one such value in M we move this row and column to be the

�rst row and column in the matrix and perform steps 2, 3, 4 and 5 above. For a compete

description of the procedure see [16].

The Matlab program "PivotMinNomal(A)" implements the procedure to calculate the

Smith normal form of a matrix A using the improved method above. The function

"PivotMinNomal(A)" call upon "PivotValue(A)" which computes the pivot value matrix

of a given matrix A, which in turn calls upon function "VecGCD(V )" that given an
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integer vector V computes using the Euclidean algorithm the greatest common divisor

G of the values of V and vector of integers X whose scalar product with V if G.

1 f unc t i on [A] = PivotMinNomal (A)

2

3 %Given a matrix A f i nd s i t s Smith normal form in a way that

attempts to minimise the magnitude o f inte rmed iary va lue s

4

5 [ y , x]= s i z e (A) ;%reco rd s the s i z e o f A

6

7 max=min (x , y ) ;%s i z e o f the l ead ing d iagona l

8

9 f o r i =1:max

10

11 nu l l =1;

12

13 f o r a=i : x %check to see i f a l l remaining e n t r i e s are ze ro

14 f o r b=i : y

15 i f A(b , a )

16 nu l l =0;

17 break

18 end ;

19 end ;

20 i f nu l l

21 e l s e

22 break

23 end ;

24 end ;

25

26 i f nu l l

27 break

28 end ;

29

30 B=ze ro s (y− i +1,x− i +1) ;
31

32 %takes B the part o f the matrix which we s t i l l need to

reduce

33 f o r a=i : x

34 f o r b=i : y

35 B(b− i +1,a− i +1)=A(b , a ) ;
36 end ;

37 end ;
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38

39 B=PivotValue (B) ;

40

41 MinPiv=[1 ,1 , i n f ] ;

42

43 f o r a=1: s i z e (B, 1 ) %f i nd s non−zero va lue with sma l l e s t p ivot

va lue

44 f o r b=1: s i z e (B, 2 )

45 i f A( i+a−1 , i+b−1)
46 i f B(a , b )<MinPiv (3 )

47 MinPiv=[a , b ,B(a , b) ] ;

48 end ;

49 end ;

50 end ;

51 end ;

52

53 p=MinPiv (1 ) ;

54 q=MinPiv (2 ) ;

55

56 A( : , [ i , q+i −1 ] )=A( : , [ q+i −1 , i ] ) ;
57 A( [ i , p+i − 1 ] , : )=A( [ p+i −1 , i ] , : ) ;
58

59 %now perform GCD reduct ion on the f i r s t row column f o r the

top l e f t p o s i t i o n .

60 in =1;

61

62 whi le in

63

64

65 i f A( i , i )<0

66 A( i , : ) =−1*A( i , : ) ;
67 end ;

68

69 f o r a=i +1:y

70 i f A(a , i )<0

71 A(a , : ) =−1*A(a , : ) ;
72 end ;

73 A(a , : )=A(a , : ) − f l o o r (A(a , i ) /A( i , i ) ) *A( i , : ) ;
74 end ;

75

76 f o r a=i +1:x
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77 i f A( i , a )<0

78 A( : , a )=−1*A( : , a ) ;

79 end ;

80 A( : , a )=A( : , a )− f l o o r (A( i , a ) /A( i , i ) ) *A( : , i ) ;

81 end ;

82

83 %check to see i f a l l f i r s t row and column are zero

except top l e f t .

84 out=1;

85

86 f o r a=i +1:y

87 i f A(a , i )

88 out=0;

89 end ;

90 end ;

91

92 f o r a=i +1:x

93 i f A( i , a )

94 out=0;

95 end ;

96 end ;

97

98 i f out

99 break

100 end ;

101

102 %f i nd s new pivot in f i s t row or column and repeat

r educt i on

103

104 B=ze ro s (y− i +1,x− i +1) ;
105

106 f o r a=i : x

107 f o r b=i : y

108 B(b− i +1,a− i +1)=A(b , a ) ;
109 end ;

110 end ;

111

112 B=PivotValue (B) ;

113

114 V=B( : , 1 ) . ' ;

115
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116 H=B( 1 , : ) ;

117

118 piv =[1 ,1 , i n f ] ;

119

120 p=abs (A( i , : ) ) ;

121 q=abs (A( : , i ) ) . ' ;

122

123 P=p(1) ;

124

125 f o r a=2: s i z e (p , 2 )

126 i f P<p( a )

127 P=p( a ) ;

128 end ;

129 end ;

130

131 f o r a=1: s i z e (q , 2 )

132 i f P<q( a )

133 P=q( a ) ;

134 end ;

135 end

136

137 temp=P;

138

139 U=0;

140

141 f o r a=i : x

142 i f abs (A( i , a ) )==temp

143 U=U+1;

144 end ;

145 end ;

146

147 f o r a=i +1:y

148 i f abs (A(a , i ) )==temp

149 U=U+1;

150 end ;

151 end ;

152

153 f o r a=1: s i z e (V, 2 ) %f i nd lowest p ivot va lue

154 i f A( a+i −1 , i )
155 i f V( a )<piv (3 )

156 i f temp>abs (A( a+i −1 , i ) )
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157 piv =[1 ,a ,V( a ) ] ;

158 e l s e

159 i f U>1

160 piv =[1 ,a ,V( a ) ] ;

161 end ;

162 end ;

163 end ;

164 end ;

165 end ;

166

167 f o r a=1: s i z e (H, 2 )

168 i f A( i , a+i −1)
169 i f H( a )<piv (3 )

170 i f temp>abs (A( i , a+i −1) )
171 piv =[0 ,a ,H( a ) ] ;

172 e l s e

173 i f U>1

174 piv =[0 ,a ,H( a ) ] ;

175 end ;

176 end ;

177 end ;

178 end ;

179 end ;

180

181 i f p iv (1 )

182 A( [ i , p iv (2 )+i − 1 ] , : )=A( [ piv (2 )+i −1 , i ] , : ) ;
183 e l s e

184 A( : , [ i , p iv (2 )+i −1 ] )=A( : , [ p iv (2 )+i −1 , i ] ) ;
185 end ;

186

187 end ;

188

189 end ;

190

191 %rea r range s e lements on d iagona l sma l l e s t towards top l e f t .

192 swap=1;

193

194 whi le swap

195 swap=0;

196 f o r i =1:max−1
197 i f A( i +1, i +1)==0
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198 break

199 end ;

200 i f A( i , i )>A( i +1, i +1)

201 temp=A( i , i ) ;

202 A( i , i )=A( i +1, i +1) ;

203 A( i +1, i +1)=temp ;

204 swap=1;

205 end ;

206 end ;

207 end ;

1 f unc t i on [P ] = PivotValue (A)

2

3 %Given matrix A outputs i t s matrix P o f p ivot va lue s

4

5 [ y , x]= s i z e (A) ;%reco rd s s i z e o f A

6

7 P=ze ro s (y , x ) ;%output matrix o f the c o r r e c t s i z e

8

9 %computes va lue f o r columns

10 f o r k=1:x

11

12 [ Xc ,Gc ] = VecGCD(A( : , k ) . ' ) ;%computes gcd f o r cur r ent column

13

14 i f Gc%checks the column was not a zero vec to r

15

16 %i f the f i r s t va lue o f gcd s c a l a r vec to r i s ze ro

changes i t to an equ iva l en t vec to r where the f i r s t

entry in non−zero
17 i f Xc (1 )==0

18 temp=(A(1 , k ) ) /Gc ;

19 Xc=Xc*( temp+1) ;

20 Xc(1)=−1;
21 end ;

22

23 %computes the va lue s o f the matrix i f t h i s column were

p ivot

24 ColVal=ze ro s (y , x ) ;

25 f o r i =1:y

26 f o r j =1:x

27 ColVal ( i , j )=abs (A( i , j ) −(( dot (Xc ,A( : , j ) ) ) /( dot (

Xc ,A( : , k ) ) ) *A( i , k ) ) ) ;
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28 end ;

29 end ;

30

31 temp=max(max( ColVal ) ) ;%maximum value in column the

p ivot matrix

32

33 P( : , k )=P( : , k )+temp* ones (y , 1 ) ;%reco rd s max value in the

cor re spond ing column o f P

34

35 e l s e

36

37 P( : , k )=P( : , k )+i n f * ones (y , 1 ) ;%reco rd s zero column as

i n f i n i t e p ivot va lue

38

39 end ;

40

41 end ;

42

43 %computes va lue f o r rows

44 f o r k=1:y

45

46 [ Xr ,Gr ] = VecGCD(A(k , : ) ) ;%computes gcd f o r cur rent row

47

48 i f Gr%checks the row was not a zero vec to r

49

50 %i f the f i r s t va lue o f gcd s c a l a r vec to r i s ze ro

changes i t to an equ iva l en t vec to r where the f i r s t

entry in non−zero
51 i f Xr (1 )==0

52 temp=(A(k , 1 ) ) /Gr ;

53 Xr=Xr*( temp+1) ;

54 Xr (1)=−1;
55 end ;

56

57 %computes the va lue s o f the matrix i f t h i s column were

p ivot

58 RowVal=ze ro s (y , x ) ;

59 f o r i =1:y

60 f o r j =1:x

61 RowVal( i , j )=abs (A( i , j ) −(( dot (Xr ,A( i , : ) ) ) /( dot (
Xr ,A(k , : ) ) ) *A(k , j ) ) ) ;
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62 end ;

63 end ;

64

65 temp=max(max(RowVal) ) ;%the maximum value in the p ivot

matrix f o r t h i s row

66

67 %mu l t i p l i e s the row o f P by t h i s max value

68 f o r a=1:x

69 P(k , a )=P(k , a ) *temp ;

70 end ;

71

72 e l s e

73

74 f o r a=1:x

75 P(k , a )=i n f ;%reco rd s zero row as i n f i n i t e p ivot

va lue

76 end ;

77

78 end ;

79

80 end ;

1 f unc t i on [X,G] = VecGCD(V)

2

3 %given a vec to r V outputs gcd G and vec to r o f s c a l e r s X whose

s c a l a r product

4 %with V i s G

5

6 s=s i z e (V, 2 ) ;%number o f e lements in V

7

8 P=eye ( s ) ;%f o r r e co rd ing inte rmed iary va lue s f o r X

9

10 minV=[1 , i n f ] ;

11

12 temp=0;

13

14 neg=ze ro s (1 , s ) ;%f o r r e co rd ing s i gn changes

15

16 %ensure s V i s non−negat ive i n t e g e r vec to r and vec to r s where the

s i gn changes

17 f o r i =1: s

18 i f V( i )<0
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19 V( i )=−V( i ) ;
20 neg ( i )=1;

21 end ;

22 end ;

23

24 %f i r s t checks f o r ex c ep t i ona l case when V i s the zero vec to r

25 i f V==ze ro s (1 , s )

26 X=ze ro s (1 , s ) ;

27 G=0;

28 e l s e

29 %computes G and X us ing Eucl idean algor i thm

30 whi le minV(1)

31

32 minV=[0 , i n f ] ;

33

34 %f i nd s the smaes value in V

35 f o r i =1: s

36 i f V( i )

37 i f V( i )<minV(2)

38 minV=[ i ,V( i ) ] ;

39 end ;

40 end ;

41 end ;

42

43 %i f the minimum po s i t i v e va lue i s unchanged t h i s i s the gcd

and the procdure te rminates

44 i f temp==minV(2)

45 G=minV(2) ;

46 X=P(minV(1) , : ) ;

47 break

48 end ;

49

50 %reduce the vec to r v modulo i t s minimum value and re co rd s

what was done in P

51 i f minV(1)

52 f o r i =1: s

53 i f i==minV(1)

54 e l s e

55 f=f l o o r (V( i ) /minV(2) ) ;

56 V( i )=V( i )− f *minV(2) ;

57 P( i , : )=P( i , : ) − f *P(minV(1) , : ) ;
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58 end ;

59 end ;

60 end ;

61

62 temp=minV(2) ;

63

64 end ;

65 end ;

66

67 %as s i gn s the c o r r e c t s i gn to e lements o f X

68 f o r i =1: s

69 X( i )=X( i ) *(−1)^(neg ( i ) ) ;
70 end ;

7.2.2 Modulo p normal form

In this subsection we present an algorithm to compute the Smith normal form of a

matrix A modulo a prime p. Since the entries on the leading diagonal of a matrix in

Smith Normal form are 0, 1 or a prime power, the entries on the leading diagonal of

a matrix in Smith normal form with entries modulo p will be either 0 or 1. Hence the

important information in the matrix is the number of ones on the leading diagonal. Our

algorithm will roundly follow the steps detailed at the beginning of the section with the

following exceptions.

� each time the current position changes and at the end of the algorithm the whole

matrix is reduced modulo p.

� The reduction of the current position to the greatest common divisor of its row

and column is performed simultaneously.

� At the end of the procedure only the number of ones on the leading diagonal is

output.

The Matlab program "ModuloNomalForm(A,p)" to implement the procedure is given

below.

1 f unc t i on [U] = ModuloNomalForm(A, p)

2

3 U=0;

4

5 h=s i z e (A, 1 ) ;%hight o f A

6 w=s i z e (A, 2 ) ;%width o f A
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7

8 L=min(h ,w) ;%the s i z e o f the l ead ing d iagona l

9

10 %The normal form procedure moves the cur r ent p o s i t i o n along the

l e ad ing d iagona l

11 f o r a=1:L

12

13 %reduces the matrix to i t s imp l e s t i n t e g r a l r e p r e s e n t a t i v e s

modulo p

14 f o r i=a : h

15 f o r j=a :w

16 i f A( i , j )>0

17 A( i , j )=A( i , j )− f l o o r (A( i , j ) /p) *p ;
18 e l s e

19 A( i , j )=A( i , j )− f l o o r (A( i , j ) /p) *p ;
20 end ;

21 end ;

22 end ;

23

24 done=1;

25

26 %checks to see i f the cur rent row and column are zero and

i f so proceeds to the next po s i t i o n on the l ead ing

d iagona l

27 i f A(a , : )==ze ro s (1 ,w)

28 i f A( : , a )==ze ro s (h , 1 )

29 done=0;

30 end ;

31 end ;

32

33 %Use i n t e g r a l row and column ope ra t i on s to reduces the

cur r ent p o s i t i o n to the g r e a t e s t common dev i s o r o f i t s

the row , then a l l other e n t r i e s to zero

34 whi le done

35

36 %moves the sma l l e s t p o s i t i v e i n t e g e r in the cur r ent row

or column to the cur r ent p o s i t i o n

37 Low=[A(a , a ) , a , 0 ] ;

38

39 i f Low(1)

40 e l s e
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41 Low(1)=i n f ;

42 end ;

43

44 f o r i=a+1:h

45 i f A( i , a )

46 i f A( i , a )<Low(1)

47 Low=[A( i , a ) , i , 0 ] ;

48 end ;

49 end ;

50 end ;

51

52 f o r i=a+1:w

53 i f A(a , i )

54 i f A(a , i )<Low(1)

55 Low=[A(a , i ) , i , 1 ] ;

56 end ;

57 end ;

58 end ;

59

60 i f Low(3)

61 A( : , [ a , Low(2) ] )=A( : , [ Low(2) , a ] ) ;

62 e l s e

63 A( [ a , Low(2) ] , : )=A( [ Low(2) , a ] , : ) ;

64 end ;

65

66 done=0;

67

68 %reduces a l l non−zero e n t r i e s in the cur rent column by

the i n t e g e r in cur rent p o s i t i o n

69 f o r i=a+1:h

70 i f A( i , a )

71 A( i , : )=A( i , : ) − f l o o r (A( i , a ) /A(a , a ) ) *A(a , : ) ;
72 end ;

73 i f A( i , a )

74 done=1;

75 end ;

76 end ;

77

78 %reduces a l l non−zero e n t r i e s in the cur rent row by the

i n t e g e r in the cur rent p o s i t i o n

79 f o r i=a+1:w
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80 i f A(a , i )

81 A( : , i )=A( : , i )− f l o o r (A(a , i ) /A(a , a ) ) *A( : , a ) ;

82 end ;

83 i f A(a , i )

84 done=1;

85 end ;

86 end ;

87

88 %i f no r educ t i on s took p lace then move the cur rent

p o s i t i o n to the next po s i t i o n on the l ead ing

d iagona l o therwi se repeat from f i nd i ng the sma l l e s t

entry

89

90 end ;

91

92 end ;

93

94 %reduces the f i n a l d iagona l from o f the matrix modulo p

95 f o r i =1:L

96 i f A( i , i )>0

97 A( i , i )=A( i , i )− f l o o r (A( i , j ) /p) *p ;
98 e l s e

99 A( i , i )=A( i , i )+f l o o r (A( i , i ) /p) *p ;

100 end ;

101 end ;

102

103 temp=0;

104

105 %counts the number o f non−zero e n t r i e s on the l ead ing d iagona l

o f the normal form matrix

106 f o r i =1:L

107 i f A( i , i )

108 temp=temp+1;

109 end ;

110 end ;

111

112 U=w−temp ;%outputs the umber o f non−zero e n t r i e s on the l ead ing

d iagona l o f the normal form matrix



Appendix 107

7.3 Results

In this section we present the our �ndings on the torsion of the E3-page aided by a

computer. We do this in the case of element of the form

E
p,n−j+dim(X)
3 (Xŷi1,...,ij) and E

p,n+2m+dim(X)
3 ((x2)mXy1⋯yn) (7.2)

for 1 ≤ j ≤ n − 1,m ≥ 0 and X a monomial in ΓZ(x4, x6, . . . , x2n). The integral results

from running the algorithms in Section 7.1 and Subsection 7.2.1 for n = 2,3 and 4 are

as follows. By Theorems 5.1 and 5.2 the bottom row and �nal column can be �lled in

without the aid of the computer.

Table 7.1: Part of the E3-page of the spectral sequence converging to
H∗(Λ(SU(3)/T 2);Z)

⟨ŷi1X⟩ Z2 Z3 Z2 ⊕Z3 Z3

⟨y1y2X⟩ Z Z3 Z3 0

Table 7.2: Part of the E3-page of the spectral sequence converging to
H∗(Λ(SU(4)/T 3);Z)

⟨ŷi1X⟩ Z3 Z8 Z12 Z13 Z9 ⊕Z2 Z4 ⊕Z2 Z4

⟨ŷi1,i2X⟩ Z3 Z6 Z7 ⊕Z2 Z6 ⊕Z2 ⊕Z4 Z3 ⊕Z2 ⊕Z4 Z⊕Z2 0
⟨y1y2y3X⟩ Z Z4 Z2 Z2 0 0 0

Table 7.3: Part of the E3-page of the spectral sequence converging to
H∗(Λ(SU(5)/T 4);Z)

⟨ŷi1X⟩ Z4 Z15 Z32 Z51 Z65 Z68 Z58 Z40 ⊕Z5 Z21 ⊕Z5 Z7 ⊕Z5 Z5

⟨ŷi1,i2X⟩ Z6 Z20 Z39 Z58 Z69 ⊕Z5 ? ? ? ? ? 0
⟨ŷi1,i2,i3X⟩ Z4 Z10 Z16 ⊕Z5 Z21 ⊕Z2

5 Z23 ⊕Z3
5 ? ? ? ? ? 0

⟨y1y2y3y4X⟩ Z Z5 Z5 Z5 Z5 0 0 0 0 0 0

Each row of the table corresponds to a row of the spectral sequence divisible by the

generators in the �rst column, but not divisible by (x2)m for any m ≥ 1 in any row

except the bottom one. Rows ordered by the number of generators yi present with all

yi present in the bottom row and one less in each row above it. Recall ŷi1,...,ij =
y1⋯yn
yi1⋯yij

for some 1 ≤ j ≤ n − 1 and 1 ≤ i1 < ⋯ < ij ≤ n. The columns represent all the potentially

non-zero entries on those rows, ordered by degree. That is even degree between and

including 0 and (n + 2)(n + 1)/2.

Just recording the torsion in case n = 2 and n = 3 gives the following two tables.

In table 7.5 the result when n = 3 are given.
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Table 7.4: Multiplicity of torsion on the E3 of the spectral sequence converging to
H∗(Λ(SU(3)/T 2);Z)

⟨ŷi1X⟩ - - Z3 Z3

⟨y1y2X⟩ - Z3 Z3 -

Table 7.5: Multiplicity of torsion on the E3 of the spectral sequence converging to
H∗(Λ(SU(4)/T 3);Z)

⟨ŷi1X⟩ - - - - Z2 Z2 Z4

⟨ŷi1,i2X⟩ - - Z2 Z2 ⊕Z4 Z2 ⊕Z4 Z2 -
⟨y1y2y3X⟩ - Z4 Z2 Z2 - - -

Notices there is a symmetry in the table where if we remove the �rst column, the bottom

and top rows are the reverse of each-over and the middle row is symmetric about its

center.

For large n the an increasingly large matrix is used which greatly increase the time

necessary to compute the smith normal form. We can use the modulo-p an algorithm

to compute results over over a �nite �eld of order prime p by replacing each coordinate

of the matrix with is representative 0, . . . , p − 1 modulo p after each step of the smith

normal form algorithm. In this case a simpler algorithm can the used as the numbers in

the matrix will never be larger than p reducing the execution time. It can be shown that

any torsion occurring on the E3 page of the spectral sequence will be a divisor of n + 1.

by...

Hence we can obtaining the rank of a matrix of a corresponding of the spectral sequence

modulo a prime co-prime to n+1 and subtracting this from the the result modulo a prime

divisor of n + 1 will give us the multiplicity of the torsion at that position. Computing

modulo a prime would allows us to obtain the multiplicity of the torsion, at the expenses

of knowing the exact degree of the torsion away from a prime n+1. Table (7.6), contains

the multiplicities of torsion on the E3 page, when n = 4.

Table 7.6: Multiplicity of 5-torsion on the E3 of the spectral sequence converging to
H∗(Λ(SU(5)/T 4);Z)

⟨ŷi1X⟩ 0 0 0 0 0 0 0 1 1 1 1
⟨ŷi1,i2X⟩ 0 0 0 0 1 2 3 3 2 1 0

⟨ŷi1,i2,i3X⟩ 0 0 1 2 3 3 2 1 0 0 0
⟨y1y2y3y4X⟩ 0 1 1 1 1 0 0 0 0 0 0

The symmetry in the torsion continues in table (7.6), in addition the multiplicity of the

torsion continues to increases in the center of the table suggesting that these observations

may continue to be true for larger n.
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