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The free loops space AX of a space X has become an important object of study par-
ticularly in the case when X is a manifold. The study of free loop spaces is motivated
in particular by two main examples. The first is their relation to geometrically distinct
periodic geodesics on a manifold, originally studied by Gromoll and Meyer in 1969. More
recently the study of string topology and in particular the Chas-Sullivan loop product

has been an active area of research.

A complete flag manifold is the quotient of a Lie group by its maximal torus and is one
of the nicer examples of a homogeneous space. Both the cohomology and Chas-Sullivan
product structure are understood for spaces S™, CP™ and most simple Lie groups. Hence
studying the topology of the free loops space on homogeneous space is a natural next

step.

In the thesis we compute the differentials in the integral Leray-Serre spectral sequence
associated to the free loops space fibrations in the cases of SU(n+1)/T™ and Sp(n)/T™.
Study in detail the structure of the third page of the spectral sequence in the case of
SU (n) and give the module structure of H*(A(SU(3)/T?);Z) and H*(A(Sp(2)/T?);Z).
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Introduction

The free loop space of a topological space X is defined to be the mapping space Map(S!, X),
the space of all unpointed maps from the circle to X. This differs from the based loops
space QX = Map.(S*, X), the space of all pointed maps from the circle to X. The
based loop space functor is an important classical object in algebraic topology and has
been well studied. The topology of free loop spaces is much less well behaved and is
still only well understood in a handful of examples. In this thesis we will explore the
cohomology of the free loop space of homogeneous spaces. In doing so we will uncover
some surprising combinatorial connections and we will compute the cohomology algebras

for some flag manifolds of low rank Lie groups.

There are two main motivations behind the study of the topology of the free loop space,
which we now discuss. It is a classical question to ask about the closed geodesics on a
closed manifold M. In particular how many distinct closed geodesics are there on M.
In general the answer to this question is not fully understood, however some problems
we can answer by understanding the topology of M. If M is not simply connected
then information on its geodesics can be obtained by studying the conjugacy classes of
m1(M). If M is simply connected one can consider the free loop space of M. In particular
Gromoll and Meyer prove in [13], that for simply connected closed manifold M, if the
Betti numbers are unbounded then M has infinitely many distinct closed geodesics. For

more information on this subject see for example [29].

String topology in its most general sense is the study of algebraic structure on the
homology of the space of free loops. The area of study began with the unpublished
paper |7] of Chas and Sullivan, released in 1999. In the paper new algebraic structures
were presented concerning the homology of free loop spaces of a manifold. In particular

for a manifold M of dimension d, there is an intersection product
o:Hp(AM) ® Hy(AM) — Hp.q-a(AM)
for each p,q > 0, which has become know as the Chas-Sullivan loop product. More

recently much work has been done on the subject and connections with many other in-

teresting areas in algebraic topology including topological quantum field theory, operads
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and topological cyclic homology have been established. For more information see for

example [33].

In 2002 Cohen, Jones and Yan [32] gave a homotopy theoretic interpretation of the
Chas-Sullivan product based on earlier work of Cohen and Jones [8]. They then used
this description of the Chas-Sullivan product to produce a second quadrant homology
spectral sequence, converging to the Chas-Sullivan product. As a consequence of these
results, the cohomology of the free loop space would give us the module structure of the

homology, hence could help us understanding the Chas-Sullivan structure.

A manifold is called homogeneous if it comes equipped with a transitive Lie group action.
This captures the intuitive idea that a homogeneous space looks the same wherever on
it you are. Under loose conditions all homogeneous space are the quotient of a Lie
groups by a closed subgroup. One of the nicest examples of a homogeneous space are
the complete flag manifolds, the quotient of a Lie group by its maximal torus. When
studying Lie groups as a consequence of the classification, it is most important to study
the simple Lie groups. Hence when studying homogeneous spaces it is most important

to study the homogeneous space obtained as the quotient of a simple Lie group.

The Chas-Sullivan products for some low dimensional spheres were computed by Menichi
in [25]. Then in 2002 the loop product of spheres and projective spaces was given in full
by Cohen, Jones and Yan, in [32]. More recently Hepworth [17] worked on the string
topology of simple Lie group and in particular gave the Chas-Sullivan product. Kupers
[21] has also worked on the string topology of simple Lie groups. Therefore it would be

a natural next step to investigate the free loop space of homogeneous spaces.

In this thesis our primary goal is the investigate the cohomology algebra of the free loop
space complete flag manifolds. Our main tool to achieve this is the cohomology Leray-
Serre spectral sequence associated with the free loop fibration of the flag manifolds.
We give constructions in the cases SU(n + 1)/T™ and Sp(n)/T", though our methods
should be applicable more generally. In both cases our first main result is the explicit
calculation of all non-trivial differentials in the spectral sequences. For the Leray-Serre
spectral sequence associated with the free loop fibration of SU(n+1)/T", we investigate
in detail the structure of the third page of the spectral sequence. These more general
results allow us to deduce the cohomology of SU(3)/T? and Sp(2)/T? as Z-modules,

which we give in Theorems 5.1 and 6.1.

Theorem 5.1. The free loop cohomology of SU(3)/T? is given by
H*(A(SU(3)/T?); 2) = AJI,
where

A=A (Vis (@) ms Yis (@2)m(y1 (71 +72) = ¥272)s (22)my2(7F = 1172)s (22)mVi72)
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and

I=[(22)7 = mN(@2)m, ()] =l (@a)m, 75 +75 + 7172, 705 ¥1 (271 +72) — 92 (71 + 272),
3(22)m (Y171 + ¥273), 3(22)my1y2(11 = 72)s 3(z2)my1yev1s (T2)my1y27572]

where 1 < i, j<n, m>1, ’72’ =2, ’yz‘ =1, ‘(xQ)k’ =2k and |($4)k‘ = 4k.

Theorem 6.1. The integral cohomology of the free loop space of the complete flag man-
ifold of Sp(2) is given by

H*(A(Sp(2)/T?);Z) = A/,
where

A=Az ((6)0vis Y1y2(22)a(T6)bs (T6)bYis (T2)m(6)s(Y172 + y271),
(22)m (@66 (y171 — Y272), (72)a(w6)67572)

and

I=[(z2)7" = ml(2)m, (26)T —m!(26)m, Vi + 73, V1755 2(1171 + Y272)s 31 (22)a})]

fori,j=1,2, m>1, a,b>1 either j =2 or j =4 and where |(z2)m| = 2m, |(6)m| = 6m,
lyil =1 and || = 2.

In Chapters 1, we discuss the relevant algebraic topology that we will use in latter
chapters. In particular basic techniques for finding homotopy splitting of spaces, applying
the universal coefficient theorems to deduce the relationship of the module structure
between cohomology with integral coefficients and cohomology with coefficients over
field of zero or prime characteristic and set out the essential properties of the cohomology
Leray-Serre spectral sequence. This is our main tool for investigating the cohomology of

free loop space of homogeneous spaces.

In Chapter 2, we review the basic theory of symmetric polynomials. This is particularly
relevant for our work in Chapter 4. In particular we discuss elementary symmetric, com-
plete homogeneous symmetric polynomials and the fundamental theorem of symmetric

polynomials.

Chapter 3 is the final background chapter, in which we give an overview of the homology
and cohomology of of Lie groups, their complete manifolds and based loop spaces. We
will present the results we intend to use in later chapters but also try to give the picture

for all simple Lie groups.

Chapter 4 contains our main combinatorial work and is primarily concerned with under-
standing the structure of the quotient of the polynomial algebra by the ideal generated

by symmetric polynomials. The chapter contains some known and some new results.
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We present a method for finding a simple additive basis of the polynomial symmetric
quotient. Investigate the degree-wise size of this bases, before making a few remarks

about the multiplication of basis element. Which we put to use at the end of Chapter 5.

In Chapter 5, we investigate the cohomology Leray-Serre spectral sequence associated
with the free loop space fibration of the complete flag manifold of SU(n). First we
derive a formula for the differentials in the spectral sequence, then investigating in de-
tail the structure of the the third page. Lastly we calculate the module structure of
H*(A(SU(3)/T?);Z) by describing the algebra, structure of of the E.-page of Leray-
Serre spectral sequence of the free loop fibration of A(SU(3)/T?) in terms of generators

and relations.

We start Chapter 6 by describing the differentials of the Leray-Serre spectral sequence
associated with the free loop fibration of Sp(n)/T™. As a final result we calculate the
module structure of H*(A(Sp(2)/T?);Z) by describing the algebra structure of of the
Eo-page of Leray-Serre spectral sequence of the free loop fibration of A(Sp(2)/T?) in

terms of generators and relations.



Methods in algebraic topology

In this chapter we introduce the notions from algebraic topology necessary for obtaining

our main results.

1.1 Homotopy theory

In this section we give the notions from homotopy theory that are used in the work of
this thesis.

Definition 1.1. A map of spaces p: ' - B is called a fibrations if for any other space
W, homotopy G:I x W — B and map h:W — E there exists a homotopy H:I xW - E
such that Ho = h. In this case we call the pre-image F = p~'(%), the fiber and usually
write the fibration as

F->EL%B.

The map f: X - Y is homotopy fibration if there is a homotopy equivalents to a fibration.
That is there is a fibration p: ¥ — B and homotopy equivalences a and b such that the

diagram
f

X —Y
b l
" . B

P —

commutes. The homotopy fiber of f is defined to be F' = p~tx, where * is the base-point.

For the remainder of this section assume all spaces are path connected and have the

homotopy type of a CW-complex.

Definition 1.2. Given a pointed space X, define the path space PX to be Map.(I,X)
the space of all paths in X ending at the base point.

The space PX is contractible and is the total space in the path space fibration
QX - Px % X, (1.1)

where p maps each path to its starting point.

5



6 Methods in algebraic topology

The next two Lemmas give some of the properties of the homotopy fiber, for proofs see
[1, §3] Propositions 3.3.12 and 3.5.10.

Lemma 1.3. Given a homotopy fibration f: X —Y, the pullback Iy of f in the pullback
diagram below has the homotopy type of the homotopy fiber I of f. That is there is a

homotopy equivalence o such that diagram

I —=PY (1.2)

Sl

F—sX——>Y
commutes and where p: PY =Y is the path space fibration.

Lemma 1.4. Let f: X =Y be a homotopy fibration and let FF - E 2, Bbea fibration.
The sequence of maps
QY - I; 5 X,

where q is induced by the pullback in (1.2), is a fibration sequence.

As a consequence of Lemma 1.4, we many extend any homotopy fibration sequence

F - X - Y to a sequence of homotopy fibrations

s Y S QF QX QY - F > X > Y.

The next two propositions are a common tool used to obtain a splitting of topological

spaces.

Proposition 1.5. Let F L ELBea fibration sequence such that p: E - B is null-

homotopic. Then there exists a homotopy section s: E — F.

Proof. Consider diagram (1.2) in Lemma 1.4 with f = p. Since p ~ *, there exists a

section 5: K — I, and s = a~lo5 E - F is the required section. O

Proposition 1.6. If OB - F L Eisa principle fibration arising from fibration F —
EZL B with B simply connected and homotopy section s: E — F', then

F~QOBxE.
Proof. Consider the maps of homotopy fibrations

975] OQBxE——F

li les lid

OBxOB——OBxF——F

)

97>} F E
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where ¢ is the inclusion into the first component, m is the loop multiplication map and
¢ the action of QB on F. More precisely since p: F' - F is a fibration, for any z € F’
and 7:S' — B there is a lift 4:1 — E such that (0) = z. In which case we may define
¢ QB x F - F by ¢(v,2)) = 4(1). The induced maps in the associated long exact

sequences of homotopy groups give us a commutative diagram

Tn1E 0B 1,98 x T, F T E T 128
l | | | l
Tne1E T,02B x 1,Q0B —— 7,08 x 7, F B Tn-19QB x 1,_.1QB —— -
J | | | |
Tne1E 0B T F B Tn-12B
Using the five lemma and Whiteheads theorem we obtain the desired result. O

Definition 1.7. For a space X, define the free loop space AX to be be the space
Map(S*t, X) of non-pointed maps from the unit circle to X.

It can be show directly using Definition 1.1 that

eval

QX > AX 25 x (1.3)

where eval is the maps sending a loop to the image of its base-point, is a fibration

sequence called the free loop fibration of X.

There is a canonical section s: X — A of fibration (1.3), given by sending a point to
the constant loop at that point. However we cannot apply Proposition 1.6 to obtain a

splitting since fibration (1.3) need not be a principle fibration.

1.2 The universal coefficients theorems

In this section we discusses the universal coefficient theorems, which give the exact rela-
tionship between the module structure of the homology and cohomology of a space with
respect to different coeflicient rings. In particular we look at the relationship between
cohomology with integral coefficients and cohomology over a finite field of prime char-
acteristic. The relationships in the Universal coefficients theorems are given in terms of
functors Ext and Tor, for more informational and definition see for example [35, Chapter
7]. The next two theorems are known as the universal coefficients theorems, for proofs
see for example [14, §3.1 and 3.A| Theorems 3.2 and 3A4.3.

Theorem 1.1 (Universal coefficients theorem). Given any topological space X, an

abelian group G and an integer n > 1, there is a split ezact sequence of abelian groups
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0 - Ext(Hp-1(X;2),G) - H"(X;G) - Hom(H,(X;Z),G) - 0,

which is natural with respect to continuous maps between spaces.

Theorem 1.2 (Universal coefficients theorem for homology). Given a topological
space X, an abelian group G and an integer n > 1, there is an exact sequence of abelian

groups
0 Hy(X;2)® G Hy(X;G) - Tor(H,-1(X;Z),G) -0,

which is natural with respect to continuous maps between spaces.

In particular the module structure of the homology and cohomology with respect to
any coefficient ring is completely determined by the homology or cohomology over the
integers. In the case of coefficients over a finite field of prime order or the rationals, we

have the following explicit relationship.
Corollary 1.3. For any topological space X and for any i >0, if
H(X;Z) =27 o7 @ - & L

where j >0, p1,...,p; are distinct primes and a,a1,...,a; non-negative integers, then

for each 1 <k < j the cohomology of X with coefficients in Zyp, is given by

H'(X;Zy,) 2 Zgr
and H™N(X;Z,,) = (H ' (X;2) ® Zy,) ® 22"

For prime p# p for any 1<k<j
HY(X;Z,) = 73

and

H'(X;Q) = Q"

1.3 The Leray-Serre spectral sequence

In this section we give the structure of the Leray-Serre spectral sequence for cohomology,
a powerful tool for studying the cohomology algebra of spaces that sit in a fibrations

sequence F' - F 2 B

Given a commutative ring R, a bigraded module M is an R-module with an index

structure of the form
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M = @i,jeZMi7j

where each M® is an R-module. A bigraded algebra is a bigraded module with an
additional multiplicative structure such that if a € M*J and b e M*! then ab e Mk,
A differential d of bidegree (a,b) on a bigraded module E is a collection of maps d =
d; j: E¥ - Ei*%3+% such that dd = 0. A differential bigraded module is a bigraded module
with a differential, often denoted by (E**,d).

Definition 1.1. A spectral sequence is a sequence of differential bigraded modules
(Ey",d")rs1, where for each r > 2, E is obtained from (E;"",d") by E*2 = H(E;"",d"),

that is, the homology of the previous differential bigraded modules. We shall often refer
to (E;",d") as the " page of the spectral sequence.

There is a standard construction which for each fibration F — E 2 B produces a
spectral sequence. Which are proven in [24, §5] Theorem 5.2 and Proposition 5.6 or [15,
§1.2]. A spectral sequence exits for any arbitrary fibration however only under certain
conditions are they useful; these conditions are specified by the next two theorems on

the convergence of a spectral sequence.

Theorem 1.2. Given a fibration F - E 2 B such that B is simply connected, there is
a spectral sequence (E,",d") satisfying the following:

1. Eﬁj =0 forallr >2 andi <0 or j <0, that is, the spectral sequence is only non-zero

in the first quadrant.
2. Each differential d” has bidegree (r,1—1r).

3. There is an integer 1 < e < oo for each i,j € Z, such that for each r>e, d" =0 and
50 Efjfl = EX. If H*(B) or H*(F) is bounded then such an e exists for all i, ]

simultaneously, in which case we denote E." by EX".

4. There is a filtration by subgroups of H,(E;R), 0c FY c .- c ™ = H,(E; R) such
that E2" P ~ FPJFP~L,

A spectral sequence is said to converge if it satisfies 3. and 4. above. From now on, we will
assume that R =7 unless otherwise stated. The next theorem gives us the Leray-Serre

spectral sequence for cohomology.

Theorem 1.3. The cohomology spectral sequence (E,"",d,) associated to the fibration
F - E 2 B where B is simply connected, converges to H*(E) as an algebra. In addition

it satisfies the following properties:

1. EY9 = HP(B;HI(F)) for each p,q € Z.
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2. The product in Ey’" is the maps HP(B; H1(F))xH*(B; H'(F)) — H?**(B; H1™(F))
for cach p,q,5,t € Z, given by ([S; asus], [y bivi]) > (S (~D* (s - ) s ~ 03)],
for cocycles ui,v; and coefficients a; € HI(F'), bj € H'(F), where < is the cup prod-
uct in cohomology.

3. All differentials satisfy the Leibniz rule.

In a cohomology Leray-Serre spectral sequence on page E,™" the vertical axis is Eg’* ~
HY(B;H*(F)) 2 H*(F), so we will identify it with H*(F). Similarly the horizontal
axis is E;’O ~ H*(B; H*(F)) 2 H*(B), so is identified with H*(B). In particular by the
formula given in the second part of Theorem 1.3, the cup product structure in these axis

agrees with multiplication on E;"".



Symmetric polynomials

A polynomial in Z[~v1,...,7,] is called symmetric if it is invariant under permutations
of the indices of variables 71,...,7,. The study of symmetric polynomials goes back
more than three hundred years, originally used in the study of roots of single variable
polynomials. Today symmetric polynomials have applications in a diverse range of areas
of mathematics. In the thesis the relevance of the symmetric polynomials is brought by
their presence in the cohomology rings of complete flag manifolds, in Section 3.3. In this
chapter we summarise some basic concepts from the theory of symmetric polynomially
that will be essential for our later work. A compete introduction to the topic can be see
in 39, §7| or |22, §1].

2.1 Elementary symmetric polynomials

Much of the language used to described symmetric polynomials is the language of parti-
tions. So before describing the symmetric polynomials it is first necessary to introduce

partitions.

Definition 2.1. An n partition A is a sequence of non-negative integers (A1, ..., \x), for

some integer k > 1, such that
A1 > 2>2 X and A+ + A = 0.

By convention we consider partition (A1,...,Ax) and (A1,...,M,0,...,0) to be equal

and abbreviate an n partition A by A+ n.

The elementary symmetric polynomials are for any given n, a given collection of n sym-
metric polynomials in n variables. In the next theorem, we see that the elementary
symmetric polynomials form a basis of the symmetric polynomials. That is any sym-
metric polynomials can be expressed as a unique polynomial in elementary symmetric

polynomials.

11



12 Symmetric polynomials

Definition 2.2. For each n > 1 and 1 <! <n, define the elementary symmetric polyno-

mials 0; € Z[71,...,7] in n variables by

oy = Y Y-

1<y << <n

For an partition A = (A1,...,A;) denote by oy the symmetric polynomial oy, -0y, .

Example 2.3. When n=3

o1=71t+t7+73,
02 =172 T Y173 + 7273
and 03 = 717273.

The following theorem is sometimes known as the fundamental theorem of symmetric

polynomials. For a proof see for example |39, §7.4].

Theorem 2.4. For each n > 1, the set of o) where X ranges over all n partitions forms
an additive basis of all symmetric functions. That is for 1 <i < n, the set of o; form a

multiplicative basis of all symmetric functions.

2.2 Complete homogeneous symmetric polynomials

The complete homologous symmetric functions are another collection of n symmetric
polynomials in n variables for each n > 1. In a sense which is made explicit in [39,
§7.6], the complete homogeneous symmetric polynomials can be thought of as dual to

the elementary symmetric polynomials.

Definition 2.1. For each n > 1 and 1 < < n, define the complete homogeneous sym-

metric polynomials h; € Z[~v1,...,7,] in n variables by

hi= Y Y

1<i1 <-<ig<n
For a partition A = (Aq,...,A;), denote by h) the symmetric polynomial hy,---hy,.
Example 2.2. When n=3
hi =y +72+73,

ho =75 + 75 + 73 + 7172 + 173 + V273
_ 3 3 3 2 2 2 2 2 2
and hg =77 +795 +73 + Y172 913 9271 23 Y371 372 + V17273-



Symmetric polynomials 13

Given an n xn matrix M with entries in the non-negative integers, denote the row and

column sums by

row(M) = (ri,...,m)
and col(M) = (c1,...,¢n).

For n partitions A and p denote by M), the number of n x n matrices M with

row(M) =\
and col(M) = p.

The next theorem gives the relationship between the elementary symmetric and complete

homogeneous symmetric polynomials. For a proof see for example[39, §7.5].

Theorem 2.3. Let A be an m partition. Then for each n > 1, the elementary symmetric

and complete homogeneous polynomials in n variables satisfy the following relationship

h)\ = Z M/\MO'M.

u-m

As as consequence of Theorem 2.3, any polynomial in elementary symmetric polyno-
mials can be replaced with a unique polynomial in complete homogeneous symmetric
polynomials. Hence Theorem 2.4 could equally well be stated in terms of hy rather than
ox. That is the complete homogeneous symmetric polynomials also form a basis of the

symmetric polynomials.






Topology of Lie groups and homogeneous

space

In this chapter we discuss the cohomology of simple Lie groups and some homogeneous
space relevant to our later work. In addition we present the homology and cohomology

of the based loop spaces of some such spaces.

3.1 Lie groups

A Lie groups is a manifold with a group structure such that the operations of multiplica-
tion and inversion are smooth maps of the manifold. A compact connected Lie group is
called simple if it is non-abelian, simply connected and has no non-trivial connected nor-
mal subgroups. The classification of simple Lie groups is equivalent to the classification
of simple Lie algebras and was first attempted by Killing [18], later improved by Cartan
[6], with the modern classification by Dynkin diagrams being completed by Dynkin in
1947.

Definition 3.1. Given a field K, a Lie algebra over K is a K-vectors space V with a
Lie bracket [, ]:V x V' — V such that

1. [aX +bY,Z] =a[X,Z] +b[Y, Z) and [Z,aX +bY ] =a[Z, X] +b[Z,Y],
2. [X,X]=0,

3. [X,[Y, Z]]+[Z,[X,Y]]+]Y,[Z,X]]=0

for all a,be K and X,Y, Z V.

For each n > 1, the classical Lie groups SO(n),SU(n) and Sp(n) are defined by the
following sets of matrices, group operation matrix multiplication and subspace topology

in R”Q,RQ”Q and R4’ respectively.
SO(n)={AeM,(R)| ATA =1,, det(A) =1},

15
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SU(n) = {A e My(C) | ATA = I,,, det(A) =1},

Sp(n)={AeM,(H)| ATA=1,,},

where M, (R) denotes the set of n x n matrices over real division algebra R. The Lie

group Spin(n) is defined to be the universal cover of SO(n)

Let O denote the octonion real division algebra, the 8-dimensional vector space with
basis 1,e1,e0, €3, €4, €5, €6, €7 and multiplication given in Table 3.1. Conjugation on Q is

defined in the same way as the complex numbers and the quaternions.

TABLE 3.1: Multiplication in the octonion division algebra

1 e1 D) es ey es € er
1 -1 €1 €9 €3 €4 €5 (&3] (&4
€1 €1 -1 €3 —€2 €5 —€4 —€7 €Eg
€2 | €9 €3 -1 €1 €g €7 —€4 —€j5
€3 | €3 €9 —€1 -1 er —€g €5 —€4
€4 | €4 —€5 —€g —€7 -1 €1 €2 €3
€5 | €5 €4 —€7 € —€1 -1 —€3 €9
ec | eg ey ey —-e5 —ey eg -1 -e
er | e7 —€g €5 €4 —€3 —€2 €1 -1

We can define the exceptional Lie group G to be the set of automorphism of the octonion

R-algebra O. That is treating elements of O, as 8-dimensional column vectors over R,
G2 ={geGL(n,R) | g(00") = g(0)g(c') for all 0,0" € O}.

Given an R-algebra A its complexification A is defined to be {a +ib | a,b € A}, such
that 2 = —1. Conjugation is given by 7(a + ib) = a — ib for each a +ib € A, Let
J={XeM(3,0)| X7 = X} with multiplication X oY = (XY +Y X), be the Jordan R-
algebra. We also define X xY = %(2X0Y)—tr(X)Y—tr(Y)X+(tr(X)tr(Y)—(X, Y))Is,
inner product (X,Y) = tr(X oY) and Hermitian inner product (X,Y) = (7X,Y) for
all XY e J. The operations o, x, (,) and (,) are defined in the same way in the
complementation J¢. We define the exceptions Lie groups Fy and Fg by

Fy={aelsor(J)|a(XoY)=aXoaY forall X,Y € J},

Es={aelsop(JO) |a(X xY)a™t = aX xaY, (aX,aY) = (X,Y) for all X,V € J°}.

For A, B € J°, let Ain the dual space J©~ be given by AX = AoX andlet [,]: JC xJ" -
JC be [A,B]X = A(BX) - B(AX) for all X € J°. Define v: JC x JC » JC" by

XvY =[X,Y]+(XoY - %(X,Y)I;;)N.
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We define a C-algebra B=J® J°®C® C. Given ¢ € JC, L,F € JC and v € C, let
®(¢, L, F,v): B— B be give by

(¢, L, F,v)(X,Y,§,n) =
(¢X—%UX+2FXY+77A, 2L><X—¢Y+%’UY+§F, (L,Y)-v¢, (F,X)-vn).

Multiplication in B will be given by
PxQ=®(¢,A, B,v)

for

1
¢=—§(X\/W+Z\/Y),
A:—%(QYXW—ﬁZ—(X),
B:£(2X><Z—77W—wY),

C- é((X,Y) ~(Z,Y) +&w-(n)

forall P=(X,Y,£,n),Q =(W,Z,(,w) € B. We define the exceptional Lie group E7

E; ={aeIsoc(B) | det(aP) =det P, (aP,aQ) = (P,Q) for all P,Q € B},

where the Hermitian inner product is defined (P,Q) = (X, Z) — (Y, W) + £( - fjw for all
forall P=(X,Y,&,n),Q=(W,Z,(,w) € B.

Define {, }: Bx B - B by
{P,Q}Z(X,W)—(Z,Y)+§M—CT]

for all P=(X,Y,&,n),Q = (W, Z,(,w) € B. We will define C-Lie algebra D = B* & B ®
Ba&Ce Ce C. With Lie bracket

[(¢1,P1,Q1,71,51,t1), (P2, Po, Q2,72, 52,t2) ] = (¢, P,Q, 1, 5,1)
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where

¢ =[d1,02]+ P1 x Q2 — Py x Q4
P=¢1Py— ¢ P1 + 9Py — 1Py + 51Q2 — S2Q1

Q=01Q2 - p2Q1 —11Q2 —1r2Q1 +t1 P —t2 Py
r= é(_{P17Q2} +{P2Q1}) + s1t2 — 5oty

1
S = Z{Ph PQ} + 27“182 - 2?”281
1
t= —Z{Ql, QQ} —2r1ty + 2r9ty.
Define involutions A\, A" and 7 on D by

)‘(¢7P)Q7T)Sat) = ()\Qb)\,)\P, >\Q7’I”,S,t),

)‘,(QS’ P7 Q7 s, t) = (¢7 Q7 _Pv -r,—t, _5)7
(¢, P,Q,1,8,t) = (Top7, TP, 7Q, T7, TS, Tt)

for each (¢, P,Q,r,s,t) € D and involution A in B is defined A(X,Y.&,n) = (Y, -X,n,-£)
for each (X,Y,£,n) € B. Let (,): D x D - C be given by

(R1,R2) = (¢1,02) —{Q1, P2} + {P1,Q2} — 8r1712 — 4t152 — s1t2,

then
(R1, Ro) = (TA'AR1, Ry)

for each Dy = (¢1, Py, Q1,71,51,t1), Da(p2, Po, Q2,72, $2,t2) =€ D. Define the exceptional
complex Lie group Eg by

EY = {a e Isoc(D) |[aDy,aDs)] = a[ Dy, Do for all Dy, Dy € D}.
We define the exceptional Lie group Ejg as a subgroups of Eg by
Eg={aeES |(aX,aY)=(X,Y)forall X,Y ¢ E{}

The classifications of Lie groups states that the Lie groups defined above are the only

simple Lie groups, see for example [26, §5] Theorem 6.27.

Theorem 3.2. The only compact connected simple Lie groups are
Spin(m), SU(n), Sp(n), Ga, Fu, Eg, E7, Es

form>1and m > 2.

The next theorem gives a consequence of the classification of Lie groups which is a

phrasing that better describes the importance in our situation, see [30].
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Theorem 3.3. Any compact connect Lie group is covered by a product of simple Lie

groups and circles.

As a consequence of Theorem 3.3, when studying the topology of Lie groups and other
related structures it is important to understand the topology of those associated with

the classical and exceptional simple Lie groups.

3.2 Cohomology of simple Lie groups

While the simple Lie groups are some of the most important spaces in topology, their
cohomology rings in many cases are far from easily described. With coefficients in a field
of characteristic 0, the problem can be approached using methods utilizing de Rham
cohomology, see for example [34] and these algebras were the first to be found. Integrally
or over an arbitrary field the problem is more subtle and much work has been done by
many mathematician including Borel, Araki, Toda, Kono, Mimura and Shimada so today

much is known.

Definition 3.1. Given aring R, define the tensor algebra T'V over R-module V to have

module structure

TV =2, T'V
where
T'=Ve V.
————

i
Graded structure on TV is given by deg (v1 ® - ® vy) = ¥; degv; for v; € V and multi-
plication is given by v-w =v ® w for each v,w € TV. Define AV =TV /I where I is the

ideal generated by elements of the form
v w— (—1)deevdeewy, gy

with v,w € TV. Given a set of elements {a1,...,a,} with given degrees, let V be the free
graded R-module generated by this set. In this case we may denote TV by T'(aq, ..., am)
and AV by A(ai,...,an). In particular if all generators are of odd degree this algebra
coincides with that of the exterior algebra. If all generators have even degree then AV

is a polynomial algebra.

The integral cohomology of SU(n) and Sp(n) can be determined inductively using the

Leray-Serre spectral sequence associated to the fibrations
SU(n) - SU(n+1) - §2* (3.1)

and
Sp(n) - Sp(n +1) - 843, (3.2)
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For the construction of these fibrations see for example [1, §3.4].

Theorem 3.2. For each n > 1, the cohomology of SU(n) is given by
H*(SU(’I?,), Z) = A(.Q?g, Z5y. .- 7$2n71)7

where |x;| =1 for i=3,5,...,2n - 1.

Proof. We know SU(2) is diffeomorphic to S3, hence
H*(SU(3)) = A(w3)

where |z3| = 3. For each m > 2, S™ is simply connected, hence n > 1 the Leray-Serre

spectral sequence associated to fibration (3.1) converges. We proceed by induction on n.

As shown in Figure 3.1, on the E;’* page of the spectral sequence, due to the module
structure of H*(S?"1), the only non-zero columns are at 0 and 2n—1. Since differentials

*,%

have bidegree (7,1 - 1) all differential on pages other than E;’" | are zero, so

E}" =Ey" and Ey* = E3".
Assuming inductively that H*(SU(n -1)) = A(x3,zs,...,%2,-3) with deg(x;) = i. The
only non-zero entries of E3" | are in Eg;:_l = A(zs,x5,...,2o,-3) OF ESZ:II’* =H*(SU(n-
1)) as a module. The highest degree non-zero Egr’f_l, is when ¢ = 3-5---2n—1. However as
the bidegree of day,—1 is (2n—1,2-2n) and the highest degree generator of H*(SU(n-1)
is in dimension 2(n — 1) — 1. differential da,-1 sends all generator in column Eg;;_l to 0.

Therefore da,-1 is zero and Ey™" = EG".

Each negatively sloped diagonal of Ex* contains only one non-zero element. Such non-

2(n-1),*
oo

zero elements occur only in odd entries of F except for g0 lying in the

negatively sloped diagonal containing E&z(”l), which is zero since the first generator
of H*(SU(n —1)) occurs in degree 3. Therefore there are no extension problems and
the module structure of H*(SU(n)) is clear. The multiplication in H*(SU(n)) is freely
generated with one additional algebra generator then H*(SU(n—1)), which comes from

ng ~19 and hence this has degree 2n — 1 as required.
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2(n-1)-1 * *
H*(SU(n-1)) 5 * *
3 [ ] [ ]
0 [ [ ]
-1 0 0
0 2n -1
H*(S2n—1)

FIGURE 3.1: Leray-Serre spectral sequence associated to fibration (3.1)

Theorem 3.3. For each n > 1, the cohomology of Sp(n) is given by
H*(Sp(n)7 Z) = A(l’g,d}?, R 71:471—1),

where |x;| =1 fori=3,7,...,4n—1.

Proof. Using Fibration (3.2) and the fact that Sp(1) is diffeomorphic to S, the proof is
the same as that of Theorem 3.2 with the exception that degree of the spheres increased.
O

With coefficients over a field of characteristic 0 or Zs the cohomology has an easily
presented form. The integral cohomology of SO(n) contains 2-torsion and cannot be
straightforwardly deduced from the characteristic 0 and Zy cases in anything but low
dimensions. However the integral cohomology for any n > 1 has been described in [31].
The rational and Zs cohomology are as follows and can be found in |26, §3.6,7.5] Corollary
1.14 and Theorem 1.18 or in [11].

Theorem 3.4. For each n > 1, the cohomology of SO(2n + 1) with rational coefficients
s given by

H*(SO(2n+1);Q) = Alzs,x7,. .., Tan-1],
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where |x;| =1 fori=3,7,...,4n - 1. With Zo coefficients the cohomology of SO(2n +1)

15 given by

7 _
H*(SO(QTL-F 1)’Z2) = 2[1.1,1.3’@2. » L2n 1]’
where |x;| =1 and a; is the smallest power of two such that ia; > 2n—1 fori=3,5,...,4n—

1.

Theorem 3.5. For each n > 1, the cohomology of SO(2n) with rational coefficients is
given by
H*(SO(Q’/L), @) = A[xi’n L7y s Tdn-3, ZL’anl],

where |x;| =1 fori=3,7,...,4n-1,2n—1. With Zs coefficients the cohomology of SO(2n)

is given by

Z _
H*(SO(2H),ZQ) _ 2[1»'171»'37% , Ton 1]7
where |z;| =i and a; is the smallest power of two such that ia; > 2n—1 fori=3,5,...,2n~

3.

The integral cohomology of G also contains 2-torsion, a proof of the following theorem
can be found in [11] Theorem 2.14.

Theorem 3.6. The cohomology of G2 is given by

Zlx3,x11]

1.2 2 277
(x5, 27, 25211, 205]

H*(Gy;2) =

where |r3| =3 and |r11] =11 .

Much is also known about the cohomology of the other exceptional Lie groups. In [26,
§7] it is shown the groups Fj, Eg and E7 have 2 and 3-torsion, while Eg has 2, 3 and
5-torsion. The cohomology algebras over field of these theses characteristics can also be
found in (26, §7].

3.3 Cohomology of complete flag manifolds

A manifold M is called a homogeneous space if it can be equipped with a transitive G
action for some Lie groups G. In this case we have M = G/H for some Lie subgroup H of
G isomorphic to the orbit of a point in M. A Lie subgroup T of Lie group G isomorphic
to a torus is called maximal if any Lie subgroup also isomorphic to a torus containing T
coincidences with T'. The next proposition is straightforward to show, see for example
|26, §5.3] Theorem 3.15.

Proposition 3.1. All mazimal tori in G are conjugate and the conjugate of a torus is a
torus. In addition given a mazimal torus T, for all x € G there exists an element g € G

such that g 'xzg e T. Hence the union of all mazimal tori is G.
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It is therefore unambiguous to refer to maximal torus T of G and consider the quotient
G/T, which is isomorphic regardless of the choice of T'. The homogeneous space G/T is
called the complete flag manifold of G. The rank of Lie group G is the dimension of a
maximal torus T'. The ranks of classical simple Lie groups can be deduced by considering
the standard maximal tori of SU(n), SO(n) and Sp(n) see for example [10, Chapter 7].

For the ranks of the exception simple Lie groups see [43].

Proposition 3.2. For n > 1, the ranks of SU(n +1),Sp(n),SO(2n) and SO(2n + 1)
are n. The ranks of Go, Fy, Eg, E7 and Eg are 2,4,6,7 and 8 respectively.

Define the Weyl group of Lie group G with maximal torus 7" to be W = No(T')/Z(T') the
normalizer of T'in G quotient the centraliser of T in GG. The cohomology of homogeneous
spaces was studied in detail by Borel in [2]. In particular, from Borel’s work it was

possible to deduce the rational cohomology of G/T.

Theorem 3.3. For compact connected Lie group G with mazimal torus T

H*(BT;Q)

H*(G|T;Q) = T+ (BT.Q)We

where BT is the classifying space of T.

In [4] Bott and Samelson, using Morse theory, extended Borel’s work by showing that
there is no torsion in H*(G/T;Z). This made it easier to deduced the integral structure
of the cohomology of complete flag manifolds in the cases of SU(n), Sp(n) and G5. Toda
later in [41] studied again the cohomology of homogeneous spaces, looking at the mod
p cohomology for prime p. In particular Toda was able to deduce in a nice form the
integral cohomology algebras of complete flag manifolds in the case of SO(n). Then in
[42], Toda and Watanabe computed the cohomology in the cases of Fy and Eg. Finally the
cohomology of complete flag manifolds of simple Lie groups was completed by Nakagawa
in [27] and [28], finishing the cases E; and Eg.

Theorem 3.4 (|2], |5]). For each n >0, the cohomology of the complete flag manifold of

the simple Lie group SU(n+1) is given by

H*(SU(n+1)/T" 2) = A2 Tne]

[O-la LR Un+1]
where |y;] = 2.
Sketch proof. By Theorem 3.3

H*(BT";Q)
fNI*(BT”; Q)WSUmu) )

H*(SU(n+1)/T™;Q)

The cohomology of the classifying space of the n-torus BT™ is Q[xz1,...,x,] where
|zi| = 2. The Weyl group Wgy(y41) is the symmetric group Spi1. Wepr(ne1) acts on the
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indices x1,...,Tn, Tp+1, where xp41 = —x1 — -+ — x,. Hence the rational version of the
theorem is proved. In [5] Bott and Samelson showed that the integral cohomology of
complete flag manifolds is concentrated in even degrees and is torsion free. Therefore
the problem of finding the integral cohomology to considering the map H*(SU(n +
1)/T™Z) - H*(SU(n+1)/T™;Q), induced by the universal coefficients theorem. This
problem is easily resolved in the cases of SU(n) and Sp(n) but not for other simple Lie
groups. 0

Theorem 3.5 ([42], Theorem 2.1). For each n > 1, the cohomology of the complete flag
manifold of the simple Lie group SO(2n + 1) is given by

Z[fylv"'77n7t17"‘7tn]
[Ui —2t;, to; + Z?i_ll(_l)jtjt%—j] ,

H*(SO(2n +1)/T™ Z) =

where 1 <i<n—1, |vi| =2 and |t;| = 2i.

Theorem 3.6 ([42], Corollary 2.2). For each n > 1, the cohomology of the complete flag
manifold of the simple Lie group SO(2n) is given by

Z[’Ylv v 77n,t17 ce 7tn—1]
(07 = 2ti, on, toi+ Yoo (1) tjtais]

H*(SO(2n)]T™;Z) =

where 1 <i<n, || =2, || =2 and |t;| = 2i.
Theorem 3.7 ([2], [5]). For each n > 1, the cohomology of the complete flag manifold of

the simple Lie group Sp(n) is given by

- (Spln)f:2) - el

where || = 2 and aiz denotes elementary symmetric polynomial o; in variables 3. .., v>.

Theorem 3.8 ([5], Theorem I11"). The cohomology of the complete flag manifold of the

exceptional simple Lie group Go is given by

Z ¢
H*(GQ/TQ;Z): [71372773, 3]2 :
[01,092,03 - 2t3,15]

where |y;| =2 fori=1,2,3, |t3| =6 and o3 denotes elementary symmetric polynomial o3

in variables ’y%, 722, 73.

Theorem 3.9 ([42]). The cohomology of the complete flag manifold of the exceptional
simple Lie group Fy is given by

H*(F4/T4,Z) _ 2[71772773}74777 t37t4] ’
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where || =2 fori=1,2,3,4, |y| =2, |ts| =6, |ts] =8 and

I=[01-27,00—27% 03— 273, 04— dyts+8y" = 3tu, 13— 37’1y — 47 13+ 877,
3t2 — 6ytaty — 3y s — 1375, 3 — 672 + 129814 — 841%].

Theorem 3.10 ([42]). The cohomology of the complete flag manifold of the exceptional
simple Lie group Eg is given by

z t1,ts,t
H*(EG/TG;Z)z [71772773774,[’}/57’}/6, 1,13, 4]’

where |y;| =2, 1 <i <6, |t1| =2, |ts| =6, |[t4] =8 and
I=[o1-3t1, 09— 412, 03— 23,04 + 2t] — 3ty, 05 — 04ty + o3t — 217,
206 — outs — 18 + 13, 9o6ts + 3o5ts — 1§ + 3t4(ty — o3ty +2t7),
t? = 3w’t, w? + 15wt - Jwt®],
where t = t1 —y1 and w = t1 — o3ty +2t1 + t(t3 - 265 + 13t — t11% + 3).

Theorem 3.11 (|27]). The cohomology of the complete flag manifold of the exceptional
simple Lie group Er is given by

Z t3,t4,15,1
H*(E7/T7;Z): [717727737747757;6777777 3,04, L5, 9]’

where |yl =2=y|, 1 <i<7, |t3] =6, |ta] =8, |t5] = 10, |to| = 18 and

I=[o1-3y,
oy — 477,
o3 — 2t3,
o4 +2v* = 3ty,

o5 — 37ty + 272153 - 25,

13+ 206 — 27t5 — 377ty +4°,

312 — 2tsts + 2y07 — 6ytsty — 9v2 06 + 1273ts + 1572ty — 67513 — 45,
206t3 + 7207 - 37306 - 219,

tg —207ts + 37307

- Gvgu + 97§u2 + 278u2 - 12781“1 +ud + 307,

7&4 - 67&0u - 378u2 + 47§uv - 3u’v + 3731)2,

- 275411 + 6t8u3 + 9w? - 2’y§uv - 12761u21) - 3wty - 'yng + 67)2uv2 - 21}3],

where 7o =7 — Y1, u=ts— (271 +70)t3 + 27} + 69598 + TvEVE + 38,
v = 06— (271 +70)t5 — 37170ta + (49770 + 27178 )ts — 37070 — 8v18 — 8v3G and w = Syou®.
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Theorem 3.12 (|28]). The cohomology of the complete flag manifold of the exceptional
simple Lie group Fs is given by

Z t,ta, b5, to, to, to, t
H* (Bs/T*:7) = [71,72,73,74,75,76,77,718,% 3, ta, ts, b6, o, 1o, 15]7

where || =2 =|y| for 1 <i <8, |tj| =25 for j=3,4,5,6,9,10,15 and

I=[01 -3y, 09 —4v, 03— 2ts3, o4+ 27 = 3ts, 05 — 3yt + 2v°t3 — 2ts,
06 — 2t3 — yts + 2ty —° = Btg, —30g + 3t3 — 2tsts + (207 — 6tsty),
206t3 + yog + 7207 - 37306 — 219, t% —207ts — 720'8 + 37307 - 310,
1562 + 2tgtats — 207ts + 2t5 + 10t5ts — 3oty — 2t +y(osts — 2tats + dorty + 6t3t])
+~2(3t10 — 25t 4t — oty + 6t3ts) + 7> (25tsts — Stats + 10t3) +v* (308 + 3tsts + 5t3)
+ (=307 — 5taty) + 47513 — T8ty + 49 %t3,
0% — 3ogts + 6tat1g — dogts + 6oqtsty — 6tats — 12t5ts — 2stste
+ (243t yts — 8oqt3 — 8aqte + dogts — 6tstig + 12t5t4)
+ 2 (=2t3tyts + 6t + 25t + 20t2 — 4t3 — orts) + 4> (=12t3t5 + 8osts — Sorty + tste)
+ 7 (Bt — 26t 4t + 6ot — 4t3ty) + 40 (24tste + 3tats + 1263) + % (=605 + 2t3)
— 2(12 + 06 ) (tg — o6t3) — 2t15,
t2 = 9ogti — 613ty — Ataty — 10tstety + 2tststi — 2tstatst — 6orts + 3ostate
+ ogtaty + 615t + 12t5ts + 202ty + 207tats — 2atyts + 20 — Ttste + 45 — 10ty
+ 18tate + 15t3t2 — 9orogts + y(~2tststy — 2407t sts + 8ogtyts + dortaty + 4oty
— ogty + 202t3 + dogtsts + 12tstat1o — 36L3t3te + 12t3t5t6 + ogts + Gtats — 18t5t7)
+~2(24t3ty — 208 — oty — 115410 + 2staty — 208t3ts + 1607tsts — So7tats
+ T5t4t2 — 6t — 9ogts + 81tat4ts — 13tgt1g + Atst] + ts — orts)
+~3(=3tst10 — 150t3t2 — 13585t + 6taty — 207tsts + 21o7ts + 150708 + 3tatste
— 3t3tyts + 18tgts + 15tgty + 14ogtsty — 30t3)
+ 1 (~130ste + 2tat1o — 5oz — 33t5t3 + 3tstg — 28tststs — 45tat — 4loqtsty
— 13t3t5 - 90807 ) +° (307t — 6t5t5 + 2307t3 + 105t 3t 4t — Gogts — Statg + 45t5t4)
+~0(11t3 - 4tstg + dorts + tstyts + 12t5 + 6613 + T5t2 + 208t4)
+ 77 (=33t3t5 + 1263 + 15tste) + 75 (—4t10 + 21t5t4 — Soqts — State)
+ 77 (6tg — 42t3 — 99t3t6) + 410 (~dog — 615 — 13t3t5) + v (307 + 27t3ty)
+ 71260t + 1813) + 672 t5 — 9y 4ty — 129173 + 1093,
9730 + 4575 v + 1273°w + 607§v* + 3070w + 10730° + 3w?,
11fy824 + 60’@% + 21781411) + 105’}/;21)2 + 60’y§vw + 60731)3 + 9’y§w2 + 30’y§vzw + 507,
— 9% - 12731)1: - 67§’wx + 97%41)111 - 107%203 - ?ryéowQ + 3O’y§v2w - 35721}4

+ 67gvw? — 10720 w — 40° - 23],
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where

v =26 + 15— ysts + ta(—7" +18) — etz +1° =75 + 178 + 6 -8,
w =t1g + sty — Ysorystats + 2vgt; — 2V5tsts
+tsta(-6778 +298) + 13(27°78 + 2778 - 2%8) + te (=598 + 5973)
+t5 (v 8 + 37°78 +7218) + ta(67"78 - 3v*48 - 2% % — 778 — 178 +18)
+t3(=67"73 — 2778 + 1v%95 + 698 — 4775 + 18)
+ 47" - 675 + 2v%8 + 7% - "8,
& =t15 — 20t3t2 + 3t3tg — 23tats — 63 + Atgty + 3vstatio — Yststo — 3ystats + 3ysortsty
— 6stite + tats(~3y + 278) + tatste(—4y + dys) + tato(—y* = 5) + o7t (V2 + 18 = 13)
+tatate(97° + 12978 + 513) + t3ta(597 + 6978 + 293) + orte (37 + 4778 +73) — i tsto
+ 25531(—6*%3 - 273 - 677% + 573) + ti(?)’}/g’)/g + yg’) + a7t5(27278 + 3773)
+ 13(—459" + 107 ys = 40773 + tatats (7> — 2998 + 775 — %)
+t5t6(=337° + 7778 = 31773 + 1375 + o7ta(-27" - 4% 48 = 3778 + 375
+ tste(-97* - 6775 — 189292 + 5978 - 374) + t§t5(—3v4 - 37%y8 = Tv*7E + 5778 — 1)
+t3t3(—7" = 67°78 — 298 — 3778) + t1o(=37"7s — 69793 + 3728 + 15774)
+ orts(=3y s + %95 + 5y 78 + 10775 —73)
+ 13t4(159° - 291y + 37°98 + 149°98 — 16775 + 343)
+at(397° — 1375 + 87°73 + 35725 — 31y75 — 313)
+t9(7° =793 -8 -V -1 - %)
+tate(—137° + 129°ys + 5y*3 — 56775 + 8715 + 21978 +298)
+tat5(67° + 37778 + 29v*98 + 7948 + 7775 — 8718 + 318)
+13(=87% + 67"y + 27%73 — 227773 + 6775 + 8718 — 275)
+13(=67" +7%7s = Ty + 57795 + 39798 + 3995 — 637)
+tats (=77 + 27098 + 7793 — 11y'g + 67°75 + 59798 + 6715 + 397g)
+07(29® + 69778 + 37°98 - 49%93 - 157 7% +67°78 + 37718 — 407§ +5913)
+t3t4 (37" + 7098 + 117793 + 1dvy'yg - 200%48 - 47273 + 118y7§ +37%)
+t6(—487" + 378ys — 417772 + 187 V8 + 167575 — 135 - 677372 + 1257247
— 15778 - 29198) + £3(=187" = 37%y5 - 16777% + 107 78 - 47"y - 8 78 167°7¢
= 23778 — 10775 — 11593) + t5(—67"" = 37778 = 99°43 + 577§ - 57 - 14v%§
— 529398 + 67298 — 60775 + 117750) + t4 (187 = 39410 + 54743 + 117 73 - 2877 vs
+ 87593 + 207748 - 647198 — 159°48 + 5472 + 178v75" — 1777a1)
+13(=29"2 + 695 + 291093 — 209792 + 119595 + 229745 - 8759

+ 837598 + 1579198 + 57398 — 11672920 + et + 117742)

Mg = 1371098 - 319°9§ + 99%44 - 778

—1187%4 — 1895420 + 1319142 - 673442 23372 83 1 17578t - 587.°.

—12715—7 78 — 1071342 + 691243 + 7411y,
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3.4 Based loop space cohomology of Lie groups

The Hopf algebra of the based loop space of Lie groups were studied by Bott in [3]|. Here
we give just the more straight forwardly produced results which we intend to use latter

in this thesis.

Definition 3.1. Define the integral divided polynomial algebra on variables z1,...,2n
by
_Z[()1, (wi)2, .. ]

Fz[l‘l,...,l'n] = [(xl)k—k'xf] )

for 1 <i<nand k >1 and where x; = (z;)1.

The following two theorems follow from Theorem 3.2 and 3.3, using a Leray-Serre spectral
sequence argument with the path space fibrations QSU(n) - PSU(n) - SU(n) and
QSp(n) » PSp(n) - Sp(n).

Theorem 3.2. For each n > 1, the cohomology of the based loop space of the classical

simple Lie group SU(n) is given by
H*(Q(SU(n)); Z) =T'z[x2, 24, . . ., T2n-2],

where |x;| =1 fori=2,4,...,2n-2.

Proof. We proceed by induction on n. We have that SU(1) = {pt} hence by definition
QSU(1) = {pt}, so has trivial cohomology ring.

Now assume that n > 2. We will apply the Leray-Serre spectral sequence to the path
space fibration (1.1) for X = SU(n),

QSU(n) - PSU(n) - SU(n).

Denote this spectral sequence by {E,,d"}. Since PSU(n) is contractible the spectral
sequence will converge to the trivial algebra, which is 0 in all entities except for E%.

Hence all non-zero entries are in the image of some differential d".

In Figure 3.2 below, we identify the horizontal axis with H*(SU(n)) and the vertical axis
with H*(QSU(n)). Throughout the induction argument we obtain additional algebra
generators of I'z(xz9,-2) in H*(Q2SU(n);Z) not in H*(QSU(n —1);Z) using only the
differential of degree n. Hence we can assume all elements associated to generators of

lower degree have all been annihilated before the E,"* page.

When n = 2 there are no non-zero differentials before page E;™ as the first non-trivial
generator of H*(SU(2)) has degree 3. The only new generator of H*(SU(n)) not in
H*SU(n - 1) is x,. Since differentials have bidegree (7,1 —r), the only differential

. . . . . 2n—1 . . .
with domain in column Eg’* to have image in column E;"" " is dy,_1. The differential
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with image Egz:ll ¥ therefore must be an isomorphism and so we get a new generator of
H*(22SU(n)) in dimension 2n—-2 = 2(n—1), which we will denote by by with dg,,-1(b1) =

T1.

Note that all products of z9,-1 with the other generators x3,...z2,-3 are annihilated
by differentials of degree less than n, with codomain b; multiplied byother elements in
the multiplicative structure of E*, which we will denote by -. Annihilated by this
differential due to the Leibnitz rule on differentials. Hence the only other potently non-

. . .0 n-1
zero entries on page E5" | are in entries in By | and E;" " where ¢ =2(n—-1),4(n -

1),6(n —1),.... As all other entries are zero, the differentials with image E;'—"? on
E3" | are all isomorphisms. This gives new elements b; with da,—1(b;) = T25-1 - bi—1 for

each i > 2. We know that b} and b; have the same degree.

From multiplication in E;"* and graded commutativity of the cup product, we deduce

that
don-1(b7) = dan-1(b1) - by + (—1)0'2(n_1)b1d2n—1(b1)

= Top-1-b1 + b1 Tan—

= Ty by + (-1)2 D gy by

=2x9,-1 - b1
50 don-1(b%) = 229,,-1 - b1. Next we show by induction on 4 that for each i > 2, b% = ilb;.
Note that by definition of generators and applying isomorphisms da,,_1, we have b¢ = ilz;
is equivalent to day-1(b}) = ilzap-1-bi—1 and b; = ib;_1 -b1. Hence the following calculation

is the induction step.

don-1(b}) = dan-1 (b)) - by + (1) "2 Dby, 4 (by)
= (’L - 1)!172”,1 . bifz . b1 + bifl . (Z - 1)!:1)2”,1
= (’L - 1)!1‘2,1,1 . (2 - l)bi,l + (’L - 1)![)@',1 *Ton—1

= ilTop_1 - bimy

This means that (b1, b2,b3...) =Tz(b1). In addition these generators interact freely with
all previous generators, as they are annihilated by differential of different degrees. There-
fore by is the additional element xo,_9 in Iz (22, x4, . .., Ton-2) not in ['z(ze, 24, ..., Ton-4)
for H*(SU(n—1)), as in the statement of the theorem.
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6(n—1) (bs) \@:%_1 - b)

HQSUMm))  4(n-1) <b2>\(x2n o)

2(n-1) (bl)\(:chl by)
T

H*SU(n) = A(x3,z5,...,22,-1)

FIGURE 3.2: Serre spectral sequence for QSU(n) - PSU(n) - SU(n), E2,-1-page.

O]

Theorem 3.3. For each n > 1, the cohomology of the based loop space of the classical
simple Lie group Sp(n) is given by

H*(Q(Sp(n)); Z) = I'z[x2, 26, . . ., Tan-2],

where |z;| =i fori=2,6,...,4n—2.

Proof. The proofis the same as that of Theorem 3.2 with the degrees of the x; shifted. [

3.5 Based loop space homology of complete flag manifolds

In [12], Grbi¢ and Terzi¢ showed that the integral homology of the based loop space
of a complete flag manifold is torsion free and found the integral Pontrjagin homology
algebras the complete flag manifolds of compact connected simple Lie groups SU(n),
Sp(n), SO(n), Ga, Fy and Eg. They achieved this by first using Sullivan minimal model
theory to produce the rational homology algebras then used homotopy theory to extend

these results to the integral case. The integral homology algebras are as follows.

Theorem 3.1 ([12], Theorem 4.1). The integral Pontrjagin homology ring of the based
loop space on SU(n+1)[T" is given by

T(x1,. . 2n) ®Z[Y1,- -, Yn]

H,(QSU(n+1)/T");Z) = 2 5
TE — Tplyq — TqTp, xk—2y1]
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for 1<k,p,q<n and p # q where |z;| =1 and |y;| = 2i for each 1 <i<n.

Theorem 3.2 ([12], Theorem 4.2). For each n > 1 the integral Ponirjagin homology ring
of the based loop space on Sp(n)[T" is given by

T(x1,...,20) ®Z[Y2, -, Yn]
[CU% - 33?, TRa) + T2 ]

H.(Q(Sp(n)[T"); Z) =

Jor 1<k <l<n where x| =1 and |y;| =4j -2 for each 1 <i<n and 2< j <n.

Theorem 3.3 ([12], Theorem 4.3). For each n > 1 the integral Pontrjagin homology ring
of the based loop space on SO(2n +1)/T™ is given by

T(.le'l,... ,a;n) ®Z[1,... ,yn_1,2yn,... 72y2n—1]
2

H.(QSO(2n+1)/T™);Z) =
(USOCn+ 1)/T7):Z) [f - y1, x?—wzzﬂa TpX) + XXk, y?—Qyz’—lmer'“iQZ/%]

for1<i<n-1and1<k<l<n whereyy =1, |xg| =1, |yp] = 2b and |2y.| = 2¢ for each
1<a<n,1<b<2n-1andn<c<2n-1.

Theorem 3.4 ([12], Theorem 4.4). For each n > 1 the integral Pontrjagin homology ring
of the based loop space on SO(2n)[T" is given by

(xlv . '71.71) ® Z[yla <o Yn-2,Yn-1+ 2, Yn-1 — Z72y7’b7 R 2y2(n71)]
I

T
H.(Q(SO(2n)|T™);Z) =
where

2 2 2
I= [xl —Y1, Ty — Ty, TT T T,
2
YjYj-1Yje1 + 2Yj-2Yje2 = £ 2y,

(Yn-1+2) (Yn-1-2) = 2Un-1Yn+1 + - £ Y2(n-1)]

for1<i<n-1,1<j<n-2and 1<k <l <n whereyo =1, |xg| = 1, |yp| = 2b,
[yn-1 + 2| = 2(n = 1) = |yn—1 — 2| and |2y.| = 2¢ for each 1 <a <n, 1 <b<n-2 and

n<c<2(n-1).

Theorem 3.5 ([12|, Theorem 4.5). The integral Pontrjagin homology ring of the based
loop space on Go/T? is given by

T(x1,72) ® Zy1,y2,y3]

2 2 2

H,(UGo/T?);Z) =
(UG/T™):Z) [23 - 22, 22 - xy2o + x211, 2% - 2y1, 2y — 1]

where |x1] =1 = x|, ly1] =2, |y2| =4 and |ys| = 10.

Theorem 3.6 ([12|, Theorem 4.6). The integral Pontrjagin homology ring of the based
loop space on Fy/T* is given by

T'(x1,22,73,24) ® Z{Y1,Y2,Y3, Y5, Y7, Y11]

2

H. (Q(F,/TY):;Z) =
( ( / ) ) [.%'Z - 3y1, TpXgq — Lgqlp, 2y _-734117 3y3 _x%yﬂ
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for 1<i<4 and 1 <p<q<4 where 1] = |zo| = |xs| = |z4] = 1 and |ya| = 2a for each
a=1,2,3.5711.

Theorem 3.7 ([12]|, Theorem 4.7). The integral Pontrjagin homology ring of the based
loop space on Eg/T® is given by

T(x1,72,73,24,5,76) ® L[Y1,Y2,Y3, Y4, Y5, Y7, Y8, Yu1 )
[.TU? — TpTg — TqTp, w? - 12y1, 2y — w‘ll, 3ys — x%yg]

H.(QUEq/T°%);Z) =

for 1 <i<6 and 1 <p<q<6 where |xg| =1 and |yp| = 2b for each 1 < a < 6 and
b=1,2,3,4,5,7,8,11.



Combinatorics of polynomial symmetric quo-

tients

Before studying the the cohomology of the free loop space of G/T in Sections 5 and 6 we
first analyse some of the combinatorial structure of the cohomology algebras of the flag
manifolds themselves. Understanding the structure of these algebras will be a major key

to understanding the structure of the free loop cohomology.

4.1 Multiset coefficients

Recall that the binomial coefficients (Z) are defined to be the number of size k subsets of

an n set. By separating the choice of an element of the n set it is clear binomial coefficients
n—-1
k-1

that for 0 < k < n, (Z) = #)',(k), and is zero otherwise. Also by induction on n, it is

n-1

satisfy the inductive formula (Z) = ( i ) + ( ) It is easily shown by induction on n

shown that binomial coefficients satisfy the well known formulas
3 (”) SN (—1)’“(”) -0, (4.1)
k=0 k k=0 k

Definition 4.1. A multiset, unlike a set, can contain more than one of the same element.
The number of size k multisets that can be formed from elements of a size n set is denoted

((Z)) and are called the multiset coefficients.

It is well know that ((Z)) = ("”;_1), hence ((Z)) = ((”I;l )) + (( o )) To the best of my

knowledge the identity in the next Lemma has not been shown before.

Lemma 4.2. For each n,m > 1,

2D

Proof. We proceed by induction on n. When n =1,

26D -GG -O6D-C)-(0m) -

33
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Suppose the lemma holds for n =¢—-1> 1, then

EE (Do) 6)) )
(o[ X O ot R Gy [ P ) B

as all terms cancel except for (t_l) (( ¢ )), (t_l) (( -1 )) and (tzl) ((m_t )) all of which are

-1 m t m—t t-1
zero, the middle sum ZZ_:%) (:l) (( -1 )) =0 by assumption. ]

m—-k

=2 (-1)
k=0

=2 (-1)
k=0

4.2 Alternative forms of the symmetric ideal

Recall from Section 2.1 that for n > 1 in Z[z1,...,z,], we define the elementary sym-

metric polynomials for 1 <1 < n to be 07 = ¥4, c..ciy<n TiyTi, and the elementary

1
symmetric polynomials form a basis of the symmetric polynomials. We now consider

two alternative expressions for the ideal [o1,...,0,].

Lemma 4.1. For eachn>1,

[o1,. . one1] = [01,82, ..., &nst],

where for each 1 <l<n+1

5[ = (1 - l) Z Liy Ty — z $i1"'xi172$%'

1<ig << <n+1 1<i1<<t_o<n+1
1<k<n+1, k#i;

In particular
Zlxy, ..., xn1]  Zlxy,... 20]

[0'17---70'71-%—1] [527"')§n+1:|'

Proof. Rewrite o; as

O’l = Z :L‘Z-l...l'i
1<iy << <n+1

= Z Tiy Ty + Z Liq L1 Tp+l-
1<iy<<9<n 1<i1<<ij_1<n
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By subtracting 31, «..<i,_, <n iy~ %i;_, 01 from both sides we obtain

Z xil.“mil + Z x’iln.xil_l(_ml _..._xn)

1<i1<<11<n 1<i1<<tj_1<n

2
= Z xll...le _l Z xll...le _ Z le."xll_ka
1<t << 1<n 1<iy<<9<n 1<i1<<ij_9<n
1<k<n, k#i;

= (1—[) Z .fCil"'.’L'il - Z xil"'xil_zxi:gl'

1<i1<<1<n 1<i1<<ij_9<n
1<k<n, k#i;
This proves that [o1,...,00+1] = [01,&2,...,&+1]- The final statement of the lemma is
obtained by rearranging the ideal as above and then removing the generator x,+1 and
ideal generator o1, which can be done since z,41 = 01 — 1 — -+ — x,, after quotienting out

by o1. O

In addition to the elementary symmetric polynomials, recall from Section 2.2 another
basis of the symmetric polynomials on Z[x1,...,z,] is given by the compete homoge-
neous symmetric polynomials, hy = Y1, i< Tiy ¥, for each 1 <1 < n. Starting with
h; as generators of the of the symmetric ideal, leads to another simplification of the
expression of the symmetric quotient, the usefulness of which will be demonstrated in

the next section.

For each integer n > 1 and all integers 1 < k' < k < n, define ®(k, k") to be the sum of all

monomials in Z[x1,...,2,] of degree k in variables x1,...,Zp_gr41-

Theorem 4.2. In the ring %, for each 1 <k <k<n, ®(k,k")=0. In addition
[hi,...,hy] =[®(1,1),...,2(n,n)]. (4.2)

Proof. We replace the basis o1, ..., 0, of symmetric polynomials by the complete homo-

geneous symmetric polynomials, where hy = ®(k,1). We will prove by induction on k
that, for each 1 <k’ <k <n, ®(k, k') € [h1,...,h,]. When k =1, by definition

hi = ®(1,1).

Assume the theorem is true for all k < m < n. By induction ®(m —1,m") € [hy,...,hy]
for all 1 < m' <m —-1. Note that ®(m — 1,m’)x,_m41 is the sum of all monomials of

degree m in variables @1, ..., T, _p/41 divisible by x,,_,41. Hence, for each 1 <m’ <m-1
b = ®(m -1, 1)z, — = ®(m—-1,m" = 1)zp_mryo = ®(m,m").

At each stage of the proof the next ®(k,k) is obtained as a sum of hy and polynomials
obtained from hq,...,h;_1. Hence [®(1,1),...,®(n,n)] and [hq,...,h,] are equal. [
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For integers 0 < a < b, denote by hg the complete homogeneous polynomial in variables

Z1,...,2p of degree a. Then equation (4.2) can be written as

[?,...,hﬁ]z[’f,...,h}l]. (4.3)
A useful intermediate form of Proposition 4.2 is given next.
Proposition 4.3. For eachn>1,
[ n hn] _ |: n hn—l hn—l]
1 900y n - l ) 2 Y n .
Proof. For each 1<i<n-1
zn+1 - xnh? = hzn;ll‘

We can rearrange the ideal to achieve the desired result by performing the above elimi-

nation in sequence on the ideal for i=n -1 to 7 = 1. ]

Remark 4.4. By Theorem 4.2 and Proposition 4.3 eliminating the last variable in

Z[z1,...,zp], by rewriting hy as x, = —x1 — -+ — Tp_1 gives us

Z{x1,...,xn]  Z[x1,...,2pn-1]  Z[x1,...,Tp-1]

~ ~

PRy B 1 PR U N U N A

4.3 Basis of representatives and degree-wise number of el-

ements

Using Remark 4.4 following from Theorem 4.2, we can deduce an additive basis of the

. . Z[x1,...,xn]
t tient w557
symmetric quotient pw=pay
Theorem 4.1. The elements xcl”---xf;i‘ll such that 0 < a; <n —1i, form an additive basis
f Z[xlv-'-vxn]
[AT,-hit]

Proof. By Theorem 4.2, Z[E%l}%”]] > Z[EL?;:L]] " is the only generator of the ideal in
which a summand is divisible by z,, and z,, is the unique summand in A} divisible by z,.
Z[Cﬂl,...,mn]
(A7, R ]

xp, by replacing x,, with —A" +z,. Similarly apart from a multiple of A7, hg_l is the only

Hence any elements of can be expressed with a representative not containing

generator of the ideal containing a summand divisible #2_; and h3~! contains the unique

s Z[z1,...
summand x2_; divisible by #2_,. Hence any elements of H

a representative not containing z,, or x%_l. The process can be continued with hg_l and

can be expressed by

o3 through to kL and 27 to give the desired result. O

Remark 4.2. The symmetry of the variables xy,...,z, in hT,..., k) implies that the

n

basis of Theorem 4.1 can be chosen using any permutations of {1,...,n}. That is the
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[Z1,....2n ]

a an-1 ) such that 0 < a; < n -4 form an additive basis of Z[hn 7]
1oltn

0(1)”'$U(n—1
any o € Sp,.

elements = for

We now address the problem of counting the number of elements in each degree of
Z[z1:®ni1] - Thege numbers are the Betti numbers of H*(SU(n+1)/T") = M

[017~-~7Un+l] Ul>~~~70'n+1:|
and have been well studied. In particular as a consequence or work of Kostant, Macdon-
ald and Steinberg in [20], [23] and [40] respectively, for simple Lie group G with maximal

torus T the following are forms of the Poincaré series for G/T

1 _ t2ht(a)+2 1

_ 2 2mi
EETON —E(lﬂf e 1)

Z t21(w) _ H

weW aedt
where W = Ng(T')/T The Weyl group of G, I(w) the length of w e W, ®* is the set of
positive roots of G, ht(«) the hight of a € ®* and my,...,m; the exponents of G.

Definition 4.3. Denote by (Z) the number of degree k monomials of the form z*---z0"

such that 0 <a; <n—1.

Remark 4.4. Alternatively (Z) can be described as the number of ways to construct a
k multiset X from elements of {1,...,n} such that the element ¢ appear no more than 4

times in X.

It is clear that if £k <0 or k > @ then (Z) = 0, since in either case such a multiset
X cannot exist. (Z) are known as the Mahonian numbers and were originally defined in
terms of the inversion numbers of permutations, see for example |9, page 239]. The next
two propositions are well known properties of (Z), the second gives an inductive rule for
computing (Z) In Theorem 4.7 we give an explicit formula for (Z), which is similar to

the one given in [19]. Through here in all cases I have given my own proofs.
Proposition 4.5. For eachn>0 and 0 <k < @,
n(n+1)

(Z}{@_Jv Z:) <?>=(n+1)!.

Proof. Both statements follow from Remark 4.4. The first is given by the clear bijection

between the two multiset descriptions that replaces the number of occurrences of i in
the multiset by ¢ minus this number. The second statement follows from the fact that
there are (n + 1)! ways to form any multiset from elements of {1,...,n} such that the

element ¢ appear no more than ¢ times. O

@ are completely deter-

Proposition 4.6. The numbers (Z) forn>0and 0<k <

mined by the following inductive rule.

(0) 1, k=0
kI 1o, k+0
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For each n>1 andoskﬁw,

(0202
k; - 71:0 k - 7/ .
Proof. The case when n = 0 is clear from the definition. Using the description from
Remark 4.4, any k multiset on 1,...,n satisfying the conditions can be obtained from a

(k —4)-multiset on 1,...,n -1 satisfying the conditions, by adding i, n’s to the multiset

for some 0 <7< n. O

Theorem 4.7. For eachn>1 and 0<k < —n(n;l),

GG geo, = o)

i1+ tig<k

Proof. Beginning with (7)), the number of k multisets on {1,...,n} we subtract the
number of multisets not satisfying the condition element ¢ appear no more than ¢ times.
For 2 <4 <n+1, (( kzl )) corresponds to the number of multisets in which there are at

lest 41 occurrences of the element 71 — 1. However if we subtract

2£i12§:n+1 (( k ?Zﬁ )) (4.4)

i1<k

from (( Z)), we do not obtain the desired results because we have counted multiple combi-
nations where more than i of element ¢ occur in the multiset. For any 2 <iy <ig<n+1,
in equation (4.4), the number of multisets in which elements i; — 1 and i3 — 1 occur more

than 41 and 49 times respectively are counted twice. Hence subtracting from ((Z)),

2Dz ) 4s

i1<k i1+i2<k

counts correctly the number of multisets in which for any 2 <41 < i3 < n+1, only elements
i1 — 1 and i3 — 1 occur more than i1 and is times. However equation (4.5) still counts
multisets in which three or more elements occur more times than their value. For any
2 <y <ig<igzg<n+1in equation (4.4), the number of multisets in which elements i1 — 1,

io — 1 and 43 — 1 occur more than 41, io and ¢3 times respectively are counted (:1))) =3

N PR
9<ircigen+1 WK =11 — 2

i1+i9<k

times. In

the number of multisets in which elements 71 — 1, i2 — 1 and ¢3 — 1 occur more than 1, io

and 73 times respectively is counted (;’) = 3 times and once in ((Z)) Therefore in order
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to correct the count on triple occurrences we need to add

2<iy<ip<iz<n+l k—iy —ig —13

i1+io+i3<k

to equation (4.5). We continue this processes until we have considered combinations of
all n variables. At each stage, since };_, (—1)’“(2) =0, the multiplicity of the number of

terms that need to be corrected is always one, hence we obtain the desired result. O

4.4 Multiplicative rules

In this section we try to understand some of the multiplicative structure of the additive

basis given in Theorem 4.1.

Proposition 4.1. A representative 7{*--y5" represents the zero class, if for any 1 <k <n

and 1 <1 <+ <ip <n,
k k
Z%‘ >Zn—ij+1.
J=1 J=1

Proof. By symmetry of the variable v1,...,7,, the arguments of Theorem 4.2 and The-
orem 4.1 can be applied to any permutation of the indices. Therefore we take a permu-
tation ¢ € S, and denote b; = ¢(j) with ¢(1) = i1,...,¢(k) = ix. Using the augment
from Theorem 4.1, the representative vgi’l --"ng" can be expressed as a sum of monomials
7311 -~-’yg; such that 0 < a; < n—i. In particular using the method given in the proof of The-
orem 4.2 if a; < ¢; then a1 +---a;_1 > ¢;—a;+cy+--+c¢;—1. Soif Z?zl Cij > Z?:l n —i; +1 then
the sum of fygll---'yg: must be empty. Hence Z;‘?:l Ci; < Z?:l n —1i; +1 or the expression is
Z€ro. 0
We denote the representative '---y2 ,v,_1 of the unique —(m;)n degree class by Ag.

Z[’Yla---v'Yn]
[0'2>~~~7‘77L+1] ’

n—i+2  n—1.n—1,

Denote by 4; the class of A7/ 7" v v/ Vn-1 in That is the unique

(n+1)n

class of degree ~—5-— — 1 represented by the monomial g/~;.

Lemma 4.2. For any 1<14,j <n,

[0] ifj<iorj>i+2
[Fivil =4 (o] ifj=i
o] ifj=i+1
Proof. If j <, then 7;v; = 0 by Proposition 4.1. If ¢ = j then 7;7; = 9z by definition. So

for the rest of the proof assume j > i. By Theorem 4.2 we have h?_jﬂ €[og,. . 0n1]

Hence we may replace V;L_j 2 by

—i4+2
v - X0 Vi Vi (4.6)

1<i1 <<t 4157
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If any of the i in equation (4.6) are greater than i or iy # j for k > 2, then multiplying

that term by 7,7,/ ’y;z_J will result in a representative of the zero class by Proposition 4.1.
“J*2 with the expression in (4.6). By Proposition 4.1
the only possible non-zero summand when this is multiplied by 4; /fy;l_j 2 are

If j > i+1, again we may replace 7}

—NiVj-1 = = ¥iYir1 — Vo
If j =4 -1, then this is just 4g. If j > ¢+ 2, then replace —9;7,-1 with
Nivj-2 + o+ YiYirl + Ve

which cancels with the other terms. O



Cohomology of the free loop space of the
complete flag manifold of SU(n)

In this chapter we investigate the cohomology of the free loop space of SU(n +1)/T™
by studying the Leary-Serre spectral sequence associated to the free loop space fibration
of A(SU(n+1)/T™). In particular in Section 5.6, we give the algebra structure of the
Ee-page in the case when n = 2 and the module structure of H*(A(SU(3)/T?);7Z).

5.1 Differentials in the path space spectral sequence

In this section we study H*(A(SU(n+1)/T™);Z) for n > 1. The case when n =0 being
trivial as SU(1) is a point. The approach of the argument is similar to that of [36], in
which the cohomology of the free loop spaces of spheres and complex projective space
are calculated using spectral sequence techniques. However the details in the case of the

complete flag of the special unitary group are considerably more complex.

For any space X, the map eval: Map(I,X) — X x X is given by a ~ (a(0),a(1)).
It can be shown directly that eval is a fibration with fiber Q2X. In this section we
compute the differentials in the cohomology Serre spectral sequence of this fibration for
the case X = SU(n+1)/T™. The aim is to compute H*(A(SU(n+1)/T™);Z). The map
eval: AX — X given by evaluation at the base point of a free loop is also a fibration with
fiber 2X. This is studied in section 5.2 by considering a map of fibrations from the free
loop fibration for SU(n +1)/T™ to the evaluation fibration and hence the induced map

on spectral sequences. For the rest of this section we consider the fibration

eval

Q(SU(n +1)/T"™) - Map(I, SU(n+1)/T™) 2% SU(n +1)/T" x SU(n +1)/T". (5.1)

By extending the fibration T — SU(n+ 1) - SU(n + 1)/T", we obtain the homotopy

fibration sequence

41
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Q(SU(n +1)) - Q(SU(n +1)/T") - T" - SU(n + 1). (5.2)

It is well known see [37|, that the furthest right map above of the inclusion of the
maximal torus into SU(n + 1) is null-homotopic. Hence there is a homotopy section
T - Q(SU(n+1)/T"™). Therefore, as the fibration Q(SU(n+1)/T™) - T™ is a principle
fibration, so Q(SU(n+1)/T") ~ Q(SU(n+ 1)) x T". Using the Kiinneth formula and

Theorem 3.2 we obtain the algebra isomorphism

H*(QSU(n+1)/T");Z) = H (QUSU(n+1);Z) @ H (T, Z) =
FZ[$2,$4, ... ,ajgn] ® Az(yl, .. ,yn),

where I'z[x9, 4, ..., x2,] is the integral divided polynomial algebra on o, ..., z2, with
|z;| =i for each i =2,...,2n. A(y1,...,yn) is an exterior algebra generated by y1,...,yn

with |y;| =1 for each j =1,...,n. It is well known that
Map(I,SU(n+1)/T") ~SU(n+1)/T",

therefore by Theorem 3.4 all cohomology algebras of spaces in fibration (5.1) are known.
By studying the long exact sequence of homotopy groups associated to the fibration
T" - SU(n+1) - SU(n+1)/T", we obtain that SU(n +1)/T™ hence SU(n+1)/T™ x
SU(n+1)/T™ are simply connected. Therefore the cohomology Serre spectral sequence
of fibration (5.1), which we denote by {E,,d"}, converges to H*(SU(n+1)/T";Z) with
Ey-page EYY = HP(SU(n+1)/T" x SU(n +1)/T"; HY(Q(SU(n + 1)/T™); Z)), both of

which are known. In the following arguments we will use the notation

H* (Map(I,SU(n+1)/T"); Z) = Hate=doel]

X
07501 ]

and
* m mn. ~ Z[ala"'7an+1] Z[/Bl ----- Bn+1]
H*(SU(n+1)/T"xSU(n+1)|T"Z) = o] ® 7P ]
where |a;| = |8i] = |\i| =2 for each i = 1,...,n + 1 and 07,0% and af are the elementary

symmetric polynomials in \;, a; and f;, respectively.
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2n|  (xon,)

H*(Q(SU(n+1)/T™ 7)) 4

H*(SU(n +1)/T" x SU(n +1)/T™ 7.)

FIGURE 5.1: Generators in integral cohomology Leray-Serre spectral sequence {E,.,d"}
converging to H*(Map(I,SU(n+1));Z).

In the remainder of this section we will describe explicitly the images of differentials
shown in Figure 5.1 and show that all other differential not generated by these differ-
entials using the Leibniz rule are zero. It will often be useful to use the alternative

basis
v; = o — B; and u; = B

for H*(SU(n+1)/T" x SU(n+1)/T";Z), where i = 1,...,n+ 1. The following lemma

determines completely the d? differential on EQ* 1,

Lemma 5.1. With the notation above, in the cohomology Leray-Serre spectral sequence

of fibration (5.1), there is a choice of basis y1,...,yn such that

d2(yi) =
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foreachi=1,...,n.

Proof. We have the homotopy commutative diagram

A

SU(n +1)/T"

|

Map(1,SU(n+1)/T") WSU(nJr 1)/T" x SU(n+1)/T™,

SU(n +1)/T" x SU(n +1)/T"

where pg, given by ¥ — 1)(0), is a homotopy equivalence and A is the diagonal map. As
the cup product is induced by the diagonal map eval” has the same image as the cup
product. For dimensional reasons, d? is the only possible non-zero differential ending at
any E*Y and no non-zero differential have domain in any E%Y. Therefore in order for the
spectral sequence to converge to H*(Map(I, SU(n+1)/T™)), the image of d?: Eg’l - E22’0
must be the kernel of the cup product on H*(SU(n+1)/T™ x SU(n+1)/T™;Z), which

is generated by vy,...,vp. O

Remark 5.2. The only remaining differentials on generators left to determine are those
with domain in (z2,24...,x2,), on some page E, for r > 2. For dimensional reasons,
the elements xo,x4, ..., 22, cannot be the image of any differential. By Lemma 5.1, the
generators uq, ..., u, must survive to the E.-page, so generators xs,T4,...,To, cannot.
This is due to dimensional reasons combined with the fact that the spectral sequence
must converge to H*(SU(n+1)/T™). Now assume inductively for each i = 1,...,n that
for each 1< j <14, d¥ is constructed. For dimensional reasons and due to all lower rows
except B 2 and E; )1 being annihilated by differentials already determined at lower values
of 1< j <1, the only possible non-zero differential beginning at xo;, is d** ngi - E;“
The image of each of the differentials d?* will therefore be a unique class in E;“ in the

kernel of d? not already contained in the image of any d” for r < 2i.

We have d?(u;) = 0 = d*(v;) and by Lemma 5.1 we may assume that d?(y;) = v; for each

. 1 .
i=1,...,n. All non-zero generators v € E;*" can be expressed in form
’y = ykuil.--uis U]l '--th

for some 1 <k <mn, 1 <i; <--<ig<nand 1< j; << j; <n. Therefore d?(7) is zero

only if it is contained in [of,...,00 4, Jf, . ,J£+1]. Hence it is important to understand
B

the structure of the symmetric polynomials of',..., 00, , Uf yory O, - 0f and J’f simply
express ap.1 and Bp41 in terms of the other generators of the ideal. Lemma 4.1 describes

explicitly what the structure of o, ... ,ag‘ﬂ,og, 0P 1 is in terms of ay,...,a;, and

7o n+
/817"'76n~

Using the next two lemmas, we will determine how o}* and alﬁ lie in the image of d% and

so determine other differentials. For eachn >1,2<I<n+1 and 1 <m <, define element



Cohomology of the free loop space of the complete flag manifold of SU(n) 45

m 20-1,1
Si'm of E; by
Sl’n - Z Yiy Vig™* Uiy Wiy yq " Wiy -
1<i1 < <tm<n
1<im41<<1<n

= S
i#i; for j#j

ol
Define also Sy, = Sppt e F S

Lemma 5.3. For eachn>1,2<l<n+1and1<m<l,

d2(Sl,n) = Z O[il"'ail - Z /811511

1<iy <<€ 1<i1<<1<n

Remark 5.4. In the course of the proof of the Lemma it is shown that

Z Qrjy Oy — Z 521/81[

1<iy<<9<n 1<y << <n

is up to sign the unique generator for elements E22z,0 in the image of d? containing either

the terms ZlSi1<~~<il§n Qe Qyy OT Zl§i1<~~<iZSn 5@”'5@

Proof. First note that

2/ . m\ _ _ . . . . .
d (Sl,n) = Z Uiy Vig " Vi Uiy g1 7 Uiy = Z (aiy = Biy) (i, = Biyy ) Binir
1<t1<-<tm<n 1<t < <tm<n
1<im41<<i1<n 1<im41<<i1<n
ig#i,r for oto’ ig#i,r for oto’
- Z (-1 Yoy, i, Biyy - Bi, = Z (-1)mt L=t iy, By
117 Qg Pig Py m — )T YiPiea
0<t<m 0<t<m -
1<i1 < <tm<n 1<ig<+<it<n
1<im41<<i1<n 1<it11<<1<n
io#i,r for oo’ io#iyr for oo’

For each 1 < m <[, element dQ(STn) contains a term ay, -y, B, -3, only when 0 <

t <m. None of the dQ(S}”n) are zero as they all at least contain a non-zero term of the

form a;, B,++f;, which is not contained in [o,..., 07}, Uf, cel Uﬁ_l]. The differential d?
preserves the indices i1,...,4;. Hence the d? image of an element in E;l_l’l is given in

terms of elements of the form

Z iy, Biyy - Biy

1<21<--<i+<n
1<i 41 <<y <l
ig#i,r for oxc’

if and only if it is a sum of elements of the form s}, for 1 <m <. As m increases from

1 to [, each successive d?(s]") contains a new term of the form

Z ah'"aimﬂirm.l'”ﬂila
1<i1 < <tm<n
1<imi1<--<iy<l
io#iyr for oo’
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which did not appear in any previous d2(s§7n) for i < m. When m = [, this new term is
D 1<iy<ociygn Qigs - - -, ;- In order to cancel all terms not of the form 31, ...cj an @iy - - -5 Qg
OF Yiciy<ociyen Birs- - - Biy, we need a sum cldQ(sin) +oeee cldQ(séjn) where c1,...,¢ €
Z~{0}. Since each successive d2(s?fn) contains a new term, the choice of ¢; = 1 uniquely
determines ca,...,¢;. Recall from the calculation at the beginning of the proof that if

dQ(sZ"‘n) contains terms of the form

> i i, B
1<t1<--<i¢<n
1<ip 41 <<y <l
ig#i,r for oxc’

and the constant multiplied by each of these terms is (—1)m‘t(nl:t). It is well know that
the alternating sum of rows greater than 0 in Pascal’s triangle is zero, more precisely
this is Y.j-, (—1)"”’(7;) =0 for n > 1. Hence cy,...,¢ are also 1 and therefore S ,, is the
unique sum in s}, such that S, has no cancellation but dz(Slm) can be expressed with
a single term of the form ¥, .; «...cj<n @i, @, only containing other terms of the form
Y 1<iy <ociy<n Bir++Bi,. Finally the constant for the 1 «..cii<n Bir-++Bi, terms in d?(Sy,)
is -1 as

D)+ (D () (L) = B D) = Sy () 11

O
U 21,1
For each n>2,2<l<n+1and 0<m <1 -2, define elements s} , 35, of E5"" by
~m ~'m
Sl,n = Z ykvkvil‘”vimuinwl'”uil—27 Sl,n = Z ykukvil‘”vim uimﬁ-l”'uil—Z'
1<k<n 1<k<n
1<i1 < <im<n 1<i1 < <im<n
1<im41<++<ij_2<n 1<im41<++<ij_2<n
k#ij#i; for j#5' k#ij#i; for j#5'
Foreach 1<m<l-2and 3<I<n+1, define
~/Im 2
St = Z UpYir Vig™ Vi Uipy 1" Uiy_g 5
1<k<n
1<i1 < <im<n
1<im41<++<t1_2<n
k#ij#iz for j#5'
. ‘s 'mo_ & _ =0 d-2 & _ J0 ., -2
in addition set S, = 0. Define also S;,, = Sin ¥ 8, S’l,n =St S, and

&’ < 1_9 . — & ~/ ~ 11
Slvn = Sl,n + -+ Sl,n Wlth Sl,'I”L - Sl,?’L + 2Sl,n + Sl,n'

Lemma 5.5. For eachn>1,2<l<n-1,
dQ(SZm) = dz(‘gl,n + 2311,71 + gl,:n) = Z O‘iail'"aizfz - Z 61361'1"'61172'

1<ty < <9< 1<i1 << <n
1§k§n,ik¢i]~ 1§k§n,ik¢ij
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Remark 5.6. In the course of the proof of the Lemma it is shown that

2 2
Z akail"'ail_g - Z Bkﬁil'"ﬂil_ga

1<y < <10 1<ii<<<n
lﬁkﬁn,ik¢ij lﬁkﬁnik¢i]’
. . . 20,0 . . .. .
is up to sign the unique generator for elements ;" in the image of d? containing either

the terms

2 2
Z Q-0 _, O Z BiBiyBiy_y-

1<iy < <3<n 1<iy << <n
1<k<n,ig#i; 1<k<n,ig#i;

Proof. The proof of the lemma will in places be similar to the proof of Lemma 5.3, hence

in these parts details will be omitted. First note that for each 0 <m <1 -2,

- 4f m-—t
d2 Sﬁn) = Z (Oéi - 2C¥kﬁk + 513)(_1)7” t(l 2)041'1”‘061',5,61‘“1"'51_2,
1<41 << <n -t-
1<t41<<tj_2<n
0<t<m,0<k<n
k#ij#i; for j#5'
m-—t

2/~"m 2 m—t

d*(8) = > (B — Bi)(-1) ( )ail“'aitﬂiz+1”’ﬁl—2v
1<t1<--<i¢<n

1<i441<+<tj_2<n

0<t<m,0<k<n

k#ij#iz for j#5'

l-t-2

m-—t
)04@'1 ey, Bipy Bl

EEm= o se ([

1<ip<<i<n
1<i441<+<tj_2<n
0<t<m,0<k<n

- -
k#ij#i for j+j

Using the same argument given in Lemma 5.3, we obtain d2(S),,), d2(§l’n) and d2(§l"n)
The only difference is for d?(S;,,) and dQ(S’l,m), where we begin with é?m and égon rather
than §l1n and 521n Hence the f3;,,...,3;_, terms give the alternating sum over the entire

row of Pascal’s triangle, so all such terms cancel. Therefore

d2(;§l7n) = Z (ai - 2048 + ﬁi)aif"aiz-w

1<i1<++<1_2<n
0<k<n, k+io

d2(§27n) = Z (kB —5;%)041'1'“041‘1,27

1<i1<+<t_2<n
0<k<n,k+is
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dQ(Sz/:n) = > Bit(aiyaiy_y = BivBiry)-

1<i1<<t_2<n
0<k<n, k+is

In addition, as Remark 5.4 was respected in Lemma, 5.3, so the statements are maintained
in the expressions above. Finally calculating d2(§l7n + 25’1’ nt gl"n) using the expressions

above proves the lemma. ]

Theorem 5.7. For eachn>1 and 2<1<n+1, in the spectral sequence {E,,d"}, up to

class representative in E22l’1, we have
d* D (z901)) = (1= 1)S1n — St

using the notation preceding Lemmas 5.8 and 5.5. More precisely, for 3<l<n+1

2(1-1 2
d?¢ )(1‘2(171)) =(1-1) > Yiy Vi Vi, Wiy " Uiy — > Uk Yiy Vig"* Vi Wiy 41 ** " Wiy_y
1<m<l 1<m<l,1<k<n
1<i1 < <im<n 1<t <<t <n
1<tpe1<<4<n 1<im41<+<ij_2<n
ijil'j/ for j#j’ k‘¢ij:f=ijl f07' j#j/
- Z (2ykukvi1.”v7j'muim+l .“uil—Q + ykvkvil."vi7rLuim+1...uil—2)

0<m<l,1<k<n

1<t < <im<n
1<im41<--<tj_2<n
keij#is for j#5'

and
2
d*(z2) == > Yiviy — >, Yirtis — . (2ynug + Yrv).
1<i1<iz2<n 1<i1,i2<n,11#12 1<k<n
Proof. The generators of and Uf in the ideals [of,...,00,,] and [Ulﬁ,...70'5+1] are

o + -+ oy and B + - + B4, receptively. So of and 0’13 just express elements a1

and B,4+1 in terms of minimal generating sets a1,...,a, and B1,..., 05, of %
129" n+l
and %, respectively. Each 07" and olﬂ has degree 2l. Since each E22l,0 contains

015041

Z[ala---7an+1] Z[/Blr"an‘Fl] o ,8
[ofrrtr] © [of, 0P ] of degree 2[, so generators o}* and o;" only

n+1

become relevant to E22i’0 if i >1. By Lemmas 5.3, 5.5 and 4.1 we have

P((1-1)S1n = Sin) =07, -0, = 0.
Recall from Remark 5.2 that the image of each of the differentials d?, i > 1 in E;“ will be
a unique class in the kernel of d? not already contained in the image of any d” for r < 2i.

The simplicity conditions of Remarks 5.4 and 5.6 will ensure that if (1-1)S;, — Si, is

in the kernel of d? previously mentioned, then it will be a generator. We now proceed to

only the elements of

determine d2(l_1)(x2(l_1)) by induction for 2 <1 < n+1. First note that the only non-zero
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elements of E;’l mapped identically to zero in (uy,...,up,v1,...,v,) are those obtained

from elements of the form

Yy Uy = Yy'Uy
for some 1 <y < 4" <n. Since o and O’lﬁ only become relevant to Eg’% if ¢ > 1, the
element (1-1)S;, — S;, is not contained in the image of d* for i < 2l. For I = 2, the
a B

o; are 05, Ug. Since =S, — S1,, is not a sum containing any terms of

only relevant of*, o,

the form y,vy — y,v,, s0 d?(w2) is =Sy — S1,, up to sign. For [ > 2, by induction and
the Leibniz rule, the images of differentials d2("1) for 2 < i < [, correspond to o ,Uf for
2 <i<lor y,vy —yyvy for some 1 <y <" <n and of, 028 cannot be expressed in terms
of o, ... 00, af, e aﬁl. Hence (1-1)S;,, - S;, must be d2(l’1)(:p2(l_1)) up to a choice
of class representative and sign. Therefore by changing the sign of x9; if necessary we
obtain d2(l’1)(x2(l_1)) =(1-1)Sin - Sin- O

5.2 Differentials for the free loop spectral sequence

Throughout the following arguments we consider the map ¢ of fibrations between the
free loop fibration of SU(n + 1)/T™ for n > 1 and the evaluation fibration studied in

section 5.1, given by the following commutative diagram

Q(SU(n+1)/T™) A(SU(n+1)/T™) cval SU(n+1)/T™

Lid jezp lA

Q(SU(n +1)/T") — Map(I, SU(n + 1)/T™) <% SU(n +1)/T" x SU(n + 1)/T",

where exp is given on elements by exp(a)(t) = a(e*™). As SU(n +1)/T™ is simply
connected, the free loop fibration induces a cohomology Leray-Serre spectral sequence
{E,,d"}. Hence ¢ indices a map of spectral sequences ¢* : {E,,d"} - {E,,d"}. More

precisely for each r > 2 and a,b € Z, we have the commutative diagram

E;«l’b L_ Eg+r,b—r+1 (53)

U

Ea,b dr Ea+r,b—r+1
T T b

where ¢* for each successive r is the induced map on the homology of the previous page,
beginning as the map induced on the tensor on the Fs-pages by the maps id: Q(SU(n +
1)/T™) - Q(SU(n+1)/T™) and A:SU(n+1)/T" - SU(n+1)/T" x SU(n+1)/T". For

the rest of the section we will use the notation

H*(Q(SU(n+1)/T");Z) 2 Ty(ab,xly, ..., x5,.) @ Az(y1, -, Ur)s
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H*(SU(n+1)/T 2) = =t

..... o)1)’

where |y!| = 1,]y;| = 2,|z%;| = 2i for each 1 <i<n,1<j<n+1land o],...,0,],, are a basis

of the symmetric functions on ;. Now we determine all the differentials in {E,.,d"}.

Theorem 5.1. For each n > 1, the only non-zero differentials on generators of the

Es-page of {E,,d"} are up to class representative and sign,

F20 1 / !
d*(zy) =~ Z Yiy Yia — Z 295 Yk
1<i1,i9<n,i1 #i2 1<k<n
and for 3<l<n+1,
2(-1) (.1 _
d (x2(171)) =
!/ /2 /
=0 > YV - > UV Vi =2 2 YWY Vi
1<iy<<3y_1<n 1<ty <+<i;_3<n 1<iy<++<ij_9<n
1<k<n, ik 1<k k' <n, ij+k+k' 1<k<n, ik

Proof. Throughout the proof it may be useful to refer to Figure 5.2, showing differentials
in the spectral sequence. The identity id: Q(SU(n+1)/T") - Q(SU(n+1)/T™) induces
the identity map on cohomology. The diagonal map A:SU(n+1)/T™ - SU(n+1)/T" x
SU(n+1)/T™ induces the cup product on cohomology. Hence by choosing generators in

{E,,d"}, we may assume that
¢ (yi) =yi, ¢ (i) =z} and ¢" (i) =i = ¢*(Bi) = ¢*(wi), so ¢*(vi) =0.
For dimensional reasons, the only possibly non-zero differential on generators y’; in
{E,,d"} is d>. However for each 1< i <n using commutative diagram (5.3) and Lemma
5.1, we have
& (yf) = d*(¢*(y:)) = 6" (d*(yi)) = ¢* (vi) = 0.
Hence all elements of EQ(*’U and Eé*,o) survive to Fo, unless they are in the image of

some differential d” for 7 > 2. Using commutative diagram (5.3) and Theorem 5.7, we

have up to class representative and sign

d*(ah) = ¢*(d*(22)) = ¢* (=S — Son) = — > YiVis = Y. 2U1

1<i1,i2<n,11#12 1<k<n

and for 3<i<n+1,

U (@ 1)) = 67 (@ (220-1))) = (1= 1)Sin = Sin)

! ! 2 !
=(1=0) > UYar Vi - > YKV Vi Vi —2 D YR Vi Vi
1<i1<<t_1<n 1<i1<+<1_3<n 1<i1<++<t_2<n
1<k<n, ij#k 1<k k'<n, ij2k+k’ 1<k<n, ij#k

All differentials on generators ;, for each 1 <i < n+1, are zero for dimensional reasons.
O
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2n

W

H*(QSU(n+1)/T");Z)

H*(SU(n +1)/T™ )

FIGURE 5.2: Generators in integral cohomology Leray-Serre spectral sequence {E,.,d"}
converging to H*(A(SU(n+1)/T™);Z).

5.3 Basis

By considering a basis of Z[v1,...,7,] that resembles the image of the d? differential in

Theorem 5.1, it becomes easier to study the Fs-page of the spectral sequence.

Remark 5.1. In Z[v1,...,7], let ¥ =91+ + v, and 7; = 7 +; for each 1 < i < n.
We may rearrange the standard basis vy, ..., v, of Z[y1,...,7] t0 Y1, -+, Yn-1,7. Then
rearrange to v1,...,%n-1,7, by adding ¥ to all other basis elements. Notice that the
replacement ~; — 7; for 1 <i <n -1, v, = % could have been chosen 7; = ¥ for any

1<j<n and ~; —» 4; for any i # j instead.

Replacing 4 by (n+1)5 -1 — - = An-1 gives 4y, hence 71, ..., 7, forms a rational basis.
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Proposition 5.2. Using the notion of (4.3), we can rewrite h?_l” for each 3<1<n in
the basis of Remark 5.1 as

wfn+1\._ 9.

hy= 3 (-1)? k(2_k)%1“"m72 "
0<k<2
1Si]‘3nf1

and

_ n+1 g
hpe2 5 (-1)" k( )%1 ’Yik’Ylk

0<k<l
1<ij<n—~1+2

Proof. First note that in the basis of Remark 5.1 we can rewrite the original basis in

terms of the new one

n—1

Yi=gi-yfor1<i<n-1, y,=ny-) 7. (5.4)
i=1
When [ = 2 using (5.4)

= Z((m—ni%‘)%a ﬁ (Fir =)

a=0 7=1 1<i1<io<n

I/\

n-1 n-1 -
= (ny - Z;%)Q + Z:l (n7 - Z )(Fa = Z -7+ Y Ga =M )

1<i1<ig<n~-1

(5.5)

For 1 <k,ki,ko <n—1, k1 # ko, we consider the terms of the form

Vs AV i e Tha
in tern and count their occurrences in the summands of (5.5). In total n? element of the
form 42 are produced by the first summand of (5.5), minus n(n—1) times in the second,
n—1 in the third and (”;1) in the last. Hence in total

et )

In total —2n elements of the form 7% are produced in the first summand of (5.5), 2n—1

in the second, minus 2 in the third and 2 — n in the last. Hence in total

—2n+(2n—1)—2+(2—n):n+1=(n+1).

1

The terms ’yg are produced once in the first summand of (5.5), once in the third and
negative once in the second, hence once in total. The terms 7y, Y%, are produced twice
in the first summand, minus twice in the the second and once in the last, hence once in

total. Therefore the conditions of the proposition are satisfied.
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For [ > 3 using (5.4)
!
=y TG - (5.6)

1<y <<iygn—1+2 k=1

For any choice of 1 <41 < -+ <4 <n -1+ 2 and non-negative integers b,a,...,ax such

that b+ aj +---+ ap =, terms of the form
e AeaP (5.7)

describe up to multiplicity all possible summand in the expansion of equation (5.6).
Define h}'~ “2{7 e b} to be the multiplicity of the summand containing ;"' fyfk]wb
in the expansion of equation (5.6). We will show that if A" has of the form of
equation (5.6) for all n+ 1 >1 > 2 satisfies the statement of the proposition for 3> 1> n.

In particular
- - - n+1
e = (o(" ) )
where k + b = [, which would complete the proof of the proposition.

Considering each summand of equation (5.6) in tern and counting the number of %‘ 'yfk kb

produced in each product, we obtain

b 0
_ - - n-1+2-k ag+
e =5 7), 2 I(7Y)
6=0 011+~~~+O¢k=0 B=1 ﬁ
O{jZO
We proceed by induction on n and will prove (5.8) for all n>1 and 2<1<n+1. When
n =1, the only valid value of [ is 2 and h"*? = (51 - 4)? whose expansions satisfies
(5.8). Assume that (5.8) holds for all ¢ <n. It is clear that AP "1 {5"*1} = (~1)"*! and
h?‘“l{ﬁ/fll---’ygf} =1 for any choice of aq, ..., a; since in the expansion of equation (5.8)

there would be only one way to obtain the element. For 1 < b < n, by induction

(-2 ") = () 59

ap+-+ap=0 =1
O!jZO

and

(bill):( DR = Z(( bfi%ek)) 2 ﬁ(aﬁmﬁ)'

6=0 a1++ag=0 B=1 Qg
ajZO

(5.10)
For each 0 < 6 < b—1 the sum of values from (5.9) and (5.10) corresponds to the 6
summand in the expression for hl”‘l”{’yi il “ b since the binomial expressions agree
and the multi set expression sum to the correct result. The only reaming summand in
h?‘l”{’ﬁf--"y&k"yb} is the one corresponding to € = b. However this is same as that in

(5.10) because (( "_ZBQ_k )=1= ((”_lgl_k)) and the binomial parts agree. O
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5.4 Pre-quotient spectral sequence

In this section we simplify the problem of studying the Es-page of { E,.,d" } by considering
the differential bigraded algebra Eo with differential d?, factored thorough the polyno-
mial algebra, removing the quotient by symmetric ideal. In section 5.4.1 we consider a
differential bigraded algebra that turns out to be a rational version of the this differential
bigraded algebra. In the rational case the problem is further simplified and so is more
easily dealt with. Then in section 5.4.2 we extend the rational result to the integral

situation.

5.4.1 Rational pre-quotient spectral sequence

Given a sequence indexed by natural numbers 41,...,7;, we denote by i1,.. .,i;, eyl
the same sequence with i missing. In the free commutative graded algebra A(y1,...,yn)
for any 1 <4y <-- <i; <n, denote by ;... ;; the elements of A(y1,...,y,) given by the

multiplication in ascending order of indices of all elements yx except yi,, ...,y

Let (E,d) be a differential bigraded algebra with EPY = AP @ B?, where A and B
are graded algebras. Given elements x1,...,2, € E&q = B? we will want to refer to
all elements in the row E*? involving generators x1,...,T, and hence we denote by
EP9(xq,...,x,) the graded algebra AP ® (z1,...,2,)? and let H*EP9(xq,...,2,) be the
image of the inclusion of EP9(xq,...,x,) into the homology of (E,d). Similarly we may
extend this notation to as spectral sequence where the second pages statistics the initial

condition.

Lemma 5.1. For any n > 1, let A = Z[v,...,V] and B = Az(y1,...,yn) ® T'z(x) be
the graded algebras with || = 2 = |z| and |y;| = 1. For each integer i > 1, denote by x;
the element of T'z(x) such that x* = ilx;. There is a differential bigraded algebra (E,d)
with EP1 = AP @ B, differential of bidegree (2,-1) given by d(xz) = y171 — yoy2 + -+ +
(-1)""Yyyn. The homology of (E,d) is given by

H*EO,TLJer(mmyl...yn) ~ Z,
) 2 ZZZ;{ (_1)k(jfk)((p7k)),

,,,,, 5

H* B (3,

701y = z(0)

for each m,p>0, 1<j<n-1,1<14y <--<i; <n and all other elements are trivial.

Proof. For m > 1, due to the divide polynomial structure on I'z(x),

L) = 2 d(a). (5.11)

d(zm) = %d(l’m) = m
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Algebraa F is generated additively by elements of the form z,,§;, i, P with m > 0,
0<j<n,1<iy < <ij<nand PeZ[y,...,ym]. For 1<j<nand m>1,

d(xmiy,..i; P) = xm—ldQ(ﬂﬁ)@il,...,ijP

it+1 it +t—2 ~
(_1) K (_1) ‘ xm—lyil,...,gt,...yijFyitP (512)

M=

~+
1}

1

.

t-1 0
=3 (1) Tn-1Y;, i, E
1 :

~+
I

where the additional (~1)%*'=2 sign changes come from reordering the ;. The generator
yr swaps places with y;, i — 1 times for ¢ < ¢ changing the sign each time, however ¢ — 1

of these y; are missing.

Ignoring @y, Tm-1,7 and P in (5.12) and thinking of ¢;, . ;. as simplices in an n vertex

j
simplicial complex, d is the usual boundary map. In particular, this implies that the
differential and hence the differential bigraded algebra is well defined. With this idea in
mind, we construct the following CW-complex X. For each m >0, 1<j<n, 1 <4 <
- <ij <n and P € Z[y,...,7], there is a corresponding cell of dimension j -1 and
one additional zero-cell *. For each cell of dimension > 1, if m = 0 the attaching map
for the boundary of the cell will be *, as d of these element in F is zero. For m > 1, the
attaching map is given by the d in (5.12) tacking the cell as a simplex of corresponding

dimension.

For j > 3, every xmg)il,__,,ijP has the image of its d differential represented in X. So
for j > 3, a non-zero element in the homology of (E,d) corresponds to an element in
H;(X;Z).

First consider the cells corresponding to generators

ITmYiy,... i P,

where 2<j<n, 0<m<j—-1,1<i; < <ij<nand PeZ[vy,...,V,]. In this case some
boundary component of the cell will be attached to *. If m > 57 -1 or 5 = 1, then the
cell is not connected to * since all O-cells in its boundary are not * and all cells with *
in their boundary have * as their only O-cell in the boundary. Let X, be the connected

component of * in X.

Now consider cells corresponding to generators

xmﬁil,--.,ij7a1""yabpa (513)

where 2 < 7 <n, 0<b<n, 1 <i < <i;<n 1<a < <ay<n, is # ag,

P e Z[Yiys -3 YijsYars -+ - »Vap]) @and m > j — 1. Notice that all elements can be expressed

uniquely in this form. In this form the corresponding cell is contained in the boundary
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of the unique (b + j)-cell corresponding to Tonsb¥is,...ij.a1,...a, - Therefore all connected
component other than X, are contractable. Hence for j > 3, the only non-trivial elements
in H;(X;Z) correspond to cycles in H;(X,;Z).

All cells of X, correspond to an element of the form of (5.13) but with m < j—1. Again
each such cell is contained in the boundary of a unique (b + j)-cell corresponding to
:):m+bg)il7“.’1].,&17.“,%13. Fach such top cell is a simplex whose j —m — 1 faces have been
identified to *. Hence all homology classes of X are generated by cells whose boundary

is exactly *. These correspond to generators of the form
Yiy,....i; b,

where j >2, 1 <4y <--<ij<nand PeZ[y,...,7]. Forj>3, at Ep’”_j(g}ihm’ij) there

are (?) possible choices for 71, ...,%; and (( Z )) choices for P. However if j < n-1, there are
(jfl) (( p’fl )) cells of dimension one higher whose boundary contain cells corresponding to

generators of the form xg;, ;. , P, where P has degree p—1. Again if j <n -2, in one

dimension higher there are (jfz) ((PTE?

cells and so on until the top cells in dimension n — 1. The lemma is now proved for all

)) cells with boundary contained in the previous

elements containing a multiple of g;, ;; when j > 3. Tt remains to be deduced what

happens to generators with 0 < j < 2.

Form>1,1<i<nand PeZ[y,..., V], using (5.12)
d(.’L’mngP) = Tpm-1vi P

Therefore the kernel of d on generators of the form x,,7; P is generated by elements of
the form x, (9;7; — 97 )P for some 1< j <n and j #4. Again from (5.12) this is exactly
the image of generators of the form x,,.19; jP. Therefore the only elements that may

survive in the homology of (E,d) are generated by those of the form

Uiy in Py Ui P Or Tpy1 ... yn P
form>1,1<i31<ig<n,1<i<nand PeZ[vy,...,7]- The generators of the form
Uiy ip P correspond to 1-cells in X, and since they are not affected by g;, . ., P for j <2

they can be dealt with in the same way we did for j > 3. At (Eg_j(gji))p there are

(Vf) ((Z)) generators of the form ¢; P. The image of d is generated by (g) (( p’_Ll )) elements

of the form d(z19;, 4,)P. In X there are (TIL) ((Z)) 2-cells in X \ X, whose boundary lie in

cells corresponding to the generators of the form z19;, 4, and so on as in previous cases.

Finally at EP™J (2,,y1---yn )P there are (g) ((Z)) generators of the form x,,y1---y, P. The

image of d is generated by (YIL) ((pibl )) elements of the form d(x,,+19;)P and so on as in

n

n _1\k("
previous cases. Hence E™2™P(x,,11-yn )P = 7Zi-0 (D) (k)((p—k)). However for p > 1, by

Lemma 4.2, we have Y7o (-1)*(7}) ((p’_lk )) =0.
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5.4.2 Integral pre-quotient spectral sequence

We now continue the study of the cohomology Leray-Serre spectral sequence associated
to the free loop fibration of SU(n + 1)/T™ for n > 2 we began in section 5.2. We now
refer to the Serre spectral sequence associated to the free loop fibration as (E,,d"). In
addition to simplify notation, we remove the notation required to differentiate elements

in the free loop spectral sequence from those of the path space spectral sequence, letting
H*(QSU(n+1)/T™);Z) =Tz(x2, 24, ..., 220) @ Az (Y1, -+, Yn),

H*(SU(n+1)/T™7Z) = M’

L
CERRNC AT

where |y;| = 1,|v;] = 2,|@o;] = 2¢ for each 1 <i<n,1<j<n+1ando],...,0), the

elementary symmetric polynomials in ;. Recall that in Theorem 5.1 all differentials of
(E,,d") were determined. In particular by choosing the sign of our generators, we may

assume n
d2($2) = Z(—l)Hlyi(’Yl o A e Y+ 27). (5.14)
i=1

To begin with we ignore the symmetric quotient by the ideal [o1,...,0,] and study the
differential bigraded algebra (E, D), with

E = H*(Q(SU(n+1)/T"); Z) © 222nst) = ((Q(SU(n +1)/T"); Z) @ Z( s, )

and D is defined as d2.

Theorem 5.1. The homology of (E, D), as a module is given by

H*EO,n+2m+dim(X)(($2)me1._.yn) ~ 7.
H*Erm 2 dm() (o), Xy1-yn) 2 Znar for p >0,
O ) =gV ),
H*Ep,dim(X)(X) ~ Z((;))
foreachm>1,p>0,1<j<n-1,1<i; < <i;<n, X e(I'z[xq,...,z2,]) a monomial
and all other elements trivial.

Proof. Consider the homomorphism of abelian groups f:Z[v1,...,V] = Z[71,---,7]
given by
Vi =YL Vit Y+ 27

For simplicity we use the notation 4; =1 +---9; + --- + 7 + 27;. The matrix with respect

to basis v1,...,7, of f is given by the top left hand n x n matrix below.



58 Cohomology of the free loop space of the complete flag manifold of SU(n)

E 1 [1 1 2] [1 1 1 2]

1 : 9 1 1] o 1 0 4

1 11 9 o 0 1 -1

i 2 [2 1 - 1] [0 -1 -1 -3
[1 n | [1 n | [1 |

0 4 0 o 0

0 1 -1 0 10 0 1
0« 0 (D] [0 0 -] | n+l

Obtain the second matrix from :che first matrix by swapping the first and last rows.
Obtain the third matrix from the second by eliminating all entries in the first column
except the first, by row operations using the top row. Obtain the fourth matrix from the
third by row operations on the middle n—2 rows to eliminate the 1’s and —1’s in the top
and bottom rows. Obtain the fifth matrix from the fourth by using column operations
on the middle n — 2 columns to eliminate the —1’s in the final column. Finally obtain
the sixth matrix from the fifth by subtracting n times the first column from the last and

changing the sign on the final row.

Over a field of characteristic 0, f would be an isomorphism of vector spaces. Hence
considering (E, D) with coefficients in Q instead of Z, up to multiplication by a factor
in g[x4, T6, . .., 22,], the homology of (F, D) is described exactly as the one in Lemma

5.1, since rationally the D differential is the same up to isomorphism f.

Integrally the image and kernel of D are finite, so D still has the same rank as the

differential in Lemma 5.1. In particular, consider the case of generators of the form

(z2)mTiy,....i; P,

form>1,1<j<n-1and Pe€Z[v,...,7] ®z[24,...,29,]. The image of D is a
subgroup of the kernel. Using (5.12), the image of D from the span of such elements and

is of the form
J
<D(xm:gi1,---,ijp)> = <; (_1)t71xm—1Qihm’%t’,,,’ij&itp)v (5'15)

where we consider 2 < j < n. Since the elements of the E are additivity generated as

(xm_lﬁihn_,ij_ﬂtP)Z, both the image and kernel are subgroups. We will show that

(@m-1Gis,iy W PY2 ULy (GO T omaady, g 50 Pho = (St (1) amady, g, 5 5Pz,
(5.16)
where for ring R, (z1,...,24)r means the linear span of elements z1,...,2, as an R-

module. (5.16) implies that the kernel must be equal to the image.
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Take any element A € (zy,-19i;,...i;, 71 P)z N z=1 (_1)t_1xm—1gi17...7{t’...7ij:)/itp>(@- Then

there are Qi ,...i; € Q such that

J
A= Z iy, ; (—1)t_lxm—lgil’,“,{t’m,ij'?itP € <xm—1yi1,..‘,ij,1ﬁitP>Z-

1<ig<<ij<n

We will show that for any choice of 1 < ki < -+ < kj <n, a,,_x; € Z. Since j > 2,
we can consider the non-empty set B = {(i1,...,4;)[1 <iy <+ <i;<n, {ki,...,kj_1} C
{i1,...,i5}}. Note that $7_) (-1)"'zm19;, if

and only if (41,...,7;) € B. Assume that we have chosen the signs of J"m—lgil i i Yi P
PARRS ] PARRS ] J

7_“7;%_._71.]_%,/13 contains a term with gg, k. ,

so that (—1)t_1$m—133¢1 bty i, P have positive sign and change the signs on the iy ... i

accordingly.

Recall that 54 = y1 + -+ 9 + -+ + 7 + 29%. So for each (i1,...,75) € B~ (ki,...,kj),
. Zi:l (—1)t_1xm—1gz‘1,...,%t,...,ij:Vitp contains a unique term Tpm-1Jk, ... k;_, Vk; L-

+Y7 (—1)t_11:m,1g)k1’._7,%t7“.7k7_’yktP contains a unique term 2xp,-19k, . k,_, Yk, - There-

fore
20k, k; + > ap € Z. (5.17)

beB\(k1,...,kj)
In addition for each (i1,...,i;) € B, since j > 2, £ ¥}, (~1)"wpdly, 5, Fi P con-
tains a unique term xm_lg)klj_“’kj_ﬂklP. Therefore

Y ap €. (5.18)

beB
Subtracting (5.18) from (5.17) gives a, . x; € Z.
It remains to deduce what effect D? has on generators of the form

($2)mP, yil,...,ijP and (mQ)mylynP

form>0,1<j<n-1,1<d; < ij<nand PeZ[vy,...,m]|®Tz[z4,...,220].

Considering generators (x2),, P for m > 0. Since the equivalent elements in Lemma 5.1
are not contained in the kernel of D, the kernel is zero rationally therefore must also be
zero integrally. If m = 0, then all elements are sent to zero by D and there are ((Z)) in

each horizontal dimension p.

In the case m = 1 the image of D in (i, ;;P) will be the same as in (5.15). We
will show that the quotient by the image still contains no torsion, hence has the same
structure as Lemma 5.1. For each j > 1, suppose P is of the degree p and P’ is of degree
p— 1 in their Z[v1,...,v,] components, with P,P’ € Z[v1,...,v] ® I'(z4,x6,...,T2p)
monomials. After a choice of basis, the differential D whose image lies in (gih,_’i].P) is
represented by a matrix whose rows represent the image of a basis of the domain and

columns a basis of the co-domain. The quotient of the co-domain by the image is torsion
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free if and only if the the integral Smith normal form of this matrix has only ones and

zeros on the leading diagonal.

Recall from Remark 5.1 that
Z[,‘Ylv e 7,7%] = Z[ﬁ/lv e 75%—17,7] and Q[Vh L afyn] = Q[:Yh s a:}/n]

Choosing the rational basis of the domain {x2%i,...i;.1 Va1 Va,_, }, Where 1 < ay < - <
ap-1 < n and the rational basis {9, . i;Va,**Va, } for the image, where 1 <a; <---<ap <n.
With this choice of basis the image of the differential are the same as that of d in Lemma
5.1 given in equation (5.12), when ~; are replaced by 7;. As there is no torsion in Lemma
5.1, using integral row and column operations the matrix corresponding to these basis can

be brought to the smith normal form with only ones and zeros on the leading diagonal.

Now choose a bagis of the image using the integral basis of Remark 5.1 generated by

A -~k
L2Yi,...ije1 Var Vap_ Y
with 0 < k < p for the domain and

@il,...,iﬂal"'%p_k,_ﬂk,
with 1 < k' < p—1 for the co-domain. Rearrange the rows and columns of the matrix
corresponding to these bases such that the columns of the form Uiy ,.i; P for iy, # n are on
the left and the columns of the form g)ih,__’,-jfl,nP are on the right. The rows of the form
3:2@1-1,,“,1-]“13' are at the top and the rows of the form :Ugy)ihm,i].,nP' are at the bottom.
nP 18 zero

The sub-matrix in the intersection of rows xa3;, . P’ and columns g;, .

sl lj=1,
because none of the i are equal to n, hence the image of the differential contains no
summand divisible by a gi1,...,ij_1,n~ Label the remaining three sub-matrices A, B and C

as in the diagram below.

Uiy,is P Yig,oijoa P
$2yAi1,-..,ij+1P, ( A ‘ 0 \
$2gi1,...,ij,npl \ B ‘ C }

The sub-matrix A can be further broken down as a diagonal sum as follows

@il’"'vijp @ilv---vijP:Y @i17---7ijp’7p_2 Cgi1,---7ij]5’7p_1
x2gi1,...,ij+1p AO 0
1.2:&7;1,...,227'_,_1P:Y 0 Al 0 0
22y iy PP 0 0 Ags 0

xz?)il,.‘.,z’jﬂpﬁp_l 0 0 0 Agq
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where P is some monomial in Z[A1, -y An-1] ® T[x2, 24, ..., 22,]. The sub-matrix in

the intersection of xay;, .. ]57‘1 and ¥i,,.._i; P"yb for a # b will be zero since the image

G541

of D on w2y, .. in the basis g;, . ;; P will not be divisible by ¥, hence summands

oyl

in the image of d? on iy ..., P"y“ will each contain a multiple of exactly ¥%. After

141
dividing the Aj by 5%, each Ay, is the same as the matrix with respect to the rational
basis 41,...,9n-1 if we reduce the value of n by 1 and the degree of the polynomial

components in Z[71,...9,-1] by k.

Similarly the sub-matrices C is the same as a diagonal sum of matrices with respect

to the rational basis with rows interchanged 2%, . ;. P $2gjil,_._7ijP and columns

ij,

interchanged 9, . nP = Giy i P

lj-1,

Hence there exists integral row and column operations on the whole matrix that bring

A and C' to the Smith normal form with only ones and zeros on the leading diagonal.

Every row of the form x29;,,...i. »P has a non-zero entry in C. Every row reduced to zero

g
while putting C into its Smith normal form corresponds to an element of the image of
d?. Using the previous part of the proof, we know that the kernel of D on T2iy,...i;m P
is exactly the image of D whose image is the previous domain. Given a row in C' that
was in the kernel implies it is the image of some element of the form x>’ g)i17,,,7ij]5 of the
previous differential under the correspondence used to obtain the Smith normal form.

In this case for some 1 < k < p—1, the image of 2 ¥, ..., nPﬁk under d? is the row

ij,
inducing this row of C in the larger matrix. Hence corresponding row in the larger
matrix will still be in the image of D and therefore in the kernel. So the whole row in
the matrix can be is reduced to zero not just the row in C. Any remaining entries in B
can then be reduced to zero by column operations cancelling them with using a column
in C. Therefore B is reduced to zero, while A and C are reduced to the Smith normal
form with only ones and zeros on the leading diagonal. Hence the whole matrix has a
Smith normal form with only ones and zeros on the leading diagonal so has the same

Smith normal form as that with respect to the rational basis.

Finally consider generators of the form (x2)m,y1---yn P. Their image under D is also zero.
When deg(P) =0, there is no differential with image in (z2)m,y1---yn P, S0 it contributes
a copy of Z to the homology of E. Note that up to sign for m’ > 1, 1 < i < n and
P eZv,...,m]®Tz[z4,...,22,] a monomial,

D((22)mr 9: P) = (22)mr—17: P

In particular D((z2)m/(9; — ;) P) = (22)m-1(7i —v;)P'. So for fixed degP > 1 on in
the homology of (E, D), all elements of the form (22).,y1-+, yn P become identified. The
number of terms in D((x2)ny3; P) is the number of terms in 4;, is n+ 1. So the elements

(22)my1--, yn P contribute a copy of Zy,1 in the homology of (E, D). O
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5.5 Third page

We now turn our attention to applying the results of sections 5.3, 5.4 and 4.2 to produce
information about the spectral sequence {E,,d"}. Determining The FEs-page every-
where would be difficult, however in special cases the problem is considerably simplified.

Throughout this section assume X € I'z[zy,...,22,] is a monomial.

Theorem 5.1. For each m >0,

112

0,n+2 dim (X
B0 (), X yr-yn)

Z,
;n+2m+dim (X ~
E:Z; n+2m+ ( )((‘Tg)melyn) o chd((nrl),m’(n;l)) fOTp > 0.

Proof. By Theorem 5.1, in the differential bigraded algebra (E, D), which is the same
as {Fy,d*} before quotienting out by the symmetric ideal

— d'
Eg,’l’b+2m+ lm(X)((I'Q)melyn) ~ Z,

Eg,n+2m+dim(X)((xQ)mel...yn) 2 Zins1 for p > 0.

=0,n+2m+dim(X)

Since the smallest degree of o9, .., 0, is degree 2, Eg will remain unchanged

after tacking the symmetric quotient. Recall from (5.14) that for any 1 <i<n
d2((x2)m+1X?Qi) = ($Q)mX’~yL

In particular this implies that for any 1<4,5<n

& ((22)ma1 X (§i = 97)) = (22)mX (i = 75)- (5.19)

Hence in the quotient by the image of the differential there is at most one genera-
tor, as all generators of the from (x3),,X~; are identified. This remains true for all
Eg’n+2m+dim(X)((mg)me1-~-yn) when p > 0 since (5.19) can be multiplied by any ele-
ment of Z[v1,...,7v,]. Consequently in the quotient by the image of the differential the
expressions for o1,...,0,41 can be identifies with an expression in just one generator.

Such an expression would consist of the number of summands in o; times a generator for

each 1<i<n+1. By Remark 4.4, we may assume that o9,...,0,41 =h%,...,hL . The
number of summand in h?_] 2 g (( "_§+2 )) = (”;1) Tacking into account the degrees of
hg_l, el h}” we arrive at the statement of the theorem.
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Theorem 5.2. For each2<k<n, 1<i)<--<ig<n,1<i<n and m>0

E?()n+1)n/2,2m+dim(X) ((.TQ)mX) ~ 7,
E§n+1)n/2,n—1+2m+dim(X) ((1.2)me2) Y/

Proof. By Theorem 4.1 any element in E§n+1)n/ 2% s always in the kernel of d2, since the
domain of the differentiate will be zero. Hence we consider the quotient of EQ(nH)n/ 2

by the image of d?. Using (5.12) in the proof of Lemma 5.1, for any 1 <b<n
2 . A J as < 2
& ((@2)m X iy iy $) = (32)m1 X 30 (DG 5005 Aah
a=1
Recall from Lemma 4.2, that for any 1 <4,j<n
[0] ifj<iorj>i+2
Y=y el ifj=i
-[Az] ifj=i+1.
Therefore for any 1 <¢,<nmand 1<j<n-1
[0] ifj<iorj>i+2
V= el =i
“[Ap] ifj=i+l.
Hence we deduce that for each 2<j<n, 1<i1<--<i;<n,m>1and 1<b<n-1such

that b # ig,n for any 1 <k < j,

A ([22m X i, brigrseois )

(o (=1)% (Firooiy = Dirsoosinabrinsnis )] if ix = b+ 1 for some 1<k < j
REIG D) if i, # b+ 1 for some 1 < k < j.

Therefore for j < n —2, in the quotient by the image, if there exits 1 < b < n -1 such
that for all 1 <k <j, i # b and i # b+ 1 then [g)“%] = 0. If not, then there exists a
smallest 1 < b <n—1 such that for any 1 < k < j, ix # b in which case

[@111---7i,7] = [Qil,~~~,ik,b,ik+17m7ij]' (5.20)

We can think of this as moving up the position of the missing integer in sequence
i1,...,%5. Since we assume j < n — 2, there are at least 2 integers between 1 and n

that do not occur in the sequence ¢1,...,4;. The index b was chosen to be the smallest
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such integer so if in ¢1,...,%; does not have two missing elements next to each other
by repeated application of (5.20), [#i,....i;]=[¥s,....s;] where s1,...,s; does have two
consecutive gaps and therefore [g;, ;] = 0. Hence [¥;, ;] = 0 for any choice of
i1,...,15. Which proves that E§n+1)n/2’k+2m+dim(X)((acg)meil---yik) = 0 since ;..
span E.§n+1)n/2Jc+2m+dirn(X)((xQ)m)(yilmyilC )

For each 1 <i < n,

P((22)mX%) =4 > Do 5+ 2D 5

. . yeeeslyeess
1<j<n,j#t

Therefore, for each 1 <i<j<n

P ((@2)m XA =5) = A (D05 o+ (D', ).

goorylyenny

Eéml)n/zn_lﬁmwim(x)((acg)mei) has a single generator of which each (22), X%;

Hence
is a representative. As the number of summands in the image of the differential on
each generator (z2), X7; of E§n+1)n/2_2’2m+dm(X)((xg)mX) is n + 1, the generator of

Eéml)n/zm_HQmmim(X)((xg)mei) is torsion and has multiplicity n+1. A generator of

E2(n+1)n/ 2’2m+dim(x)((asg)mX ) is not in the image of any differential hence survives to

the next page. O

5.6 Free loop cohomology of SU(3)/T?

When n =0, SU(n+1)/T" is a point and when n = 1, it has the homotopy type of
S2. Hence in the first case the free loops cohomology is trivial and in the second the

cohomology ring is known. We now use some of the tools developed in Sections 4.3, 4.2
and Section 5.2, 5.4 and 5.5 to study H*(A(SU(3)/T?);Z).

Theorem 5.1. The integral algebra structure of the Eo-page of the Leray-Serre spectral
sequence associated to the free loop space fibration of A(SU(3)/T?) is A/I, where

A=Az(Yiy (®0)ms Yir (@2)m (W1 (71 +72) = 9272), (@2)my2(7F = 1172)s (22)mVi72)

and

I=[(22)a((22)] = m!(22)m), (22)a((@2)]" = M (z4)m), (22)a((22)aV + 75 +7172),
(22)a7?, (#2)a(W1(271 +72) = y2(71 + 272)), (T2)m¥y1y27i72]

where m>1, a 20 |yl =2, [yil = 1, |(x2)k| = 2k and |(x4)x| = 4k for 1 <i<n and 1 < k.
Furthermore all additive extension problems are trivial, hence the algebra has the same
module structure as H*(A(SU(3)/T?);Z).
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Proof. We consider the cohomology Leray-Serre spectral { E,, d"} sequence associated to

the free loop fibration of SU(n + 1) studies in section 5.2, in the case n = 2, that is

Q(SU(3)/T?) - A(SU(3)/T?) - SU(3)/T>.

The cohomology of the base space SU(3)/T? is % where |y1| = 2 = |2|. By Remark

3]
4.4 we may replace o9 with ’y% + 'yg + 7172 and o3 with ’yf. Noteing also by symmetry

that 73 € [02,03] and that y{v2 + 7173 = Y102 — 03 € [02,03].

The cohomology of the fibre Q(SU(3)/T?) is A(y1,y2) ® T[w2, 4] where |y1] = 1 = |ya|,

|zo| = 2 and |z4] = 4. In particular A(y1,y2) is an exterior algebra and

Z[(:L‘g)l, (.TQ)Q, ey (x4)1, (:L‘4)2, .. ]
[(22)]" = m!(22)m, (24)T" = m!(24)m]

F[xg, x4] =

is a divided polynomial algebra, where (z2); = x2 and (x4)1 = x4. Hence elements on the
FEs-page of the spectral sequence are generated additively by representative elements of

the form
(x2)a(xa)o P, (72)a(xa)pyi P, (72)a(74)py1y2 P

where 0 < a,b, 1 <i<n and P € Z[v1,72] is a monomial of degree between 0 and 3. By
Theorem, 5.1 the only non-zero differentials are d?> and d*, which are non-zero only on

generators xo and x4 respectively. The differentials up to sign are given by

d*([22]) = [y1 (271 +72) + 2 (1 +292)], d*([24]) = [y1 (77 + 2m72) + ¥2(73 + 2m172) -

However,

d*([z2(11 +12)])
= [y1(271 + 372 +73) + ¥2(71 + 372 + 273)]
= [y1 (7% + 27172) + ¥2(73 + 27172)]

= d*([x4])

where the second equality is given by subtracting element of the symmetric ideal yi(yf +
Y2+ y1y2) for i = 1,2, from y1(2y7 + 3v172 +72) + y2 (72 + 37172 + 272). Hence d* is
trivial, and the spectral sequence converges by the third page. The generators v;, x4
and y; occur in Ej 0 and are always in the kernel of the differentials, so are generators
of the Fw-page. The relations x5 —m!(x2)m, x}' — m!(z4)m from the divide polynomial
algebra in H*(Q(SU(3)/T?);Z) 73 + 5 + 1172, Vi generators of the symmetric ideal in
H*(SU(3)/T%Z) and y1 (71 +272) + y2(271 + 72) the generator of the image of the d?
differential will also be relations in H*(A(SU(3)/T?);7Z), so are generators of the ideal

I. It remains to determine all generators of A and the torsion present on the F..-page..
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We choose the opposite sign on y; so that

d*([22]) = [y2 (71 +272) —y1(27 +72)], (5.21)

which means that

d*([z21]) = [y1y2(11 +272)], d*([w2y2]) = [Y192(29 +72)]. (5.22)

We first consider the image and kernel of the differential d? on elements of the E?-page

of the form
[(z2)a(x4)py1y2P].

By Theorem 5.1, on the F3-page when the degree of P is zero all generators of the
Es-page survive. When the degree of P is the 1 or 2 the only non-trivial elements
are 3-torsions generated by the class of any non-trivial representative from the Fs-page
and when the degree of p is 3 all elements represent the trivial element. Hence on the

FEo.-page requires generator of the form

(22)ay192-
It remains to deduce the kernel of d? with codomain in {(22)a(z4)py1y2P).

By Theorem 5.1, before the quotient of the symmetric ideal on subgroups of E5? where

d? is non-trivial for both the differentials

—2 1
dQIEg N Eé’:q

2,g-1
and d* EDY —» B34

the kernel of d? is exactly the image of d>. Hence kernel elements that can be represented
by a non-trivial element on the F3-page are those that have image under d? of summands

dividable by non-trivial element of the symmetric ideal.

For elements of the form [(z2)q(24)py1y2P], when the degree of P is 0 or 1, the kernel
of d? quotient the image of d? must be trivial since the degree of the first generator of
the symmetric ideal has degree 2. When the degree of P is 2, by (5.22), the image of d?
is generated by

5.23
5.24
5.25
5.26

(22)a(24)py192(27F +7172)];

([(z2)a+1(z4)py2m]) = ]
([(z2)as1(z4)py272]) = [(22)a(24)py152(27172 +73)]
[ ] ]
[ ] ]

)

(22)a(za)py192(71 + 27172)

( ) =
([(@2)as1(z4)py172]) =

(22)a+1(T4)py1711

d? [
d? [
d? [ ;
d? [

AA,_\,_\
M e N

(z2)a(z2)pt1y2(1172 + 2793)]-
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g) = 2 and the dimension of the domain 2 < f) =4. We know

that the dimension of the image is 2, so by the rank nullity theorem the dimension of the

The rank of the codomain is (

kernel must be 2. By (5.21), [(22)a+1(24)s(y2(271+72) —y1(71+272))] is the image of the
previous differential and so is in the kernel. Since d?([(22)as1(24)s(y1(71+72)~1272)]) =
h%, [(22)a+1(24)p(y1(71+72) —y272)] can be taken to be the other generator of the kernel.

Hence

(z2)m(y1 (71 +72) —y272)
is a generator of A. When the degree of P is 3, by (5.22) the image of d? is generated by
E([(22)ar1 (2)s9177]) = [(@2)a(z)opny2(37 + 20i72)] =[2(22)a(@a)sy1927i72],
(5.27)

d*([(22)as1(@2)py171172]) = [(@2)a(@2)oy192(7 772 + 27173)]  =[-(22)a(@a)sy1927172],
(5.28)

A ([(x2)as1(z2)sy173]) = [(@2)a(z)oyiy2 (173 +293)]  =[(22)a(z4)sy1927172],
(5.29)

d*([(22)as1(z2)sy271]) = [(@2)a(za)py1y2(277 +9192)]  =[(22)a(za)sy1y2797 2],
(5.30)

d*([(z2)a+1(z4)py271172]) = [(22)a(20)6y192 (29172 + 1173)] =[(z2)a(@4)by1527772],
(5.31)

P([(2)as1 (z)py273]) = [(#2)a(z)oy1y2(2m173 +75)]  =[-2(22)a(z4)sy1527172]
(5.32)

where the last equalities are given by adding an element of the symmetric ideal to the
representatives. Using the numbering of the equations to represent the generators in the

domain of d?, we may take the kernel to be generated by
(5.32)+(5.27), (5.31)+(5.29), (5.30)+(5.28), (5.30)—(5.31), (5.30)+(5.31)+(5.32).
The symmetric ideal in the domain is generated by
(5.27) + (5.28) + (5.29), (5.30) +(5.31) + (5.32).
By (5.21), the image of the previous differential is generated by

P ([(22)ar1(2)on]) = [(22)a(2a)p(Y2(37 + 27172) = 41(297 +71172))]
[(22)a(za)p(y2(1172 = 73) =11 (7 —13))]
(5.31) + (5.29) — (5.32) — (5.27),

P ([(22)ar1(z2)p72]) = [(22)a(2a)p(y2(n172 + 299) =11 (27172 +73))]
[
(

(22)a(za)s(y2(v3 = 77) = y1(1192 = 1))
5.32) + (5.27) — (5.30) — (5.28).
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Hence the quotient of the kernel by the image is given by

((5.32)+(5.27), (5.31)+(5.29), (5.30)+(5.28), (5.30)—(5.31), (5.30)+(5.31)+(5.32))
((5-27)+(5.28)+(5.29), (5.30)+(5.31)+(5.32), (5.32)+(5.27)—(5.30)—(5.28), (5.31)+(5.29)—(5.32)—(5.27)) *

Subtracting (5.32)+(5.27) from (5.31)+(5.29), adding (5.32)+(5.27) to —((5.30)+(5.28))
in the generators of the kernel and adding (5.27)+(5.28)+(5.29), (5.31)+(5.29)—-(5.32) -
(5.27) and —((5.32) + (5.27) = (5.30)) to (5.30) + (5.31) + (5.32) in the generators of the
image gives

((5.32)+(5.27), (5.31)+(5.29)-(5.32)—(5.27), (5.32)+(5.27)—(5.30)—(5.28), (5.30)—(5.31), (5.30)+(5.31)+(5.32))
((5.27)+(5.28)+(5.29), 3((5.32)+(5.27)), (5.32)+(5.27)-(5.30)—(5.28), (5.31)+(5.29)—(5.32)—(5.27)) .

Therefore the kernel of d? is generated by
(5.32) + (5.27) and (5.30) — (5.31).

Recall that [(y1(71 +72) — y272)(%2)m ] generated the kernel when the degree of P was
2. Notice that

[v2 (1 (71 +72) = y272) (T2)m] = [(W1 (1172 +73) = 273) (22)m]
= [-y17% - ¥2(73) ) (22)m]
_ _(5.32) + (5.27)

hence the generator (5.32) + (5.27) is algebraically redundant. So A has generator

(22)my2(71 - M172)

Next we consider elements of the E?-page of the form

[(@2)a(z4)pyiP].

We have already considered the case when a > 1 and deg(P) < 2 by studying the quotient
of the kernel of d? on elements of the form [(z2)q(24)sy192P]. When a = 0 or deg(p) =3
all elements of the form [(22)s(z4)py:P] are in the kernel of d2. It remains to deduce
the quotient of such generators by the image of d and the kernel of d*> whose codomain

lies in the span of such elements.

When the degree of P is 0, [(z4)y:] is not in the image of d?, so services to the third
page. However (x4)py; is already a product of generators (x4), and y;. When the
degree of P is 1, the image of d* on xa(x4), is given by (5.22). Since the image is
spanned by just the one generator [(z4)p(y2(27v1 + 72) — y1(71 + 272))], the kernel is
trivial and the quotient is generated by [yav1(z4)s], [y27v2(z4)s] and [y172(z4)s] all of
which are products of (24).m,; and ;. Since the image of d? and the symmetric ideal

are in I and (24)m, Vi,V are generators of the algebra any generator of I not containing
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an (z2)m, term is redundant. When the degree of P is 2, by (5.22) the image of d* with
codomain in [(x4)py; P] is generated by

& ([z2(za)sm]) = [(@a)s(y2(77 +27172) =11 (297 +1172))]
= [(@a)p(y2(n172 = 73) =11 (29% + M),
d*([z2(z4)p72]) = [(2a)p (g2 (172 +293) =11 (21172 +73))]
= [(za)p(y2(m72 + 293) =1 (12 = 71)]-

Subtracting the second generator from the first gives

[3(v177 + y273) (z4)].

Hence the generators of the image are independent and the kernel of d? with codomain
in ([(z4)py; P]) is trivial. In addition the quotient by the image is isomorphic to Z? @ Z3
as a group and assuming all 3-torsion survives the cohomology algebra already contained
all necessary generators and relations. When the degree of P is 3, by Theorem 5.2 the
quotient by the image of d? is isomorphic to Z3, generated by any [(22)a(24)pyiViv2] or
~[(x2)a(z4)pyiv175]. However

[(22)a(@a)py2 (1177 +1273)] = [(22)a(@4)6 (U171 72 + y2¥3] = [(22)a(@a)s3iVi V2]

So [(22)a(74)pyivi72] is contained on the Eo-page.Since (3) =2= 2<§> the kernel of
d? with codomain in ([(z2)a(z4)sy;P]) is trivial. All necessary generators and relations

are already contained in the algebra.

Finally elements of the form [(x2)m(z4)sP] in the Es-page are all trivial, since the kernel
of d? on elements of the form [(z2)q(24)py1yP] was always trivial. Elements of the form
[(z4)pP] survive to the third page and are already included on the E-page as a product

of generators (x4),, and ;.

All the torsion on the Es-page of the spectral sequence is 3 torsion. In order to resolve
any extension problems that arise, we will consider the spectral sequence {E,,d"} over
the field of order 3.

None of the generators in the integral spectral sequence are divisible by 3, hence in the
modulo 3 spectral sequence all of the integral generators remain non-trivial. In addition
when the kernel of d2 at E5? is all of E5, the rank plus rank of the torsion in the integral
spectral sequence must be greater than or equal to the rank in the modulo 3 spectral
sequence. So in these cases the rank in modulo 3 spectral sequence is exactly the rank
plus the rank of the torsion in the integral case. Hence it remains to consider the kernels
of the d? differential in the cases when the integral kernel is not the entire domain. By
the rank nullity theorem, the rank of the image plus the nullity, the dimension of the

kernel is the dimension of the domain.
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When considering the spectral sequence modulo 3 the rank of any differential is the same
as in the integral case when the quotient of the preceding kernel by the image contains
no torsion. When integral 3-torsion exists, there is are generators of the image which are
3 times a generators of the kernel. In the modulo 3 spectral sequence these generators of
the image are now generators of the kernel. Hence in the modulo 3 sepulchral sequence
the rank is reduced by the dimension of the integral torsion and the nullity increased by

the same number.

Since the modulo 3 spectral sequence has coefficients in a field, there are no exten-
sion problems. As the the total degree of the d? differential is -1 and E3 = Fo,
dim(H*(SU(3)/T?;Z3)) is the sum of the ranks of the total degree i coordinated of
the integral Es-page plus the sum of the torsion rank in total degrees ¢ and i+ 1. By
Corollary 1.3, the modulo 3 cohomology algebra is only consistent with the case when
all torsion on the F.-page of the spectral sequence is contained in the integral coho-
mology moduleTherefore all additive extension problems are resolved and all the torsion

elements in the spectral sequence are present in the integral cohomology. O



Cohomology of the free loop space of the
complete flag manifold of Sp(n)

In this chapter we apply the method used in Chapter 5 to study the free loop cohomology
of SU(n+1)/T™ and apply them to study the free loops cohomology of Sp(n)/T™. The
Lie groups Sp(n) is simply connected, hence Sp(n)/T™ is too. In addition the integral
cohomology of Sp(n) like that of SU(n) has no torsion, so the process of adapting the
methods is relatively straightforward. However these properties are not shared by the
other simple Lie groups, meaning that generalising the arguments of Chapter 5 to their

cases would require more work.

6.1 Differentials in the path space spectral sequence

Just as in Section 5 we begin by studying the cohomology Leray-Serre spectral sequence

assoclated to the fibration

Q(Sp(n)/T") = Map(L, Sp(n)/T") * Sp(n)[T" x Sp(n)/T",  (6.1)
where eval: Map(I,Sp(n)/T") — Sp(n)/T™ x Sp(n)/T" is given by a ~ («(0),a(1))
and Map(I,Sp(n)/T") ~ Sp(n)/T". By the same reasoning as for Q(SU(n+1)/T"),

Q(Sp(n)/T™) = QSp(n) x T".
Using the Kiinneth formula and Theorem 3.3, we obtain the algebra isomorphism
H*(Q(Sp(n)[T"); Z) = Tg[x2, 76, .., Tan—2] ® Az(Y1,- -+, Yn),

where I'z[z2, x4, . .., T4n-2] is the integral divided polynomial algebra on variables za, x¢, .
with |z;| = ¢ for each i = 2,6,...,4n—2 and A(y1,...,yn) is an exterior algebra generated
by yi,...,yn with |y;| =1 for each j =1,...,n. The cohomology of Sp(n)/T™ is given in
Theorem 3.7, as

H*(Sp(n)/T™;Z) = —i[gl’ — ’Py;]] ,

1 7-99n

71

-y Tdn-2
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)\2

7 are the elementary symmetric polynomials in 'y%, R

2
where |y =2 and 07 ,...,0

In this section we use the notation

ZIM, A

1 (Map(1, Sp(n)/T):2) = 2012

[o77, ..., 007 ]

and ) ,
HE (Sp(n)/ T Sp()1757) = ial. o Zieeens Bl
[Ul ""70n+1] [Ul ""’0—77,-%-1]

for the cohomology of the base space and fiber of fibration (6.1). Where |A1| = |a| =
|Bi] =2 for 1 <4 < n and 05‘2, 0?2 and af * are the complete homogeneous symmetric

polynomials in variables \%,..., A2 a3,... ;a2 and $7,...,32 respectively. Denote by

{E",d"} the cohomology Leray-Serre spectral sequence associated to fibration (6.1). We

again use the altenative basis
v = a; — B and w; = 5

for 1 <7 <n. For exactly the same reasons as Lemma 5.1, we get an equivalent lemma
in case of {E,,d"}

Lemma 6.1. With the notation above, in the cohomology Leray-Serre spectral sequence

of fibration (6.1), there is a choice of basis y1,...,yn such that
d*(yi) = vi

foreachi=1,...,n.

Remark 6.2. Similarly to Remark 5.2, the image of each of the differentials d*~2 for
1 <i<n will be a unique class in Eﬁ:g 1 in the kernel of d? not already contained in the

image of any d" for r < 4i — 2.

2 2 B2 B
«
[697,. 0870 hson

Let S be the subalgebra of A(yl""’yn)®z[a1""’a”’ﬁlg]“’ﬁ"] generated by elements of the form

2 2 2 2
Gu,lits = Z YrUkWiy Uiy Uy Uiy U Uy Vg V1,
1<i1<<ip_1<n
1<i<-+<ig_1<n
1<ig<<ij_1<n
1<k<n, kiij#’ijl
Oor gu,lts = Z yk’vkuilvh'”uirlUitflu?t"'uzzs,lvi""Ulg—l

1<i1<+<t4-1<n
1<i4<<ig_1<n
1<is<<4_1<n
L<ksn, k#ij#ij
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for any 1<t < s <. Define an operations 1,2, ¥, and 1,2 on S by

wuz (gu,l,t,s) = Gu,l+1,t,5+1> 1/}u2 (gv,l,t,s) = Gu,l+1,t,5+1>
%2 (gu,l,t,s) = Gul+1,t,s» va (gv,l,t,s) = Gul+1,t,s>
wuv(gu,l,t,s) = Gul+1,t+1,5+1> 1/1u2 (gv,l,t,s) = Gu,l+1,t+1,5+1-

We now prove an equivalent of Theorem 5.7, for Sp(n)/T™.

Theorem 6.3. For each n>1 and 1 <1< n in the spectral sequence {E,,d"} up to class

representative on EZZ_Q 1, we have

41-2 2 2
d (x4l_2) =A+2 E ykukuil---uil_l,
1<i1<<t_1<n
1<k<n, k?¢ij

where A is an element of S for which each summand is divisible by v; for some 1 <i<n

and
2
d2(A +2 Z ykukuizl---u?lfl) = ala2 - aiB .

1<i1<<t_1<n
1<k<n, k+i;

Proof. We proceed by induction on [. When [ =1, by Lemma 6.1

d2( Z YUk + 2ykuk) = Z vz + 2upup

1<k<n 1<k<n

= > (o= Be)® +2(cu - Br)Br

1<k<n

S (af - 20385 + B) + 2(cwBr - Br)

1<k<n

= Y ai-B

1<k<n

2
As an =Y 1<k<n a% and of =Y 1<k<n ,6’,3, Y 1<k<n YkUk + 2y ug represents the image of d?
by Remark 6.2.

Now assume the statement of the theorem is true for all d*~2 for i < I. Hence the by
inductive hypothesis, there is an A represented by an element of E;”_G’l for which each

summand is divisible by v; for some 1 < ¢ < n such that

A6 (g 6) = A+2 3 ykukufl...ufm

1<i1<<tj_2<n
1<k<n, k#i;

and

2 2 2 _ a2 8% _ 2 2 2 2
d*(A+2 > ykukuil.”uikQ) =0l -0 = D Gy @y = BBy

1<iy<-++<ij_9<n 1<i1<<3y_1<n
1<k<n, k‘#ij
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Notice that

dzwvz (A+2 Z ykukui -~~u12H)

1<i1<<tj_1<n
1<k<n, k#i;

2 A2 2 2 52 p2N( 2 2
= Z (ail"'aik'"ail_ i B Bi ) (g, — 206, Biy, + By ), (6.2)
1<y <-+<3<n
1<k<l

deufu(A +2 Z ykukuimuia)

1<i1<<t_1<n
1<k<n, k#i;

2 A2 9 2 22 o9 2
- > (a3 a2 a3 = B B2 B2 ) (i Biy — B2, (6.3)

1<t <<1<n
1<k<l

dzwuz (A+2 Z ykukugl---uflfz)

1<t <<iy_1<n

1<k<n, k#ij
2 ~2 2 2 2 2 2
= Z (ail“'%k”'az‘l — 5i1...5ik...5il)5ik’ (6.4)
1<i1<<<n
1<k<l
2 2 2 2 n2 2 2 2
d ( Z ykvkuiln'uil,l) = Z il.“ Zk il(a’ik - 2a1kﬂzk - ik)7 (65)
1<i1<<ij_1<n 1<t <<1<n
1<k<n, k+i; 1<k<l
2 2 2 2 h2 2 2
d ( Z ykukuil“'uil,l) = Z FRRNCER il(aikﬁik _ Z,k). (6.6)
1<ty <<iy_1<n 1<t <<<n
1<k<n, k#i; 1<k<l
Therefore
(6.2) +2(6.3) + (6.4) + (6.5) + (6.6) (6.7)

_ 2 A2 2 2 2 H2 2 2
- Z QO Qg _ﬁiln'ﬁik”'ﬂil—lﬁik
1<i1 < <q<n
1<k<l

2 2 2 2
1<i1<<1<n

2 2
=op —O'ZB

Since (6.4) and (6.6) are the only terms obtained as the image under d? using

2 2
Z YpUgUsy - Uy,
1<i1<<t_1<n
1<k<n, k#i]'

and the expression (6.7) is obtained as the image under d? of an element in S. So (6.7)

is obtained as the image under d? of an expression having the required form.

For dimensional reason for each r>2 and 1 <i<n,
d"(u;) =0=d" (v;).

Therefore all the d" is determined on all generators of the Fo-page, so the differential is

determined everywhere in {E,,d"}.
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6.2 Differentials in the free loop spectral sequence

Just as we did in Section 5.2, we can now use the results of Theorem 6.3 to deduce the
differentials in the cohomology Leray-Serre spectral sequence associated to the free loop
fibration of Sp(n)/T". Similarly to Section 5.2, consider the map ¢ of fibrations

Q(Sp(n)/T™) A(Sp(n)[T™) ——=! Sp(n)/T™

Lid lexp lA

Q(Sp(n)/T") —= Map(I, Sp(n)/T") <= Sp(n)/T" x Sp(n +1)/T"

between the free loop space fibration on Sp(n)/T™ and the path space fibration on
Sp(n)/T", where exp is given on elements by exp(a)(t) = a(e*™). Since Sp(n)/T"
like SU(n +1)/T™ is simply connected, the free loop fibration induces a cohomology
Leray-Serre spectral sequence {E,,d"}. Hence ¢ indices a map of spectral sequences
¢*:{E,,d"} - {E,,d"}. For the rest of the section we denote the cohomology algebras
of the base space and fiber of the free loop fibration Q(Sp(n)/T™) - A(Sp(n)/T"™ -
Sp(n)/T™ by

H*(Q(Sp(n)[T"); Z) =Tz (29, G, - -, T 3) @ Az (Y1, -+ Yn) (6.8)
and 7
1 (Sp(n) 173 7) = ZL ]
[o%,...,02]
where |y/;| = 1, || = 2, |2, | = 4i -2 for each 1 <i <n and 0%,...,02 are the elementary
symmetric polynomials in variables 'y%, R

Theorem 6.1. For eachn > 1 and 1 <l < n, the only non-zero differentials on generators

of the Ey-page of {E,,d"} are up to class representative and sign,

d2($4l—2) =2 Z yn%ﬂi“‘%%

1<i1 < <q<n

Proof. For the same reasons as in the proof of Theorem 5.1, we have
¢"(yi) =yi, ¢"(w:) =2 and ¢ (i) =7i =" (8;) = ¢" (i), so ¢"(v;) =0.

Hence by exactly the same arguments used in the proof of Theorem 5.1, we have

& (yf) =0
and the image of d” on generators xh, Tg, ..., T, _o is determined by those summands in
the image of d? on x9,x¢, ..., Tan—2 containing no v;, replacing u; with ~; and y; with y;.

This gives us the result stated in the theorem. O
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6.3 Free loop cohomology of Sp(2)/T?

The group Sp(1) = SU(2), hence the first new case for H*(A(Sp(n)/T™);Z) is when
n = 2. So in this section we study, the cohomology algebra of the free loop space of
Sp(2)/T.

Theorem 6.1. The integral algebra structure of the Eo-page of the Leray-Serre spectral
sequence associated to the free loop space fibration of A(Sp(2)/T?) is AJI, where

A=Az ((z6)pvi, y1y2(22)a(6)bs (T6)p¥is (22)m(@6)p(y172 + y271)s (22)m (6 )py27172,
(22)m (266 (y171 — Y272), (22)a(w6)67572)

and

I =[(22)a(w6)o((22) " ~m!(22)m), (22)a(w6)s((x6) T ~m!(26)m), (€2)a(26)s(11+13), (22)a(6)s(1773)s 2(22)a

fori=1,2, m>1, a,b>0 and where |(x2)m| = 2m, [(x6)m| = 6m, |y;| = 1 and || = 2.
Furthermore all additive extension problems with the exception of differentiating be-

tween 2 and 4-torsion, are trivial. Hence the algebra is the same module structure as

H*(A(Sp(2)/T?);Z) up to the value of j.

Proof. We consider the cohomology Leray-Serre spectral sequence {F,,d"} associated to
the free loop fibration of Sp(2)/T2,

Q(Sp(2)/T*) > A(Sp(2)/T?) > Sp(2)/T*.
By Theorem 3.7, the cohomology of the base space Sp(2)/T? is

Z[v1,72]

H*(Sp(2)/T%Z) = —— 22
R B ENRERE]

From (6.8), the cohomology of the fiber Q(Sp(2)/T?) is

H*(QUSp(2)/T?);Z) = Az (y1,y2) ® Tz 22, 36],

where |y1] =1 = |yo], 22| = 2, |x6| = 6, Az(y1,y2) is an exterior algebra and I'z[ze,xg] is
a divide polynomial algebra. That is

Z[(x2)1, (x2)2, ..., (x6)1, (z6)2,- -]
[(IQ)T — m!(an)m, (xe)iﬂ — m'(xﬁ)m] ’

F[x27x6]Z =

where (21)2 = 22 and (z4)1 = .
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The elements on the Fs-page of the spectral sequence are generated additively by rep-

resentative elements of the form

(22)a(26)o P, (72)a(T6)byi P, (72)a(T6)sy1y2 P

where 0 < a,b, 1 <i<n and P € Z[v1,72] is a monomial. The generators of the ideal in
H*(Q(Sp(2)/T?);Z) are the squares of the elementary symmetric polynomials. We may
replace the generator v292 of the ideal with ~{, by adding 7?(y? +12) to the negative of

this generator. Hence the monomials
N7 (6.9)
form an additive basis of H*(Q(Sp(2)/T?);Z), for 0 <i <3 and 0 < j < 1. Therefore P

has degree between 0 and 4.

By Theorem, 6.1 the only non-zero differentials in {E,,d"} are d*> and d°, which are non-
zero only on generators zo and xg respectively. Hence the spectral sequence converges

on the seventh page. The differentials up to sign are given by

d*([22]) = 20 +y2y2), d*([w6]) = 2[y17%s + 27201 (6.10)

Since these are representatives over the symmetric ideal,

d*([z6]) + A ([z2])71 = 2[v1m173 + y2¥iv2] + 2[y1s + y2vive]

2[y17; — y27i72] + 2[17s + y2ie]
= 4[y17}). (6.11)

Hence assuming that all extension problems are trivially resolved

2(22)a(y171 + y272) and 4(22)ay17i

are included as relations on the Fs-page.The generators ~;, and y; occur in E; 0 and
are always in the kernel of the differentials, so are free generators of the E.-page.The
relation 25" — m!(z2)m, 4" — m!(2¢)m from the divide polynomial algebra and % + 73,

7%,7% generators of the symmetric ideal remain as relations on the Eo-page.

We first consider the image and kernel of the differential d? on generators of the Fy-page

of the form

y1y2(x2)a(xe)pP.

Using (6.10) the image of d? on such elements is generated by [;],

~d*([(z2)m(26)sy1]) = 2(22)m-1(6)s[y1y272]
and d*([(z2)m (26)5y2]) = 2(22)m-1(z6)o[y15271].
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Hence on the Ejs-page all element of the form [yi1y2(22)a(z¢)sP] are generated by
[y1y2(x2)a(x6)p] and [v;] with all elements 2-torsion except [y1y2(22)q(6)s] itself,
which additively generates a copy of Z. The kernel of d*> on generators of the form

[y1y2(x2)a(x6)pP] is generated by [v;] and

[(@2)m(y171 +1272)], [(@2)m (271 —172)] [(@2)m (y27271)] (6.12)

The first is the kernel of the differential without considering the symmetric ideal, the
second the kernel due to symmetric ideal generator fy%+722 and the third due to symmetric

ideal generator v3v3.

Next we consider the image and kernel of the differential d? on generators of the Fy-page

of the form
(z2)m(z6)pys P and (w6 )pyiP.

By (6.10) the image of the d? differential on such generators is generated by [v;] and

& ([(z2)m(26)p]) = 2(z2)m-1 (w6 )p[y171 + Y272],

Which is exactly twice the first generator of the previous kernel in (6.12). Hence The
elements of the form [y;(22)m(x6)sP] and [y;(x6),P] on the Es-page are either non-

torsion or 2-torsion. Multiplicatively such class are generated by [~;],

[(z2)m(z6)p(y172 + y271)], [(#2)m(z6)p(y171 — y272) ]

and

[(z6)byi]

since [(x2)m(26)py:] is not in the kernel of d?. Assuming all extension problems are
resolved trivially and these are not in the image of d°® these generators will be genera-
tors of H*(A(Sp(n)/T?);Z). Notice that the previous generator [y1y2(72)a(26)s] is a
product of generators [y;] and [(x¢)py;] when a = 0, so is redundant in this case. The
d? differential is twice the differential of the spectral sequence in Lemma 5.1. Hence
since in {F,,d"} we must also conditioner the symmetric ideal, any elements of the form
[(22)a(76)pP] in the kernel of d* have image in ideal J = [(22)m, (26)m, ¥i, V2 +75, ViV3].
When the degree of P is 0 the image of d? is [2(22)a(6)5(y171 + y272)] which does not
lie in ideal, since the monomials in gamma have only degree 1. We will Express the
remaining cases for the degree of P in terms of the additive basis of (6.9). When the
degree of P is 1 the image of d? is

P ([(22)m(26)p11]) = [2(22)a(@6)s (1177 + y27172)]
and d*([(z2)m(w6)572]) = [2(x2)a(6)s (117172 + 1273)] = [2(22)a (@6 ) (y17172 = ¥277)]
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which are linearly independent over Z. When the degree of P is 2 the image of d? is

P ([(22)m(26)p71]) = [2(22)a(6)o(y177 + 127772)]
and d”([(#2)m(w6)s7172]) = [2(z2)a (26 )e (Y177 72 + ¥27173)]
= [2(22)a(@6)s (11772 — 1277)]

which are linearly independent over Z. When the degree of P is 3 the image of d? is

& ([(22)m(w6)s17]) = [2(22)a(@6)s(y171 +y27772)] = [(22)a (26 )5y27172]

and d([(z2)m(6)72771) = [2(22)a(26)s (Y1772 + ¥27073) ] = [2(22)a(26)py177 72]
(6.13)

which are linearly independent over Z. So the image of d? does not lie in J till the degree
of P is 4 and d? is trivial. Therefore on the E3-page the only non-trivial element of the
form [(22)a(26)sP] is [(22)a(76)pYiV2]. Assuming these generators are not in the image
of d°, they will be generators of the Foo-page.

When the image of d° lies in the span of [(22)4(26)sy1y2P] and [;], by (6.10) the image
d® is generated by

~d°([(%2)a(z6)my1]) = 2(22)a(26)m-1[y1y27277]
and d([(22)a(26)my2]) = 2(22)a (26 )m-1 [Y1y27173]

which is exactly the same as the image of d?. Hence d° is always trivial in this case.
The image of d® in lying in the span, of [(22)a(26)yy1y2P] and [v;], is the image of
generators [(22)q(26)m] and [(22)a(26)mYi]- In the case when a > 1, these generators
are trivial on the Fg-page. In (6.11) we have already shown that the image of [(xg)m]
is non-trivial. The image of [(x¢)m7i] is generated by [v:],

A ([(26)m11]) = 2(6)m-1[117575 + Y2727 ] = 2[y27271 ]
and d°([(26)m2]) = 2(x6)m-1[¥17175 + Y2931 ] = —2[17773]

which by (6.13) is already in the image of d2. Hence d®([(z¢)mYi]) is trivial. Therefore
assuming all extension problems are resolved triviality, (z¢),, is not a generator of A

but may appear on the Fy-pageas a multiple of any other generator.

All torsion on the Fo-page of {E,,d"} is a power of 2, hence we consider the spectral
sequence {E,,d"} over the field of characteristic 2. Since the only non-zero differentials
d? and d° have bidegree (2,-1) and (6,-5) respectively, for exactly the same reasons as
for the modulo 3 spectral sequence in Theorem 5.1, all torsion on the Fs-page services
the addative extension problems over Z. The only remaining additive extension problem
is weather the 4-torsion generated by [(z2)ay17i] on the Eu, is 2-torsion or 4-torsion in
H*(ASp(2)/T? 7). O






Appendix

In Section 5.5, we studied the third page of the Leray-Serre spectral sequence {E,,d"}

associated to the free loop fibration
QSU(n+1)/T™) > A(SU(n+1)/T"™) - SU(n+1)/T".
A consequence of Theorem 5.1 is that the elements in
Eé},n—j+2m+dim(X) ((22)mXTir. )

for 0 <j<n-1,m>1and X a monomial in I'z(x4,z¢,...,22,), are trivial unless
they are contained in the kernel of a d? differential with image divisible by a non-trivial
element of the symmetric ideal. For the remaining cases when m =0 or j # n, where all
elements were in the kernel of the d? differential, there is a lot of structure left on the
Es-page. Theorems 5.1 and 5.2 solved the general problem of finding these quotients in

the relatively simple cases but elsewhere the problem is more complicated.

In this appendix we demonstrate how to construct an algorithm to obtain the torsion on

the Es-page at
BRI OO (X ) and B0 (40) Xy, (7.1)

for 1<j<n-1,m>0and X a monomial in I'z(x4,¢,...,22,). These are elements
obtained from the Es-page of the spectral sequence where the kernel of d? is trivial but
the image is not. While this does not take into account any of elements in a non-trivial
kernel of d?, we demonstrate interesting patterns in the torsion which currently cannot

be supported by a theorem.

To achieve this we first in Section 7.1, construct an algorithm that given a coordinate
corresponding to one in (7.1), output a matrix whose rows correspond to the image of the
d? differential and generators of symmetric ideal. The torsion at this coordinate can then
be found by finding the integer Smith normal form of this matrix, which we discuses in
Section 7.2. Unfortunate the size of the matrices means that a straightforward algorithm
for computing the Smith normal form will only produce results for cases that could have

been computed by hand, since the integers in intermediary forms of the matrix during

81
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the normalization procedure become too large or too small for the computer to cope
with.

In order to over come this in Subsection 7.2.1 we describe an algorithm found in [16],
which reduces the matrix in a more intelligent fashion, keeping entries closes to 0. This is
effective at the expense of computation time. This approach produces many more results,
however eventually the matrices become so large that the computer cannot produce the

Smith normal form in a reasonable amount of time.

Another approach attempted in Subsection 7.2.2 is to compute the Smith normal form
of the matrix modulo a prime. This is the computationally most effective technique,
however this method will not detect the multiplicity of the torsion as a power of the

prime.

In the finale section, Section 7.3 we present the results of our algorithms and discuss the

patterns observed.

7.1 Image matrix

In this section we present an algorithm to produce a matrix X associated with the image
of the d? differential at a particular coordinate on the Es-page of the spectral sequence.
In subsection 7.1.1 we describe the structure of X in terms matrices E¥*, F; and F. In
subsection 7.1.2, 7.1.3 and 7.1.4 we present the algorithms to produce matrices F, E; and
F. Finally in subsection 7.1.5 we present the algorithms that produces X. Throughout
this section we use Proposition 4.3 and assume that the symmetric ideal is generated by

complete homogeneous symmetric polynomials hy,...,h, in n variables.

7.1.1 DMatrix structure

Forn>1,0<z<n(n+1)/2 and 1 <y < n the matrix X to be produced by our algorithm

will have the following form

ajgﬂih“_’iyﬂXP A
hi X P B

where P,P,P € Z[v1,...,7n] have degrees z + 1, &, = — degh; respectively, 1 < i <
max(z,n+1), 1 <i; < <iyy <mand 1 <iy < <iy <n. The matrix A has rows
representing the image of the d? differential and B is the matrix whose rows representing

a spanning set of of the symmetric ideal in degree x. The ordering on the basis of
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elements of P, P, P and Uiy ,...,iy 18 not important as long as the same order is consistently

used.

Let F be the (yr_Ll) by (Z) matrix whose rows represent size y — 1 subset of an n set and
whose columns represent size y subset of an n set, with an entry 1 if the size y — 1 subset

is contained in the size y subset and 0 otherwise.

Recall that there is a bijection between monomials in n variables of a given degree and
multisets of the same size. For 0 <i <z — 1, let E*® be the matrix whose rows represent
size 1 submultisets of an n set and whose columns represent size x submultisets of an n
set, with an entry 1 if the size ¢ submultiset is contained in the size x submultiset and
0 otherwise. Note that if i = 0 then E** will be a 1 by ((Z)) matrix of ones since the
empty multiset is contained in all multisets. Let E; for 1 <¢ < n, be the matrix whose
rows represent size x submultiset of an n set containing at least one ¢ and columns
represent size x submultiset of an n set, with an entry 1 if the submultisets are equal
and 0 otherwise. The matrix E** is a (") by ((Z)) matrix and E; is a (") by ((Z))

) z—1
matrix.

From equation (5.12) Lemma 5.1, we have

it,.

y-1
dQ(ZL“zQil,...,z’y_lXP) = (‘1)t+1@i1,...,” iy X
=1 :

Hence matrix A can be further broken down into (", ) by ((Z)) sub matrices A?l"”’i,y

z-1 Tyeeesly+l

corresponding to rows T2y, ... X and columns gy, i, X for 1<y <+ <iyyq < and

'7iy+l

1<i’y < <i'y <n where

P [0 i {0,y € (i, i)

et () BT By (i, iy i) = i,y ig ) and i = .

-/ -/
171,00y

The position of the non-zero A; " ¥
10 Y

is determined with respect to i'y,...,i', and

i1,...,%y+1 by non-zero entries of the matrix F.

The matrix B can be further broken down into the diagonal sum

Uiy oriy
B 0
0 B 0 0
h; X : . :
0 0 B 0

Where B’ is given by



84 Appendix

th E{L‘72,x
hBP Em—B,x
hmax(a:,n+1)p Ex_max(l’yn*'l),m

7.1.2 Subset matrix

In this section we present an algorithm that will produce an array of two matrices,
E{2} which is the matrix F' described in Subsection 7.1 and an (Z) by n non-negative
integer matrix E{1}, where rows represent y element subsets of an n set and columns
the elements of the n set. Matrix E{1} has a zero entry if the set element corresponding
to the column is contained in the set otherwise E{1} has positive integer entry, the
position (in the ordering of the basis) of the corresponding y+ 1 element subset obtained

by adding the element corresponding to the column to the y subset.
The steps in the algorithm are as follows.
1. If y = 0, then output E{1} as a vertical n-vector of ones and E{2} as a row n-vector
of 1 to n, then terminate the algorithm.

2. If y # 0, then generate two matrices p and g whose rows are all y +1 and y subsets

of an n set respectively.
3. Set F{1} and E{2} to be zero matrices of the correct size.

4. For each row ¢ of the matrix p compare with row a of ¢ with a column element j
removed. If they are equal set coordinate (7, j) of E{2} equal to one and coordinate
(i,a) of E{1} to be the j' element of row a in g.

The Matlab program "Subsets(n,y)" to implement the procedure is given below.

function E = Subsets(n,y)
E={0};%defines E as an array

%check for exceptional first for empty set case otherwise

proceeds with the general case

if y=—=
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E{2}=ones(n,1);
E{l}=transpose (1:n);

else
w=nchoosek (n,y);%sets the width of the matrix E{l}
h=nchoosek (n,y+1);%sets the height of E{l} and E{2}
P=zeros(h,y+1); %records the position of subsets
intersections , will eventually be E{1}
D=zeros (h,w); %records the rows of h at which an
intersection occurs, matrix will eventually be E{2}
p = nchoosek (1:n,y+1);%list of all y+l subset of set {1.,2,
dots ,n}
q = nchoosek (1:n,y);%list of all y subset of set {1,2 dots,
n}
for i = 1:h %i corresponds to row of the matrix p
r=y(i,:);%selects i—th row of p (d+1 subset of n
set) and stores as r
for j=1:y+1 %j corresponds to which element is
removed from the y+1 subset of the n set
rtemp=zeros (1,y);
%the next two loops store in rtemp the row of p
missing the j th entry
for a=1:j-1
rtemp (a)=r(a);
end ;
for a=j+1:y+1
rtemp (a—1)=r(a);
end ;
for a=1:w %check rtemp (d+1 subset of n set
without entry j) to see which row of q (y
subset of n set) it i and records this
information into P and D
if rtemp=—q(a,:)
P(i,j)=r(j);%records corresponding row
of q(y subset of an n set)
D(i,a)=1; %l placed in the row
corresponding to y subset of n set
column corresponding to y+1 subset of
n set
break %end "a" loop since there is only

one case to find
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end ;
end;
end ;

end;
%the completed matrices are recorded as E{1} and E{2}
E{1}=P;
E{2}=D;

end;

7.1.3 Submultiset matrix

In this subsection we present an algorithm to produce the matrices E%® defined in Sub-
section 7.1. Before this we require a algorithm to produce for 1 < d < n, a ((Z)) by n
non-negative integer matrix whose rows represent multisets of size d from an n set and
columns the elements of the n set. This is the same problem as forming a non-negative
integer matrix whose rows are all n vectors with row sum d. The following Matlab

program which can be found at [38] achieves this.

function M = Multiset (n,d)

%d The required sum (dimension)

%n The number of elements in the rows (number of variables)

%produces a matrix of all n-vector in non-negative integers
whose sum is d

%with rows representing monmials in n varaibles of degree d
d=d+n;

¢ = nchoosek (2:d,n-1);
m = size(c,l);
M = zeros (m,n);
for ix = 1:m
M(ix ,:) = diff ([1,c(ix,:) ,d+1]);

end ;

MEM-ones (size (M, 1) ,size (M,2));

Now we present and algorithm that outputs E4*. Given n > 1 and 1 < a < b, the program

outputs an array of matrices C'{i + 1} for i between a and b. Where each Ci+1 is an
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("Jrf*l) by ("*Zﬁl) matrix with rows corresponding to size ¢ multiset of an n set and
columns size b multisets of an n-set. Fach C{i+ 1} has entry 1 if the size ¢ multiset is
contained in the size b multiset and is 0 otherwise. The steps in the algorithm are as

follows.

1. Using the previous function, generate for each value i between and including a and

b, generate an (") by ¢ matrix B{i + 1} of i multisets of an n set.

2. Form for each i between and including a and b create zero matrices matrices C{i+1}
of size (7) by (3)-

3. For each ¢ between and inducing a to b do, for j from 1 to ((:L)) and k from 1
to ((’;)), in position (j,k) of C{i + 1} put a 1 if multiset on row j of B{i+ 1} is

contained in the multiset on row k of B{b+ 1}.

The Matlab program "Submultiset(a,b,n)" to implement the procedure is given below.

function [C] = Submultiset(a,b,n)
B={0};%defines B to be an array

%Assigns to B{i} the positive integer matrix whose rows
represent all multiset of size i of an n set

for i=a+1:b+1
B{i}=Multiset (n,i-1);

end;
C={0};%defines C to be an array

%vector 1 stores the size of matrices B{i} in column i
1=0:b;
for i=a+1:b+1

1(i)=size (B{i},1);

end;

%creates an array of zero matrices C of correct size for output
for i=a+1:b+1
C{i}=zeros(1(i),l(b+1));

end ;

%for each i1 place a 1 at position (j,k) of C{i} if the jth size
i—-1 multiset is contained in the kth size b multiset
for i=a+1:b+1
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for j=1:1(1)
for k=1:1(b+1)
CLi1(j k)=all ((B{b+1}(k,:)-B{i}(j,:))>—0);
end ;
end ;

end ;

7.1.4 Fixed element submultiset matrix

In this subsection we present an algorithm to produce matrices C{i}, which are the
martrices E; defied in Subsection 7.1.1, for each 1 <4 < z. This is a ( o ) by ((Z))
matrix whose rows represent size x multisets of an n set containing at least one of
element i. and columns represent size x multisets of an n set. The matrix has an entry
1 is the multiset of row is equal to the the multiset of the column. The steps in the

algorithm are as follows.

1. Using the function "Multiset" of Subsection 7.1.3, generate an ((Z)) by x matrix
W of size x multisets of an n set an generate an (( q:7—11 )) by xz — 1 matrix H of size

x — 1 multisets of an n set.
2. For each i from 1 to n create a (( o ) by ((Z)) matrix M of zeros.

3. For each size x—1 multiset j of H add in addition element ¢ and check to see which
which size  multiset k of W it is. Change element (j,k) of M to a 1.

4. Record the current M at C{i} before moving to the next i.

The Matlab program FixedSubmultiset(z,n) to implement the procedure is given below.

function [C] = FixedSubmultiset (x,n)
C{1}=0;%defines C as an array

%Assigns to W the positive integer matrix whose rows represent
all multiset of

size x in of n set

W = Multiset (n,x);

%Assigns to H the positive integer matrix whose rows represent
all multiset of
size x-1 in of n set

H = monomials(n,x-1);
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h=size (H,1);
w=size (W,1);

for i=1:n%i is the element of the n set that will be included
into each size x-1 multiset
M=zeros (h,w) ;%creates a zero matrix of the correct size
Htemp=H;
for j=1:h
Htemp(j,i)=Htemp(j,i)+1;%add in the extra element i to
each row j of H
for k=1:w
if Htemp(j,:)=W(k,:)%test to see which sixe x
multiset the new multiset is
M(j,k)=1; %and records the result with a
1 in the correct column
end ;
end;
end ;
C{i}=M;%records the final matrix as C{i}

end;

7.1.5 Differential matrix

In this final subsection we present an algorithm using the programs of Subsection 7.1.2,
7.1.3 and 7.14 given n > 2, x > 1 and y > 0 to produce a matrix A which is the one

described in Subsection 7.1.1. The steps in the algorithm are as follows.

1. Calculate the number of generators in the symmetric ideal sl by setting sl =

min(z,,n+1).

2. Generate in array C{i + 1} the "Submultiset" matrices for ¢ between x — sl and x

for a set of size n.

3. Create the part of the output matrix A corresponding to the symmetric ideal as a
matrix B by for each i between z — sl and x stacking the C'{i + 1} on top of each

over and forming a diagonal sum of (Z) of these matrices.

4. Generate for i between 1 and n an array of matrices E{i} the "FixedSubmultiset"

matrices for multisets of size  and set of size n.

5. Generate in a matrices M {1} and M {2}, the "Subsets" matrix for value = and set

of size n.
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6. Create a (yfl) (( Zj)) by (Z) ((Z)) zero matrix A to hold the image of the d? differ-

ential.

7. For each row of M{2} set or a value k starting at 0, moving along rows the row
for each entry (i,a) of M{2} that is a 1 increase the value of k& by 1. Each

time the value of k increases place in A with its top left had entry at position

((1+1) ((Z)) ,(a-1) ((Z))), a copy of (-1)M1(C{x} + E{M{1}(i,y +1-k)}).

8. Extend A by stacking it on top of the matrix B, to form the final output.

The Matlab program "DifferentialMatrix(n, z,y)" to implement the procedure is given

below.

function [A] = DifferentialMatrix(n,x,y)
%forms a zero matrix A of the correct size, height h width w

sl=min ([x,n+1]); %sl is the number of generators in the

symmetric ideal of dgree less than or equal to n

%s will hold in each entry the number of multiples of h i by a
monomial for i=2 to the minimum of x and n+l
s=zeros (sl ,1);
for i=2:sl
s(i)=nchoosek (n,y)*nchoosek (ntx—i—-1,x-1)+s(i-1);%number of
monomials of degrre x-i

end;
h=nchoosek (n,y+1)*xnchoosek (n+x-2,x-1)+s(sl);%the total height
of the outputs matrix

wHat=nchoosek (n,y) ;%the number of ‘hat{y {i 1,\dots,i y}} in
total

wMon=nchoosek (ntx-1,x);%the number of monomials of degree x in

n variables
w=wMonxwHat ;%the total width of the output matrix

ns=h-s(sl);%ns is the number of generators of the image as rows

in the matrix
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A=zeros(ns,w);%creates a zero matrix of the correct size

%First place the symmetric function rows at the bottom of the

matrix
C=Submultiset (x—sl ,x,n);
D=zeros (1 ,wMon) ;%creates zero row of the same width as the C

for i=2:81%i represents the degree of the symmetric generator
D=[D; C{x+1-i}];%stacks submultset matrices for different
generators

end ;

D=D(|2:size(D,1)],[1l:wMon]|) ;%removes zero row
B-D;

?

for i=2:wHatVrepeats the matrix D for each \hat{Y} {i 1,\dots,

i y} along diagonal
B-blkdiag (B,D);

end;
%place the d2 image rows
E=FixedSubmultiset (x,n);

Ctemp=C{x };
hMon=size (Ctemp,1) ;

M=Subsets (n,y) ;
hHatsType=M{2};
hHatsPosition=M{1};
hHats=size (hHatsType,1) ;

for i=1:hHats
temph=(i -1)*hMon;%record the top row-1 of the current
position being considered
temp=0;

for a=1:wHat

tempw=(a—1)*wMon;%record the left most column-1 of the

current position being considered
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if hHatsType(i,a)==1
Etemp=E{hHatsPosition (i ,y+1-temp) };
A ([temph+1:temph+hMon | , [ tempw+ 1:tempw-+wMon| ) =(-1) ~(
temp ) * (Ctemp+Etemp) ;
temp=temp—+1;
end ;
end ;

end;

A=[A;B]|;%combines the image matrix vertically with the

symmetric ideal matrix

7.2 Normal form

The integral Smith normal form of an integral matrix M is the unique diagonal matrix N
obtained from M by integral row an column operations such that entries on the leading
diagonal are non-negative integers in decreasing order of size. The most straightforward

process to obtain matrix N from matrix M is as follows.

1. Set the current position at the top left hand entry of the matrix.

2. Compute R, the greatest common divisor the the row containing the current posi-

tion.

3. Use integral column operation to reduce the current position to R and then all

other entries on that row to 0.

4. Compute C the greatest common divisor the the column containing the current

position.

5. Use integral row operation to reduce the current position to C' and then all other

entries on that column to 0.

6. Repeat steps 2, 3, 4 and 5 with the current position at each entry on the lending

diagonal in turn.
7. Reorder the leading diagonal with the largest values first.
In Subsection 7.2.1 we discuss how the procedure can be improved to avoid very large or

very small values occurring during it implementation. In Subsection 7.2.2 we show how

to adapted the procure to compute the Smith normal form modulo p, for some prime p.
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7.2.1 Ranked normal form

In this subsection we describe a procedure from [16] which improves the elementary
procedure outlined at the begging of the section. The the main problem that can occur
during the implementation of an algorithm computing the Smith normal form is at a
intermediary stages the entries of the matrix become too large or too small for the
computer to handle, causing rounding errors or a crash. The idea of the solution is
rather than just reducing the matrix along the leading diagonal, before performing the
row and column reductions move to the current position to the entry of the matrix which

after the reduction, will minimise the maximal magnitude of entries in the matrix.

Suppose we have a matrix M = (m; ), on which we want to perform steps 2, 3, 4 and 5 in
the process above from a position that minimises the magnitude of values in the resulting
matrix. For each column m, ; and m, ; of M, step 3 repeats the process of replacing
column m, 1 with xym. 1 + zgm, ; and column my ; with mq ;ged(my 1, m1 j)me1 —
ma 1 ged(my1,mi j)msy j, where 1,29 € Z are such that ged(mi,mij) = zimig +
xomy j. Hence if the first £ columns have first value my 1,...,m such that for each
[ less than k, ged(mi1,...,my -1) > ged(mi,1,...,my;). Then after k interactions the

first column is

k-1 k k-1
M1 H Tot-1+ Z (m*,ﬂz(z—n H 96‘25—1)
t=1 =2 t=l

where xg;_1 and xg; are such that xo;_1 ged(mi 1, ..., my-1)+xomy = ged(my1,...my ;).
These values are then used in subsequent steps, so if they become large entry in the ma-

trix become cumulatively large over those subsequence steps.

Given a vector X such that X -m« ;1 = ged(my1,...,Mm, 1), in general we would like to
minimize
X- mm
max |m j — ————=mj,|
1,7 X My 1

)

which we call the pivot value on the first column of M. Clearly we could calculate this
pivot value for any column of M. We could also calculate in the same way a pivot value
for the rows of M and multiply the pivot value for each column by the pivot value for
row of each entry. This gives us the matrix of the same size as M which we call the pivot
value matrix. The entries with the smallest values in the pivot value matrix should be
the best candidates to use as the current positions in our standard Smith normal form
procedure. Hence given one such value in M we move this row and column to be the
first row and column in the matrix and perform steps 2, 3, 4 and 5 above. For a compete

description of the procedure see [16].

The Matlab program "PivotMinNomal(A)" implements the procedure to calculate the
Smith normal form of a matrix A using the improved method above. The function
"PivotMinNomal(A)" call upon "PivotValue(A)" which computes the pivot value matrix

of a given matrix A, which in turn calls upon function "VecGCD(V)" that given an
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integer vector V computes using the Euclidean algorithm the greatest common divisor

G of the values of V' and vector of integers X whose scalar product with V if G.

function [A] = PivotMinNomal(A)

%Given a matrix A finds its Smith normal form in a way that

attempts to minimise the magnitude of intermediary values
|y,x|=size (A);%records the size of A
max=min(x,y);%size of the leading diagonal
for i=1:max

null=1;

for a=i:x %check to see if all remaining entries are zero

for b=i:y
if A(b,a)
null =0;
break
end ;
end ;
if null
else
break
end ;
end ;
if null
break
end ;

B=zeros (y-i+1,x—i+1);

%takes B the part of the matrix which we still need to
reduce
for a=i:x
for b=i:y
B(b-i+1,a-i+1)=A(b,a);
end;

end ;
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B=PivotValue (B);
MinPiv=[1,1,inf];

for a=1:size(B,1) %finds non-zero value with smallest pivot
value
for b=1:size (B,2)
if A(ita-1,itbh-1)
if B(a,b)<MinPiv(3)
MinPiv=[a,b,B(a,b) |;
end;
end ;
end ;

end ;

p=MinPiv (1) ;
g=MinPiv(2) ;

A(:,[i,qH =1])=A(: ,[qti-1,i]);
A([i,pHi -1],:)=A([pti-1,i],:);

Ymow perform GCD reduction on the first row column for the
top left position.
in=1;

?

while in

ifA(iL,1)<0
A(i ) =—1%A(i,:);

end ;

for a=i+1l:y
if A(a,i)<0
A(a,:)=-1xA(a,:);
end ;
A(a,:)=A(a,:)-floor (A(a,i1)/A(i,1))*A(i,:);

end;

for a=i+1:x
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if A(i,a)<0
A(: a)=—-1xA(:,a);

A(:,a)=A(:,a)-floor (A(i,a)/A(i,i))*A(:,i);

%check to see if all first row and column are zero

except top left.

out=1;
for a=i+1l:y
if A(a,i)
out=0;
end ;
end ;
for a=i+1:x
if A(i,a)
out=0;
end ;
end;
if out
break
end;

%finds new pivot in fist row or column and repeat

reduction
B=zeros (y-i+1,x-i+1);
for a=i:x
for b=i:y
B(b-i+1l,a—i+1)=A(b,a);
end ;
end ;

B=PivotValue (B);

V=B(:,1).7;
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for a=2:size(p,2)
if P<p(a)
P=p(a);
end ;

end;

for a=1:size(q,2)
if P<q(a)
P=q(a);
end;

end

for a—i:x
if abs(A(i,a))=—temp
U=U~+1;
end ;

end ;

for a=i+1l:y
if abs(A(a,i))=—temp
U=U~+1;
end ;

end ;

for a=1l:size(V,2) %find lowest pivot value
if Alati-1,i)
if V(a)<piv(3)
if temp>abs(A(ati-1,i))
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piv=[1,a,V(a)];
else
if U=l
piv=[1,a,V(a)];
end ;
end ;
end ;
end ;
end ;
for a=1l:size (H,2)
if A(i,a+i-1)
if H(a)<piv(3)
if temp>abs(A(i,a+i-1))
piv=[0,a,H(a)];
else
if Ul
piv=[0,a,H(a) |;
end ;
end;
end;
end;
end;
if piv(1)
A([i,piv(2)+H -1],:)=A([piv(2)+i-1,i],:);
else
A(: [i,piv(2)+H -1])=A(: ,[piv(2)+i-1,i]);
end ;
end ;
end;

%rearranges elements on diagonal smallest towards top left .

swap=1;

while swap

swap=0;

for

1=1:max-1
if A(i+1,i+1)==0
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end;

break

end ;

if A(i,1)>A(i+1,i+1)
temp=A(i,i);
A(i,1)=A(i+1,i+1);
A(i+1,i+1)=temp;
swap=1;

end ;

end ;

function [P] = PivotValue(A)

%Giv

en matrix A outputs its matrix P of pivot values

[y,x]=size (A);%records size of A

P=zeros(y,x);%output matrix of the correct size

Y%computes value for columns

for

k=1:x
[Xc,Ge] = VecGCD(A(: ,k). ") ;%computes ged for current column
if Gchecks the column was not a zero vector

%if the first value of ged scalar vector is zero

changes it to an equivalent vector where the first

entry in non-zero

if Xe(1)==
temp=(A(1,k))/Gc;
Xc=Xc#*(temp+1);
Xe(1)=-1;

end;

Y%computes the values of the matrix if this column were
pivot
ColVal=zeros (y,x);
for i=1:y
for j=1:x
ColVal(i,j)=abs(A(i,j)-((dot(Xc,A(:,]j)))/(dot(
Xe, A, K))) A k) 5
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end ;

end ;

temp=max (max( ColVal) ) ;%maximum value in column the

pivot matrix

P(:,k)=P(:,k)+temp=ones(y,1);%records max value in the

corresponding column of P
else

P(:,k)=P(:,k)+infxones(y,1);%records zero column as

infinite pivot value
end ;
end;

%computes value for rows
for k=1:y

[Xr,Gr] = VecGCD(A(k,:));%computes ged for current row
if Gr%checks the row was not a zero vector

%if the first value of ged scalar vector is zero
changes it to an equivalent vector where the first
entry in non-zero

if Xr(1)==0
temp=(A(k,1))/Gr;

Xr=Xr#(temp+1);
Xr(l)=-1,;

end ;

Y%computes the values of the matrix if this column were

pivot
RowVal=zeros (y,x);
for i=1l:y

for j=1:x

RowVal(i,j)=abs(A(i,j)-((dot(Xr,A(i,:)))/(dot(
Xr, Ak, ) ))*A(k, §)))
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end ;

end ;

temp=max (max(RowVal) ) ;%the maximum value in the pivot

matrix for this row

Y%multiplies the row of P by this max value
for a=1:x
P(k,a)=P(k,a)=*temp;

end;
else
for a=1:x
P(k,a)=inf;%records zero row as infinite pivot
value
end;

end ;

end;

function [X,G] = VecGCD(V)

%given a vector V outputs gcd G and vector of scalers X whose
scalar product

%with V is G

s=size (V,2);%number of elements in V

P=eye(s);%for recording intermediary values for X

minV=|[1,inf |;

temp=0;

neg=zeros (1,s);%for recording sign changes

%ensures V is non-negative integer vector and vectors where the
sign changes

for i=1:s
if V(i)<0
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V(i)=V(i);
neg (i)=1;
end ;

end ;

%first checks for exceptional case when V is the zero vector
if V=zeros (1,s)
X=zeros(1,s);
G=0;
else
%computes G and X using Euclidean algorithm
while minV (1)

minV=[0,inf |;

%finds the smaes value in V
for i=1:s
if V(i)
if V(i)<minV(2)
minV=[i,V(i) |;
end;
end;

end ;

%if the minimum positive value is unchanged this is the gcd
and the procdure terminates
if temp=—minV(2)
G=minV (2) ;
X=P(minV (1) ,:);
break

end ;

%reduce the vector v modulo its minimum value and records
what was done in P
if minV(1)
for i=1:s
if i=minV (1)
else
f=floor (V(i)/minV(2));
V(i)=V(i)-f*minV(2);
P(i,:)=P(i,:)-f«P(minV (1) ,:);
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end ;
end ;

end ;

temp=minV (2) ;

end ;

end;

%assigns the correct sign to elements of X
for i=1:s

X(i)=X(i)#(=1) " (neg(i)):
end ;

7.2.2 Modulo p normal form

In this subsection we present an algorithm to compute the Smith normal form of a
matrix A modulo a prime p. Since the entries on the leading diagonal of a matrix in
Smith Normal form are 0, 1 or a prime power, the entries on the leading diagonal of
a matrix in Smith normal form with entries modulo p will be either 0 or 1. Hence the
important information in the matrix is the number of ones on the leading diagonal. Our
algorithm will roundly follow the steps detailed at the beginning of the section with the

following exceptions.
e each time the current position changes and at the end of the algorithm the whole
matrix is reduced modulo p.

e The reduction of the current position to the greatest common divisor of its row

and column is performed simultaneously.
e At the end of the procedure only the number of ones on the leading diagonal is

output.

The Matlab program "ModuloNomalForm(A,p)" to implement the procedure is given

below.

function [U] = ModuloNomalForm (A, p)
U=0;

h=size (A,1);%hight of A
w=size (A,2);%width of A




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

104 Appendix

L=min (h,w) ;%the size of the leading diagonal

%The normal form procedure moves the current position along the

leading diagonal
for a=1:L

%reduces the matrix to it simplest integral representatives

modulo p
for i=a:h
for j=a:w
if A(i,j)>0
AGiL3)=A(,§)-tloor (A(i,j) /p) *p:
else
AGL1)=AG L §)-tloor (A(i,§) /p) *p
end ;
end;

end ;

done=1;

%checks to see if the current row and column are zero and
if so proceeds to the next position on the leading
diagonal

if A(a,:)=zeros(1,w)
if A(:,a)=—zeros(h,1)

done=0;
end ;

end ;

%Use integral row and column operations to reduces the
current position to the greatest common devisor of its
the row, then all other entries to zero

while done

Y%moves the smallest positive integer in the current row

or column to the current position

Low=[A(a,a) ,a,0];

if Low(1)

else
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Low(1)=inf;

end ;
for i=a-+1:h
if A(i,a)
if A(i,a)<Low(1)
Low=[A(i,a),i,0];
end ;
end ;
end;

for i=a+1l:w
if A(a,i)
if A(a,i)<Low(1)
Low=[A(a,i),i,1];

end ;
end ;
end ;
if Low(3)
A(:,|a,Low(2)|)=A(:,[Low(2) ,a]);
else
A(la,Low(2)]|,:)=A(|Low(2),a],:);
end ;
done=0;

%reduces all non-zero entries in the current column by
the integer in current position
for i=a+1:h
if A(i,a)
A(i,:)=A(i,:)-floor (A(i,a)/A(a,a))*A(a,:) ;
end ;
if A(i,a)
done=1;
end ;

end ;

%reduces all non-zero entries in the current row by the
integer in the current position

for i=a+1l:w
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if A(a,i)
A(:,i)=A(:,1)-floor(A(a,i)/A(a,a))*A(:,a);
end ;
if A(a,i)
done=1;
end ;

end ;

%if no reductions took place then move the current
position to the next position on the leading
diagonal otherwise repeat from finding the smallest
entry

end ;

end ;

%reduces the final diagonal from of the matrix modulo p
for i=1:L

if A(i,1)>0
A(i,i)=A(i,i)-floor(A(i,j)/p)=*p;
else
A(i,i)=A(i,i)+floor (A(i,i)/p)=*p;
end ;
end ;
temp=0;

%counts the number of non-zero entries on the leading diagonal
of the normal form matrix
for i=1:L
if A(i,1)
temp=temp+1;
end ;

end;

U=w—temp ;%outputs the umber of non-zero entries on the leading

diagonal of the normal form matrix
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7.3 Results

In this section we present the our findings on the torsion of the Es3-page aided by a

computer. We do this in the case of element of the form
BP0 (X, 1) and B0 (05) Xy (7.2)

for 1 <j<n-1m >0 and X a monomial in I'z(x4,x6,...,22,). The integral results
from running the algorithms in Section 7.1 and Subsection 7.2.1 for n = 2,3 and 4 are
as follows. By Theorems 5.1 and 5.2 the bottom row and final column can be filled in

without the aid of the computer.

TABLE 7.1: Part of the E3-page of the spectral sequence converging to
H*(A(SU(3)/T?);Z)
(9,X) | 2?2 73 Z7’eZs Zs
(192 X) | Z  Zs Z3 0

TABLE 7.2: Part of the FE3-page of the spectral sequence converging to
H*(A(SU(4)[T°):Z)

(9aX) |z2° Z° Y/ z'3 7° & Zy Z e Zy 74
(i, X) |23 7° 7707y 7°0ly07y 7 0Zy0Zy 7&7Zy O
(Ny2ysX) | Z  Za Zo Zo 0 0 0

TABLE 7.3: Part of the E3-page of the spectral sequence converging to
H*(A(SU(5)/T*); Z)

(gz X) Z4 Zl5 ZSQ ZBI Zb’5 Z68 Z58 Z4O ® Z5 Z?l ® ZS Z? ® Z5 ZS
1

(o X) | 2° 220 7% 7% ¥ez; 1T 7 ? ? 0
(i X) | Z* 2 ZY%eZ; 7?0272 7Z®eZi ? 7 7 ? ? 0
(y1yoysyaX) | Z  Zs  Zs Zs Zs 0 0 0 0 0 0

Each row of the table corresponds to a row of the spectral sequence divisible by the
generators in the first column, but not divisible by (x32),, for any m > 1 in any row
except the bottom one. Rows ordered by the number of generators y; present with all

y; present in the bottom row and one less in each row above it. Recall g)“zj =
’Ll Z]'

for some 1 <j<n-1and 1<% < <i; <n. The columns represent all the potentially
non-zero entries on those rows, ordered by degree. That is even degree between and
including 0 and (n+2)(n+1)/2.

Just recording the torsion in case m =2 and n = 3 gives the following two tables.

In table 7.5 the result when n =3 are given.
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TABLE 7.4: Multiplicity of torsion on the E® of the spectral sequence converging to
H*(A(SU(3)/T?);Z)
(9aX) |- - Zs Zs
(iyeX) | - Zs Zs -

TABLE 7.5: Multiplicity of torsion on the E? of the spectral sequence converging to
H*(A(SU(4)/T°);2)
@aX) |- - - - Zo 7y Za
<Qi17i2X> - - Zg ZQ (&) Z4 ZQ (S Z4 Zg -
(1yays X) | - Za Zo Za - - -

Notices there is a symmetry in the table where if we remove the first column, the bottom
and top rows are the reverse of each-over and the middle row is symmetric about its

center.

For large n the an increasingly large matrix is used which greatly increase the time
necessary to compute the smith normal form. We can use the modulo-p an algorithm
to compute results over over a finite field of order prime p by replacing each coordinate
of the matrix with is representative 0,...,p — 1 modulo p after each step of the smith
normal form algorithm. In this case a simpler algorithm can the used as the numbers in
the matrix will never be larger than p reducing the execution time. It can be shown that
any torsion occurring on the E2 page of the spectral sequence will be a divisor of n + 1.
by...

Hence we can obtaining the rank of a matrix of a corresponding of the spectral sequence
modulo a prime co-prime to n+1 and subtracting this from the the result modulo a prime
divisor of n + 1 will give us the multiplicity of the torsion at that position. Computing
modulo a prime would allows us to obtain the multiplicity of the torsion, at the expenses
of knowing the exact degree of the torsion away from a prime n+ 1. Table (7.6), contains

the multiplicities of torsion on the E3 page, when n = 4.

TABLE 7.6: Multiplicity of 5-torsion on the E? of the spectral sequence converging to
H*(A(SU(5)/T*); Z)

(G, X) |0 00 0000 1 1 1 1
(D, X) [0 0 0 0 1 2 3 3 2 1 0
(firinisX) O 0 1 2 3 3 2 1 0 0 0
<y1y2y3y4X> 011110 0 0 0 0 O

The symmetry in the torsion continues in table (7.6), in addition the multiplicity of the
torsion continues to increases in the center of the table suggesting that these observations

may continue to be true for larger n.
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