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In electromagnetic design, optimisation often involves evaluating the finite element
method (FEM) — repetitive evaluation of the objective function may require hours or
days of computation, making the use of standard direct search methods (e.g. genetic
algorithm and particle swarm) impractical. Surrogate modelling techniques are helpful
tools in these scenarios. Indeed, their applications can be found in many aspects of
engineering design in which a computationally expensive model is involved.

Kriging, one of the most widely used surrogate modelling techniques, has become an
increasingly active research subject in recent decades. This thesis focuses on four
interesting research topics in surrogate-based optimisation: infill sampling efficiency,
robust optimisation, and the memory problem encountered in large datasets and multi-
objective optimisation. This thesis briefly provides relevant background information and
introduces a number of independent novel approaches for each topic, with the aim of
increasing efficiency of optimisation process and ability to handle larger datasets.
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Chapter 1. Introduction

1.1 Optimisation design

The engineering industry has witnessed an explosive advance in computer technology
in recent decades. Engineers are currently able to solve complicated optimisation design
problems with the assistance of powerful computers. Research in the field of
optimisation, from linear programming (1939) [1] to evolutionary algorithms ([2] which
have attracted significant attention lately), has exhibited successful application in
engineering design problems [1]. Various optimisation methods have been published,
with their efficiency and capability to solve different types of problems being
consistently improved over time. The advantage of the current heuristic methods is that
the algorithm is computationally fast; global optimisation methods like the genetic
algorithm and the particle swarm algorithm can be naturally incorporated with parallel
computing and can take advantage of multi-threaded computers.

1.2 Global optimisation

The purpose of global optimisation is to find the solution X, in a feasible region that
optimises the objective function f(x). Depending on the specific application, the design
can be one of a maximisation problem (to maximise the durability of a product) or a
minimisation problem (to minimise the energy consumption of a device). Without loss
of generality, we assume that they are all minimisation problems:

maximise {f (x)} = minimise {—f(x)} (1.1
Problem definition:
Minimise {f (x)} (1.2)
Subjecttox € D
gi(x) <0,
h(x) = 0, i=1,2..,n

where f(x) is the objective function, D is a non-empty set of feasible design points,
gi(x) is the inequality constraints and h;(x) is the equality constraints.

The local minimum in a convex problem is also the global minimum; this type of problem
can be solved using local optimisation techniques efficiently. A number of well-known
local optimisation methods include: the Simplex Method, Newton’s methods, Quasi-
Newton Methods and sequential quadratic programming.
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Practical engineering design problems often possess a non-convex objective function or
constraints. These problems are likely to contain multiple local minima and are often
difficult to solve [3]. When multiple local minima are present in the search space (also
called the feasible region) [3], new methodologies are necessary for locating the global
minimum without being entrapped in a local minimum. The simplest approach is to start
the local optimiser at multiple locations within the search space. Other examples of
more sophisticated global optimisation techniques include: branch and bound, pattern
search, simulated annealing, genetic algorithm and particle swarm. An in-depth review
of recent developments in global optimisation methods can be found in [3], [4] and [5].

1.3 Previous work on kriging at ECS

This project will build on the previous work of Song Xiao (Roger), who recently
completed his PhD. His results were published in several journal papers [6], [7], [8], [11],
[12] and conference contributions [9], [10]. The main outcomes of his work are
summarised as follows:

e The importance of balancing exploration and exploitation to effectively achieve
convergence on the global optimum was confirmed after a series of tests.

e Technigues from reinforcement learning were employed to automatically
introduce tuning weights to balance exploration and exploitation in response to
the feedback produced by a kriging surrogate model. A novel method named
“adaptive weighted expected improvement with rewards” was demonstrated to
be able to learn from the experience of attempting the exploration and
exploitation separately and then, determine the distribution of weights
accordingly.

e A pre-test utilising only a combination of predicted results and the mean square
error, which is computationally cheap, was developed and proven to be helpful
for long-term decisions. Another novel method, called the “surrogate model
based weighted expected improvement approach with rewards”, which applies
reinforcement learning based on the improved pre-test strategy, was proposed;
it attempts to capture the optimal weights combination at each iteration of the
optimisation process.

e To mitigate the issues caused by the accumulation of data by the correlation
matrices due to an increase in the updated sampling process, an adaptive
partitioning scheme for these matrices was introduced to the kriging surrogate
model, especially in high-dimensional tasks.

e Several methods were investigated with regard to the robustness of the design.
First, the gradient index method was evaluated. However, due to its limitations,
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a modified method was developed to evaluate the sensitivity of each solution
obtained by the kriging surrogate model. The worst case optimisation method
was also explored and an assessment of the average performance was added to
the algorithm to increase reliability.

The aim of this thesis is to enhance the methods and techniques already developed and
thus, further advance the kriging technique, particularly within the context of
multivariable optimisation and robust design. The focus is on handling the large
amounts of data created by the relevant models.

1.4 Obijectives

The use of kriging for design optimisation proved very promising and this provided the
main motivation behind this work. The aim of this thesis is to advance the relevant
techniques further, with focus on multi-objective and robust optimisation, while
addressing some of the previously identified issues related to the algorithm efficiency.

The specific objectives may be formulated as follows:

1. Review and critically assess the state of the art in surrogate-based optimisation,
with emphasis on kriging assisted techniques.

2. To consider and suggest new and better ‘infill sampling criteria’ based on the
notion of expected improvement.

3. To enhance the application of kriging assisted methods to robust optimisation
and suggest the most efficient approach.

4. To investigate the limitations of the kriging approach related to the size of
correlation matrices and suggest possible solutions.

5. To extend the application of the developed techniques to multi-objective cases.

6. Toillustrate the performance of the proposed algorithms using carefully
selected test functions and practical applications, especially the T.E.A.M.
problems*.

Note*: T.E.A.M. (Testing Electromagnetic Analysis Methods) workshop problems [40]
consist of a set of practical electromagnetic optimisation design problems for
benchmarking the performance of optimisation algorithms. A list of benchmark
problems can be found on the International Compumag Society website
(http://www.compumag.org/jsite/).

Topics not addressed in this thesis:

1. The issue of discontinuity in the objective function respond surface. Ordinary

kriging is an exact interpolation method that generally does not work well on
17



problems with discontinued objective functions [13]; there are other methods
that have been proven more effective in such type of problems, see details and
comparisons in [15]. However, if the discontinuity was due to noisy data,
stochastic kriging (one of the kriging variations) may be implemented [14].

2. Discontinuity in design parameters is not consider separately in the thesis, since
all parameters are normalised for the kriging model — the only difference for
problems with discontinued inputs is that the prediction and new infill points
need to be sampled at feasible locations due to the discontinuity.

3. Design problems in this thesis are assumed to be global optimisation problems,
i.e. obtaining the global optimum is the objective of the design. In some practical
design cases, the manufacturer only considers local improvement over the
current design due to practical limitations. This type of problem may be
transferred into a global design problem by providing the desired search space
for design parameters, and equality and/or inequality constraints if necessary.

1.5 Thesis structure

This thesis consists of 7 chapters. Chapter 1 briefly introduces the field of optimisation
design and provides an overview of the thesis. Chapter 2 provides a background review
for surrogate-based optimisation algorithms. Since kriging is one of the most popular
surrogate modelling approaches, it is studied in detail.

Chapter 3 focuses on infill sampling criteria, particularly popular infill criterion expected
improvement (El). Furthermore, an efficient infill sampling approach utilising the
automatic weight adjustment is proposed in combination with a fast gradient-based
infill criterion search method.

Robust optimisation is studied in Chapter 4, which briefly introduces robust optimisation
and problem classifications. A kriging-based approach for worst-case design problems is
proposed for greater sampling efficiency.

Chapter 5 addresses potential bottle-necks in the current kriging method when handling
large datasets. Three methods from the literature are briefly discussed in this chapter,
two of which (dual-kriging and aggregation kriging) are used for improving memory
efficiency.

In Chapter 6, multi-objective optimisation is studied in detail and existing approaches
are described. Furthermore, a kriging-based localised probability of improvement
approach is proposed.

Finally the research results are summarised in Chapter 7. Chapter 7 also discusses
potential future work.
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Chapter 2. Background review

2.1 Introduction

Rapid advances in electronic information technologies in recent decades have made
large datasets more common in the field of computer modelling. Consequently, the
demand for high quality computer models and solvers has made optimisation design
problems both more complicated and more time-consuming to solve. Thus, surrogate
model-based optimisation approaches are now drawing more attention since they
provide more efficient solutions to expensive computer model designs. The efficiency of
a modelling approach and its ability to handle complicated problems have been an
important research objective in the optimisation community.

2.2 Surrogate-based optimisation

Computer aided design (CAD), modern engineering design processes and physical
engineering experiments are restricted by cost, time or available resources. Thus,
extensive sampling is not possible and complicated finite element models (FEM) may
consume hours or even days per evaluation; in these circumstances, modelling
techniques can improve design efficiency and quality.

Surrogate models need to be of good quality to be useful and fast when evaluating the
underlying design problem. Generally, the evaluation time of the surrogate model is
negligible compared to the sampling cost of the original problem. Furthermore, the
model’s quality is closely related to the amount of sampling data available. Therefore,
when building a surrogate model, a trade-off between the quality of the model and the
time required to build the model (including evaluation cost of the underlying problem)
needs to be balanced.

The procedure of building a surrogate model involves the initial sampling, choosing the
right model and fitting it to the initial available data, adding new sampling points to the
initial model and then upgrading the previous model (the choice of added points are
determined by infill criteria). This process is repeated until the termination criterion is
achieved (i.e. the model is accurate enough, the maximum running time is reached, the
approximate optimal point is found, etc.).
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Initial sampling

l

» Build surrogate model

\ 4
Evaluate model

Add infill points
A

Termination
criterion

Terminate

Figure 2.1. Surrogate-based optimisation workflow.

As discussed earlier in this chapter, a number of engineering applications are too
expensive to apply optimisation routines directly to the problem. In these optimisation
designs, a surrogate is built based on the sampled points obtained from the underlying
problem. The model is then updated by adding additional infill sampling points
depending on the infill strategy. The optimisation routine is subsequently applied to the
surrogate model, instead of the underlying problem, at each iteration or at the end of
the model updating process. Because the computation time of the surrogate model is
much faster, the model can be searched thoroughly using population-based
optimisation approaches, which require a large number of evaluations. At this stage, the
global optimum point is only the “approximate” optimum point. The algorithm can
validate it by evaluating the underlying problem and the newly sampled point can be
added to the surrogate model during the updating process. This process repeats until
the stop criterion is met.
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2.3 Kriging theory

Kriging is an interpolation method originally developed by Danie Gerhardus Krige (1919-
2013) to predict the distribution of gold, based on samples obtained from a small set of
boreholes. Kriging was originally used in geostatistics to determine the mineral
distribution in a field, due to its ability to plot the response surface of a particular
objective function. It has also been widely implemented in the field of optimisation.

The kriging model is a linear combination of a global model and a local departure:
Y(x) =f(x) +Z(x) (2.1)
where Y (x) is the unknown function to be approximated;

f(x) is the polynomial that interpolates x: “the function f(x) is similar to a polynomial
type response surface, providing a global model of the design space.”

Z(x) is a realisation of the stochastic process. It follows the Gaussian distribution with
a mean of 0, variance of o2 and non-zero covariance. The covariance is given by:

V( X, X;j ) = azR(B, xi,xj-) (2.2)

where g2 is the process variance, R is the spatial correlation model (function), 8 is the
correlation function parameter and x; and x; are two different design points.

The likelihood formula is:

1 y — 1u'R71(y — 1u)
m_m 19P|7 202
(2m)2(0%)2|R|2

(2.3)

The stationary points of u and a2 can be found by calculating its partial derivatives with
respect to u and o, respectively, and making them equivalent to 0.

The optimal values of the likelihood function in terms of R are:

. _1UR'y
H=Tr11 (2.4)
1—10)'R~1(y — 14
57— ( ) vy — 1) 2.5)

n

Substituting the above two equations back into the likelihood function, the following
concentrated log-likelihood function is obtained:

n 1
—5108(62 —Elog(IRI) (2.6)
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The value of y that maximises the concentrated log-likelihood function is the kriging
prediction at the corresponding design point x.

Therefore, a kriging prediction at point x within the design field is as follows:
y=A+rR7'(y— 1) (2.7)

One of the greatest advantages of kriging approximation in optimisation design is that
it provides an error estimation of the predicted point - the mean square error (MSE):

1—7r'R™1r)?
S2 :62 ll_r,R_lr-l_(l’R—_ll) (28)

The correlation function [16], [17] is in the form of:

m
R(6,x;,%,) = 1_[ R0, %1, — % ) (2.9)
n=1

The correlation function is a function of Euclidean distance between any two points.
There are different correlation functions:

Exponential

R, (B,xin, xjn) = exp(—6,, |xin - xjn|) (2.10)
General Exponential

R, (Hn,xl-n,xjn) = exp(—6,, |xin - xjnl)pn, 0<p,<2(211)

Gaussian
2
R (8 X131, ) = exp(=6y, [x1, — ;. ) (2.12)
Linear
R, (en,xin,xjn) = max{0,1 — 6,,, |xin - xjn|} (2.13)
Spherical

R (Bn X1y ) =1 158, + 1585, & =min{1- 6, |x, —x |} (214
Cubic

Ri (8 i, xjn) =1-382+2&3, & =min{l— 6, |xin - x,-n| (2.15)
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Spline

1— 1582 + 3083, for0<é,<0.2

125(1—&)%, for02<& <1, & =6y |1, —x | (2.16)
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Figure 2.2. Correlation functions. (a) Exponential, (b) Gaussian, (c) Linear, (d) Spherical,
(e) Cubic, (f) Spline.
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The choice of the correlation function will have a direct impact on predicted values at
all unknown locations, therefore choosing the right correlation function is not a trivial
task. Kriging was originally invented to solve a geographical problem as mentioned
earlier, for geospatial datasets; it is often assumed that the sampling locations nearby
have similar response values, and their relationship is modelled by one of the correlation
functions.

In the context of optimisation, design problems can be categorised into continuous
optimisation problems and discrete optimisation problems in terms of continuity of the
variables. When solving continuous optimisation problems, it is reasonable to assume
that the respond surface is continuous, since a small variation in a parameter will
produce a similar design and it is therefore likely to result in a small change in the output
response. For an unknown problem, the general exponential function, and the Gaussian
function, are reasonable choices of the correlation function, since they include
information from all existing observations and provide smooth respond surfaces [18],
[19]. The formula for general exponential correlation function is as follows:

R, (Hn, Xi xjn) = exp(—6,, |xin - xjn|)pn, 0<p, <2 (217)

where 6,, and p,, are the hyper parameters, which need to be optimised. 8,, controls the
decreasing speed of the correlation between design sets as they move further apart and
pn controls the behaviour of the correlation function. p,, = 1 gives the exponential
correlation function, which has a linear behaviour around the origin. It is suitable for
approximating a response surface with low correlation. p,, = 2 gives the Gaussian
correlation function. It has a parabolic behaviour around the origin and is suitable to
approximate a smooth and differentiable response surface. Therefore, it has been
widely accepted that the Gaussian correlation function is an appropriate choice for
unknown continuous optimisation design problems (p, = 2) [20], [21]. Figure 2.4
illustrates the kriging prediction (25 design points) of the following 2D-objective function
(Figure 2.3) based on various correlation functions.

oo N b~ O

100

Figure 2.3. 2D-objective function.
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Gaussian, (c) Linear, (d) Spherical, (e) Cubic, (f) Spline.

25

s
e

T

74

i
S il
o

it

it

,,,,,’,’,/;:«,,/W,,,;;,,'
77 8)

i
sy
o

(@

o
Nt il
W
! /’

i
i S
S

QOO

%
s
B
i

7

BN
i
i

o

ol

%
R

;
iy
4

3

s

ta
i

%
L
it

o

7%

G

et
i




2.4 Sampling plan

In recent decades, more publications have focused on improving the sampling plan by
comparing the development of surrogate model methodologies. Since surrogate-based
optimisation approaches are often implemented for computationally time-consuming
problems, improvement in sampling efficiency will directly affect the overall design
efficiency. Depending on the design stage, the sampling plans can be divided into two
categories: initial sampling and infill sampling.

2.4.1 Initial sampling

The goal of an initial sampling plan is to gain the maximum amount of information from
the limited number of initial sampling points in the design. The design problems can be
classified into: physical experiments (laboratory experiments) or computer experiments.
Generally, physical experiments inevitably involve random error or noise and the
experiment results are likely to be different even when the same sampling points are
used each time. Computational experiments, on the other hand, are deterministic and
repeated sampling from the same design site provides identical output results.

For the above reason, the emphasis of the sampling plan for physical experiments and
computer experiments is not the same. Due to the existence of random errors in the
physical experiments, a number of sampling points are usually taken from the boundary
of the design space as this enables the user to capture the global trend more precisely
in the presence of noise [22]. The identical sampling and evaluation process is often
repeated to minimise the impact of random error. Sampling plans for physical
experiments include: factorial design, central composite design and box-behnken [23].

Drawbacks of these sampling plans are that they do not include a number of important
interior design features and that the design points are deterministic. Sampling plans for
computer experiments tend to place sampling points evenly in the interior of the design
space and the stochastic process is often observed within the sampling plan. The well-
known methods are: orthogonal array algorithm, pseudo-Monte Carlo and Latin
hypercube. Extensions and enhancements of the latter two sampling methods can be
found within the literature [24]. These sampling schemes avoid providing misleading
information in a harmonic response surface; the extensions of the Monte Carlo and Latin
hypercube sampling schemes also enable the user to specify the number of samples
when large numbers of sampling points are not possible in high dimensional problems.

The Monte Carlo scheme can be understood as a general random sampling approach
and it is a commonly used tool in numerical integration, statistical sampling, queueing
theory and global optimisation.
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The quasi-Monte Carlo method was developed in the 1950s and has been largely
improved by the accuracy demand in numerical integration, where instead of random
samples, deterministic samples are used; this led to a guaranteed error bound in the
integration and hence, an expected level of accuracy can be obtained. In addition to the
aforementioned advantage, it always achieves higher accuracy and efficiency in the
application of numerical integration. For a comprehensive study of the Monte Carlo and
Quasi-Monte Carlo methods, readers are referred to [25].
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Figure 2.5. (a) Monte Carlo method 200 points, (b) Monte Carlo method 1000 points

As stated in the beginning of this section, the goal of initial sampling is to gain maximum
information from the limited number of sampling points, hence minimising the
discrepancy in the initial samples would be the optimal choice in most scenarios. In the
following section, we briefly compare the quasi-Monte Carlo method and the Monte
Carlo method. In MATLAB, the Halton sequence and the Sobol sequence are the two
main methods for generating the quasi-random sequence. For random sequence
generation and methodology, readers are referred to the MATLAB Statistics and
Machine Learning Toolbox™ user manual [26].
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Figure 2.6. (a) Quasi-Monte Carlo method 200 points, (b) Quasi-Monte Carlo method
1000 points.

As can be seen from Figures 2.5 and 2.6, the quasi-Monte Carlo method provides more
uniform sampling over the design space and hence effectiveness in the context of the
initial design sampling. The Monte Carlo method is also used in a number of publications
to compute the hypervolume introduced in Chapter 7 for multi-objective algorithms.
The quasi-Monte Carlo method can also increase computation accuracy and efficiency
of the hypervolume.

2.4.2 Infill sampling

After the initial sampling process, the initial model is built. Infill points are additional
sampling points added during the model updating process. While the model
construction processes are essentially the same in different applications, the infill
criteria may vary depending on the field of applications. In the optimisation design, the
infill rule needs to consider both exploration of the global space and the exploitation of
the local area, while in a number of other fields of modelling (such as geometrical
analysis) the general purpose of the infill criteria would be to explore the problem space
on a global scale as much as possible.

Since Jones (1998) introduced the expected improvement (El) approach [27], it has
drawn much attention and quickly become one of the most popular infill criteria in
kriging surrogate model-based optimisation.

At any predicted point, kriging provides both the prediction value y and the estimated
mean square error $2 and denotes the minimum observation as ¥,,;,. The probability
of improvement at the predicted point over the known minimum point is calculated by
the Gaussian probability density function:
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Ymin

A~

PO S ) = [ Y@ dy =0 (222 (2.18)

— 00

where Y (x) is the Gaussian function at the predicted point, has a mean y and mean
square error §2 and ®(+) is the cumulative distribution function.

The amount of improvement is then:

Ymin
E() = f I-¢(F)dF (2.19)
] Feyw) 282w
¢(F) = exp[ Vo300 (2.20)

where I = max(V,,in — ¥, 0), F is the Gaussian variable N[$(x), $2(x)] and ¢(*) is the
probability density function.

Thus, El is:

E[I(x)]
Ymin — ¥(x) o Ymin — I (X)
1) >+S¢< 50) )' $>0 221

0, s =

— (ymin - y(x))q) <

where ¢ (+) is the probability density function.

The term (yml-n - ﬁ(x)) represents the amount of improvement expected at certain
point and the term $ represents the uncertainty at that point. Therefore, the El infill
criterion simultaneously addresses both exploitation and exploration.

A one-dimensional example of a kriging-based optimisation solver that uses El infill
criterion is illustrated in following figures. The dotted line presents the one-dimensional
test function; the solid blue line represents the kriging model; the orange dots are the
design points; and the solid black line at the bottom of the figure is the El infill criterion.
The next infill sampling point is taken at the location of maximum El. Figures 2.7 to 2.11
illustrate the kriging model at the 5%, 10t, 15t and 20™ iteration.
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A number of infill criteria that exist within the literature are more or less similar to the
expected improvement and maximising the expected improvement is considered to be
superior to other infill criteria in kriging modelling. However, details of these methods
are not studied in this chapter, they can be found in [24], [28] and [23]. These methods
include: locating the threshold-bounded extremes, locating the regional extremes,
minimising surprises, maximum variance, minimising the lower confidence bounding

(LCB), maximising the probability of improvement and maximising the MSE.

The following chapters address surrogate-based optimisation, including infill sampling
efficiency, robust optimisation, handling large datasets and multi-objective optimisation
Existing results are presented in each chapter and new solutions are proposed. The
proposed methods primarily focus on improving the efficiency of the optimisation

process.
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Chapter 3. Efficient sampling plan

3.1 Introduction

In situations in which the underlying problem overwhelms the computational cost
incurred from building a surrogate model, infill sampling becomes the most important
step that directly affects the efficiency of the overall optimisation process. For this
reason, it has been a major research topic within the literature.

In the previous chapter, we have covered the most widely accepted infill sampling
criteria in surrogate-based optimisation design, namely expected improvement (El). In
this chapter, we will discuss its major drawbacks and then introduce a modified version
which aims at addressing these issues and improving the sampling efficiency.

3.2 Elinfill criterion

One of the drawbacks in the standard El sampling approach is the slow convergence
speed when the design space contains multiple local minimum points. The original El
approach tends to over-exploit an existing attraction region until the local minimum is
found, this is also discussed in [29].

A test function was built to illustrate how standard El infill criterion work in one-
dimensional optimisation problems. The objective function contains three attraction
regions and one global minimum. The attraction region around the global optimum is
narrower compared to attraction regions around the other two local optimal points,
making it more difficult to find. Coordinates for the sampling points on the x-axis were
rounded to 3 digits, hence there are 1,001 viable design sites within the search region.
The objective is to find the global minimum at x = 0.108. The stopping criteria are as
follows:

1. Duplicated design sites (distance between any two infill points is less than
1073)%;

2. Maximum of 30 iterations;

3. The global optimum is found (in practice, the global optimum is often unknown
for an optimisation problem, but we could assume it is known in this example
without conflicting with the purpose of this test).

Note*: 1073 is a user specified parameter, it is the search interval of the optimisation

+

solver. For a normalised search space, a 107 search interval means that there are o=

1 (i.e. 1001) number of infill sampling criterion evaluations at each iteration, which
include kriging prediction, calculation of MSE and calculation of El; the location with the

maximum El value is selected as the next infill sampling location. A smaller search
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interval means better accuracy but more computing cost, a location change smaller than
103 means duplicated design sites.

The optimisation progress (at the 7™, 11t and 16% iteration) of the Kriging model
updated by the standard El infill criterion is depicted in the figures below. The objective
function is represented by a brown dashed line, the Kriging model is noted as the blue
line and El is the orange line at the bottom; furthermore, black arrows and the number
n indicate the infill sampling points taken at the nt" iteration.
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Figure 3.1. Kriging (standard El) at the 7t iteration.
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Figure 3.2. Kriging (standard El) at the 11t iteration.

Figure 3.1 displays the standard El approach at its seventh iteration. Four infill points
taken at the 3, 4t 6thand 7% iteration are within the region between 0.7 and 0.8 on
the x-axis. After the seventh iteration (Figure 3.2), another four infill points were added
to the region between 0.35 and 0.4 on the x-axis at the 8, 9t, 10t and 11 iteration,

respectively.
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Figure 3.3. Kriging (standard El) at the 16™ iteration.

In Figure 3.3 above, the standard El approach would suggest to continue to exploit the
second attraction region and take the next sampling point at x = 0.3664 at the 17t
iteration. After rounding x to nearest 3 digits, the next infill point is at x = 0.366.
However, there is an existing design site (11t iteration) located at x = 0.366. The first
stopping rule is reached and the program terminates at the 17t iteration.

In this test, the standard El approach can effectively locate the local minima within an
attraction region, but many evaluations were conducted to exploit the adjacent area of
the existing points before exploring other regions. This characteristic of the standard El
approach could be counterproductive in the initial stages of the optimisation process.
Indeed, emphasising exploration of the entire design space in the beginning of the
process is generally preferred. It is better to spread the sampling points more evenly in
the early stages of optimisation to avoid being trapped in a local minimum at the
beginning and consequently, improve the overall sampling efficiency.

3.3 Efficient sampling scheme

3.3.1 Exploitation and exploration

We illustrated the shortcomings of the standard El approach in the previous section; to
overcome its characteristic of over-exploiting a known region in the early stages of the
optimisation process, the mean square error (estimated error) between known
sampling points is taken into consideration.

Consider the following sampling criterion:
Sampling criterion = max{EIl } X MSE X weight + max{MSE} X EI ~ (3.1)

where max{EIl } and max{MSE} are scaling terms applied to account for different
values of components and thus, rescale the results. The estimated error at any unknown
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point is larger when it is farther away from existing design points. Therefore, the MSE
term will overwhelm the El term at the initial stage of the optimisation process, since
there are fewer known sampling points in the model, thus consequently emphasising
the exploration of the entire design space.

The MSE term can be considered the exploration part of the infill sampling criterion and
the El term is considered the exploitation part. Although exploration of the design space
is preferred in the early stages, exploitation of an attraction region cannot be overlooked,
since finding the global optimal point is the ultimate purpose of optimisation design and
applying the exploitation part well helps the program efficiently converge on the
optimum.

Consider the following method to calculate the weight term v:
v = pkm (3.2)

where b € ]0, 1], b controls the decreasing rate of weight term v, k is the k" iteration,

and m controls the initial value of v; both parameters b and m are user-specified

parameters. The user can specify the initial weight v using the following equation:
log(b)

m=1-10 (3.3)

If the initial sampling points have covered the design space reasonably well, it is often
sufficient to omit m and start with the weight v being equal to b.

Although the parameter b can be set to a value between 0 and 1, exclusive, the range
[0.9 1[ is more reasonable in practice. The weight v given in (3.2) decays exponentially;
once the user-defined parameter b has been specified, the weights on the exploration
term at all the iterations are predetermined. Therefore, b should be defined based on
the maximum number of iterations.

For an unknown 1-D problem, where the kriging-based optimisation solver is likely to
locate the optimum within 100 iterations, the value of b can be set to 0.95, i.e. after 20
iterations and 50 iterations the weight on the exploration part is around 36% and 7%,
respectively, compared to 100% weight on the exploitation part. For a 2-D problem, with
500 maximum number of iterations, the parameter b can be set to 0.995, i.e. after 200
iterations and 400 iterations the weight on the exploration part is around 37% and 13%,
respectively. Figure 3.4 presents the weight value applied to the exploration term at
each iteration.
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Figure 3.4. Weight at each iteration (b = 0.95).

As the optimisation progresses, more sampling points are added to the model; the
estimated error gradually loses weight and the focus is shifted to exploitation. The idea
of weight shares some similarity to the temperature used in simulated annealing [30];
the drawback of this approach is that the weight on the exploration and exploitation
parts is predetermined for each iteration step, which means that the programmer needs
to be knowledgeable about the complexity of the problem to efficiently obtain the result.

3.3.2 Dynamic balancing based on model quality

When the complexity of a design problem is unknown, using a fixed weighting
parameter could potentially lead to unwanted results, such as over-exploitation in the
early stages or over-exploration in later stages of the optimisation process; both
scenarios affect the modelling efficiency, however in the worst case, the program would
fail to find the optimal point.

Although this is a common problem in surrogate based optimisation, few solutions link
this problem to the accuracy of the model itself. In this section, an efficient method is
introduced to assess the surrogate model quality, which enables the program to
automatically balance the weight on exploration and exploitation parts, i.e. creating a
feedback loop from the optimisation result.

The predictor deviation d in iteration iter is defined as:
diter = f(xiter) — Prediter—1 (Xiter) (3.4)

Where X, is the location of the infill point in the iter'" iteration, f(x) is the
evaluated objective function at location x and Pred;.,—1(x) is the predicted objective
function value at location x in iteration iter — 1.

The deviation d;;,, is calculated and recorded whenever a new infill point is defined.
Finally, the historical root-mean-square deviation (RMSD) is:
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RMSD =

where m is the most recent iteration.

To obtain a generalised weight term, an exponentially weighted RMSD was applied in
this case to put more weight on recent results; the aim was to emphasise the recent
prediction error to reflect the optimisation progress. The exponentially weighted RMSD
is calculated using the formula:

: 2
m — m—iter .
RMSD _ iter=1(1 — @) X diter
weighted — m _ m—iter
iter:l(1 CZ)

(3.6)

where a is the decay parameter and 0 < a < 1. A larger a will put less weight on past
prediction errors and vice versa. When & = 0, RMSD,,¢;gnteq is identical to RMSD.

We obtained a generalised weight term that represents the current optimisation
progress in terms of model quality by taking the ratio of the exponentially weighted
standard deviation RMSDyeignteq and regular standard deviation RMSD of historical

prediction errors:
v = weighted RMSD/ RMSD (3.7)

The parameter v can be regarded as a measurement of model quality at any stage; the
value of weight usually lies within the range of [0, 1 + a]; and a controls the gradient
of the exponential weight function — unless « is insignificant and the current prediction
error is substantially larger than historical prediction errors. As the prediction errors
decrease, a will gradually move toward a smaller value close to zero.
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Figure 3.5. Kriging model at the end of the optimisation process.
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Figure 3.5 displays the shape of the model at the end of optimisation (the program
continued to explore the design region after the optimum was found) and Figure 3.6(a)
presents the historical prediction error at each iteration. Furthermore, Figure 3.6(b)
plots the standard deviation and exponentially weighted standard deviation at each

iteration and Figure 3.6(c) is the weight values at the corresponding iterations.
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As can be seen in Figure 3.6 (a), the large positive historical prediction error at the 9t
iteration indicates the objective function value of the new infill sampling points is much
smaller than the predicted one in the previous iteration. Larger deviations of historical
prediction errors are more often seen during the exploration stage, the prediction error
is expected to decrease as more infill sampling points have been added and the kriging
model becomes more accurate. As shown in Figure 3.6 (c), as the prediction error
decreases (more accurate model), the parameter v, and hence the weight on the
exploration term in (3.1), also decrease.

3.4 Test and comparisons

We compared the standard El sampling method and the proposed sampling scheme in
this section. Figures 3.7 and 3.8 illustrate the final surrogate model built using these two
infill criteria. Because both El and the new sampling criterion are deterministic, running
multiple optimisation tests on an identical test function will generate identical results;
for this reason, the test function used in this chapter includes a noise term. Standard El
infill criterion and the new sampling criterion were tested on an identical test function
and then the test function was rebuilt using a random noise term and another set of
tests was executed. The test function is as follows:

£ =a-cos(w(x —p))e” @) 1 b sin (e_(v(x_an) (3.8)

+cC- COS(U(X - T))e—(u(x—r))l + fwave

wherea=-35,w=1,p=01, m=2,b=-18,v=02,q,=0.75,k=6,c=
—2,u=03,q, =045, 1 =4 and f,,4ve is an interpolation function of a set of
randomly generated points.

Figures 3.7 and 3.8 illustrate one of the test results. It should be noted that the El infill
criterion does not always converge on a local minimal point; El typically fails to find the
global optimum.
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Figure 3.8. Final kriging model (Efficient sampling criterion).

Figures 3.9 and 3.10 illustrate the convergence histories of the standard El infill
approach and the proposed infill approach. The proposed infill approach had a higher
success rate of 96% compared to the standard El approach, which was 74%. Figure 3.9
indicates that the standard El approach converges faster compared to the new infill
criterion, but none of the failed El processes run more than 25 iterations; this further
indicates that duplicate design points were taken during the optimisation process, which
is the consequence of over-exploitation. The new infill sampling criterion, on the other
hand, converges more slowly but is more reliable and provides a much higher chance of
finding the global optimum.
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Figure 3.9. Convergence history of a standard El approach (success rate = 37/50).
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Figure 3.10. Convergence history of a modified El infill criterion (success rate = 48/50).

3.5 Efficient evaluation of infill criteria

3.5.1 Exhaustive search

In the context of global optimisation (based on surrogate modelling), the location of the

next sampling point is based on the infill point sampling scheme, which contains a set of

rules or formulae. For example, the standard El approach uses the predicted function

value, the estimated error and the current optimal value as the input variables and the

output is the expected improvement for that particular point; the point with the largest

expected improvement is the next infill point. In order to reliably locate the point with

maximum El, all points within the design space need to be considered. Thus, the

predicted objective function and the corresponding MSE need to be calculated at all

points. This may seem straightforward for a one-dimensional problem, but it could
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create another case of ‘combinational explosion’ in more practical, multi-dimensional
problems if the same sampling interval is maintained for El. With regard to four
dimensions, 1/100 of a step in each direction would require 108 calculations to find the
maximum El, which would even create a computational dilemma for faster surrogate
models. Conversely, a larger step of 1/10 would be easier to handle, but unlikely to
capture the actual optimum.

Figure 3.11 illustrates a one-dimensional example problem, showing the original
objective function (dotted brown line) and the kriging model (bold blue line), while the
bold cinnabar line at the bottom (with crosses on top) is the true El curve. Moreover,
101 El sampling locations were evenly distributed within the design region with a fixed
interval of 0.01. The small black crosses on top of the El curve mark the sampled El at
these predefined locations. As presented in the figure, the sampled El is a reasonable
approximation of the true El curve, but not overly accurate at the “critical” location
around the maximum EI.
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Figure 3.11. El at predefined sampling locations for a 1D test function

An alternative to exhaustively searching for the maximum sampling criterion value using
a predefined step size could be to treat the task as a small optimisation problem in its
own right. A direct search global optimisation method (such as genetic algorithm,
simulated annealing, particle swarm or gradient-based local optimisation methods)
could be employed for such a purpose, which would effectively eliminate the
aforementioned step-size problem. The drawback of using any heuristic optimisation
algorithm to replace the exhaustive search is that, depending on the algorithm and its
settings, there is always the possibility that the algorithm will not locate the optima of
the infill criterion function. The deterministic local search methods are more effective
and therefore, preferred in this scenario.
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3.5.2 Gradient-based search

Evidently, the calculated El function is always zero at known design points and its
optimal value always lies between two existing design points. Thus, it is possible to
increase the efficiency of its optimisation by utilising the local gradient-based methods.
In this way, roughly half the objective function prediction and MSE calculation can be
reduced compared with the exhaustive search method.

In Figure 3.12, the search begins from a known design location and gradually moves to
the next design point; each process is terminated when the local maximum El is found
and the gradient becomes negative.

2
[
=
©
>
5 0
2
=
o
=
i -2 1]
e)
[e]
A
0.0283
0.0142
_____ P L L e o
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1

X

Figure 3.12. Gradient search starts from known sampling points.

Furthermore, a more efficient optimisation method would be to initiate the gradient
search in the middle of two existing design points, as this is often the place where the
maximum El is found. This could speed up the process since it would only be necessary
to calculate a few predictions of the objective function and the associated MSEs. As
illustrated in Figure 3.13 below, the corresponding mid-point of two adjacent design
points on the El curve is marked by an “x”. The search began at this location and moved
toward both the left and right until the gradient became negative (or positive for the
left side). The total number of El calculations decreased by 75%.
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Figure 3.13. Gradient search starts from the mid-point of two sampling points.

As can be seen from Figures 3.11, 3.12 and 3.13, even 100 sampling points on the El
curve in a one-dimensional problem cannot locate the maximum El with any reasonable
accuracy. By improving the efficiency of the sampling process for the El function,
sampling points can be concentrated on more important areas and consequently, can
locate the maximum El more accurately, as illustrated in Figure 3.14 below; while the
predefined density of the sampling points for the El is doubled (200 points), only 50% of
the El evaluation is required.
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Figure 3.14. Gradient search starts from the mid-point of two sampling points
(sampling density doubled).

Applying the same methodology to our proposed infill sampling approach, we obtained
similar results. The 4t and 7t iterations are presented in Figures 3.15 and 3.16.
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Figure 3.16. Gradient search starts from the mid-point of two sampling points
(modified El criterion at 7t iteration).

infill criterion

infill criterion

It is worth mentioning that in exceedingly rare scenarios — when there is a small number

of known design sites in the design region (2-3 points in a 1D space) —the El may contain

two local maximum values between two adjacent design sites. Because this scenario

only occurs in the beginning stage of the modelling process, when the sampling points

are sparse, it could be countered by taking more initial sampling points or by using

exhaustive searches in the beginning.

For a multidimensional design space, in which the local maximum El is located between

multiple existing design sites, a multi-start strategy can be applied to replace a single

starting point (as in the 1D case) by simply generating starting points in the middle of

each pair of two existing design sites. This is a combination problem and the number of
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starting points p for n known points is p = nC2. The formula for combination problems is
as follows:

n! 1

nCr =—(n_r)! Xﬁ

where the symbol “!” stands for the factorial function. Hence, for 100 existing design
points, with starting points located between each pair of existing design sites, the
number of starting points p is:

100! 1 100x99

T g = — 49
(100 —2)! 2! 2 >0

p =100C2 =
Hence — in this case — 4,950 starting points for the gradient descent calculations are
generated.

3.6 Conclusion

A method for quantifying the model quality was presented in this chapter and a new
infill sampling criterion was introduced. The new criterion utilises the information of
model quality to dynamically self-balance the weight on exploration and exploitation
and to perform better in the test problems, both in terms of efficiency and convergence
rate.

A basic gradient search method for infill sampling criterion evaluation was discussed;
the new approach improved the accuracy of the optimisation process of infill sampling
criterion, while significantly increasing the efficiency.
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Chapter 4. Robust optimisation

4.1 Introduction

Problem formulation:
Minimise f(x) (4.1)
Subjecttox € D
gi(x,u;) <0,
u; € U, i=12..,n

where f(x) is the objective function to be optimised, g(x) is the constraints and u; is
the uncertainty set.

Since the objective function is a description of the relationship between the input
parameters and the output results in real-world problems, uncertainties are presented
in the majority of situations. These uncertainties can be the result of manufacturing
accuracy, material quality or environmental effects; to deal with the uncertainty, for
example in the process of manufacturing a product, the manufacturer may wish to
establish certain standards to control the quality of the product, often known as the
design tolerance. A product’s quality is acceptable within this tolerance range, while
others may be recycled or abandoned. To achieve the optimum output, with
consideration for tolerance, optimisation with tolerance is proposed; this class of
optimisation problems is sometimes called tolerance design optimisation or simply,
robust optimisation.

The history of robust optimisation can be traced back to 1989 when Taguchi first
introduced the concept of the quality of a design [31]. He introduced the signal-to-noise
ratio (SNR):

SNR = —10log,,(MSD) (4.2)

where MSD is the mean squared deviation in objective function value y, and
1 n
MSD == (- 9)? (43)
i=1

where n is the number of observations, y; is the corresponding objective function value
and y is the target point at which robustness is evaluated.

The target with the minimal objective function variance is obtained by maximising SNR.
The problem with Taguchi’s method is that it does not scale well with higher dimension
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problems; for an N dimensional/variables problem, the objective function evaluation is
in order of 2™,

While the general mathematical theories of robust optimisation algorithms have been
studied, the algorithm is generally directly implemented in practical problems. One
example of recent research results is [32]. Recent published papers and journals have
indicated that the development of robust algorithms tends to focus more on specific
real-world problems. Depending on the type of uncertainty, they can be further
classified into different classes of robust optimisation problems.

4.2 Robustness measures

Possible source of uncertainties [33]:

e Environmental/external sources:
Changes in the external environment are not described in the objective function.

e Imperfection of the mathematical model:
The objective function often is only an approximation of the design and may not be
perfectly mapped to the practical problem.

e Design tolerance/output uncertainty:
Machines in the real-world situation are manufactured up to a certain degree of
precision. Even if the optimum solution is known, the production line may not be
capable of producing the exact design.

Five types of robustness measures have been classified in [33] based on different types
of uncertainties.

e Deterministic robustness measure

e Expected robustness measure

e Probabilistic threshold robustness measure
e Statistical feasibility robustness measure

e Possibilistic robustness measure

Deterministic robustness measure: The method implemented for this type of measure

is the worst-case approach; the worst uncertainties are taken into consideration,
forming an individual function in addition to the objective function that needs to be
minimised, called the robust counterpart function. This type of robust design was
considered in this project since the topic is subject to the robust design under
deterministic uncertainties.
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Expected robustness measure: The uncertainty obeys a distribution function (which is

usually obtained based on statistics or experience). The robustness of the result is based
on the expected value of the robust counterpart function. This type of problems are
often solved as a multi-objective optimisation problem with the variance of the design
being the additional objective.

Probabilistic threshold robustness measure: This type of robustness measure is defined

by the probability of the objective function that is smaller than a predefined threshold
at a given location via repeated sampling.

Statistical feasibility robustness measure: statistical feasibility robustness measure

shares some similarities with the probabilistic threshold robustness measure; however,
it handles uncertainties which are related to the constraints, and its robustness measure
is defined by the probability of fulfilment of constraints.

Possibilistic robustness measure: Unlike the other 4 types of robustness measures which

are based on the complete information of the problem, uncertainties come from
potential error sources are classified as possibilistic uncertainties; the information of
these uncertainties are based on subjective estimations.

More information about robustness measures can be found in [33], where the author
has discussed each type of robustness measures in detail together with various types of
uncertainties. In addition, some discussion on methods for handling problems with
different type of robustness measures have also been given.

Robust optimisation problems are distinguished by the robustness measure of the
design; optimisation approaches to the problem depend on how uncertainty is treated.
The first two types of robustness measures are more commonly found within the
literature. In this chapter, we consider the first type of robustness measure, namely the
deterministic robustness measure, to be the conservative approach to robust
optimisation design. This type of problem for robust optimisation is also referred to as
tolerance design.

Unlike standard global optimisation problems, complex engineering robust optimisation
designs are often problem-specific. Depending on the particular problem, the
uncertainty measure is defined specifically and the solution varies accordingly. For
expected robustness measures, the design problem can be treated as a multi-objective
optimisation problem [32] [33] [34], where the uncertainty (variance) is another
objective to be optimised along with the objective function (mean). The robust solution
is then chosen from the Pareto front by the decision maker. When the uncertainty
distribution variable is unknown, a more conservative approach is to solve the problem
in the worst-case scenario.

The work of Song Xiao on Kriging has developed several methods to address the
robustness of the design based on the surrogate model, including the six sigma quality

approach and enhancements made to improve the performance of the worst-case
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optimisation method and average performance assessment [35] [36]. The six sigma
approach has been found to outperform other methods in assessing the robustness
measure of optimal solutions [35].

The output f of a black-box function, when the input variable x contains deterministic
types of uncertainties, can be expressed by a simplified equation (ignoring possible
other sources of uncertainties and assuming the uncertainty € is independent of the
input variable x) [33]:

f=f(x+e¢) (4.4)

where g[—¢, €], the distribution of uncertainty &, is unknown, but the magnitude is
bounded by a given range €.

X, —€ X, +€

—

Xp— € Xy +€

<

X Worst-case optimal
Original optimal

Figure 4.1. Worst-case problem 1D examples.

(X1 — €1, X2 + €2)

(X1 + €1,%3 + €3) _
/ Robust optimum

= Infeasible region
Infeasible region
(X1 —€1,X2 — €2) (x1 + €1, x5 — €3)
X2
- Infeasible region

X1
Figure 4.2. Worst-case problem 2D examples with constraints.

Two simple examples are demonstrated in Figures 4.1 and 4.2. The 1D illustration
reveals that, depending on the size of the uncertainty g, the preferred worst-case robust
optimum may differ from the original (theoretical) optimal point. This is due to the fact
that when the parameter varies within the specified limits (e.g. imposed by
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manufacturing tolerances), the performance worsens significantly, whereas the robust
optimum ensures good performance throughout. The 2D example illustrates that the
worst-case optimum needs to consider design constraints, as the optimum solution with
uncertainties must not violate the infeasible region.

4.3 A brief review of existing approaches

For a deterministic type of uncertainty, the basic approach is to transform the robust
optimisation problem into a standard optimisation problem by optimising the worst-
case of the original objective function (multiple objective function evaluations are
needed at each design stage). The number of objective function calls may be significantly
increased and many unimportant and possibly nearly duplicated design points will be
allocated during this process, thus making the optimisation extremely inefficient. This
large number of function calls will be of particular concern to designers, especially when
the objective function is expensive to evaluate, which is often the case in
electromechanical or electromagnetic design where the main tool for field modelling
involves numerical computation (such as finite elements).

Recently, a number of more efficient kriging-based approaches for solving worst-case
optimisation problems have been proposed within the literature. The authors of [37]
use the mean and variants to assess the robustness, while their proposed strategy
utilises the gradient information computed from the kriging model. In [38], the El infill
sampling approach is combined with a relaxation procedure based on a kriging model.
In [39], the El infill sampling approach is applied to the worst-case response surface and
calculated based on the kriging model.

4.4 Worst-case problems

Worst-case problems are also known as min-max problems; these two names are used
interchangeably in the literature. The name describes the two main components within
the optimisation process, that is solving a min-max problem is to find the location of the
minimal worst-case objective function, where the worst-case objective function at a
given location is equal to the maximum objective function value within the design
tolerance of that location.

A 1D-worst-case problem is presented in Figure 4.3; the tolerance in this case is x + 0.04.
The grey line shows the original objective function, and the brown dashed line shows its
worst-case objective function.
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Figure 4.3. Original objective function and its worst-case objective function.

One of the difficulties of robust optimisation using a surrogate modelling approach is
that the surrogate model is built based on the known sampling location of the objective
function, without counting the robustness measure and after accounting for the worst-
case scenario. The geography of the response surface can be quite different from the
original objective function and this response surface is not known until the worst-case
measure is applied to existing design sites. Therefore, the infill criteria based on the
surrogate model might be misleading if the tolerance is comparatively large, resulting in
inefficient sampling point allocation.

A majority of the approaches used within the literature determine the robustness
measure of the problem using the robust counterpart, where the uncertainty is added
to the objective function; the robustness of this design site is evaluated after the point
is taken. In the worst-case scenario, two additional sampling points are taken to
compute the robustness counterpart. This approach is extremely inefficient, especially
for computationally expensive design problems. An example of this approach is
illustrated in Figure 4.4. In this chapter, we propose a more active approach that takes
the robustness measure into consideration during the infill sampling process.
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Figure 4.4. (a) Kriging model based a passive approach, (b) worst-case estimation.

4.5 Atwo stage approach

This section presents a two-stage approach for solving computationally expensive,
worst-case optimisation problems. We focus on maximising the usage of available
information, while delaying the calculation of the worst-case value at sampling points to
achieve a more efficient sampling scheme for the worst-case type of robust design
optimisation.

The worst-case optimisation problem is often referred to as the minimax problem and
is characterised by an extra “layer” of optimisation. Therefore, the infill sampling criteria
for global optimisation are often found inappropriate within the context of the worst-

case optimisation problems. The worst-case value of the objective function at any given
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point does not depend on information given by that point alone (including the kriging
prediction, mean squared error MSE, gradient, etc.), since information from its
neighbouring points also needs to be taken into account.

4.5.1 First stage

The algorithm consists of two stages: in the first stage, the kriging model is updated by
sequentially adding infill points at each iteration based on the worst-case expected
improvement (WCEI) — this expected improvement measure is recalculated from

standard El, by taking the minimal El value within the worst-case region of that design
point (design site):

WCEI(x) = max{min[EI(x + €)], 0} (4.5)
x+e€eX

where X is a set of points located within the worst-case region of the unknown point x.

A 1D example is illustrated in Figure 4.5, where the boundary € of the worst-case design
is +0.3.
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Figure 4.5. The worst-case regions of existing design sites in a 1D example.

The extra layer of the minimax problem is embedded within the WCEI; the new infill
sampling point will be located where the minimal expected improvement around the
target point is the largest. The WCEI is equal to zero at the locations within the worst-
case region of existing design sites; consequently, these areas are banned from being
future infill locations at the model updating stage. During the process of model updating,
the worst-case estimation of the objective function is computed simultaneously based
on the kriging model that was constructed using the existing design sites at that iteration.
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4.5.2 Second stage

The second stage is triggered when the maximum WCEI within the design space
becomes less than a predefined value or when stage one has exceeded its allowance, if
such a limit has been imposed. An exploitation process occurs in stage two; the worst-
case region around the worst-case optimum is exploited and validated using a modified
El approach, where instead of calculating the improvement, an expected “deterioration”
is estimated to indicate where the maximal worsening is located within the worst-case
region of the worst-case optimum

E[D(x)] = {@(x) — )@ (u(x)) + §¢(u)0 , z z g “+6)

U= Y(x) = Ymin
B S(x)

This process is repeated until the value of the expected deterioration is zero or smaller

(4.7

than a predefined value; at this stage, the location of the worst-case estimated optimum
is added as the next infill point and the associated objective function is evaluated. When
the range of the underlying objective function surface is large, both the location and
value of the actual worst-case optimum can differ from the estimated one. Therefore,
the above validation process provides a more accurate prediction within the area of
interest and thus, helps the program efficiently and accurately locate the best worst-
case optimum.

4.6 Examples

4.6.1 Test function

The worst-case optimisation routine following the two-stage approach is first illustrated
using a 1D test example. Figure 4.6 presents the original test function and its associated
worst-case distribution; for the purpose of illustration, the design tolerance is assumed
to be £0.035. It can be observed that both the landscape and, in particular, the position
of the optimum differ noticeably between the original function and the worst-case
version.
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Figure 4.6. The original test function and its worst-case value.

4.6.2 Stage-one

In Figures 4.7 (a) to (f), the grey solid line depicts the objective function, while the blue
dashed line represents the kriging prediction. The black solid line at the bottom of the
figures shows the scaled values of infill criteria.

Figure 4.7 (a) illustrates the design tolerance and the initial kriging model with 5
sampling points, during stage-one, where new infill points are added based on the WCEI
criterion. Figure 4.7 (b) shows the kriging model at the 10 iteration; it provides a better
approximation since more sampling points are added. As shown in Figure 4.7 (c), the
maximum WCEI within the design space is less than the predefined value of 1073*, the
optimisation solver then enters stage-two.

Note*: This value can be specified by the designer based on the information available
from the design problem; a smaller value will result in more infill points been added in
stage one, consequently more exploration and exploitation before stage two; 1073 is a
reasonable value for the normalised test function in our case.
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Figure 4.7. (a) Design tolerance and initial kriging model, (b) kriging model with 10
sampling points, (c) kriging model with 12 sampling points.

4.6.3 Stage-two

The optimisation solver enters stage two and the region around the estimated worst-
case optimum at x = 0.74 (see Figure 4.8(a)) is exploited. The ED infill criterion in Figure
4.8(b) depicts the value of expected deterioration within this region.

The kriging model is updated during the validation process, as in Figure 4.8 (c); the value
of the expected deterioration is smaller than the predefined value 1073 at the 15%"
iteration; the final worst-case optimum is then located at x = 0.72 in Figure 4.8 (d). The
last step may be repeated multiple times if the updated kriging model shows a different
estimated robust optimum from previous iterations. Figure 4.8 (e) presents the final
shape of the estimated worst-case objective function and the underlying worst-case
objective function.
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Figure 4.8. (a) Estimated worst-case model at the 12%" iteration, (b) kriging model and
ED infill sampling criterion at the 12 iteration, (c) maximum ED is less than 1073 at the
15t iteration, (d) estimated worst-case model at the 15 iteration, (e) final estimated
worst-case function and the located worst-case optimum.

As previously mentioned, the worst-case response surface of the original objective
function may change dramatically from the original one. A number of additional results
are provided by Figure 4.9.

objective function

worst-case objective function

(a) (b)
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Figure 4.9. (a), (c), (e) kriging models and the original test function, (b),(d),(f) predicted
robust models and robust version of the original function.

4.7 Solving practical problems

4.7.1 T.E.AM. 22

T.E.A.M. workshop problems [40] consist of a set of practical electromagnetic
optimisation design problems for benchmarking the performance of algorithms. A list of
benchmark problems can be found on the International Compumag Society website.
Each function evaluation requires the full finite element solution of a non-linear problem,
which is computationally inefficient if directly used in combination with any optimisation
method. Therefore, using a surrogate model based on optimisation techniques is
preferred.
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We tested the proposed approach on two practical benchmark problems. For both
problems, the uncertainty boundary for each design parameter (upper and lower limit)
was defined as 1% of their given design range.

The superconducting magnetic energy storage device in T.E.A.M. problem 22 [41]
contains two superconducting coils; the design objective was to achieve a minimal stray
field when the stored energy was equal to 180 MJ. The configuration of the inner coil is
delineated in the 3 Parameter (“discrete”) case, and therefore three parameters were
optimised: namely, the radius R, height h, and thickness d; of the outer coil, as indicated
in Figure 4.10.
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Figure 4.10. The superconducting magnetic energy storage device [40], [41].

The objective function is given as:

- Bsztray n |E - Erefl

OF = 4.8
Br%orm Eref ( )
where E,op = 180 M/, Byorm = 3 uT and B, is defined as:
25 Bstrayil
Bsztray == ZZS T (4.9

The magnetic field needs to meet certain physical conditions in order to guarantee
superconductivity, as shown in Figure 4.11. This is known as the “quench condition”.
Quench condition is modelled by following inequality constraint:

J| + 6.4|B| —54.0 < 0 (4.10)

where J is the current density and B is the maximum magnetic flux density, measured

in A/mm? and T, respectively.

65



=)
[=]

i
L=—=3

.
<

b2
=]

Curtent density J [A/mm’]

(—]

1 2 3 4 5 6
Magnetic flux density B [T]

o

Figure 4.11. Critical curve of an industrial superconductor [40], [41].

Table 4.1 Comparison of performance of various optimisation methods (T.E.A.M. 22)

. . Optimum No of

Algorithm Optimum R; d; hy/2 .
(MagNet) function calls
GA 0.134 0.1270 3.040 0.386 0.240 2400
SA 0.098 0.0916 3.078 0.390 0.237 5025
HuTS 0.089 0.1034 3.080 0.380 0.246 3821
NTS 0.089 0.1278 3.080 0.370 0.254 1800
PBIL 0.101 0.110 3.110 0.421 0.241 3278
Kriging EI 0.0875 0.0875 3.090 0.394 0.236 211
Kriging AWEI  0.0875 0.0875 3.090 0.400 0.232 323
Kriging WCEI
0.1459 0.1459 3.021 0.391 0.250 277

(worst case)

Genetic algorithm GA [42]; Simulated Annealing SA [43]; Tabu Search HuTS [44];
Universal Tabu search [45]; New Tabu Search NTS [46]; Kriging EI [35]; Kriging AWEI [35]

Table 4.1 summarises the findings by citing the results from other publications and
including the robust “worst-case” design. To compare and analyse the optimal value, an
additional ‘optimal value’ has been obtained by implementing an identical finite-
element model (FEM) setup (using MagNet software) for all the optimisation methods
in the table. The outputs from the MagNet FEM are similar to the original values taken
from the literature. The results show that kriging-assisted optimisation algorithms
performed consistently well by achieving a marginally better solution with reduced
effort (the number of necessary function calls reduced by almost an order of magnitude).

Not surprisingly, the worst-case optimal value is slightly larger than the non-robust
optimum obtained by other methods in Table 4.1; this indicates that the response

surface around the optimum is not flat, but nevertheless relatively shallow. The location
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of the worst-optimum also shows a slight difference from other optima, indicating that
the response surface around the optimum is not symmetrical about Rz, d; or hy; however,
a smaller value of Ry indicates the response surface being shallower towards smaller R;
for the area within the specified 1% uncertainty of parameters, while the opposite
conclusion can be drawn for parameter h,.

Table 4.2 Comparison of time cost between various optimisation methods

Time (s) per Estimated time Estimated
(s)p Time (s) per Number of

Algorithms 103 iterations  (ms) per iteration . . overall
. . FEM call iterations .
(algorithm)* (algorithm) time (h)
GA 3.302 3.302 ~22 2400 14.7
SA 2.197 2.197 ~22 5025 30.7
HuUTS 5.347 5.347 ~22 3821 23.4
uTsS - - ~22 1800 ~11.0
NTS - - ~22 3278 ~20.0
Kriging El 52.04 52.04 ~22 211 1.3
Kriging AWEI 59.12 59.12 ~22 323 2.0
Kriging WCEI 726.39 726.39 ~22 453 2.9

*Note: Experiments were carried out on a 3.4GHz PC. The MATLAB codes for Universal
Tabu search UTS and New Tabu Search NTS were not available; the times for running
non-surrogate model-based optimisation algorithms are very small (around 1000 times
smaller) compared to the time for each FEM call, hence they can be neglected without
affecting the comparison.

Table 4.2 displays the estimated overall time cost for each algorithm of Table 4.1. The
overall time cost is estimated based on the time cost per FEM call, number of FEM calls,
and the time consumed by the optimisation algorithm. Each algorithm has been set up
to solve a dummy test function (computation cost of the objective function can be
neglected), the algorithm carried out 1,000 iterations for the objective problem and the
time cost for each iteration was estimated.

It can be observed that the overall time cost of kriging-based approaches is much smaller
than other direct search optimisation algorithms. This is mainly due to the high number
of function calls used by these algorithms and the high computation cost of each
objective function call. Since there is an extra layer of optimisation process in the
proposed kriging-based approach for the worst-case optimisation, the time cost per
iteration is much higher than for other regular kriging approaches. Nevertheless, when
the objective function is time consuming to evaluate, kriging-based approaches have
shown a great advantage in terms of time efficiency over other direct search
optimisation methods.
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4.7.2 T.E.A.M. 25

The device presented in Figure 4.12 is a die press with an electromagnet used to create
a strong magnetic field to orient magnetic powder in a component to produce an
anisotropic permanent magnet. Figure 4.12 illustrates a close-up picture of the device;
the model in Figure 4.13 was built with a 2D finite element model using MagNet
software. The objective of this problem is to optimise the shape of the two die moulds

so that the objective function is minimised.

L3

Vo
e 113 50,0
e e
b TR}
1 o
1 (1]
H \
BST L w 4
> #><] |°°
iy :
cavity | M5 c‘
! L
_____.b_‘___,.,x
0\ die‘molds
11
coi]\
\
pole piece air
electromagnet
Figure 4.12. Device in T.E.A.M. problem 25. [37], [43].
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Figure 4.13. Detailed 2D view of the device.
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Problem description:

In Figure 4.13, the shape g-h of the inner die mould is assumed to be a circle, while the
inside shape i-j-m of the outer die mould is regarded as an ellipse and line j-k is parallel
to the x-axis.

The ampere-turns of each coil is 4253AT.

The die press and electromagnet are made of steel and the B-H curve of the steel is given
as:

1.5

1.0

B(T)

05 [

d 1 | I |
0 2000 4000 6000 8000

H (A/m)

Figure 4.14. B/H curve of the steel.

Table 4.3 Typical B/H curve values

B(T)  H(A/m)|B(T)  H(A/m)
0 0 127 1164
011 140 132 1299
018 178 136 1462
028 215 139 1640
035 253 142 1851
074 391 147 2262
082 452 151 2685
091 529 154 3038
098 59 156 3395
102 677 1.6 4094
108 774 164 4756
115 902 172 7079
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The magnetic flux density is given by:
{Bx = 0.35cos 6 (T)

B, = 0.35sin 6 (T) (4.11)

where B, and B,, are the x and y components of flux density at a point along the e-f line
at an angle of 6.

R1, L2, L3 and L4 are the design parameters to be optimised so that the objective
function W is minimised. The objective function W is:

W = Z?:l {(Bxip - Bxio)2 + (Byip - Byio 2} (4’-12)

where B, and B,, are the x and y components of magnetic flux density at points along
the curve e-f, while subscripts p and o denote the calculated and desired values,
respectively. The constraints are listed in Table 4.4 and the results in Table 4.5.

Table 4.4 Constraints of the parameters

Variable Lower-boundary Upper-boundary
(mm) (mm)
R1 5 9.4
L2 12.6 18
L3 14 45
L4 4 19

Table 4.5 Comparison of performance of various optimisation methods (T.E.A.M. 25)

. MagNet No of
. Optimum . R1 L2 L3 L4 .
Algorithms Optimum function
(10 ] (mm) (mm) (mm) (mm)

(104 calls

GA 2.686 1.3391 7.2996 14.174 14.001 14.326 3421
SA 1.622 2.0696 7.2252 14322 14.110 14.306 2145
HuTS 0.500 1.3502 7.3780 14.613 14371 14.204 1580
UTS 1.050 1.4647 7.5487 14.908 14.506 14.416 931
NTS 0.648 1.6907 7.4337 14732 14428 14.237 575
Kriging El 0.452 0.4527 7.2 14.1 14 145 265
Kriging AWEI 0.412 0.4125 7.2 14 14 145 214
Dual kriging 0.323 0.3231 7.1 13.9 14.014 14.273 234

Kriging WCEI

5.4442 5.4442 7.104 13.891 14.035 14.270 453

(worst case)
Genetic algorithm GA [42]; Simulated Annealing SA [43]; Tabu Search HuTS [44];
Universal Tabu search [45]; New Tabu Search NTS [46]; Kriging El [35]; Kriging AWEI [35];
Dual kriging [47].

70



Similarly to the previous T.E.A.M. problem 22, an additional ‘optimal value’ has been
obtained by implementing an identical finite-element model (FEM) setup (using MagNet
software) for all the optimisation methods in the table. The main observations resulting
from the T.E.A.M. 25 study is broadly in line with what was previously demonstrated,
although — on this occasion — the worst-case optimum obtained by kriging WCEI in Table
4.5 is a magnitude larger compared to the non-robust optimum obtained by other
kriging methods; this indicates that unlike in the previous case, the response surface
around the optimum is much rougher and is likely to have steep hills around the
optimum. The fact that the location of the worst-case optimum did not shift in a
particular direction indicates that the response surface within the specified 1%
uncertainty of parameters around the optimum location is equally rough and/or has
steep hills. The higher number of FEM calls (452 FEM calls compared to around 230 FEM
calls) shows that many more infill sampling points had to be added to the model before
the final solution was obtained; part of the reason may be due to the rough response
surface around the optimum location, hence a larger number of FEM calls during the
validation process. However, it should be noted that different initial sampling locations
alone can cause a different total number of required FEM calls at the end; moreover,
the worst-case optimisation solver may use a different number of function calls to
obtain the final solution or converge to a different local/global optimum, even when an
identical FEM is implemented.

It is also interesting to note that for both T.E.A.M. problems, the originally published
results (when the problems were first suggested) appear to be reasonably robust, more
so than the subsequently offered solutions. Nevertheless, the most important
conclusion from this study is that the kriging-assisted optimisation is reliable and offers

superbly efficient computation, both for the “traditional” (global) optimisation and the
robust formulation. Finally, the worst-case (minimax) approach appears to be a helpful

methodology for robust optimisation.

Table 4.6. Comparison of time cost between various optimisation methods

Time (s) per Estimated time  Time (s) Estimated
) ) ) ) ) Number of
Algorithms 103 iterations  (ms) per iteration per FEM . overall

(algorithm)* (algorithm) call Iterations time (h)
GA 3.302 3.302 ~10 3421 9.5
SA 2.197 2.197 ~10 2145 6
HuTS 5.347 5.347 ~10 1580 4.4
UTS - - ~10 931 2.6
NTS - - ~10 575 1.6
Kriging El 52.04 52.04 ~10 265 0.7
Kriging AWEI 59.12 59.12 ~10 214 0.6
Dual kriging 80.20 80.90 ~10 234 0.7
Kriging WCEI 726.39 726.39 ~10 453 1.3

71



*Note: As before, experiments were carried out on a 3.4GHz PC. The MATLAB codes for
Universal Tabu search UTS and New Tabu Search NTS were not available; the times for
running non-surrogate model-based optimisation algorithms are very small (around
1000 times smaller) compared to the time for each FEM call, hence they can be neglected
without affecting the comparison.

In a similar comparison as before, Table 4.6 displays the estimated overall time cost of
each algorithm of Table 4.5. The overall time cost was estimated based on the time cost
per FEM call, the number of FEM calls, and the time consumed by the optimisation
algorithm. Each algorithm has been set up to solve a dummy test function (where the
computation cost of the objective function can be neglected); the algorithm carried out
1,000 iterations for the objective problem and the time cost for each iteration was
estimated.

Comparing with the previous T.E.A.M. problem 22, the time cost per FEM call is
approximately halved for the T.E.A.M. 25 problem. Although the overall time savings are
somewhat smaller than for the previous T.E.A.M. problem, the kriging-based methods
still show a great advantage in time consuming design optimisation problems.

4.8 Conclusions

A two-stage approach to worst-case optimisation problems was proposed and details of
the algorithm discussed. The suggested method does not compute the worst-case value
nor the corresponding robustness measure for any design site during the model
updating stage. This is to avoid the objective function evaluation at a location that would
contribute less to the overall model landscape, which would have occurred if the worst-
case value had been evaluated for the newly added infill point. Instead, the explicit
search for the robust optimum occurs in the second stage after the model updating
process has completed, including the addition of a validation process to exploit the
region around the estimated worst-case optimum. A more efficient infill criterion
selection algorithm was introduced. The proposed optimisation method was validated
using simple test functions and two multi-dimensional practical electromagnetic design
problems, T.E.A.M. 22 and T.E.A.M. 25. The test results indicate that, with the aid of
kriging surrogate modelling techniques, the proposed methodology significantly
reduces the number of FEM function calls compared to other methods and thus, is
computationally significantly efficient for both global and robust optimisation.
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Chapter 5. Kriging for larger datasets

5.1 Introduction

Surrogate modelling techniques are helpful tools in design optimisation, especially when
the underlying problem is computationally expensive. This situation frequently arises in
the design of electromagnetic devices, where time-consuming finite element
simulations may be necessary to ensure accurate performance prediction [7]. Kriging-
based methodologies have been shown to be particularly useful and accurate when
estimating the underlying problem while reducing the number of required objective
function calls. Unfortunately, the complexity of the algorithm increases, since solving
the kriging model involves the inversion of a correlation matrix, which results in 0(n®)
computation cost and O(n?) storage cost[48]. Hence, depending on the computer’s
hardware, there is a limitation on the maximum number of design points that a
conventional kriging model may be built upon [49][50]. The exponential growth of the
correlation matrix size led to the well-known bottle-neck of the kriging method. Thus,
efficient application of kriging is often limited to smaller scale design problems.

Much effort has been devoted to addressing this bottlenecking phenomenon that occurs
when kriging methods are applied to large datasets. A majority of methods approximate
the original matrix to handle large datasets, at the expense of accuracy. Approximation
shares the same ideals as surrogate modelling itself; a kriging model is built to
approximate a more computational expensive problem at the expense of the original
problem’s accuracy. Some examples include: zooming-in modelling [7], moving-window
kriging [51], covariance tapering [52] and fixed rank kriging [49]. Although these four
methods provide valuable works on reducing the size of covariance matrixes, there are
a number of limitations. For example, moving window Kriging[51] is not suitable for infill
sampling-based optimisation and a popular El criterion requires an MSE at unknown
locations to be calculated to generate the next infill point. The moving window approach
would either cause non-continuous MSE values at the boundaries of windows or
generate different MSE values for the same unknown location due to different kriging
models. The covariance matrix tapering approach relies on the sparseness of covariance
matrixes. In MATLAB, the storage requirement for a sparse matrix with 50% zero
elements and a full matrix is approximately the same; in other words, the percentage of
zero elements in a sparse matrix needs to be greater than 50% for it to have an
advantage in storage space over a conventional full matrix. This significantly limits the
effectiveness of the covariance matrix tapering approach. Fixed rank kriging is designed
to reduce the computational burden of massive datasets instead of addressing the
memory problem.
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In this chapter, we present two independent methods that address the memory
problem in covariance matrices. The first approach is dual kriging, which builds two
kriging models on two sets of data and separates the data using a critical points selection
mechanism. The second approach involves model centring and points aggregation. Both
methods enable the memory usage of the covariance matrix to be fixed at a constant
level at the expense of information.

5.2 Dual kriging

The dual Kriging approach proposed in this chapter is based on the idea that as
optimisation progresses, additional design points are added to the surrogate model;
once the surrogate model (of the entire design space or an area within the design space)
is reasonably accurate, only some of the sampling points are needed, especially those
close to the areas considered potentially attractive. Thus, as the total number of
sampling points increases and the computer’s memory limit is neared, we may instead
remove some of the less attractive points from the current kriging model to keep the
total number of points constant; the removed points may be used to create a secondary
kriging model.

Consider the kriging model in Figure 5.1 below, where the grey line shows the objective
function and the blue dashed line shows the kriging model with 20 sampling points.
Based on the ideas discussed in the previous paragraph, some points can potentially be
removed, as illustrated in the Figure.

Objective function

objective function
o o o
>~ o P

©
)

important points

| 1 1 | 1 | | 1 |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 5.1. Ordinary kriging model with 20 sampling points.
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5.2.1 Points removal

Design points that are located in a flat region away from the current global optimal or
have a similar objective function value while geographically close to other known design
points are considered to be less important. For each known design point, its nearest n +
1 number of neighbour points is found, where n equals the dimension of the problem,
then weight the function value at each neighbour point, where the weight is inversely
proportional to the Euclidean distance of the point and that neighbour. The weights are
scaled so that they sum to 1. For the it" existing point in the design space, the weight of
its k" nearest neighbour is given by:

n+1 -1

1 1

weight, (i) = —- Z— 5.1

ghty (D) 4\ La (5.1
j=1

where d, is the distance between the it" design point and its k" nearest neighbour.
The weighted value Y,¢;gnteq Of all nearest neighbours at the location of the target point

is therefore:

n+1

Vueigniea(D = Y (weight; ) - N()) (52)

j=1

where N is the function values of the neighbours of the it" existing point and the
removal criterion C is given by:

n+1

C(0) = Vuetgneea® =YD - Y (5:3)

J

where Y (i) is the function value at the i"* existing point.

5.2.2 Points allocation

Figure 5.2 is the plot of the memory savings curve against the preserved sampling points
in the main Kriging, both in terms of percentage. There exists a trade-off between the
gain of memory savings for each design point removed and the total percentage of
memory savings. The gain of memory savings is largest at the left end of the curve
(where its differentiation is largest), while the total amount of memory savings is largest
at the right end of the curve 9where its differentiation is smallest). Thus, as more points
are removed from the main kriging model, the memory savings decreases.
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Figure 5.2. Efficiency of sampling points allocation.

The overall reduced memory cost Y can be written as:

m? + n?
y=1-—" (5.4)

X=— (5.5)
where m and n are the number of sampling points in the main and secondary kriging; N
is the total number of sampling pointsand N = m + n.

Therefore, the relationship between the overall memory savings and the percentage of
sampling points in Figure 5.1 can be calculated as:

Y =2X(1-X) (5.6)

Differentiating Y with respect to X, we obtain the point’s removal efficiency:

dY—Zl 2 5
o =201-2%) (5.7)

For 0 < X < 0.5, the gain of memory savings for each design point removed is at its
maximum when X = 0 and minimum when X = 0.5.

To make the overall memory savings meaningful while retaining a relatively high gain of
memory savings for each design point removed, we can choose to operate between 20%
and 30% of the reduced number of points (shaded area). For example, at 20% (main
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Kriging model preserving 80% of points) and 30% (main Kriging model preserving 70%
of points), the memory saving is 32% and 42%, respectively.

While applying dual kriging could potentially save computer memory demands by as
much as 50% compared to a single kriging approach for the same number of sampling
points, the major challenge of the dual kriging approach lies in the selection of the new
sampling points. If only the main kriging model were to be considered, there is a risk of
a new location to be at or close to a point which has just been removed. Thus, to inhibit
this scenario, the location of the removed points must be recorded and taken into
consideration during the infill point selection process. There are various possible ways
to achieve this goal, such as using MSEs from both kriging models so that a modified
MSE is used to replace the MSE calculated from a single model. The modified MSE is the
product of the MSEs from the main and secondary kriging models. By using estimated
error from both kriging models, information from previously sampled points is used
efficiently.

5.2.3 One-dimensional example

The proposed dual kriging approach is illustrated by a 1D example in this section, the
test function is given as follows:

f() =a-cos(w(x - P))e_(w(x_p))m + b - sin (e_(”(x_q))k) (5.8)

+c- COS(U(X - r))e—(u(x—r))l + fwave

wherea=-35,w=1,p=01,m=2,b=-18,v=02,q; =075, k=6, c =
—2,u=0.3, q, =045, =4, and f,4ve is an interpolation function of a set of
randomly generated points.

The maximum number of sampling points is limited to 20. The second kriging starts
when the number of existing points reaches 10 points, which equals half of the
maximum number of sampling points allowed.

The process is illustrated in Figures 5.3-5.9. The solid grey line is the underlying test
function and the orange dashed line and points are the main kriging model and
associated design points, respectively; the green dashed line and points are the
secondary kriging model and associated design points, respectively; the solid black line
is the infill criterion based on modified MSEs from both kriging models and the dashed
vertical line represents the next infill location. As the optimisation progresses, the
number of design points in the main kriging is maintained at 10, and the least important
point is reallocated to the secondary kriging; at the 20th iteration each kriging model
consists of 10 points, so that the covariance matrix size is reduced by 50 percent.
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Figure 5.4. Dual kriging after the 12t iteration; two points have been removed from the
main kriging.
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Figure 5.5. Dual kriging after the 14™ iteration, four points have been removed from the
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Figure 5.6. Dual kriging after the 16™ iteration, six points have been removed from the
main kriging.
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Figure 5.7. Dual kriging after the 20™ iteration, ten points have been removed from the
main kriging.
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Figure 5.8. Main kriging at the 20™ iteration (10 points).
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Figure 5.9. Secondary kriging at the 20™ iteration (10 points).

5.2.4 Solving a practical problem

To illustrate the proposed optimisation methodology within the context of
electromagnetic design, T.E.A.M. problem 25 was studied [11], which is a die press with
an electromagnet for the orientation of magnetic powder (this is used to produce an
anisotropic permanent magnet). Problem details are provided in section 4.7.2.
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Figure 5.10. Detailed 2D view of the device.

Table 5.1. Comparison of performance of various optimisation methods (T.E.A.M. 25)

. MagNet No of
. Optimum . R1 L2 L3 L4 .

Algorithms Optimum functio

(10 (mm) (mm) (mm) (mm)

(104 n calls

GA 2.686 1.3391 7.2996 14.174 14.001 14.326 3421
SA 1.622 2.0696 7.2252 14.322 14.110 14.306 2145
HuTS 0.500 1.3502 7.3780 14.613 14.371 14.204 1580
UTS 1.050 1.4647 7.5487  14.908 14.506 14.416 931
NTS 0.648 1.6907 7.4337 14.732 14.428 14.237 575
Kriging El 0.452 0.4527 7.2 14.1 14 14.5 265
Kriging AWEI 0.412 0.4125 7.2 14 14 14.5 214
Dual kriging 0.323 0.3231 7.007 13.891 14.035 14.270 242

Genetic algorithm GA [42]; Simulated Annealing SA [30]; Tabu Search HuTS [44];
Universal Tabu search [45]; New Tabu Search NTS [46]; Kriging El and Kriging AWEI (with
specified step size) [35];

As shown in Table 5.1 are additional ‘optimal values’ obtained by implementing an
identical finite-element model (FEM) setup (using MagNet software) for all the
optimisation methods in the table.

The optimum location provided by the dual kriging approach is slightly different to those
obtained by other optimisation methods in Table 5.1, while the optimal value is slightly
improved. Parameters R1 and L2 are smaller than the ones found by other methods, L3
and L4 is comparatively smaller too. This may be explained by looking at the results in
Table 4.4 in Section 4.7.2 in Chapter 4; as the response surface around the optimum is
comparatively rough, the function values may have differed by more than one
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magnitude even with only a slight change in parameters (1% uncertainty in parameters).
Therefore, there exist a possibility that models used by other authors were less accurate
(since the results were published much earlier). Another possible explanation is that due
to the rough respond surface around the optimum location, the algorithm may have
converged to different mini-local optima within that area.

Table 5.2. Comparison of time cost between various optimisation methods

Time (s) per Estimated time . Estimated
. 3. . ) , Time (s) per ~ Number of
Algorithms 103 iterations  (ms) per iteration . . overall
. . FEM call iterations .

(algorithm)* (algorithm) time (h)
GA 3.302 3.302 ~10 3421 9.5
SA 2.197 2.197 ~10 2145 6
HuTS 5.347 5.347 ~10 1580 4.4
UTS - - ~10 931 2.6
NTS - - ~10 575 1.6
Kriging El 52.04 52.04 ~10 265 0.7
Kriging AWEI 59.12 59.12 ~10 214 0.6
Dual kriging 80.20 80.90 ~10 234 0.7

*Note: Again, the experiments were carried out on a 3.4GHz PC. The MATLAB codes for
Universal Tabu search UTS and New Tabu Search NTS were not available, hence the time
cost for running the algorithms were neglected. Nevertheless, the time cost for running
non-surrogate model-based optimisation algorithms are comparably small; the time cost
for each FEM call is more than 1000 times higher than the time consumed by the
algorithm, hence it can be neglected without affecting the comparison.

Again, in a similar comparison as before, Table 5.2 displays the estimated overall time
cost of each algorithm of Table 5.1. The overall time cost was estimated based on the
time cost per FEM call, the number of FEM calls, and the time consumed by the
optimisation algorithm. Each algorithm has been set up to solve a dummy test function
(where the computation cost of the objective function can be neglected); the algorithm
carried out 1,000 iterations for the objective problem and the time cost for each
iteration was estimated.

The overall time cost of dual kriging and other kriging-based approaches is much smaller
than other direct search optimisation algorithms as shown in the table, mainly due to
the high number of function calls used by these algorithms and the high computation
cost of each objective function call. In general, the kriging performed significantly better
than other methods in terms of a better optimum. However, this is primarily due to the
reduced computing times (measured in the number of necessary FE calculations). The
dual kriging required marginally more iterations, but produced a slightly better result. In
this sense, all kriging models are similar and superior to other methods.
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Figure 5.11. Memory requirements for the covariance matrix at each iteration.

The dual kriging algorithm was triggered after 120 FE calls, with one sampling point
removed when a new one was added in subsequent iterations. The sizes of the
covariance matrix in the kriging model for the “standard” AWEI [35] routine and the new
dual algorithm are compared in Figure 5.11, as optimisation progresses. Memory savings
on this occasion reached 36%.

5.3 Kriging with points aggregation

In this section, the kriging with points aggregation is proposed. This method involves
locating the most interesting search area for the next infill point and then aggregating
the points outside this centre area. Finally, a kriging model is built for the infill point
search within the identified centre area.

5.3.1 Centre positioning

The objective of this step is to find a region within the search space that is most worth
exploiting in the next iteration. Points located inside this region will be preserved,
whereas points far from this region may be aggregated based on their distance to the
region itself and the next infill sampling point will be placed within this region.

To determine which region is more interesting, the following three factors are
considered:

1. Sample rate within that region;
2. Standard deviation of the function value;

3. Mean of the function value.
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These three measures are defined by C;, C, and C3, respectively:

k
1 1
€, = Re, ' x ZIIxi —clZ, Re, =k x max{llx,- - c||f} (5.12)

=1

K (y; — )2 range
C, = R, x l_l(y]é W .= gz(y) (5.13)
1 1 —Wi
C3 =Rg, " x|max(Y) ——F3—|, R¢, =range(Y), (5.14)
i=1"i
w=e Vv (im0 (5.15)

where x; is the location of the it" known point, ¢ denotes the centre, k defines the
number of closest neighbourhood points around ¢, y; denotes the objective function
values of the i closest neighborhood points, w; is the weight term which has an
inverse relationship with the distance from point i to the centre ¢, u is the mean of y
and v is the calculated probability.

Cy in (1) is the sum of the square roots of the Euclidean distances between the
hypothetical centre ¢ and k nearest points around it. The value of C; is a measure of a
sample rate within the region; it determines how close a hypothetical centre cis located
in relation to its nearest k points, while the square root de-emphasises the importance
of remote points.

C, is the weighted standard deviation of the objective function values for all the
neighbourhood points.

Finally, C5 is the weighted mean of the objective function values for all the
neighbourhood points. Each point is weighted by an exponential function w, whose
gradient is controlled by the parameter v. The smaller values of v apply less weight on
remote points.

Both C; and C, terms encourage exploration of the under-sampled and rough areas,
respectively, while C3 focuses on the exploitation of the current optimum region. The
final criterion for the model centre is a combination of the exploration term and the
exploitation term:

C, + C,, random(0,1) < v

Criterion.(x) = { Cs otherwise

(5.16)
The probability of exploration and exploitation is controlled by a parameter v, whose
value is related to the root-mean-square deviation (RMSD) of the kriging model. Instead
of a deterministic mixture of exploration and exploitation terms, a stochastic approach
was applied to search for the objective at different stages while eliminating the risk of

the deterministic criterion function being trapped in a local optimum.
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The parameter v is the ratio of the exponentially weighted RMSD and regular RMSD of
historical prediction errors, a detailed study of which is presented in Chapter 3. The
proposed approach automatically balances the exploration and the exploitation based
on the kriging model quality in section 3.3.2 and the parameter v is a suitable measure
to switch the criterion between exploration and exploitation based on the model quality.
In Figure 5.12, when more infill sampling points are added to the model, v decreases as
the RMSD decreases. The rate of decrement can be controlled by a, the details of which
are also given in section 3.3.2.

1.8 ; 1.1 .
Prediction error Value of v
16
1
14F
0.9
08
0.7
0.6
0 20 40 60 80 100 0 20 40 60 80 100
lterations lterations

(a) (b)
Figure 5.12. (a) The history of the prediction error, (b) the history of the value of v, as
iterations progress.

For an arbitrary location x inside the design space, a corresponding Criterion. can be
calculated. Subsequently, the location with the maximum Criterion, is defined as the
model centre.

Regardless of which criterion function is used, this optimisation stage involves finding
the number of closest neighbourhood points k around ¢ and calculating the weighting
term v, which requires extra computational resources. Therefore, finding the
hypothetical centre ¢ using exhaustive search is not practical. This task may be seen as
a global optimisation problem with the input ¢, the output Criterion, and the objective
function Criterion, = (C; + C,) or Criterion, = C5. Because the centre only defines
an area for the new infill point, an approximate solution will suffice at this step. Thus, a
stochastic sequential global optimisation method simulated annealing is recommended
for this task. The algorithm is simple, fast and its parameter is relatively easy to control.
It may be argued that since the precision of estimating the intermediate optimum is not
that important, a sequential method will have the advantage of fewer function calls and
more flexibility over population-based methods.
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The response surface of a 2D function is plotted in Figure 5.13, with the red crosses at
the bottom marking the location of existing design points. Figures 5.14 (a) and (b)
illustrate the criterion function for exploration and exploitation terms at the 90t
iteration, respectively. As can be seen from the figures, the C1+C2 term encourages
search in less sampled and non-smooth areas around x=[0.92,0.79], while the C;
function suggests exploration of the area around the minimum at x=[0.20 0.27]. The test
function is given as follows:

flxj)=c+ al_[]_ cos (W(Xj - pj)) e_(w(xf_pf))m (5.17)

+b 1_[ sm( v(xj=4)) > + fovave

wherec =4.5,a=35,w=84,p, =02,p, =03, m=2,b=28,v=64,q, =
6.5,q, =8, k = 6,and f,qy. is an interpolation function of a set of randomly generated
points.

7
2D test

objective ©

function e e - RE

¢ - \'.11\111\}{%\‘1'“ ﬁ’/
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Figure 5.13. A 2D test function and existing design points.
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Figure 5.14. (a) Exploration functions C; + C5, (b) exploitation function Cs.

5.3.2 Outside points aggregation

The objective of this step is to aggregate existing design points that are farther from the
centre of the model into a smaller number of nodes (the “knots”), so that the total
number of nodes and points in the model can be fitted into the memory. The problem
of outside points aggregation involves hierarchical cluster analysis (HCA) [53] and a
single variable optimisation design. The objective of HCA is to group outsider points into
a set of clusters, so that the number of clusters is equal to the number of nodes.

There is a variety of literature that concerns cluster analysis, in particular in the field of
data science, and many algorithms have been published. Points aggregation can be
treated as a k-mean clustering problem, in which there are significantly more clusters to
be identified compared to conventional clustering problems. In this thesis, we
developed a sequential algorithm for weighted points clustering, the pseudo code of
which is detailed below:

form = 1:sample size
forn = 1:number of clusters
- calculate new cluster centroid
- calculate weighted Euclidean distance
to centroid
end
- find the cluster(x)with minimum weighted
Euclidean distance e
if e <weighted dissimilarity
- add point(m) to cluster(x)
else
- create a new cluster
end
end
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The cluster’s centroid o of a set of m points x is given by:

p

1
0(x) = x Z X (5.18)

i=1
where p is the number of points to be considered.

The Euclidean distance is weighted by the distance between the cluster’s centroid o and
the model’s centre ¢, based on a correlation function. The dissimilarity is also weighted,
since a larger distance results in a lower correlation and therefore, a loss in information
due to points aggregation will have a smaller impact on the prediction result within the
centre area. Therefore, the design space is normalised and each cluster’s centroid is
weighted by the Gaussian function.

The Gaussian correlation function in the kriging model is used to calculate the weight w;
the original function is given by:

f(x0%,) = 70" (5.19)

Because the hyper parameter 6 needs to be tuned during the model construction
process and is unknown at the stage of outside points aggregation, we specify 8 = 2.
Doing so provides a smoother decay in correlation and provides generally sound results
when the underlying problem is unknown.

The optimisation problem is defined as OF(d) = (n— q)?, where d is the input
variable dissimilarity, n is the number of nodes/clusters generated during the clustering
process and c is the number of nodes that can be fitted into the memory. The pseudo
code provided above exhibits a basic workflow of the clustering process; to speed up
the process, clusters with the minimum value of n — c are retained and a new clustering
iteration begins with these existing clusters. The clustering process is terminated when
the sum of the number of existing clusters and the number of unclassified points is less
than the number of nodes previously calculated.

The following example illustrates outside points aggregation applied to a 2D scenario.
Figure 5.15 (a) exhibits the clustering without Gaussian weights, while Figure 5.15 (b)
illustrates the clustering with the Gaussian weight terms applied. The problem consists
of 1,000 observations, assuming that the memory can build a kriging model up to 500
design points. We specify that 40% of the memory is used to store the interior points
within the model’s central area, while the remaining 60% is used to store nodes related
to outside points. The 800 points outside the centre area are aggregated into 300 nodes
(a node may consist of a single point or a group of points).
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Figure 5.15. (a) Clustering without Gaussian weight functions, (b) Clustering with
Gaussian weight functions.

5.3.3 A two-dimensional example

The point aggregation technique is illustrated by 2D examples in Figures 5.16 to 5.22.
For demonstration purpose, the maximum number of sampling points was limited to 50,
while the number of available nodes for the kriging model was limited to 25, i.e. the
covariance matrix would always have 252 elements despite the fact that 50 design points
were sampled in total. Amongst the 25 nodes allowance, 60% space is allocated for
points inside the centre region, i.e. 15 nodes (original points) inside and 10 nodes
(aggregated points) outside.

Figure 5.16 shows the objective function; the nodes including the aggregated points and
original points are marked with an ‘x’ symbol, the red lines show he search path of the
solver. When the number of sampling points reaches 25 (Figure 5.18) and an additional
infill sampling point has been added (Figure 5.19), the points aggregation technique is
triggered to keep the total number of nodes equals to 25. The blue circle shows the
boundary of the centre region.

The final kriging model after points aggregation has been applied is shown in Figure 5.22,
and the response surface is compared to an ordinary kriging model with 50 points in
Figure 5.23. As can be seen, the proposed method produces a reasonably accurate
response surface for the region around the optimal solution, while achieving 75%
reduction on the covariance matrix size (25 nodes compared to 50 nodes, 1 —
252/50% = 0.75).
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Figure 5.17. Ordinary kriging model (15 initial sampling points).
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Figure 5.19. Kriging with points aggregation (26 sampling points, 25 nodes).
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Figure 5.20. Kriging with points aggregation (30 sampling points, 25 nodes).
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Figure 5.21. Kriging with points aggregation (40 sampling points, 25 nodes).
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kriging with points aggregation (25 points)
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Figure 5.22. Kriging with points aggregation (50 sampling points, 25 nodes).
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Figure 5.23. (a) Ordinary kriging model (50 sampling points, 50 nodes), (b) Kriging with
points aggregation (50 sampling points, 25 nodes)
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5.3.4 Solving practical problem T.E.A.M. 22

The superconducting magnetic energy storage device in T.E.A.M. problem 22 consists of
two superconducting coils, as already explained in Section 4.7.2. The design objective is
to minimise the stray magnetic field while maintaining the stored energy at 180 MJ (see
Figure 5.24, also Figure 4.10), subject to specified quench conditions and geometrical
constraints [63]. This is an 8-parameter version of the problem.

Azinm
: : B? E—-E
(10,0) line a (11 points) OF = sztray + | refl
o Bnorm Eref
S £
5 g Eef =180 MJ
5 5
£ - Bnorm = 200 uT
@© £ B
,,,,,,, S N — 2 _ Z?=_122|Bstray,i|
{ | (0,10) rinm Bstray - 22

Figure 5.24. The superconducting magnetic energy storage device (T.E.A.M. 22) [63].

Table 5.3. Optimal design variables found by different algorithms

I J2

Algorithm ~ Ri(m)  Ra(m)  hi(m)  h2(m) di(m) d2(m) (A/mm?)  (A/mm?)

PSO 1 2.2647 1.1076 1.7766  0.5225 0.3442 28.1779 -5.4921
Q-PSO 2.2947  2.6126 0.39 2.2704 0.3967 0.204 30 -21.293
E-QPSO 1 1.8 0.38 3.6 0.5155 0.2851 19.9975 -6.3571

GSA 1.939 2.823 0.37 1.101 0.399 0.195 22.5 -22.5

ES 1.99 2.931 0.421 0.94 0.29 0.188 26.6 -26.6

SAA 1.694 2.907 0.394 0.882 0.323 0.207 20.9 -20.9
Kriging

1 1.8 0.4 1.39 0.4 0.15 30 -30
standard
Kriging
" 3.272 3.573 1.819 1.106 0.195 0.154 26.932 —-23.259
proposed
1.11 2.319 3.193 0.28 0.259 0.734 22.5 -22.5
1.103 2.318 3.193 0.288 0.259 0.734 22.5 -22.5
Original
1.296 1.8 2.178 3.026 0.583 0.195 16.955 -18.91
answer
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Table 5.4. Performance comparison between different algorithms

. Objective Constraints No. of
Algorithm .
function penalty ? FEM calls
PSO 1.5673 85.0413 ~6000
Q-PSO 2.4016 13.3456 ~6000
E-QPSO 0.3464 0.3685 ~6000
GSA 1.5547 0.195 17150
ES 0.4103 1.69235 4200
SAA 1.0087 1.09395 14000
Kriging standard 1.4065 32.9056 449
Kriging proposed 0.0383 0.0159 5003
0. 0028 0.0018 8264
0.0014 0.0003 8294
Original answer 0.0033% 0 -

PSO: particle swarm optimisation [54], Q-PSO: quantum-behaved particle swarm optimisation
[55-57], E-QPSO: QPSO with exponential probability distribution [57], GSA: global search
algorithm [58], ES: evolution strategy [58], SAA: simulated annealing algorithm [58], CGM:
conjugate gradient method [58]. Results for PSO, Q-PSO, E-PSO, GSA, ES and SAA taken from [54]
and [58]. The comparison is for the 8 parameter continuous case [63].

Notes:

1) The new kriging algorithm offers significant savings in memory related to the correlation

2)

4)

5)

matrices; this has been achieved by aggregating the outside points.

Solutions from a number of previously published methods violated the quench condition; the
degree by which this constraint was not met is given by the “penalty” (high values indicate
severe violation). In some cases, neither the geometrical nor current density constraints were
met.

For a fairer comparison of memory usage between standard kriging and the proposed kriging
method, the maximum number of iterations was set to 500, while maintaining a maximum
of 375 nodes; a memory savings of roughly 50% was achieved for the correlation function
and moreover, a better optimum was found.

The proposed enhanced kriging method was allowed to continue the search with the number
of nodes maintained at 500; improved results were thus achieved (better value for the
objective function and lower constraint violation) after more iterations, at the modest
expense of more FEM calls.

The value of the objective function in the original specification was slightly different; it was
recalculated here using a consistent FEM model for comparison.
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Table 5.5. Comparison of time cost between various optimisation methods

Time (s) per Estimated time ) Estimated
. . . . ) Time (s) per  Number of
Algorithms 103 iterations (ms) per iteration . . overall
. . FEM call iterations .
(algorithm)? (algorithm) time (h)
PSO - - ~22 ~6000 ~36.7
Q-PSO - - ~22 ~6000 ~36.7
E-QPSO - - ~22 ~6000 ~36.7
GSA - - ~22 17150 ~105
ES - - ~22 4200 ~25.7
SAA - - 14000 ~85.6
Kriging
52.04 52.04 ~22 449 ~2.8
standard
Krigi
EIng i 5522) ~22 500 ~3.1
proposed
- 447? ~22 826 ~5.2
- 449? ~22 829 ~5.2

1)

2)

Experiments were carried out on a 3.4GHz PC. The MATLAB codes for PSO, Q-PSO, E-QPSO,
GSA, ES and SAA were not available, but the times to run non-surrogate model-based
optimisation algorithms are very short compared to the time required to execute each FEM,
hence they can be neglected without affecting the comparison.

The proposed kriging approach involves an extra computation overhead, thus the time cost
per iteration increases slightly as more infill points are added, while this extra computation
overhead is independent of the FEM model. Simulated annealing is roughly constant at each
iteration, for each 1000 evaluations; its runtime is around 2 seconds. The KNN algorithm has
complexity of O(dkn) (d: problem dimension, k: number of nearby points, n: number of total
points) and is proportional to the number of existing design points; for 1000 existing points
in the 8-D parameter space, searching for the 40% of neighbours in each iteration takes
around 0.002 seconds. Moreover, the computation time for fitness functions in the model
centring step is negligible. The points aggregation involves optimizing a convex single
variable objective function; this process takes 10-15 iterations and total time approximately
0.3 seconds for 1000 existing points in the 8-D parameter space. The overall computation
overhead is therefore around 2 seconds. However, the computation overhead only occurs
when the number of sampling points exceeds the maximum allowance. Therefore, for tests
with different number of sampling points and the maximum nodes allowance, the average
time cost per iteration is different.

In this example, a penalty constraint has been imposed to the objective function,

because inequality constraint is critical to ensure the conductivity states; the penalty has

been directly applied to the objective function treated as a single objective problem

instead of a bi-objective problem. As can be seen from Table 5.4, the proposed kriging

approach has found an optimum at the 500t iteration which is quite different to those

found by other methods in the table. It is possible that the proposed kriging method has

not yet converged or simply converged to a local optimum. At the 826t and 829t

iteration, it then found two solutions that are closer to those obtained by other methods.

Because the problem dimension is large in this case (8 parameters), convergence
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towards a global optimum cannot be guaranteed with confidence, as the sampling
points are too sparse in the search space with a large number of parameters and there
will be many areas left unexplored. This also explains why the optimum location
obtained by all the methods differ significantly.

The experiment results are summarised in Table 5.4. As on previous occasions, kriging
has demonstrated its superiority by dramatically reducing the number of necessary
function calls and thus, avoiding excessive use of the computationally expensive finite
element software. Moreover, the addition of the points aggregation offers the
additional flexibility of limiting the number of active points in the design space; this has
the benefit of reducing the memory requirements for the solution without sacrificing
the accuracy. Finally, the iterations were able to continue to achieve a better design with
a modest increase of computational effort due to the need for more FEM calls.

The computation costs of various optimisation algorithms have also been displayed in
Table 5.5. Both the standard kriging approach and the kriging approach with points
aggregation have shown a significant advantage in terms of overall computation time
over other direct optimisation algorithms.

A kriging-based optimisation approach for large datasets was proposed and its efficiency
demonstrated using the T.E.A.M. 22 problem. The model centre positioning algorithm
balances exploration and exploitation assisted by the use of a stochastic approach,
which eliminates the risk of a deterministic criterion function being trapped in a local
optimum. It was found that the size of the correlation matrices can be greatly reduced
by applying points aggregation techniques. Indeed, the proposed approach can fit a
large set of data into a limited size of memory and whereas information about remote
points might be lost, this is alleviated by the use of points aggregation incorporating a
new weighted clustering algorithm.

5.4 Conclusion

We briefly discussed the challenge of using the kriging model-based optimisation
approach in handling problems with a large dataset and proposed two independent
kriging-based approaches for handling such problems. In both cases, the problem was
solved at the expense of some information, while the loss of information was kept as
small as possible by utilising another layer of optimisation. Both methods presented in
this chapter were tested against our test functions and T.E.A.M. practical benchmark
problems and the results were compared to other algorithms. The test results indicate
that the proposed methods provide a memory savings of 36% for the covariance matrix
in the first case and 50% in the second case.

98



Chapter 6. Multi-objective optimisation

6.1 Introduction

In previous chapters, only single objective optimisation problems were considered. In
many practical design scenarios however, designers often have to deal with multiple
conflicting objectives, in which the improvement of one objective may not be possible
without the deterioration of another. Hence, compared to single objective optimisation
problems, multi-objective optimisation problems (MOOPs) are more complex and more
difficult to solve, and unlike single objective optimisation problems, there often exist
multiple solutions for which decisions must be made. Optimisation involving multiple
objectives is referred to as multi-objective optimisation (MOO).

The development of multi-objective optimisation theory dates back to the late 1800s,
when Francis Francis Ysidro Edgeworth (1845-1926) first defined the concept of trade-
off for multiple conflicting objectives [59]. Throughout the 20th century, the
development of multi-objective optimisation was largely brought forward by studies in
the area of engineering, mathematical economics and political science.

Problem definition:

Minimise {f; (x), f2(x), f3(x), ..., fn (%)} (6.1)
Subject to x € D
gi(x) <0,
hi(x) =0, i=12..,n

where n is the number of objectives, f(x) is the objective function, D is a non-empty
set of feasible design points, g;(x) are the inequality constraints and h;(x) are the
equality constraints.

6.1.1 Scalarization methods

Scalarization methods are arguably the most widely used multi-objective approaches
due to their simplicity. The general idea is to combine all the objectives to form a single
objective problem. For problems with a priori knowledge of importance for each of the
objectives; weights and scaling factors commonly used in scalarization methods can also
reflect the designer’s preference. In cases in which the importance of each objective is
not clear, by systematically varying the method parameters, scalarization methods are
also able to generate a set of Pareto points.

The most generic form of scalarization method is the weighted sum approach:
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Y = ) wiFi(x) (6.2)
2

where i indicates the it" objective, F;(x) is the it" objective function and w; is the
weight applied to the i*" objective function.

Other scalarization methods include: the weighted exponential sum method, the
weighted min-max method and the weighted product method. For a comprehensive
review of the scalarization methods, as well as other non-EA based approaches, readers
are referred to [60].

6.1.2 Evolutionary algorithm-based methods

An increasing number of evolutionary algorithm-based solution methods for MO
problems have appeared in the literature since the mid-1980s. The vector evaluated
genetic algorithm (VEGA) proposed in 1985 [61] is one of the earliest examples of multi-
objective evolutionary algorithms (MOEAs). During the past 30 years, numerous MOEAs
have been proposed. Some of the most often cited are: niched Pareto genetic algorithm
(NPGA) [63], strength Pareto evolutionary algorithm (SPEA), strength Pareto
evolutionary algorithm-2 (SPEA2), Pareto-archived evolution strategy (PAES), Pareto
envelope-based selection algorithm (PESA), Pareto envelope-based selection algorithm-
Il (PESA-II), non-dominated sorting genetic algorithm (NSGA) [62], non-dominated
sorting genetic algorithm NSGA-II [64] and particle swarm (PSO) based methods [65].

The general opinion favours EAs as advantageous in solving MOO problems by often
being population based, thus multiple solutions can be obtained in a single run. However,
solutions to practical problems are usually expensive in terms of computational time
and effort. In the context of electromagnetic devices, the finite element method is a
common design tool; it often takes hours or even days to obtain a single solution.
Therefore, surrogate model-based algorithms are often preferred.

In addition to the aforementioned algorithms, an increasing number of indicator-based
MO algorithms have been proposed in recent years; the indicator is used as a fitness
measure for a set of Pareto points and — by optimising the indicator function — the MO
problem essentially becomes a single objective optimisation problem, since the solver
only needs to locate the optimal value of the indicator value and update the generation
based on it. Examples include: epsilon indicator [66], R2 indicator [69], additive -€
indicator[67] and the hypervolume indicator[68]. Comparisons between indicators can
be found in [66] [69] [70].
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6.2 Hypervolume indicator

A hypervolume indicator, also known as a Lebesgue measure or S metric, is the most
widely used indicator and has been successfully applied to both EAs and surrogate-based
algorithms. Hypervolume is the Lebesgue measure bounded by the non-dominated
solutions and the reference point, for a normalised objective space; as [1 ... 1] are often
used as the reference points, the dimension of the array is equal to the number of
objectives. Figures 6.1 (a) and (b) present the known design sites in the objective space

and the corresponding hypervolume (grey area) of this set of points. The black dots
represent the Pareto points.
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Figure 6.1. (a) Design points in the objective space (b) the hypervolume of the Pareto
front.

In kriging-based multi-objective optimisation, the hypervolume indicator is modified
based on the ideal expected improvement (El) infill criterion and the hybridised version,
widely known as the expected hypervolume improvement (EHVI). The formula for EHVI
is exceedingly similar to El, except the expected improvement is measured in the
hypervolume instead of the value of objective function in the search space.

The hypervolume improvement (HVI) is the increment in hypervolume based on the new
points and the old design points. Its analytical form is given by:

HVI = HV({PF,y},ref) — HV(PF,ref) (6.4)

where PF stands for Pareto front, HV (PF,ref) stands for the hypervolume bounded
by the Pareto front and the reference point ref and y is the newly added design point.
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The formula for EHVI is given in [71] [72]:

ref rref ref
EHVI = f ) f_m f_w HVILF (0, f,(0), -+, fu ()] 63)

- p(Fy) - p(F,) -+ ¢(E,) dF,dF, - dF,
where ¢ (+) is the probability density function and n is the number of objectives.

An example of a kriging-based multi-objective optimisation approach based on EHVI is
illustrated in Figures 6.2 to 6.4. The dashed lines are the underlying test functions, the
blue and orange lines represent the kriging model for two different objective functions
at the 14 iteration. The location of the Pareto front is marked by red crosses on the
test function.

Figure 6.2. Kriging models in the search space.
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Figure 6.3. Expected hypervolume improvement in the search space.

102



o agence 5307 PovadVT  de et Pl L 2ol T aeT o Jeh T evl  asaesd ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.4. Calculating the hypervolume via the Quasi Monte Carlo approach.

As can be observed in Figure 6.4, the Monte Carlo approach only provides an
approximation of the hypervolume measure; when the displacement of the new
sampling points from the current set of Pareto points is small, its accuracy may not be
sufficient. More sophisticated methods for computing the hypervolume have been
proposed within the literature in recent years. Two algorithms (IIHSO and WFG) were
proposed in the PhD thesis [74] and other examples can be found in [75], [76], [77], [78].

The most important feature of a hypervolume indicator is that this measure is strictly
monotonic to Pareto improvement [79]. In other words, infill points resulting in a higher
hypervolume measure always improve the current Pareto solution. Despite this
favourable feature, its high computational costs for higher dimensions is also widely
known. The computation of hypervolume is an NP-hard problem: the complexity
increases exponentially in number of objectives.

6.3 Localised probability of improvement

In this section, we introduce a novel approach to kriging-based multi-objective
optimisation by utilising a local probability of improvement as the infill sampling
criterion and the nearest neighbour check to ensure diversification and uniform
distribution of the Pareto fronts.

6.3.1 Probability of improvement

Kriging provided both the predicted mean and the associated mean square error at an
unknown location. The probability of improvement Pol at any location is given by:
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(6.5)

Pol(x) = cI)<;vt<x> - 9<x>>

S(x)

where y, is the target of improvement, J is the kriging predicted mean at location x, §2
is the mean square error at location x and ®(+) is the cumulative distribution function.

From the above equation, it can be observed that the value of Pol depends on the
target y;, predicted mean y, and the mean square error §, where the target can be
modified to obtain a “manipulated” value of the Pol.

The algorithm presented in this section is a localised approach to calculate the
probability of improvement at an unknown location. The term “localised” is added here
because the redefined probability of improvement for each point is calculated based on
their location in the objective space, and unknown points at different regions may have
different location targets of improvement. Hence, for simplicity, we define the indicator
as the LPol.

LPol at a given location is an integrated measure calculated for two improvement
targets. A target is calculated for a reference point and the reference point is taken
based on the location of the unknown point x.

6.3.2 The first improvement target

The first improvement target y,,; associates with the minimum value of each individual
objective function, the subscript ext stands for “extreme value”; and y,,; is given as:

yextn = yminn “(1-p) (6.6)

where y,,;," is the known minimum value of the nt" objective function and p is the
percentage of improvement to be defined; parameter p is discussed later in this section.
The corresponding Pol is:

yextn - }f;n(x)> (6.7)

Pol,, " (x) = q>< RTe)

where 97, §", y,.." and Pol,,," are the corresponding measures of the n‘"objective
function.

For the first improvement target, we get n number of Pol, which equals the number of
objectives because the Pol,,; is calculated based on the extreme value (maximum) of
each objective functions. We consider the maximum potential improvement for all
individual objectives, hence:

Pol,,;(x) = maximize{Pol,,," (x)} (6.8)
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6.3.3 The second improvement target

The second improvement target y;,,;(x) is associated with the reference point that is
defined based on the location of x. The subscript int stands for “intermediate” and y,.¢
is calculated as:

Vine" = yrefn “(1-p) (6.9)
where y,..r is the calculated reference point.

To obtain the reference point y,.r, the algorithm finds the Pareto front for existing
design sites using non-dominated sorting. For each closest set of Pareto points (the
number points is equal to the number of objectives) it calculates the corresponding
reference point. The coordinates for the reference point of each dimension is equal to
the maximum value of the coordinates for these Pareto points in the same dimension.
The coordinates for the corresponding reference point in the nt" dimension Ref (x™) is
given by:

Yrefm = max{Y™} (6.10)

where Y™ is the collection of the nt"* objective value for all of the points in that Pareto
set.

Taking a bi-objective problem as an example, assuming the reference point y,. is to be
determined for Pareto points P; and P,, the coordinates of P; and P, are hence
denoted by [P;.x%, P;.x?] and [P,.x%, P,.x?], respectively. Note that x™ is the nt"
objective value at the location in the search space associated with P. The x* and x?

coordinates (in the objective space) of the reference point are thus described as follows:
Vrert = max{Py.x',P,.x" } (6.11)
Vrert = max{P;.x?, P,.x* } (6.12)

and the corresponding Pol is given as:

Vint " (X) — 5/”(x)> (6.13)

Pol,o/™(x) = q>< o)

where y,.", 9", 8™, Pol,.;" and Pol,,," are the corresponding measures of the
nt"objective function.

We obtained n number of Pol for the second improvement target. However, unlike the
first improvement target, the second one uses a localised target. Therefore, consider
using the minimum potential improvement for all individual objectives and hence:

LPol,.;(x) = minimize{Pol, ;" (x)} (6.14)
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6.3.4 Integrated improvement target

Finally, the proposed indicator LPol for any given point is the maximum of these two
probability of improvement measures, as follows:

LPol(x) = maximize{LPol,¢s, POl oy} (6.15)

Pol,,:, as described by (6.8), is due to the fact that the minimum of each individual
objective function is always present in the Pareto front, hence the Pol at each location
Xx over the optimal target of that function is always considered. This term also
contributes to the diversification of the Pareto front.

Furthermore, LPol,.f, as described by (6.14), can be treated as the maximum of the
minimum potential improvement to a local target. This term helps to improve the Pareto
front both toward the origin and in the direction of the objective value. It contributes to
the diversification of the Pareto front.

To obtain the next infill sampling point, the algorithm finds the location x associated
with the maximum LPol measure in the objective space.

6.3.5 Parameter p

Parameter p, as seen in (6.6) and (6.9), is associated with the magnitude of target
improvement; it controls the convergence rate of the algorithm. A smaller improvement
amount will guide the solver toward existing Pareto points, while a larger value will
encourage the exploration of the design space. It is crucial to use a proper p, since too
small a value may lead to a false Pareto front, while a large value may result in a slow
convergence rate or zero probability of improvement at all unknown sites. Thus, it is
better to dynamically correct the value while monitoring the convergence.

We first provide a simple self-adjusted method for parameter p.

First, the initial improvement target percentage pi,itiqa: is defined and then the
parameter p is calculated as:

P = Dinitial * maX{LPOIprev} (6.16)
where LPol,,., is the complete set of LPol at the previous iteration.

The next infill point is taken at the location with maximum LPol. Therefore, the solver
tends to minimise the localised probability of improvement and converge toward the
Pareto front. When the design space is well explored, or the p is especially small, the
solver will converge toward existing Pareto fronts; at this stage, it is common for the
LPol to equal or come close to one at multiple unknown sites (extremely likely to
improve over the target point). In order to obtain a uniformly distributed Pareto front,
the algorithm selects candidates which have the largest Euclidean distance to existing
Pareto points compared to the next infill sampling points. For this reason, the maximum
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value of LPol can be capped between 0.9 and 1 for faster exploitation of the existing
Pareto front without degrading the overall performance

6.4 Test functions and examples
6.4.1 Bi-objective example

Considering the following two test functions plotted in black dotted lines in Figure 6.5,
the circles are sampled design points and the red and blue lines are kriging models built
on existing samples. The red crosses mark the locations of all of the Pareto points for
each objective function. The true Pareto points can be obtained by mapping all the
feasible solutions on to the objective space and running a simple non-dominated sorting
method (given in the appendix). When the Pareto points are found in the objective space,
their corresponding location of x in the search space is marked in the figure below.
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Figure 6.5. Kriging models at the 5t iteration.
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Figure 6.6. LPol criterion at the 5% iteration.

Figure 6.6 displays the LPol criterion in the search space. While the maximum location
is not obvious in the figure, the location at x=1 is sampled in the next iteration.
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The kriging model in the objective space is illustrated in Figure 6.7. The dashed line
shows all the feasible solution in the objective space for 0 < x < 1, the minor red
crosses indicate the true Pareto front, and the blue solid line provides a direct mapping
of two kriging models for the search space; it shows an estimation of all feasible
solutions (when two kriging models are accurate enough, the blue solid line should
coincide with the dashed line). Since the sampling points are too sparse at the early
stage, the estimated model in the objective space is far from accurate and more infill
sampling points need to be added.

0.9 = 7

0.8 F , X - p

0.5 \

<\
~ _ \
04 IR AN :
\ >~ / \
\ e~ N
\ / \\\\

03+ »"‘-a. N\ / \\\ 4

T == L= / |
7 |
|
|
\
\

objective 2

01 f ]

1
0 0.2 0.4 0.6 0.8 1
objective 1

Figure 6.7. Kriging model in the objective space.

Figure 6.8 shows that at the 17t iteration, kriging models are reasonably accurate in the
search space. As can be seen in Figure 6.9, the solver has started to converge toward
the two Pareto clusters (marked with red crosses in Figure 6.8). The kriging model in
Figure 6.10 does not look as accurate and has left the location away from the Pareto
front unexplored, because the probability of improvement on the existing Pareto front
in these locations are relatively small.
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Figure 6.8. Kriging models at the 17t iteration.
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Figure 6.9. LPol criterion at the 17t iteration.
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Figure 6.10. Kriging model in the objective space.
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Figure 6.11 displays the kriging models at the final iteration (40 iteration) and all of the
sample points are plotted in Figure 6.12, where the true Pareto front is marked with red
crosses. The solver has successfully converged and infill points are taken uniformly along
the Pareto front.

Figure 6.11. Kriging models at the 40™ iteration.
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Figure 6.12. Design points in the objective space.
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6.4.2 Bi-objectives problems and test results

Alarge number of tests were conducted with different, randomly generated bi-objective
test functions. The examples below start with 5 initial design points and 45 maximum
iterations. Figures 6.13 and 6.14 display the final results from two randomly generated

test functions.
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Figure 6.13. (a) Kriging models in the search space, (b) design points in the objective
space.
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Figure 6.14. (a) Kriging models in the search space, (b) design points in the objective

space.
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6.4.3 Three objective problems and test results

The problems in this section have three objective functions and each function has two
variables. The maximum number of function evaluations is limited to 200. These test
functions consist of random terms similar to those used in Section 3.3 in order to provide
different response surfaces. For problems with higher dimensions and/or higher number
of objectives, the Pareto points became sparser, hence locating all the Pareto points will
be much harder.

Two examples have been provided below. Figures 6.15 and 6.17 show response surfaces
of three objection functions in each example. In Figures 6.16 and 6.18, the grey dots are
all possible (feasible) solutions of the problem, the red crosses describe the true Pareto
front shown in Figures 6.16(a) and 6.18(a). In Figures 6.16(b) and 6.18(b) the orange
squares indicate the sampling points in the objective space, while the orange triangles
in Figures 6.16(c) and 6.18(c) mark the located Pareto points. As can be seen from the
examples below, the proposed multi-objective optimisation approach has produced a
reasonable number of diversified Pareto points within a limited number of function calls
(200 sampling points).

objective 2

Figure 6.15. (a) Response surface of objective 1, (b) response surface of objective 2, (c)
response surface of objective 3.
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Figure 6.16. (a) Plot of the true Pareto front, (b) design points in the objective space,
(c) located Pareto points.

Figure 6.17. (a) Response surface of objective 1, (b) response surface of objective 2, (c)
response surface of objective 3.
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Figure 6.18. (a) Plot of the true Pareto front, (b) design points in the objective space,
(c) located Pareto points.

6.5 ZDT benchmark problems

The method proposed in this chapter was tested on well-known ZDT multi-objective
benchmark problems. The ZDT problems are a popular set of test functions proposed by
Zitzler et al. (2000) [73] for benchmarking multi-objective optimisation algorithms. The
ZDT test suit consists of 5 continuous multi-objective problems. The test function
formulae are given in each section. Test results are plotted in Figures 6.19 to 6.23, the
grey dots represent all the feasible solutions and the orange triangles are sampled
design points. The result shows the sampling points distributed intensively around the
Pareto region in the objective space, indicating the proposed kriging-based multi-
objective optimisation solver provides a clear convergence tendency towards the Pareto
front. In addition, the diversification and uniformity of the Pareto points have been
maintained. For each problem, the dimension n has been set to n = 2, while the
maximum number of function evaluations is limited to 200 and the number of initial
sampling points equals to 10.
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6.5.1 ZDT1

fi(x) = x4, f2(x) = g(x)h(x) (6.17)
where
9
g(x)—1+(‘21) hx)=1— |2 n=2 (6.18)
g(x)
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Figure 6.19. Design points in objective space (ZDT1).

6.5.2 ZDT2

fi(x) = xq, fo(x) = g(x)h(x) (6.17)
where

g) =1+ ((Z” ) h(x) = 1- (55 ())2,n=2 (6.18)
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Figure 6.20. Design points in the objective space (ZDT2).

6.5.3 ZDT3

f1(x) = x4, fo(x) = g(x)h(x)

where

_ EOED) 4 ,L_L : _
gx)=1+ 1) h(x) =1 pr sin(10mx;) ,n =2
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Figure 6.21. Design points in the objective space (ZDT3).
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6.5.4 ZDT4

fi(x) = x4, fo(x) = g(x)h(x)

(6.21)
where
gx)=14+10(n—1) + X, [x;2 — 10 cos(4mx;)] , h(x) =1 — |—=,n=2(6.22)
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Figure 6.22. Design points in the objective space (ZDT4).
6.5.5 ZDT6
fi(x) = 1— e~ sin®(6mxy), fo(x) = g(x)h(x) (6.23)
where
(Zl le) _ fl(x) _
g(x)—1+9(( ) h(x) = 1 (g(x)) n=2 (6.24)
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Figure 6.23. Design points in the objective space (ZDT4).

6.6 Conclusion

A novel approach to kriging-based multi objective optimisation was presented and
details were discussed in this chapter. The proposed method was further tested against
various random test function and the well-known ZDT benchmark test problems. Each
of these test problems reproduces an interesting feature in multi-objective optimisation
problems that may potentially cause difficulties for the optimisation algorithm. The
proposed algorithm has successfully converged on the true Pareto front within a
reasonable number of iterations. It has been shown that the solver is efficient and robust
and provides a reasonably fast convergence rate toward the true Pareto front, while
achieving both uniformity and divergence of the Pareto solution.
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Chapter 7. Conclusion

7.1 Summary

This PhD program aimed at reviewing and improving the application of current kriging-
based optimisation methods in robust and multi-objective design problems.

To comply with the research objectives, Chapter 1 reviewed surrogate-based
optimisation, including the theory of the kriging model, initial sampling and infill
sampling. Chapters 2 through 6 consist of studies on independent topics within the
context of kriging-based optimisation; namely, infill sampling plan, robust optimisation,
large datasets and multi-objective optimisation. Each chapter consists of a brief review
of the topic and proposes new methods.

7.2 Contribution

e An improved infill sampling plan that incorporates a novel approach to
dynamically balance exploration and exploitation is proposed. The method uses
feedback information from the model quality to automate the parameter
settings.

o A fast gradient-based infill criterion search method is proposed. The method
significantly reduces the number of necessary infill criterion evaluations,
consequently improving both the process’ efficiency and accuracy.

e A two-step kriging-based robust optimisation approach for worst-case problems
is proposed. By introducing an additional layer of optimisation during the infill
process and a modified criterion for worst-case optimum allocation, the
optimisation efficiency is increased.

e A dual kriging approach is introduced. By reallocating less important points to
the secondary kriging, the covariance matrix size can potentially be reduced by
50%. Test results indicate that the proposed points reallocating criterion limits
the impact of the removed points on the main kriging.

e A kriging method with points aggregation is proposed. The method locates the
optimal model centre and aggregates a selection of points via optimisation, thus
limiting the impact of information losses on interested search areas. This
approach maintains constant memory usage at specified levels and therefore,
enables the designer to intake a larger number of infill points.
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e A kriging-based multi-objective optimisation method is proposed. The novel
indicator localised probability of improvement (LPol) addresses both the
divergence and uniformity of the Pareto solution, while imposing a low
computational cost. Test results reveal that the proposed method has a clear
convergence tendency toward the Pareto front.

Referring back to the specific objectives formulated in Section 1.4 of the thesis it is
therefore claimed that all of them have been met and some exceeded. While no single
research program can completely answer the challenges of a specific problem, it can be
argued that this work represents a step forward in efficient handling of kriging assisted
design optimisation of electromagnetic devices.

7.3 Future work

The infill sampling and model-updating kriging-based optimisation is an iterative
procedure that contributes to most time cost of the optimisation process, typically more
than 99%. Currently, infill points are sampled sequentially. However, researchers may
consider developing an infill criterion for multiple infill point intake in order to take
advantage of parallel computational power. Undoubtedly, other programming issues
also need to be solved, but the potential reward is significant. For a quad-core computer,
parallel computation of basic arithmetics (i.e. all the threads are efficiently used and idle
time is neglected) is approximately 3.4 times faster than single-core computation. In If
designers can access more powerful computational resources, the algorithm’s potential
could be significant.

In addition to the difficulty in handling large datasets, kriging also has less flexibility in
handling a wide range of problems: for example, problems with irregular or discontinued
objective functions. Perhaps by designing an algorithm that maps the underlying
problem to an unevenly scaled or modified search space, the kriging model could better
fit the rescaled problem. For example, a response surface with a small complex area and
a large flat area is mapped in a rescaled search space, where the complex area is
enlarged while the flat area is narrowed. In this way, the complex region revives more
“pixels” than other regions and both the sampling and model accuracy in the complex
region could potentially improve.

There exist opinions which suggest that the domain-specific Al is the future in many
industries, machine learning may also be introduced to the task of designing an
optimisation algorithm. A simple design framework generates a large number of test
problems that mimic the targeted practical problems and runs the optimisation
algorithms multiple times on each of the test problems, while recording the detailed
movement of the algorithm at the specific condition. These movements are then
classified as either good movements or bad movements. Once the entire process is
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complete, a computer-stored table of algorithm behaviours with past performance can
be generated. Consequently, this table can be attached to the algorithm as a directional
reference for similar problems. Optimisation and machine learning share many
similarities in their logic, and developments from any of them may have potential
applications in another. Hence, it would be interesting to combine these two topics.

The optimisation algorithms proposed in this thesis have been tested on various types
of problems, including 1-D and 2-D test functions consist of multiple local optima, and
practical benchmark problems T.E.A.M. 22 and T.E.A.M. 25. However the test did not
expend to actual design problems, it would interesting and beneficial to implement the
proposed algorithms to solve practical design optimisation problems.

Finally, it has to be recognised — as already mentioned in Section 1.4 — that in some
practical design approaches the manufacturer does not necessarily aim at finding the
global optimum and will be perfectly satisfied with a simple improvement to the current
design, in particular to avoid expensive changes to manufacturing processes, tooling,
materials, etc. It would indeed be an interesting follow up to this project how such
approach could be phrased in mathematical terms so as to benefit from the kriging
techniques developed in this thesis.

7.4 List of publications

The following list shows all papers published related to this thesis, including one digest
accepted for a conference in Poland to take place in September 2017. Copies of the
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Appendix A

A Dual Kriging Approach with Improved Points Selection
Algorithm for Memory Efficient
Surrogate Optimization in Electromagnetics

Yinjiang Li, Song Xiao, Mihai Rotaru, and Jan K. Sykulski, Fellow, IEEE

Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, United Kingdom

The paper introduces a new approach to kriging surrogate model sampling points allocation. By introducing a second (dual) kriging
during the model construction the existing sampling points are reallocated to reduce overall memory requirements. Moreover, a new
algorithm is proposed for selecting the position of the next sampling point by utilizing a modified Expected Improvement criterion.

Index Terms— Kriging, global optimization, surrogate modelling, large datasets.

I INTRODUCTION

RIGING offers significant advantages in computationally

expensive optimization as a number of necessary objective
function calls may be reduced. This matters in particular when
each call entails time consuming simulations, such as frequently
encountered inthe design of electromagnetic devices [1]. Large
data sets, however, tend to be produced by correlation matrices
which arise when kriging models are produced and the amount
of storage required is usually proportional to #° [2], where 7 is
the number of sample points; this problem may become acute
in the case of multi-parameter optimization when performed on
small computers with limited memory [3], [4].

II. A MODIFIED El SAMPLING CRITERION

Expected Improvement (EI) [5] is commonly used to guide
the process of selecting the next point for evaluation (often with
madifications [1]). The challenge is to balance exploitation and
exploration in order to avoid the kriging model being trapped in
a local optimum;, moreover, the quality of the kriging prediction
of the shape of the objective function may also be important in
the context of the robustness of the design. In this paper we
suggest a modification to the standard EI criterion with the aim
to spread the ‘infill’ (new sampling) points more efficiently
throughout the design space. Consider a simple illustration in
Fig. 1 wherethe dotted line is the actual objective function. The
range has been normalized between 0 and 1 while the values of
the objective function have no actual meaning in this example.

The proposed sampling criterion calculates EI while taking
the estimated error (the ‘Mean Square Error’ MSE [1]) between
known sampling points into consideration

sampling criterion
= max{El} x MSE x weight + max{MSE} x E{ 1)
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whereas scaling has been applied to account for different values
of components and thus normalize the results. Moreover, a
weight is added to the estimated emror. The estimated ermor is
pravided by the kriging predictor together with the predicted
value at any given paoint.

4
al objective function

kriging before new point is added
“ ——kriging after new point is added
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0 0.1 0.2 03 04 0.5 06 07 0.8 0.9 1

Fig. 1. Thelriging model before and after a new point has been added

The weight term is the ratio of the exponentially weighted
standard deviation (between infill points and their previously
predicted value) average and the uniformly weighted standard
deviation average. This value decreases as the optimization
process continues and the model quality increases. The
exponentially weighted standard deviation average at the current
iteration is calculated using formula:

ESDA sd; + (1 — a)sd; + (1 — e)?sdy + - @
1+(1—a)+(1—e)+ -
where & determines the weight on each standard deviation term,
and 0 < @ < 1; sd is the current standard deviation at a point.

The classical EI criterion itself would advocate exploitation
of the area close to the recently simulated minimum (which in
reality is a local minimum) and create a new point at x=0.347
(see Fig. 1), whereas this could be counterproductive during the
exploration stage. The modified criterion, however, proposes
more exploration and positions the new sampling point
elsewhere with better chance of capturing the global minirmurm,
as illustrated. Moreover, it is important in the context of robust
optimization to predict not just the position of the optimum but
also the shape of the objective function near the optimum.
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Fig. 2. The distributions of (a) MSE, (b) Expected Improvement, and (c) the
resultant sampling eriterion for the example test function.

III. A DUAL KRIGING APPROACH

The main drawback of the kriging approach is the need for
creating correlation matrices which — especially in the case of
multi-parameter problems — may become very large and must
be handled carefully. This was discussed in [4] where a possible
solution was offered. Here we suggest a complementary
approach resulting from an argument that once the surrogate
model is advanced and the shape of the objective function is
reasonably accurately predicted we really only need some
sampling points, especially those close to the areas considered
as potentially attractive. Thus, as the total number of sampling
points increases and we are getting to the memory limit of the
computer, in order to avoid computationally time consuming
‘memory management’ (e.g. page swapping) we may instead
‘remove’ some of the less attractive points in an attempt to keep
the total number of peints constant, or increasing slowly, while
the removed points may be used to create a “dual’ kriging
model. At the same time it should be noted that — as shown in
Fig. 3 — the memory saving is the biggest when we operate at
roughly between 20% and 30% of the reduced number of points
{shaded area). For example, at 20% (that is the original kriging
model preserving 80% of points) the memory saving is 32%.

50%
7 40%
8
z
g 30%
)
£
E 20% recommerded
é percentage range
2 10%

0%

100% 90% 80% 70% 60% 50%

percentage of sampling points in kriging 1
Fig. 3. Efficiency of sampling points allocation.
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The simple criterion for removing a point is related to the
triangular area formed by connecting this point and the two
neighbors, as illustrated in Fig. 4 (here x=0.75 can be removed).
Thus the points with the smallest associated area are removed
and in fact used to create a dual kriging model. The current
optimum is assigned a large area therefore will not be removed.

4 |tiangular area
objective function
kriging model

0 0.1 02 0.3 04 05 06 07 08 0.9

Fig. 4. Point removal criterion ploited as shaded triangular areas.

Consider the test function of Fig. 1 after 13 iterations and its
kriging prediction as shown in Fig. 5 (note that iterations have
not completed vet). At this stage six points have been removed
from the main kriging to create the secondary kriging. The
modified model now contains fewer but more important points,
as illustrated by Figs. 5 and 6. In the example a saving of 49%
of memory has been realized by reducing the correlation matrix.

3 objective function
original kriging model

"o 0 0.3 5 0.7

1 02 3 04 0.5 06 )
Fig. 5. A single kriging model with 13 sampling points

0.9 1

08
(iterations incomplete).
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Fig. 6. The main ke ging model (7 sampling points) and the secondary kriging
model (6 sampling points).



IV. EI SampLmve CRITERION AIDED BY DUAL KRIGING

While applying dual kriging could potentially save computer
memory demands by as much as 50% compared to a single
kriging approach, for the same nurrber of sampling points, its
major challenge lies in the selection of the location of the new
infill point. If only the main kriging model were to be
considered, there would be a risk of a new location to be at or
close to a point which has just been removed. Tn order to inhibit
such an unwelcome scenario, both kriging models and thus a
modified MSE defined by a product of the principal and dual
MSEs are used; consequently the EI criterion uses all points and
no information is lost. This is illustrated by Fig. 7 showing the
15% iteration, with the point adding/fremoval process triggered
after the eighth point had been added; thus there are 8 points in
the main (‘1*) and 7 in the dual (‘2°) kriging models. The
modified sampling criterion based on the combined MSE offers
a better prediction than the ariginal single kriging approach.
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V. MORE ON THE SELECTION OF INFILL POmyTs

The use of Expected Improvement (EI) as a criterion for
selecting infill points is widely accepted in surrogate modelling,
despite some drawbacks as reported for example in [12]; further
modifications and improvements have been suggested. But
there is one particular difficulty which is rarely mentioned but
worth emphasizing. In order to locate reliably the point with
maximum EI, all points within the design space need to be
considered, requiring calculation of the predicted objective
function and the corresponding MSE at all these points. This
may seem straightforward for one dimensional problems, but
could create another case of “combinatorial explosion’ in more
practical multi-dimensional problems. Take four dimensions,
for example, and a step of 1/100 in each direction: this would
require 10° calculations to find the maximum EI, which even
for very fast surrogate models would create a computational
bother. A large step of say 1/10 would be easy to handle but
unlikely to capture the actual optimum. In Fig. 8 a case is
depicted where even a relatively small step of 1/50 might result
in the algorithm missing the largest EI and hence the global
optimum at x=0.131 would be overlooked.

[ objective function
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0
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Fig & Illustration of the hrmitation of using a fixed step size

As an alternative to the exhaustive search using a predefined
step size, the task of finding the maximum sampling criterion
value could be treated as a small optimization problem in its
own right. Any optimization method could be employed for that
purpose and would effectively eliminate the problem of the step
size mentioned above. A genetic algorithm has been utilized to
search for the infill criterion function in the next section.

Finally, the algorithms described so far can be supplemented
by efficient local routines, e.g. a new point could be added
between any two adjacent existing points and the location of the
maximum EI estimated using a local gradient-based method.

V1. TEAM PROBLEM 25

To illustrate the proposed optimization methodology in the
context of electromagnetic design, the TEAM problem 25 has
been studied [13], which is a die press with an electromagnet
for the orientation of magnetic powder, used to produce an
anisotropic permanent magnet. The objective of this problem is
to optimize the shape to minimize a particular objective. Each
function evaluation requires a full finite element (FE) solution
of a non-linear problem, which is computationally inefficient if
used in combination with any optimization method, especially
if extensive design space exploration is required. This is
therefore a very appropriate practical case to be studied.
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Fig. 9. A model of the die press with an electromagnet [13]

In Fig. 9, R1, L2, L3 and L4 are the design parameters to be
optimized so that the objective function B is minimized

W= 2?:1 {(Bxlp - wa)z + (Bylp - Byia)z} (3)

where B, and By, are the x and y components of magnetic flux
density at points along the curve e-f, while subscripts p and o
denote the calculated and desired values, respectively. The
constraints are listed in Table T and results in Table IT.

TABLEI
PARAMETER COMSTRAINTS

Variable Lower-boundary  Upper-boundary
() ()
k1 5 a4
L2 12.6 18
L3 14 45
14 4 19
TABLED
COMPARISON OF PERFORMANCE
Optirnal No of
Algorithms value Rl L2 L3 14 function
(10% (rmmm) (mm) (mm) () calls
G 1686 72006 14174 14.001 14.326 3421
SA 1.622 7.2252 14322 14110 14.306 2145
HuTe 0.500 7.3780 14613 14371 14.204 1580
uTs 1.050 7.5487 14908 14.506 14.416 931
NTS 0.648 TA337 14732 14428 14.237 575
Kriging El 0.452 7.2 14.1 14 14.5 265
Kriging AWEI 0412 7.2 14 14 14.5 114
Dral kriging 0.323 7.007 13.891 14.035 14.270 242

Genetic algerithm GA [¢]; Stimulated Annealing SA [7], Tabu Search HUTS
[2], Universal Tabu search [9]; New Tabu Search NTE [10], Eriging EI and
Kriging AWEI (with specified step size) [11];

The first five results in Table IT are taken from literature, the
first two kriging values from our previous publications, the dual
kriging approach is shown in the bottom row. Generally kriging
is performing significantly better than other methods in terms
of a better optimum, but primarily because of much reduced
computing times, measured in the number of necessary FE
calculations. The dual kriging required marginally more
iterations, but has produced a slightly better result. In this sense
all kriging models are similar and superior to other methods.

The dual kriging algorithm was triggered after 120 FE calls,
with one sampling point removed when a new one was added
in subsequent iterations. The sizes of the covariance matrix in
the kriging model for the “standard® AWEI [11] routine and the
new dual algorithm are compared in Fig. 10 as optimization
progresses. Memory savings on this occasion reached 36%.

Kriging AWEI
Dual Kriging

w Y

Covariance malrix size

o 50 100 180 200 250
Number of FE calls
Fig 10. Memoary requiremnents for the covariance matrix at each iteration.

VII. CoNcrusiom

A modified infill sampling criterion is proposed which can
be applied toboth the single and dual kriging methods. A simple
but efficient automatic exploration vs exploitation adjustment
based on model quality is developed. The limnitations of an
exhaustive search are noted and a global optimization aided EI
search algorithm introduced. The dual kriging method is
verified against a test function and an electromagnetic TEAM
problem 25, with a 36%6reduction in the covariance matrix size.
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Abstract: The paper discusses some of the recent advances in kriging based worst-case
design optimisation and proposes a new two-stage approach to solve practical problems.
The efficiency of the infill points allocation is improved significantly by adding an extra
layer of optimisation enhanced by a validation process.

Key words: worst-case optimisation, minimax problems, kriging, robust design

1. Introduction

It 1s often the case that sampling in modem engineering design may be constrained due to
considerations of computational costs, time and thus available resources. In the context of
electromagnetic design — where nowadays numerical simulation tools need to be used, such as
the finite element method (FEM) — repetitive evaluation of the objective function may take hours
or days of computation making the design process impractical. When extensive sampling 1s not
available, surrogate based optimisation may significantly improve the design efficiency.

2. Worst-case problem specification

Robust optimisation is a relatively new term, its history can be dated back to 1989 when
Taguchi first introduced the concept of design quality [1], and since then optimisation involving
uncertainties has been increasingly drawing more attention. Due to the complexity of the
optimisation problems in engineering design, the high level of non-linearity means these
problems cannot be closely approximated by single linear or quadratic functions. Therefore,
these problems are often solved by using direct search global optimisation algorithms. When
evaluation of the underlying problem is expensive in terms of time or cost, surrogate modelling
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techniques are often implemented as an approximation and optimisation is applied to the
surrogate model instead of the original problem.

The output f'of a black-box function, when the input variable x contains deterministic type
of uncertainties, can be expressed by a simplified equation (ignoring possible other sources of
uncertainties and assuming the uncertainty ¢is independent of the input variable x) [2]

f=fx+e) (1)
where g[—¢, ¢], the distribution of uncertainty &, is unknown, but the magnitude is bounded by a

given range .

H-c X te

-z te)  (mtenxte)

Ny

Robust optimal

Infeasible region

Infeasible region

(e, x2 =€)
\ Gy + &, %, — €2)

Worst-case optimal

Original optimal

Infeasible region

Fig. 1. Worst-case examples. 1 — 1D example, 2 — 2D example with constraints

Two simple examples are given in Fig. 1. The 1D illustration shows that, depending on the
size of the uncertainty ¢, the preferred worst-case robust optimum may differ from the original
(theoretical) optimal point, as when the parameter varies within the specified limits (e.g.
imposed by manufacturing tolerances) the performance worsens significantly, whereas the
robust optimum ensures good performance throughout. The 2D example illustrates that the
worst-case optimum needs to consider design constraints, as the optimum solution with
uncertainties must not violate the infeasible region.

3. A brief review of existing approaches

For a deterministic type of uncertainties, the basic approach is to transform the robust
optimisation problem into a standard optimisation problem by optimising the worst-case of the
original objective function, where multiple objective function evaluations are needed at cach
design stage. The number of objective function calls may be significantly increased and many
unimportant and possibly nearly duplicated design points will be allocated during this process
and thus making the optimisation extremely inefficient. This large number of function calls will
be of particular concern to designers, especially when the objective function is expensive to
evaluate, which is often the case in electromechanical or electromagnetic design where the main
tool for field modelling involves numerical computation (such as finite elements).
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Recently, some more efficient kriging based approaches for solving worst-case optimisation
problems have been proposed in literature. The authors of [3] use the mean and variants to assess
the robustness, while their proposed strategy utilises the gradient information computed from
the kriging model. In [4] the Expected Improvement (EI) infill sampling approach is combined
with a relaxation procedure based on a kriging model. In[5] the EI infill sampling approach is
applied to the worst-case response surface calculated based on the kriging model.

4. A two stage approach

In this paper, we propose a two-stage approach for solving computationally expensive worst-
case optimisation problems. We focus on maximising the usage of available information while
delaying the calculation of the worst-case value at sampling points to achieve a more efficient
sampling scheme for the worst-case type of robust design optimisation.

The worst-case optimisation problem is often referred to as the minimax problem, with an
extra “layer” of optimisation, therefore the infill sampling criteria for global optimisation are
often found inappropriate in the context of the worst-case optimisation problems. The worst-
case value of the objective function at any given point does not depend on information given by
that point alone (including the kriging prediction, mean squared error MSE, gradient etc.), as
information from its neighbouring points also needs to be taken into account.

The algorithm consists of two stages: the first one is to update the kriging model by
sequentially adding infill points at each iteration based on the worst-case expected improvement
(WCEI) - this expected improvement measure is recalculated from standard EI, by taking the
minimal EI value within the worst-case region of that design point (design site)

WCEI(x) = max{min[ EI (x + £)],0} 2)
x+eccX

where X 13 a set of points located within the worst-case region of the unknown point x. A 1D
example is illustrated in Fig. 2, where the boundary ¢ of the worst-case design is £0.3.

kriging (medified El) 8th iteration

worst-case region

/

WOCEI eguals to zeno within the worst-case region
00647

e m /\ L0034
AT ‘ 0
02 04 08 08

a 1

Objective function value

X
Fig. 2. The worst-case regions of existing design sites in a 1D example
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The extra layer of the minimax problem i1s embedded within the WCEI; the new infill
sampling point will be located where the minimal expected improvement around the target point
1s the largest. The WCEI 1s equal to zero at the locations within the worst-case region of existing
design sites; consequently, these areas are banned as future infill locations at the model updating
stage. During the process of model updating, the worst-case estimation of the objective function
is computed simultaneously based on the kriging model constructed using the existing design
sites at that iteration.

The second stage is triggered when the maximum WCEI within the design space becomes
less than a predefined value or stage one has exceeded its allowance, if such limit has been
imposed. An exploitation process takes place in stage two; the worst-case region around the
worst-case optimum is exploited and validated using a modified EI approach, where instead of
calculating the improvement, an expected “deterioration’ is estimated to give an indication
where the maximal worsening is located within the worst-case region of the worst-case optimum

D] {%ﬁ(x)—ym)®(u<x>)+f¢<u), ;g 3
y= IO~ Vi
)

This process is repeated until the value of the expected deterioration is zero or smaller than
a predefined value; at this stage the location of the worst-case estimated optimum 1s added as
the next infill point and the associated objective function is evaluated. When the range of the
underlying objective function surface is large, both the location and value of the actual worst-
case optimum can differ from the estimated one; therefore, the above validation process
provides a more accurate prediction within the area of interest, and thus helps the program to
locate the best worst-case optimum both efficiently and accurately.

5. Example

The worst-case optimisation routine following the two-stage approach is first illustrated
using a one-dimensional test example. Figure 3 shows the original test function and its
associated worst-case distribution, where the ‘boundary”’ & of the worst-case design was assumed
to be £0.3. Tt can be observed that both the landscape and in particular the position of the
optimum differ noticeably between the original function and the worst-case version.

In Figures 4 (a) to (f) the yellow dotted line depicts the objective function (the worst-case
version in (b) and (f), the original shape elsewhere), while the blue bold line shows the kriging
prediction. Figure 4(a) shows the kriging model after the 11% iteration. As the maximum WCEI
within the design space is less than the predefined value of 1073, the program enters stage two
and the region around the worst-case estimated optimum at x = 0.12 (see Fig. 4(b)) 1s exploited.
The infill criterion in Fig. 4(c) illustrates the value of expected deterioration within this region.
The estimated worst-case optimum 1s updated during the validation process and the exploitation
area 1s then moved to a region around the new estimated worst-case optimum at x = 0.353. In
Fig. 4(d) the value of expected deterioration equals to zero at the 15% iteration; the final worst-
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case optimum 1s then located at x = 0.303 m Fig. 4(e), while Fig. 4(f) shows the final shape of
the estimated worst-case objective function, as well as the actual worst-case objective function.
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Fig. 4. The proposed algorithm solving a 1D test problem
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6. Gradient decent with multi-start algorithm for infill points selection

In the context of global optimisation based on surrogate modelling, the location of the next
sampling point is based on the infill point sampling scheme which contains a set of rules or
formulae. Taking standard Expected Improvement (EI) approach as an example, it takes the
predicted function value, estimated error and the current optimal value as the input variables,
and yields the expected improvement for that particular point; the point with the largest expected
improvement will be the next infill point. In order to locate reliably the point with the maximum
EIL all points within the design space need to be considered, necessitating the calculation of the
predicted objective function and the corresponding MSEs at all points. Using an exhaustive
method to locate the point with the maximum EI s relatively straightforward i a 1D scenario,
but may not be acceptable (or practical) in multidimensional cases, where the number of EI
calculations increases exponentially if the same sampling mterval of El is maintained.

kriging (standard E I} 4th iteration

El

Ohjective function value

| DD283

m {\ /?\\ m oot
1 1 L f\ A 1 I I [1}
04 0.5 0.6 07 08 03
X

0 0.1 0.2 03
Fig. 5. El at predefined sampling locations for a 1D test function

Figure 5 illustrates a 1D example problem, showing the original objective function (dotted
yellow line) and the kriging model (bold blue line), while the bold cinnabar line at the bottom
(with crosses on top) is the true EI curve. 101 EI sampling locations have been evenly distributed
within the design region with a fixed interval of 0.01, with the small black crosses on top of the
EI curve marking the sampled ET at those predefined locations. As can be seen from the figure,
the sampled EI is a reasonable approximation of the true EI curve, but not very accurate at the
“critical” location around the maximum EL

The EI curve in Fig. 5 extubits certain useful characteristics: it is differentiable and the local
maximum between two existing design points is often close to their mid-point. We could take
advantage of these features in order to significantly speed up the infill sampling process. Instead
of using an exhaustive search of all predefined locations, a gradient decent approach with a
starting point in the middle between two design points has been incorporated into the algorithm
and 1s illustrated by an example in Fig. 6.
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kriging (standard ET) 4th iteration
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Fig. 6. A gradient decent approach for the EI search

In the example given in Fig. 6, the search for the maximum EI is not restricted by the
predefined step size, the optimal EI is found with reasonable accuracy while reducing the
number of EI calculations by half.

For a multidimensional design space, where the local maximum EI is located in between
multiple existing design sites, a multi-start strategy can be applied to replace a single starting
point, as in the 1D case, by simply generating starting points in the middle of each pair of two
existing design sites. It is a combination problem and the number of starting points p for # known
points is p = nC2. Hence for 100 existing design points, 4950 starting points for the gradient
decent calculations are generated.

7. Solving practical problems

TEAM workshop problems [6] consist of a set of practical electromagnetic optimisation
design problems for benchmarking the performance of algorithms. Here we test the proposed
approach on two practical benchmark problems. For both problems, the uncertainty boundary
for each design parameter (upper and lower limit) is defined as 1% of their given design range.

The superconducting magnetic energy storage device in TEAM problem 22 [ 7] contains two
superconducting coils, the design objective is to achieve a mimimal stray field while the stored
energy should be equal to 180 MT. The configuration of the inner coil is given in the 3 Parameter
(“discrete”) case, and therefore there are three parameters to be optimised, namely the radius R,
height /4, and thickness dh of the outer coil, as indicated in Fig. 7.

The objective function 1s given as

OF = ?}@’ + LEE’“’J’ | (4)
nanm ref

where E..;= 180 MI, By = 3 pT and Bfmy 1s defined as
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where J (in A/mm?) is the current density and B the maximum magnetic flux density (Fig. 8).
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Fig 7. The superconducting magnetic energy storage device [5] [7]
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Fig. 8 Critical curve of an industrial superconductor [6] [7]

Table 1. Companson of performance of various optimisation methods (TEAM 22 problerm)

Algorithm i?api:lhenal Ra & ha/2 funcl::Iianfcalls
GA 0.134 3.040 0.386 0.240 2400
SA 0.098 3078 0.390 0.237 5025
HuT S 0.089 3.080 0.380 0.246 3821
NTS G089 3080 0.370 0.254 1800
PEIL 0.101 3110 0.421 0.241 3278
Kriging EI 0.0875 3090 0.394 0.236 211
Kriging AWEI 0.0875 3.090 0.400 0.232 323
Kriging WCEI (worst case)  (.1459 3.021 0.391 0.250 277

Genetic algorthm GA [9]; Stimulated Annealing A [10]; Tabu Search FuTS [11], Universal
Tabu search [12], New Tabu Search T3 [13]; Kriging EI[14], Eriging AWEI[14]
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Table 1 summarises the findings, citing the results from other publications and adding the
robust “worst-case’ design. The kriging assisted optimisation has performed consistently well
by achieving a marginally better solution with much reduced effort (the number of necessary
function calls reduced by almost an order of magnitude). The robust optimum is — perhaps not
surprisingly — a little different, slightly worse in terms of the value of the achieved objective
function but assuring the robustness within the specified 1% uncertainty of parameters, while
preserving the efficiency of computation (small number of function calls).

The device in Problem 25 [6, 8] is a die press with an electromagnet for the orientation of
magnetic powder to produce an anisotropic permanent magnet. The objective is to optimise the
shape of the model (Fig. 9). The shape g-h of the inner die mold is assumed to be a circle, the
ingide shape i-j-m of the outer die mold is elliptical and the line j-k is parallel to the x-axis; the
ampere-turns of the coil are chosen as 4253A.

Ay

die molds

pole piece

-

L3
12.5

Fig 9. A model of the die press with an electromagnet [5, 13]

In Fig. 9, R1, L2, L3 and L4 are the design parameters to be optimised so that the objective
function W is minimized

W:i{Bw_Bm +(By!p_Byw)2} )

where B, and B, are the x and ¥ components of magnetic flux density at points along the curve
e-f, while subscripts p and ¢ denote the calculated and desired values, respectively. The
constraints are listed in Table 2 and results in Table 3.

TeBLE 2. Constraints of the pararmeters

Vartable Lowerboundary  Upper-boundary

() ()
R1 5 94
L2 126 13
L3 14 43
L4 4 1%
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TaBLE 3. Comparison of performance of various optimisation methods (TEAM 25 problem)

Optimal No of
Algorithm value R1 L2 L3 L4 function
(104 (mm) {mm) {mm) (mm) calls
GA 2.6861 72996 14174 14.001 14326 3421
SA 1.6223 7.2252 14322 14110 14.306 2145
HuTS 0.5009 7.3780 14613 14371 14.204 1580
UTs 1.0501 7.5487  14.908  14.506 14416 931
NTS 0.6482 74337 14732 14428 14.237 575
Kriging EI 0.4527 7.2 14.1 14 14.5 265
Kriging AWEI 0.4125 72 14 14 14.5 214
Dual kriging 0.3231 7.1 13.9 14.014 14.273 234
Kriging WCEI (worst case)  5.4442 7.104 13.891 14.035 14.270 453

Genetic algorithm GA [9]; Stimulated Annealing SA [10]; Tabu Search HuTS [11]; Universal Tabu
search [12], New Tabu Search NTS [13]; Kriging EI [14]; Kriging AWEI [14]; Dual kriging[15]

The main observations resulting from the TEAM 25 study are broadly in line with what was
demonstrated before, although on this occasion the robust optimum 1s clearly somewhat ‘worse’
(in absolute terms, but of course it is more robust) and the algorithm is computationally a little
less efficient, although still comfortably outperforms other non-kriging methods. It is also
interesting to note that for both TEAM problems the originally published results (when the
problems were first suggested) appear to be reasonably robust, more so than the subsequently
offered solutions. The most important conclusion, however, resulting from this study is that the
kriging assisted optimisation is very reliable and offers superbly efficient computation, both for
the ‘traditional’ (global) optimisation and the robust formulation. Finally, the worst case
(minimax) approach appears to be a very helpful methodology for robust optimisation.

8. Conclusions

A two-stage approach to worst-case optimisation problems has been proposed and details of
the algorithm discussed. The suggested method does not compute the worst-case value, or the
corresponding robustness measure, for any design site during the model updating stage, in order
to avoid the objective function evaluation at a location that would contribute less to the overall
model landscape, which would have taken place if the worst-case value had been evaluated for
the newly added infill point. Instead, the explicit search for the robust optimum takes place in
the second stage after the model updating process has completed, with a validation process
added to exploit the region around the estimated worst-case optimum. A more efficient infill
criterion selection algorithm has been introduced. The proposed optimisation method has been
validated using simple test functions and two multi-dimensional practical electromagnetic
design problems TEAM 22 and TEAM 25. The test results indicate that, with the aid of kriging
surrogate modelling techmiques, the proposed methodology significantly reduces the number of
FEM function calls compared to other methods and thus is computationally very efficient for
both global and robust optimisation.
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exploiting points aggregation techniques

Yinjiang Li Song Xiao, Mihai Rotaru, and Jan K. Sykulski, Fellow, IEEE

Electronics and Computer Science, University of Southampton, Southampton, UK, jks@soton.ac.uk

Abstract—A kriging based optimization approach is proposed for problems with large datasets and high dimensionality. Memory
usage is maintained via model centering aide d by minimizing the impact of information loss on accuracy of new point prediction using
points aggregation techniques. The 8-parameter TEAM problem 22 isrevisitedin the contextof computational efficiency andaccuracy.
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I INTRODUCTION

urrogate modelling techniques are helpful tools in design

optimization, especially when the underlymng problem is
computationally expensive. This situation frequently arises in
the design of electromagnetic devices where time consuming
finite element simulations are often necessary to ensure
accurate performance prediction, or physical modellng is
called upon. Kriging based methodologies have beenshown to
be particularly useful and offer good accuracy of the es timation
while reducing the number of required objective function calls.
Unfortunately the complexity of the algorithm mncreases as
solving thekriging model involves the inversion ofa correlation
matrix, which results in O(n"3) computation cost and O(n"2)
storage cost. Consequently, the otherwise efficient application
of kriging is often limited to smaller scale design problems.
Much effort has been devoted to address this bottle-neck of
kriging methods whenapplied to large datasets, some examples
mchide zooming-n modelling [1], movimg-window kriging [2],
covariance tapering [3] and fixed rank knging [4].

In this paper points aggregation is proposed. The method
involves locating the most nteresting search area for the next
mfill pomnt, then aggregating points outside this centerarea, and
finally building a kriging model for mfill point search within
the identified center area.

II. CENTER POSITIONING

The objective is to locate a center around which a pres cribed
number of ‘interior” pomts will not be aggregated and where the
next nfill point will be located mside this region. For an
arbitrary location mside the design space a corresponding
Criterion, canbe introduced based on the following equations,
thenthe location with the maximum Criterion, will be defined
as the model center

Cy+ €y, random(0,1) <v
Cs, otherwise

Criterion, ) = { (1)
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Xk Gy — 2 range (y)
€= Rg 'x ‘*13;; a , R, = gzy (3)

TE  —wy,

Cs=R. 'x (max(Y) = L), (4)
3 Ca Z?zlwi

Re, =range(y), and w = e S Gio (5)

where ¢ denotes the center, ¥, is the location of its i** closest
pomt, k defines the number of closest neighborhood points
around €, ¥; denotes the objective function values of the ith
closestneighborhood pomt, w; is the weight term which has an
mverse relationship with the distance from pomt { to the center
¢, it is the mean of ¥, and v is the calculated probability.

€, in (1) is the sum of square roots of Buclidean distances
between the hypothetical center ¢ and k nearest points around
it. The value of €, is a measure of a sample rate within the
region; it determines how close a hypothetical center ¢ is
located in relation to its nearestk points, while the square root
de-emphasizes the mportance of remote pomts. C, s the
weighted standard deviation of the objective function values of
all the neighborhood pomts. Fially, C; is the weighted mean
of the objective function values of all the neighborhood points.
Bach point is weighted by an exponential function, whose
gradient is controlled by the parameter v. The smaller values of
v apply less weight on remote points.

The C; and C,terms will encourage exploration of the under-
sampled and rough areas, respectively, while €5 focuses on
exploitation of the current optimum region.

The probability of exploration and exploitation 1s controlled
by a parameter v, whose value is related to the root-mean-
square deviation (RMSD) of the kriging model. Instead of a
deterministic mixture of exploration and exploitation terms, a
stochastic approach has been applied to search the objective at
different stages,while eliminating the risk of the deterministic
criterion function bemg trapped in a local optimum.

0018-9464 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. (Inserted by IEEE.)
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The predictor deviation d in iteration iter is defined as
dier = [(xyper) = Pred,, ,(x;,,) ®

where x,,,, i the location of the infill point n the iter™
iteration, f (%) is the evaluated objective function at location x
and Pred;,,, _,(x) s the predicted objective function value at
location x in tteration iter — 1.

The deviation d,,, is calculated and recorded whenever a
new infill point is defined. Finally, the historical root-mean-
square deviation (RMSD) is

Zm d 2

iter=1"iter (5)
m

RMSD =

where m is the most recent iteration.

To obtan a generalized weight term, an exponentially
weighted RMSD 15 applied m this case m order to put more
weight on recent results; the aim is to emphasize the recent
prediction error to reflect on the optimization progress. The
exponentially weighted RMSD is calculated using the formula

™ (1 —q)miter x d,,
=1 iter
RMSDyighrea = |—5 (6)

" — —it
iter:1(1 a)m wer

where a 1s the decay parameter and 0 < a < 1. A larger a will
put less weight on past prediction errors and vice versa. When
@ = 0, RMSDyeigneeq is identical to RMSD .

A generalized weight term that represents the current
optimization progress m terms of model prediction deviations
may be defned by taking a ratio of the exponentially weighted
RMSD and regular RMSD of historical prediction errors

v = weighted RMSD/ RMSD @)

The parameter v can be regarded as a measure of model
quality at any stage, v often ranges between ¢ and 1 + &, and
a controls the gradient of the exponential weight function; as
model deviation decreases v will gradually move towards zero.

2 11
Prediction error

Value of v

o 20 e @

@ e 0 = E E] 3 o
Iterations (b Iterations

Fig. 1. (a) T he history ofthe prediction error, (b) the history ofthe valwe ofv,
asiterations progress.

Regardless of which criterion function is used, this
optimization stage involves finding the number of closest
neighborhood points £ around ¢ and calculating the parameter
v, which requires extra computation resources, therefore
fnding the hypotheticalcenter ¢ using exhaustive searchis not
practical It may be seenas a global optimization problem with

the mput ¢, the output Criterion,, and the objective function
Criterion. = (€, + C,)} or Criterion, = €;. Because the
center only defines an area for the new infill point, an
approximate solution will suffice at this step; thus a stochastic
sequential global optimization method of simulated annealing
has been utilized. It may be argued that as the precision of
estimating the intermediate optimum is not that important, a
sequential method will have the advantage of fewer function
calls and more flexibility over population base methods.

The response surface of a 2D function is plotted in Fig. 2,
with the red crosses at the bottom marking the location of
existing design pomts.Figs. 3 (a) and (b) illustrate the criterion
function for exploration and exploitation terms at the 90
iteration, respectively. As can be seen from the figures, the
C,1C, term encourages search in less sampled and non-smooth
areas around x=[0.92,0.79], while the C, function suggests
exploration of the area around the mmimum at x=[0.20 0.27].

2Dtest -
objective -
function

T

Fig. 3. (a) Exploration functions C; +€,, (b) exploitation function C;.

II. OUTSDE POINT SAGGREGATION

The objective of this step is toaggregate design pomts further
from the model center nto a smaller number of nodes (the
‘knots”), so that the total number of nodes and points in the
model can be fitted into the memory. The problem of outside
points aggregation involves hierarchical clusteranalysis (HCA)
[5] and a single variable optimization design. The objective of
HCA is to group outsider points into a setof clusters s o that the
number of clusters s equal to the number of nodes. The value
of the node is equal to the weighted mean of aggregated points.

There 1s rich literature related to cluster analysis, m particular
in the field of data science, and many algorithms have been
published. The points aggregation can be treated as a k-mean
clustering problem where there are significantly more clusters
to be identified compared to conventional clustering problems.

0018-9464 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. (Inserted by IEEE.)
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In this paper we developed a sequential algorithm for weighted
points clustering, the pseudo code of which is given below

Form = 1: somple size
Forn = Linumber of clusters
- eeleulnte new cluster controid
- celeulnts weighted Fuclideon distonce
to centroid
end
- Find the cluster (x)with minkmum weighted
Fuclideon distonce g
if 8 < weighted dizsimilority
©ndd point(m) to chuster(x)
else
Corente 6 new cliuster
engd
end

The cluster’s centroid o of a set of i points & is given by
I

olx) =§>< z;\:[ ()]

=1

where p is the number of points to be considered.

The Euclidean distance is weighted by the distance betureen
the cluster’s centroid o and the model’s center £, based on a
correlation function, while the dissimdlarity is weighted too, as
a larger distance results in lower correlation and therefore
information loss due to points aggregation will have a smaller
itpact on the prediction result within the center area The
design space is nommalized and each cluster’s centroid is
weighted by the Gavssian function.

The Gaussian correlation function in the khging model is
usedto caloulate the weight w; the original functionis given by

Flaga) = o700 @)

Because the hyperparameter & needs to be tuned during the
model construction process, and is unknown at the stage of
outside points aggre gation, we specify 8 = 2 as thisprovides a
smoothet decay in correlation and gives generally goodresults
when the undetlying problem is unknown,

The optimization problem is defined as OF(d) = (n — g7,
whete d is the input variable dissimilatityy, = is the number of
nodes/clusters generated during the clustering process, g is the
mamber of outside nodes that can ke fittedinto the memory. The
pseudo code provided abowe shows a basic workflow of the
clustering process; to speedup the process, clusters with the
mittan value of 11— are kept in memory and a new
clustering iteration starts with these existing clusters. The
clustering process is termdnated when the sum of the number of
existing clusters and the number of unclassified points iz less
that the mamber of nodes calculated previously.

The following example illustrates outside points aggregation
applied to a 2D problem. Fig. 44) shows the clustering without
Gaussian weights, while Fig. 40h) illustrates the clustering with
Gaussian weight terms applied. The problem consists of 500

obzervations, assuming that the memory can build a kriging
model up to 250 design points. We specifyy that 40% of the
memory will be used to store the interior points within the
model’s central area, while the remaining 60% of memory is
used to store nodes related to outside poirts. The 400 poirts
outside the center area are aggregated into 150 nodes.

Fiz. 4. (a) Chstermgwnthont Ganssian weight fiametioes, (b) Chisteringwith
Ganssian weight fanetioms (withnormalized axes).

IV, & 2D EXAMPLE

The point aggregation technique is illustrated in Figs. 5 and
6 by a 2D example. The kriging model in Fig. 5 is built based
oy 100 design points, while the model in Fig. 6 contains 60
nodes, including 20 inside points within the center area and 40
nodes outside the center area, where 62 original points have
been involved in the aggregation. Memory allocation for the
cotrelation matrix is 36% of the original size, thus considerable
SAVINLZS it themory requitetnents have been accomplished.

2D test
objedie
function

‘] .Ir":-, '..

B

Fiz. 5. Exiging

20 test
objedivwe
function *

Fiz. &. Kriging estimate after poirt ageregation (80 nodes).

0018-2454 ©2015 IEEE. Personal wse 15 permnitted, but republicationiredistrbution requives IEEE parrnission.
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TABLE 1
PERFORMANCE COMP ARISON BETWEEN DIFFERENT AL GORITHMS
Alorithm  Ri(m) Re(m) hifm) he(m) di(m) d(m) Ji(Amm) L(Ammd 2SN igzi{;m}f No- of FEM

PSO T 22647 L1076 1.7766 0.5225 0.3#|2  28.1779 54921 T.5673 §5.0413 ~G000
Q-PSO 22047 26126 039 22704 03967 0.204 30 —21.293 2.4016 13.3456 ~6000
E-QPSO 1 18 0.38 36 05155 0.2851 199975  —6.3571 0.3464 0.3685 ~6000
GSA 1939 23823 037 1.101 0399 0195 22.5 225 1.5547 0.195 17150
ES 199 2931 0421 094 029 0.188 26.6 -26.6 0.4103 1.69235 4200
SAA 1.694 2907 0394 0882 0323 0207 20.9 -20.9 1.0087 1.09395 14000

Kriging standard 1 1.8 1.56 1.39 0.4 0.15 30 -30 1.4065 32.9056 449
Krigingproposed” 3.272  3.573 1819 1.106 0.195 0.154 26.932 —23.259 0.0383 0.0159 500 %
1.103 2318  3.193 0288 0259 0734 22.5 -22.5 0.0014 0.0003 829 ¥

Original answer  1.296 1.8 2.178  3.026  0.583  0.195 16.955 — 1891  0.00337 0 —

P SO: particle swarm optimization [6], Q-PSO: quantum-behaved particle swarm optimization [6-8], E-QPSO: QP SO with exponential probability distribution [9],

GSA: global search algorithm[10], ES: evolution strategy [10], SAA: simulat ed annealing algorithm [10]. Results for P SO, Q-PSO, E-P SO, GSA,ES and SAA

taken from [6] to [10]. The comparison is for the 8 parameter continuous case [11]. Notes:

1) The newkriging algorithm offers significant savingsin memoryrelatedto the correlationmatrices; thishas been achieved by aggregating the outside points.

2) Solutions from somepreviously published methods have violaedthe quench condition thedegree by which this constraint has not been met is given by the
‘penalty’ (high values indicate severe violation). In some cases the geometrical or cturent density constraints have not been met either.

3) Fora fairer comparison of memory usage between st andard kriging and the proposedkriging method, t he maximum number of iteraions was set to 500, while
maintaining a maximum of 375 nodes; a memory saving on correlation function of ~50%% was achieved and — as a bonus — a better optimum was found.

4) The proposed enhanced kriging method may be allowed to corntimme the search with the number of nodes maintained at 500; improved results have been
achieved (better value of objective function and lower constraint violation) after more iterations, at the modest expense of more FEM calls.

5) The value of the objedtive function in the original specification was a little different; it was recalculated here using a consistent FEM model forcomparison.

V. PRACTICAL EXAMPLE TEAM 22

The superconducting magnetic energy storage device in
TEAM problem 22 consists of two superconducting coils. The
design objective i to minimize the stray magnetic field while
maintaining the stored energy at 180 MJ (see Fig. 7), subjectto
specified quench conditions and geometrical constraints [11].

4zinm
(10.0) line a (11 points) OF = Bsztray ‘E*Eref‘
- " BRorm Erey
s )
S =
g =]
2 8
g e = E,.; = 180 MJ,
@ B o _
2 ] s Broop = 200 4T
S 7 I - L -
| (0,10) rinm B2 _ zgl:lzz‘gsrray,i‘
|| S stray — 22
R,

Fig. 7. The superconducting magnetic energy storage device (TEAM 22) [11].

The results are summarized in Table I As on previous
occasions kriging has shown its superonty by dramatically
reducing the number of necessary function calls and thus
avoiding excessive use of the computationally expensive finite
element software. Moreover, the addition of the points
aggregation has offered an additional flexibility of limiting the
number of active points in the design space; this has the benefit
of reducing the memory requirements for the solution without
sacrificing the accuracy. Finally, the iterations may be allowed
to continue to achieve a better design with a modestincrease of
computational effort due to the need for more FEM calls.

VI CONCLUSIONS

A kriging based optimization approach for large datasets has
been proposed and its efficiency demonstrated using the TEAM
22 problem. The model center positioning algorithm balances

exploration and exploitation assisted by the use of a stochastc
approach, which eliminates the risk ofa deterministic criterion
function bemg trapped i a local optimum. It has been found
that the size of the correlation matrices can be greatly reduced
by applymg points aggregation techniques. It is shown that the
proposed approach can fit a large set of datainto a limited size
of memory and whereas some loss of mformation about remote
points may be experienced this is alleviated by theuse of points
aggregation incorporating a new weighted clustermg algorithm.
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Abstract—The paper introduces a new approach to kriging
based multi-objective optimization by utilizing a local probability
of improvement as the infill sampling criterion and the nearest
neighbor check to ensure diversification and uniform distribution
of pareto fronts. The proposed method is computationally fast and
linearly scalable to higher di i
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I.  INTRODUCTION

Research on multiple objective optimization (MO) has been
atfracting significant attention of the engineering community
since 1980s; with the aid of fast computers solutions to many
complex optimization problems have been made possible. The
Vector Evaluated Genetic Algorithm (VEGA) [1] is one of the
earliest examples of Multi-Objective Evolutionary Algorithms
(MOEAs). The more recent developments include NSGA-IL [2]
and its modified versions as well as Particle Swarm based
methods [3]. For a comprehensive review of problem definitions
and non-EA based solution methods, readers are referred to [4].

There is an increasing number of indicator-based MOEAs
that have been proposed in recent years; the indicator is used as
a fitness measure for a set of pareto points, and — by optimizing
the indicator function — the MO problem essentially becomes a
single objective optimization problem as the solver only needs
to locate the optimal value of the indicator value and update the
generation based on it. One of the best-known indicators 1s the
hypervolume [5]; it has been successfully applied to both EAs
and surrogate-based algorithms. Despite its unique feature of
being strictly monotonic to pareto improvement [6], its high
computational cost for higher dimensions is also widely known.

The general opinion favors EAs as advantageous in solving
MO problems by often being population based, thus multiple
solutions can be obtained in a single run. However, solutions to
practical problems are usually expensive m terms of
computational time and effort. In the context of electromagnetic
devices the finite element method is a common design tool; it
often takes hours or even days to obtain a single solution,
therefore surrogate model based algorithms are often preferred.

In this study we propose a novel indicator focused Localized
Probability of Improvement (LPol) approach for MO problems;
its implementation requires the predicted mean and mean square
errors to be available, hence it is not applicable to other EAs, but
for Gaussian based surrogate models (including those relying on
kriging) it has the advantage of being linearly scalable to
problems with higher number of objectives.

II. LOCALIZED PROBABILITY OF IMPROVEMENT

Compared to other surrogate modeling methods, kriging has
the advantage of providing both the predicted mean and the
associated mean square error (MSE) at an unknown location.
The probability of improvement Pol at any location is given by

(im0 - F)
Pol(x) = @ (T)

where y; is the target of improvement, ¥ is the kriging predicted
mean at location x, § is a square root of the mean square error at
location x and ®(-) is the cumulative distribution function.

€Y

The algorithm presented in this paper uses a localized
approach to define the probability of improvement at an
unknown location; for simplicity we define the indicator as the
LPol which at a given point is calculated as follows

Pole™(x) = q:(y—t (xg)n;xf (x)) @
n yextn - ﬁn(x)

Pol ™ (x) = @ R (3
LPol,,;(x) = min{Pol,,(x)} 4)
LPol(x) = max{LPol,.;,Pol,..} (5)

where ", %, 8%, v . Pol." and Pol,,," are the
corresponding measures of the n**objective function, Pol, "
is the probability of improvement calculated on the basis of
reference points, Pol,,," is the probability of improvement
calculated based on minimum objective function, y, is the target
improvement using reference points, ., 15 the target
improvement over each individual objective, and
finally Pol,..; and Pol,,. are collections of Pol.;" and
Pol,...", respectively.

The Pol,,," term, as described by (3), is due to the fact that
the minimum of each individual objective function is always
present in the pareto front, hence Pol at each location x over the
optimal target of that function is always considered. This term
also contributes to the diversification of the pareto front, while
the associated improvement target y,,.. 1s given by

ygxtn = ymin71 : (1 - p) (6)

where ¥,,,," is the known minimum value of the n** objective
function and p is the percentage of improvement, the analytical
form of which is shown later by (9).
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The term Pol,.," in (2) is calculated at different locations of
x based on the local improvement targets; a target is calculated
for a reference point, and the reference point is taken based on
the location of x. In order to obtain the reference points, the
algorithm finds the pareto front for existing design sites, using
non-dominated sorting, and then for each closest set of pareto
points (the number of points equals to the number of objectives),
calculates the corresponding reference point. The coordinate of
the reference point for each dimension is equal to the maximum
value of these pareto points in the same dimension. Hence the
reference point in the n*"* dimension is given by

Yref™ = max{y™} )

where ¥™ is the collection of the n'* objective values of all
points in that Pareto set. The improvement target y,™ associated
with each reference point is then given by

Ytn =yrefn (1_P) (8)

The percentage of improvement p controls the convergence
rate of the algorithm and is given by

P = Pinitial maX{LPOIpreu} (9)

where p;,itiq 15 the initial improvement target to be defined (it
is set to 0.1 in our tests) and LPoL,,.,, is the set of LPol from
all points at the previous iteration. To obtain the next infill
sampling point, the algorithm finds the location x associated
with the maximum LPol measure in the criterion space.

The solver based on the LPol criterion will tend to minimize
the localized Pol and converge towards the pareto front. When
the design space is well explored, or p is very small, the solver
will converge to existing pareto fronts; at this stage it is common
for a multiple number of unknown sites to have the LPol equal
or close to 1 (very likely to improve over the target point). In
order to obtain a uniformly distributed pareto front, the
algorithm selects candidates which have the largest Euclidean
distance to existing pareto points as the next infill sampling
points. Because of this reason given above, the maximum value
of LPol can be capped at 0.95 or 0.99 for faster exploitation of
the existing pareto front.

III. TEST EXAMPLES AND RESULTS

In this section we illustrate the proposed method using a bi-
objective example.
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Fig. 1. The kriging model and the LPol criterion in the search space.
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Fig. 2. (a) Existing design sites in the criterion space at 20" iteration;
(b) Existing design sites in the criterion space at 45% iteration.

The top graph in Fig. 1 shows the kriging model (solid line)
after the 45" iteration, with the red crosses plotted at the true
pareto front, while the bottom plot shows the proposed indicator
value for the unknown sites. As can be seen, the algorithm has
correctly converged to all four pareto point clusters in the search
space and thus further sampling will lead to more exploitation
on the pareto front. The sampled design sites in the criterion
space are plotted in Fig. 2, where the red dots indicate the
location of the true pareto front.

IV, SoLvING THE NEW TEAM PROBLEM

A new TEAM problem is about to be proposed at the
forthcoming Compumag conference in Korea, June 2017. This
is devoted specifically to multi-objective optimization and the
intention is to test our algorithm on this new benchmark
problem; full details will be provided in the extended version.

V. CONCLUSION

A novel approach to kriging-based multi objective
optimization is proposed and details are discussed in this paper.
A bi-objective problem is illustrated, while the method will be
tested against the new TEAM benchmark problem. The
proposed method addresses efficiently both the diversification
and uniformity of the pareto solution, is computationally
efficient and is linearly scalable to higher number of objectives.
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Appendix B

A summary of the codes used (a copy of all codes attached on a CD).

The MATLAB codes used in this thesis are provided in this section, the content of the
media and brief comments are given below, folder names are underlined, while file
names are presented in bold.

DACE

The software package DACE is a MATLAB kriging tool box; the program files contained in
this folder form the prerequisite to most of the other programs in this section.

Chapter 2. Background review

initial_sampling.m

Contains code for random sampling and Quasi-Monte Carlo sampling approach

Kriging_El.m

Contains code example of kriging with expected improvement (El) as the infill criterion.

Func_Krig_El.m

Sub function of Kriging_El.m for calculating standard El criterion.

Chapter 3. Efficient sampling plan

Kriging_ESS.m

Contains code example for using kriging and efficient sampling scheme as the infill
criterion.

Func_Krig_El.m

Sub function of Kriging_ESS.m for calculating standard El criterion.

Chapter 4. Robust optimisation

Kriging_WCEl.m

Code example for the proposed minmax solver.
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Func_Krig_ WCEl.m

Sub function of Kriging_WCEIl.m for calculating expected worst-case improvement.

Func_Krig_ED.m

Sub function of Kriging_WCEIL.m for calculating expected deterioration.

Chapter 5. Kriging for larger datasets

Dualkriging.m

Program code for dual kriging approach and example.

Func_Krig_El.m

Sub function of Dualkriging.m for calculating standard El criterion.

AGkriging.m

The program code for kriging with aggregation and example.

TestFunc_2D.m

Sub function of AGkriging.m, for setting up the test example.

ffh_center.m

Function handler for the centre criterion, sub function of AGkriging.m. Use simulated
annealing or other global optimisers to optimise this function.

Func_points_aggregation.m

Function handler for the dissimilarity function, sub function of AGkriging.m. Use
fminbnd or Script_clustering.m to optimise dissimilarity.

Script_clustering.m

Script for optimizing dissimilarity; in case the fminbnd optimiser fails, the program will
use this function to optimise dissimilarity.

Func_Krig_El.m
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Sub function of AGkriging.m for calculating standard El criterion.

Chapter 6. Multi-objective optimisation

MOKkriging_LPol.m

Program code for kriging with the localised probability of improvement (LPol) for
multiobjective optimization problems.

non_dominated_front.m

Sub function of MOkriging_LPol.m for dominate sorting, returning index. Author:
Johannes W. Kruisselbrink, this file is a part of the Hypervolume Computation package
available in MATLAB file exchange

Func_MO_LPol.m

Sub function of MOkriging_LPol.m for calculating the LPol criterion.

Func_plot_v3.m

Sub function of MOkriging_LPol.m for generating figures.
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