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In electromagnetic design, optimisation often involves evaluating the finite element 

method (FEM) – repetitive evaluation of the objective function may require hours or 

days of computation, making the use of standard direct search methods (e.g. genetic 

algorithm and particle swarm) impractical. Surrogate modelling techniques are helpful 

tools in these scenarios. Indeed, their applications can be found in many aspects of 

engineering design in which a computationally expensive model is involved. 

Kriging, one of the most widely used surrogate modelling techniques, has become an 

increasingly active research subject in recent decades. This thesis focuses on four 

interesting research topics in surrogate-based optimisation: infill sampling efficiency, 

robust optimisation, and the memory problem encountered in large datasets and multi-

objective optimisation. This thesis briefly provides relevant background information and 

introduces a number of independent novel approaches for each topic, with the aim of 

increasing efficiency of optimisation process and ability to handle larger datasets. 
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Chapter 1.   Introduction 

 

1.1   Optimisation design 

The engineering industry has witnessed an explosive advance in computer technology 

in recent decades. Engineers are currently able to solve complicated optimisation design 

problems with the assistance of powerful computers. Research in the field of 

optimisation, from linear programming (1939) [1] to evolutionary algorithms ([2] which 

have attracted significant attention lately), has exhibited successful application in 

engineering design problems [1]. Various optimisation methods have been published, 

with their efficiency and capability to solve different types of problems being 

consistently improved over time. The advantage of the current heuristic methods is that 

the algorithm is computationally fast; global optimisation methods like the genetic 

algorithm and the particle swarm algorithm can be naturally incorporated with parallel 

computing and can take advantage of multi-threaded computers.  

 

1.2   Global optimisation 

The purpose of global optimisation is to find the solution 𝑥̂, in a feasible region that 

optimises the objective function 𝑓(𝑥). Depending on the specific application, the design 

can be one of a maximisation problem (to maximise the durability of a product) or a 

minimisation problem (to minimise the energy consumption of a device). Without loss 

of generality, we assume that they are all minimisation problems: 

maximise {𝑓(𝑥)} = minimise  {−𝑓(𝑥)}                               (1.1) 

Problem definition: 

Minimise {𝑓(𝒙)}                                                      (1.2) 

Subject to 𝑥 ∈ 𝑫 

𝑔𝑖(𝒙)  ≤ 0, 

ℎ𝑖(𝒙) = 0,    𝑖 = 1, 2 … , 𝑛. 

where 𝑓(𝑥) is the objective function, 𝑫 is a non-empty set of feasible design points, 

𝑔𝑖(𝑥) is the inequality constraints and ℎ𝑖(𝒙) is the equality constraints. 

The local minimum in a convex problem is also the global minimum; this type of problem 

can be solved using local optimisation techniques efficiently. A number of well-known 

local optimisation methods include: the Simplex Method, Newton’s methods, Quasi-

Newton Methods and sequential quadratic programming.  
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Practical engineering design problems often possess a non-convex objective function or 

constraints. These problems are likely to contain multiple local minima and are often 

difficult to solve [3]. When multiple local minima are present in the search space (also 

called the feasible region) [3], new methodologies are necessary for locating the global 

minimum without being entrapped in a local minimum. The simplest approach is to start 

the local optimiser at multiple locations within the search space. Other examples of 

more sophisticated global optimisation techniques include: branch and bound, pattern 

search, simulated annealing, genetic algorithm and particle swarm. An in-depth review 

of recent developments in global optimisation methods can be found in [3], [4] and [5]. 

 

1.3   Previous work on kriging at ECS 

This project will build on the previous work of Song Xiao (Roger), who recently 

completed his PhD. His results were published in several journal papers [6], [7], [8], [11], 

[12] and conference contributions [9], [10]. The main outcomes of his work are 

summarised as follows: 

• The importance of balancing exploration and exploitation to effectively achieve 

convergence on the global optimum was confirmed after a series of tests. 

• Techniques from reinforcement learning were employed to automatically 

introduce tuning weights to balance exploration and exploitation in response to 

the feedback produced by a kriging surrogate model. A novel method named 

“adaptive weighted expected improvement with rewards” was demonstrated to 

be able to learn from the experience of attempting the exploration and 

exploitation separately and then, determine the distribution of weights 

accordingly. 

• A pre-test utilising only a combination of predicted results and the mean square 

error, which is computationally cheap, was developed and proven to be helpful 

for long-term decisions. Another novel method, called the “surrogate model 

based weighted expected improvement approach with rewards”, which applies 

reinforcement learning based on the improved pre-test strategy, was proposed; 

it attempts to capture the optimal weights combination at each iteration of the 

optimisation process. 

• To mitigate the issues caused by the accumulation of data by the correlation 

matrices due to an increase in the updated sampling process, an adaptive 

partitioning scheme for these matrices was introduced to the kriging surrogate 

model, especially in high-dimensional tasks. 

• Several methods were investigated with regard to the robustness of the design. 

First, the gradient index method was evaluated. However, due to its limitations, 
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a modified method was developed to evaluate the sensitivity of each solution 

obtained by the kriging surrogate model. The worst case optimisation method 

was also explored and an assessment of the average performance was added to 

the algorithm to increase reliability. 

The aim of this thesis is to enhance the methods and techniques already developed and 

thus, further advance the kriging technique, particularly within the context of 

multivariable optimisation and robust design. The focus is on handling the large 

amounts of data created by the relevant models. 

 

1.4   Objectives 

The use of kriging for design optimisation proved very promising and this provided the 

main motivation behind this work. The aim of this thesis is to advance the relevant 

techniques further, with focus on multi-objective and robust optimisation, while 

addressing some of the previously identified issues related to the algorithm efficiency. 

The specific objectives may be formulated as follows: 

1. Review and critically assess the state of the art in surrogate-based optimisation, 

with emphasis on kriging assisted techniques. 

2. To consider and suggest new and better ‘infill sampling criteria’ based on the 

notion of expected improvement. 

3. To enhance the application of kriging assisted methods to robust optimisation 

and suggest the most efficient approach. 

4. To investigate the limitations of the kriging approach related to the size of 

correlation matrices and suggest possible solutions. 

5. To extend the application of the developed techniques to multi-objective cases. 

6. To illustrate the performance of the proposed algorithms using carefully 

selected test functions and practical applications, especially the T.E.A.M. 

problems*. 

Note*: T.E.A.M. (Testing Electromagnetic Analysis Methods) workshop problems [40] 

consist of a set of practical electromagnetic optimisation design problems for 

benchmarking the performance of optimisation algorithms. A list of benchmark 

problems can be found on the International Compumag Society website 

(http://www.compumag.org/jsite/). 

Topics not addressed in this thesis: 

1. The issue of discontinuity in the objective function respond surface. Ordinary 

kriging is an exact interpolation method that generally does not work well on 
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problems with discontinued objective functions [13]; there are other methods 

that have been proven more effective in such type of problems, see details and 

comparisons in [15]. However, if the discontinuity was due to noisy data, 

stochastic kriging (one of the kriging variations) may be implemented [14].  

2. Discontinuity in design parameters is not consider separately in the thesis, since 

all parameters are normalised for the kriging model – the only difference for 

problems with discontinued inputs is that the prediction and new infill points 

need to be sampled at feasible locations due to the discontinuity. 

3. Design problems in this thesis are assumed to be global optimisation problems, 

i.e. obtaining the global optimum is the objective of the design. In some practical 

design cases, the manufacturer only considers local improvement over the 

current design due to practical limitations. This type of problem may be 

transferred into a global design problem by providing the desired search space 

for design parameters, and equality and/or inequality constraints if necessary. 

 

1.5   Thesis structure 

This thesis consists of 7 chapters. Chapter 1 briefly introduces the field of optimisation 

design and provides an overview of the thesis. Chapter 2 provides a background review 

for surrogate-based optimisation algorithms. Since kriging is one of the most popular 

surrogate modelling approaches, it is studied in detail.  

Chapter 3 focuses on infill sampling criteria, particularly popular infill criterion expected 

improvement (EI). Furthermore, an efficient infill sampling approach utilising the 

automatic weight adjustment is proposed in combination with a fast gradient-based 

infill criterion search method.  

Robust optimisation is studied in Chapter 4, which briefly introduces robust optimisation 

and problem classifications. A kriging-based approach for worst-case design problems is 

proposed for greater sampling efficiency.  

Chapter 5 addresses potential bottle-necks in the current kriging method when handling 

large datasets. Three methods from the literature are briefly discussed in this chapter, 

two of which (dual-kriging and aggregation kriging) are used for improving memory 

efficiency.  

In Chapter 6, multi-objective optimisation is studied in detail and existing approaches 

are described. Furthermore, a kriging-based localised probability of improvement 

approach is proposed.  

Finally the research results are summarised in Chapter 7. Chapter 7 also discusses 

potential future work. 
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Chapter 2.   Background review 

 

2.1   Introduction  

Rapid advances in electronic information technologies in recent decades have made 

large datasets more common in the field of computer modelling. Consequently, the 

demand for high quality computer models and solvers has made optimisation design 

problems both more complicated and more time-consuming to solve. Thus, surrogate 

model-based optimisation approaches are now drawing more attention since they 

provide more efficient solutions to expensive computer model designs. The efficiency of 

a modelling approach and its ability to handle complicated problems have been an 

important research objective in the optimisation community.  

 

2.2   Surrogate-based optimisation 

Computer aided design (CAD), modern engineering design processes and physical 

engineering experiments are restricted by cost, time or available resources. Thus, 

extensive sampling is not possible and complicated finite element models (FEM) may 

consume hours or even days per evaluation; in these circumstances, modelling 

techniques can improve design efficiency and quality. 

Surrogate models need to be of good quality to be useful and fast when evaluating the 

underlying design problem. Generally, the evaluation time of the surrogate model is 

negligible compared to the sampling cost of the original problem. Furthermore, the 

model’s quality is closely related to the amount of sampling data available. Therefore, 

when building a surrogate model, a trade-off between the quality of the model and the 

time required to build the model (including evaluation cost of the underlying problem) 

needs to be balanced. 

The procedure of building a surrogate model involves the initial sampling, choosing the 

right model and fitting it to the initial available data, adding new sampling points to the 

initial model and then upgrading the previous model (the choice of added points are 

determined by infill criteria). This process is repeated until the termination criterion is 

achieved (i.e. the model is accurate enough, the maximum running time is reached, the 

approximate optimal point is found, etc.). 
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Figure 2.1. Surrogate-based optimisation workflow. 

As discussed earlier in this chapter, a number of engineering applications are too 

expensive to apply optimisation routines directly to the problem. In these optimisation 

designs, a surrogate is built based on the sampled points obtained from the underlying 

problem. The model is then updated by adding additional infill sampling points 

depending on the infill strategy. The optimisation routine is subsequently applied to the 

surrogate model, instead of the underlying problem, at each iteration or at the end of 

the model updating process. Because the computation time of the surrogate model is 

much faster, the model can be searched thoroughly using population-based 

optimisation approaches, which require a large number of evaluations. At this stage, the 

global optimum point is only the “approximate” optimum point. The algorithm can 

validate it by evaluating the underlying problem and the newly sampled point can be 

added to the surrogate model during the updating process. This process repeats until 

the stop criterion is met. 
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2.3   Kriging theory 

Kriging is an interpolation method originally developed by Danie Gerhardus Krige (1919-

2013) to predict the distribution of gold, based on samples obtained from a small set of 

boreholes. Kriging was originally used in geostatistics to determine the mineral 

distribution in a field, due to its ability to plot the response surface of a particular 

objective function. It has also been widely implemented in the field of optimisation.  

The kriging model is a linear combination of a global model and a local departure: 

𝑌(𝑥) = 𝑓(𝑥) + 𝑍(𝑥)                                                      (2.1) 

where 𝑌(𝑥) is the unknown function to be approximated; 

 𝑓(𝑥) is the polynomial that interpolates 𝑥: “the function f(x) is similar to a polynomial 

type response surface, providing a global model of the design space.”  

𝑍(𝑥) is a realisation of the stochastic process. It follows the Gaussian distribution with 

a mean of 0, variance of 𝜎2 and non-zero covariance. The covariance is given by: 

 𝑽( 𝑥𝑖, 𝑥𝑗  ) = 𝜎2𝑹(𝜽, 𝑥𝑖 , 𝑥𝑗)                                               (2.2) 

where 𝜎2 is the process variance, 𝑹 is the spatial correlation model (function), 𝜽 is the 

correlation function parameter and 𝑥𝑖  and 𝑥𝑗 are two different design points. 

The likelihood formula is: 

1

(2𝜋)
𝜋
2(𝜎2)

𝜋
2|𝑅|

1
2

𝑒𝑥𝑝 [−
𝑦 − 1𝑢′𝑅−1(𝑦 − 1𝑢)

2𝜎2
]                             (2.3) 

 

The stationary points of 𝑢 and 𝜎2 can be found by calculating its partial derivatives with 

respect to 𝑢 and 𝜎2, respectively, and making them equivalent to 0. 

The optimal values of the likelihood function in terms of R are: 

𝜇̂ =
1′𝑅−1𝑦

1′𝑅−11
                                                               (2.4) 

 

𝜎̂2 =
(1 − 1û)′𝑅−1(𝑦 − 1𝜇̂)

𝑛
                                                (2.5) 

Substituting the above two equations back into the likelihood function, the following 

concentrated log-likelihood function is obtained: 

−
𝑛

2
log (𝜎̂2 −

1

2
log (|𝑅|)                                                    (2.6) 
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The value of 𝑦 that maximises the concentrated log-likelihood function is the kriging 

prediction at the corresponding design point 𝑥. 

Therefore, a kriging prediction at point x within the design field is as follows: 

ŷ = 𝜇̂ + 𝑟𝑅−1(𝑦 − 1𝜇̂)                                                       (2.7) 

One of the greatest advantages of kriging approximation in optimisation design is that 

it provides an error estimation of the predicted point - the mean square error (MSE):  

𝑠2 = 𝜎̂2 [1 − 𝑟′𝑅−1𝑟 +
(1 − 𝑟′𝑅−1𝑟)2

1′𝑅−11
]                                         (2.8) 

 

The correlation function [16], [17] is in the form of:  

𝑅(𝜃, 𝑥𝑖 , 𝑥𝑗) = ∏ 𝑅𝑛(𝜃, 𝑥𝑖𝑛
− 𝑥𝑗𝑛

)

𝑚 

𝑛=1

                                             (2.9) 

The correlation function is a function of Euclidean distance between any two points. 

There are different correlation functions: 

Exponential 

𝑅𝑛 (𝜃, 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = exp (−𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|)                                     (2.10) 

General Exponential 

𝑅𝑛 (𝜃𝑛, 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = exp (−𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|)𝑝𝑛 , 0 < 𝑝𝑛 ≤ 2 (2.11) 

Gaussian 

𝑅𝑛 (𝜃𝑛, 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = exp (−𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|
2

)                                  (2.12) 

Linear 

𝑅𝑛 (𝜃𝑛, 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = max {0,1 − 𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|}                             (2.13) 

Spherical  

𝑅𝑛 (𝜃𝑛, 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = 1 − 1.5𝜉𝑛 + 1.5𝜉𝑛
3,    𝜉𝑛 = min {1 −  𝜃𝑛, |𝑥𝑖𝑛

− 𝑥𝑗𝑛
|}     (2.14) 

Cubic 

𝑅𝑛 (𝜃𝑛, 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = 1 − 3𝜉𝑛
2 + 2𝜉𝑛

3,    𝜉𝑛 = min {1 −  𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|             (2.15) 
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Spline 

{

1 − 15𝜉𝑛
2 + 30𝜉𝑛

3,    𝑓𝑜𝑟 0 ≤ 𝜉𝑛 ≤ 0.2 

1.25(1 − 𝜉𝑛)3,     𝑓𝑜𝑟 0.2 < 𝜉𝑛 < 1
0,                    𝑓𝑜𝑟 𝜉𝑛 ≥ 1

, 𝜉𝑛 = 𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|              (2.16) 

 

 

 

 

 

 

 

(a)                                            (b) 

 

 

 

 

 

 

 

(c)                                            (d) 

 

 

 

 

 

 

 

 

 

 

(e)                                            (f) 

Figure 2.2. Correlation functions. (a) Exponential, (b) Gaussian, (c) Linear, (d) Spherical, 

(e) Cubic, (f) Spline. 
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The choice of the correlation function will have a direct impact on predicted values at 

all unknown locations, therefore choosing the right correlation function is not a trivial 

task. Kriging was originally invented to solve a geographical problem as mentioned 

earlier, for geospatial datasets; it is often assumed that the sampling locations nearby 

have similar response values, and their relationship is modelled by one of the correlation 

functions.  

In the context of optimisation, design problems can be categorised into continuous 

optimisation problems and discrete optimisation problems in terms of continuity of the 

variables. When solving continuous optimisation problems, it is reasonable to assume 

that the respond surface is continuous, since a small variation in a parameter will 

produce a similar design and it is therefore likely to result in a small change in the output 

response. For an unknown problem, the general exponential function, and the Gaussian 

function, are reasonable choices of the correlation function, since they include 

information from all existing observations and provide smooth respond surfaces [18], 

[19]. The formula for general exponential correlation function is as follows: 

𝑅𝑛 (𝜃𝑛 , 𝑥𝑖𝑛
, 𝑥𝑗𝑛

) = exp (−𝜃𝑛, |𝑥𝑖𝑛
− 𝑥𝑗𝑛

|)𝑝𝑛 , 0 < 𝑝𝑛 ≤ 2      (2.17) 

where 𝜃𝑛 and 𝑝𝑛 are the hyper parameters, which need to be optimised. 𝜃𝑛 controls the 

decreasing speed of the correlation between design sets as they move further apart and 

𝑝𝑛  controls the behaviour of the correlation function. 𝑝𝑛 = 1  gives the exponential 

correlation function, which has a linear behaviour around the origin. It is suitable for 

approximating a response surface with low correlation. 𝑝𝑛 = 2  gives the Gaussian 

correlation function. It has a parabolic behaviour around the origin and is suitable to 

approximate a smooth and differentiable response surface. Therefore, it has been 

widely accepted that the Gaussian correlation function is an appropriate choice for 

unknown continuous optimisation design problems ( 𝑝𝑛 = 2 ) [20], [21]. Figure 2.4 

illustrates the kriging prediction (25 design points) of the following 2D-objective function 

(Figure 2.3) based on various correlation functions.  

 

 

 

 

 

 

 

 

Figure 2.3. 2D-objective function. 
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(a)                                            (b) 

 

 

 

 

 

 

 

(c)                                            (d) 

 

 

 

 

 

 

 

(e)                                            (f) 

Figure 2.4. Kriging models based on various correlation functions. (a) Exponential, (b) 

Gaussian, (c) Linear, (d) Spherical, (e) Cubic, (f) Spline. 
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2.4   Sampling plan 

In recent decades, more publications have focused on improving the sampling plan by 

comparing the development of surrogate model methodologies. Since surrogate-based 

optimisation approaches are often implemented for computationally time-consuming 

problems, improvement in sampling efficiency will directly affect the overall design 

efficiency. Depending on the design stage, the sampling plans can be divided into two 

categories: initial sampling and infill sampling. 

2.4.1   Initial sampling 

The goal of an initial sampling plan is to gain the maximum amount of information from 

the limited number of initial sampling points in the design. The design problems can be 

classified into: physical experiments (laboratory experiments) or computer experiments. 

Generally, physical experiments inevitably involve random error or noise and the 

experiment results are likely to be different even when the same sampling points are 

used each time. Computational experiments, on the other hand, are deterministic and 

repeated sampling from the same design site provides identical output results. 

For the above reason, the emphasis of the sampling plan for physical experiments and 

computer experiments is not the same. Due to the existence of random errors in the 

physical experiments, a number of sampling points are usually taken from the boundary 

of the design space as this enables the user to capture the global trend more precisely 

in the presence of noise [22]. The identical sampling and evaluation process is often 

repeated to minimise the impact of random error. Sampling plans for physical 

experiments include: factorial design, central composite design and box-behnken [23]. 

Drawbacks of these sampling plans are that they do not include a number of important 

interior design features and that the design points are deterministic. Sampling plans for 

computer experiments tend to place sampling points evenly in the interior of the design 

space and the stochastic process is often observed within the sampling plan. The well-

known methods are: orthogonal array algorithm, pseudo-Monte Carlo and Latin 

hypercube. Extensions and enhancements of the latter two sampling methods can be 

found within the literature [24]. These sampling schemes avoid providing misleading 

information in a harmonic response surface; the extensions of the Monte Carlo and Latin 

hypercube sampling schemes also enable the user to specify the number of samples 

when large numbers of sampling points are not possible in high dimensional problems. 

The Monte Carlo scheme can be understood as a general random sampling approach 

and it is a commonly used tool in numerical integration, statistical sampling, queueing 

theory and global optimisation. 
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The quasi-Monte Carlo method was developed in the 1950s and has been largely 

improved by the accuracy demand in numerical integration, where instead of random 

samples, deterministic samples are used; this led to a guaranteed error bound in the 

integration and hence, an expected level of accuracy can be obtained. In addition to the 

aforementioned advantage, it always achieves higher accuracy and efficiency in the 

application of numerical integration. For a comprehensive study of the Monte Carlo and 

Quasi-Monte Carlo methods, readers are referred to [25].  

Figure 2.5. (a) Monte Carlo method 200 points, (b) Monte Carlo method 1000 points 

As stated in the beginning of this section, the goal of initial sampling is to gain maximum 

information from the limited number of sampling points, hence minimising the 

discrepancy in the initial samples would be the optimal choice in most scenarios. In the 

following section, we briefly compare the quasi-Monte Carlo method and the Monte 

Carlo method. In MATLAB, the Halton sequence and the Sobol sequence are the two 

main methods for generating the quasi-random sequence. For random sequence 

generation and methodology, readers are referred to the MATLAB Statistics and 

Machine Learning Toolbox™ user manual [26]. 

 

(a) (b) 
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Figure 2.6. (a) Quasi-Monte Carlo method 200 points, (b) Quasi-Monte Carlo method 

1000 points. 

As can be seen from Figures 2.5 and 2.6, the quasi-Monte Carlo method provides more 

uniform sampling over the design space and hence effectiveness in the context of the 

initial design sampling. The Monte Carlo method is also used in a number of publications 

to compute the hypervolume introduced in Chapter 7 for multi-objective algorithms. 

The quasi-Monte Carlo method can also increase computation accuracy and efficiency 

of the hypervolume. 

2.4.2   Infill sampling 

After the initial sampling process, the initial model is built. Infill points are additional 

sampling points added during the model updating process. While the model 

construction processes are essentially the same in different applications, the infill 

criteria may vary depending on the field of applications. In the optimisation design, the 

infill rule needs to consider both exploration of the global space and the exploitation of 

the local area, while in a number of other fields of modelling (such as geometrical 

analysis) the general purpose of the infill criteria would be to explore the problem space 

on a global scale as much as possible. 

Since Jones (1998) introduced the expected improvement (EI) approach [27], it has 

drawn much attention and quickly become one of the most popular infill criteria in 

kriging surrogate model-based optimisation.  

At any predicted point, kriging provides both the prediction value 𝑦̂ and the estimated 

mean square error 𝑠̂2 and denotes the minimum observation as 𝑦𝑚𝑖𝑛. The probability 

of improvement at the predicted point over the known minimum point is calculated by 

the Gaussian probability density function: 

(a) (b) 
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𝑃(𝑦 ≤ 𝑦𝑚𝑖𝑛) = ∫ 𝑌(𝑥) 𝑑𝑦 = Φ (
𝑦𝑚𝑖𝑛 −  𝑦̂

𝑠̂
)

𝑦𝑚𝑖𝑛

−∞

                           (2.18) 

where 𝑌(𝑥) is the Gaussian function at the predicted point, has a mean 𝑦̂ and mean 

square error 𝑠̂2 and Φ(∙) is the cumulative distribution function. 

The amount of improvement is then:  

𝐸(𝐼) = ∫ 𝐼 ∙ 𝜙(𝐹) 𝑑𝐹

𝑦𝑚𝑖𝑛

−∞

                                               (2.19) 

 

𝜙(𝐹) = 𝑒𝑥𝑝 [−
(𝐹 − 𝑦̂(𝑥))

2
2𝑠̂2(𝑥)⁄

√2𝜋 ∙ 𝑠̂(𝑥)
]                                     (2.20) 

 

where 𝐼 = max (𝑦𝑚𝑖𝑛 − 𝑦, 0), 𝐹 is the Gaussian variable 𝑁[𝑦̂(𝑥), 𝑠̂2(𝑥)] and 𝜙(∙) is the 

probability density function. 

Thus, EI is:  

𝐸[𝐼(𝑥)]

= {
(𝑦𝑚𝑖𝑛 − 𝑦̂(𝑥))Φ (

𝑦𝑚𝑖𝑛 − 𝑦̂(𝑥)

𝑠̂(𝑥)
) + 𝑠̂𝜙 (

𝑦𝑚𝑖𝑛 − 𝑦̂(𝑥)

𝑠̂(𝑥)
) , 𝑠 > 0

0, 𝑠 = 0

    (2.21) 

 

where 𝜙(∙) is the probability density function. 

The term (𝑦𝑚𝑖𝑛 − 𝑦̂(𝑥)) represents the amount of improvement expected at certain 

point and the term 𝑠̂ represents the uncertainty at that point. Therefore, the EI infill 

criterion simultaneously addresses both exploitation and exploration. 

A one-dimensional example of a kriging-based optimisation solver that uses EI infill 

criterion is illustrated in following figures. The dotted line presents the one-dimensional 

test function; the solid blue line represents the kriging model; the orange dots are the 

design points; and the solid black line at the bottom of the figure is the EI infill criterion. 

The next infill sampling point is taken at the location of maximum EI. Figures 2.7 to 2.11 

illustrate the kriging model at the 5th, 10th, 15th and 20th iteration. 
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Figure 2.7. Kriging model with EI infill criterion at the 5th iteration. 

 

 

Figure 2.8. Kriging model with EI infill criterion at the 10th iteration. 
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Figure 2.9. Kriging model with EI infill criterion at the 15th iteration. 

 

 

Figure 2.10. Kriging model with EI infill criterion at the 20th iteration. 
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Figure 2.11. Kriging model with EI infill criterion at the 25th iteration.  

A number of infill criteria that exist within the literature are more or less similar to the 

expected improvement and maximising the expected improvement is considered to be 

superior to other infill criteria in kriging modelling. However, details of these methods 

are not studied in this chapter, they can be found in [24], [28] and [23]. These methods 

include: locating the threshold-bounded extremes, locating the regional extremes, 

minimising surprises, maximum variance, minimising the lower confidence bounding 

(LCB), maximising the probability of improvement and maximising the MSE.  

The following chapters address surrogate-based optimisation, including infill sampling 

efficiency, robust optimisation, handling large datasets and multi-objective optimisation. 

Existing results are presented in each chapter and new solutions are proposed. The 

proposed methods primarily focus on improving the efficiency of the optimisation 

process. 
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Chapter 3.   Efficient sampling plan 

 

3.1   Introduction 

In situations in which the underlying problem overwhelms the computational cost 

incurred from building a surrogate model, infill sampling becomes the most important 

step that directly affects the efficiency of the overall optimisation process. For this 

reason, it has been a major research topic within the literature.  

In the previous chapter, we have covered the most widely accepted infill sampling 

criteria in surrogate-based optimisation design, namely expected improvement (EI). In 

this chapter, we will discuss its major drawbacks and then introduce a modified version 

which aims at addressing these issues and improving the sampling efficiency. 

 

3.2   EI infill criterion 

One of the drawbacks in the standard EI sampling approach is the slow convergence 

speed when the design space contains multiple local minimum points. The original EI 

approach tends to over-exploit an existing attraction region until the local minimum is 

found, this is also discussed in [29]. 

A test function was built to illustrate how standard EI infill criterion work in one-

dimensional optimisation problems. The objective function contains three attraction 

regions and one global minimum. The attraction region around the global optimum is 

narrower compared to attraction regions around the other two local optimal points, 

making it more difficult to find. Coordinates for the sampling points on the x-axis were 

rounded to 3 digits, hence there are 1,001 viable design sites within the search region. 

The objective is to find the global minimum at 𝑥 = 0.108. The stopping criteria are as 

follows: 

1. Duplicated design sites (distance between any two infill points is less than 

10−3)*; 

2. Maximum of 30 iterations; 

3. The global optimum is found (in practice, the global optimum is often unknown 

for an optimisation problem, but we could assume it is known in this example 

without conflicting with the purpose of this test).  

Note*: 10-3 is a user specified parameter, it is the search interval of the optimisation 

solver. For a normalised search space, a 10-3 search interval means that there are 
1

10−3 
+

1 (i.e. 1001) number of infill sampling criterion evaluations at each iteration, which 

include kriging prediction, calculation of MSE and calculation of EI; the location with the 

maximum EI value is selected as the next infill sampling location. A smaller search 
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interval means better accuracy but more computing cost, a location change smaller than 

10-3 means duplicated design sites. 

The optimisation progress (at the 7th, 11th and 16th iteration) of the Kriging model 

updated by the standard EI infill criterion is depicted in the figures below. The objective 

function is represented by a brown dashed line, the Kriging model is noted as the blue 

line and EI is the orange line at the bottom; furthermore, black arrows and the number 

𝑛 indicate the infill sampling points taken at the 𝑛𝑡ℎ  iteration. 

 

 

Figure 3.1. Kriging (standard EI) at the 7th iteration. 

 

Figure 3.2. Kriging (standard EI) at the 11th iteration.  

Figure 3.1 displays the standard EI approach at its seventh iteration. Four infill points 

taken at the 3rd, 4th, 6thand 7th iteration are within the region between 0.7 and 0.8 on 

the x-axis. After the seventh iteration (Figure 3.2), another four infill points were added 

to the region between 0.35 and 0.4 on the x-axis at the 8th, 9th, 10th and 11th iteration, 

respectively.  
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Figure 3.3. Kriging (standard EI) at the 16th iteration. 

In Figure 3.3 above, the standard EI approach would suggest to continue to exploit the 

second attraction region and take the next sampling point at 𝑥 = 0.3664 at the 17th 

iteration. After rounding 𝑥  to nearest 3 digits, the next infill point is at 𝑥 = 0.366 . 

However, there is an existing design site (11th iteration) located at 𝑥 = 0.366. The first 

stopping rule is reached and the program terminates at the 17th iteration. 

In this test, the standard EI approach can effectively locate the local minima within an 

attraction region, but many evaluations were conducted to exploit the adjacent area of 

the existing points before exploring other regions. This characteristic of the standard EI 

approach could be counterproductive in the initial stages of the optimisation process. 

Indeed, emphasising exploration of the entire design space in the beginning of the 

process is generally preferred. It is better to spread the sampling points more evenly in 

the early stages of optimisation to avoid being trapped in a local minimum at the 

beginning and consequently, improve the overall sampling efficiency. 

 

3.3   Efficient sampling scheme 

3.3.1   Exploitation and exploration 

We illustrated the shortcomings of the standard EI approach in the previous section; to 

overcome its characteristic of over-exploiting a known region in the early stages of the 

optimisation process, the mean square error (estimated error) between known 

sampling points is taken into consideration. 

Consider the following sampling criterion: 

Sampling criterion = max{𝐸𝐼 } × MSE × 𝑤𝑒𝑖𝑔ℎ𝑡 + max{MSE} × 𝐸𝐼        (3.1) 

where max{𝐸𝐼 }  and max{MSE}  are scaling terms applied to account for different 

values of components and thus, rescale the results. The estimated error at any unknown 
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point is larger when it is farther away from existing design points. Therefore, the MSE 

term will overwhelm the EI term at the initial stage of the optimisation process, since 

there are fewer known sampling points in the model, thus consequently emphasising 

the exploration of the entire design space. 

The MSE term can be considered the exploration part of the infill sampling criterion and 

the EI term is considered the exploitation part. Although exploration of the design space 

is preferred in the early stages, exploitation of an attraction region cannot be overlooked, 

since finding the global optimal point is the ultimate purpose of optimisation design and 

applying the exploitation part well helps the program efficiently converge on the 

optimum.  

Consider the following method to calculate the weight term 𝑣: 

𝑣 = 𝑏𝑘−𝑚                                                                   (3.2) 

where 𝑏 ∈ ]0, 1[, 𝑏 controls the decreasing rate of weight term 𝑣, 𝑘 is the 𝑘𝑡ℎ iteration, 

and 𝑚  controls the initial value of 𝑣 ; both parameters 𝑏  and 𝑚  are user-specified 

parameters. The user can specify the initial weight 𝑣 using the following equation: 

𝑚 = 1 −
log (𝑏)

log (𝑣)
                                                              (3.3) 

If the initial sampling points have covered the design space reasonably well, it is often 

sufficient to omit 𝑚 and start with the weight 𝑣 being equal to 𝑏.   

Although the parameter 𝑏 can be set to a value between 0 and 1, exclusive, the range 

[0.9 1[ is more reasonable in practice. The weight 𝑣 given in (3.2) decays exponentially; 

once the user-defined parameter 𝑏 has been specified, the weights on the exploration 

term at all the iterations are predetermined. Therefore, 𝑏 should be defined based on 

the maximum number of iterations.  

For an unknown 1-D problem, where the kriging-based optimisation solver is likely to 

locate the optimum within 100 iterations, the value of 𝑏 can be set to 0.95, i.e. after 20 

iterations and 50 iterations the weight on the exploration part is around 36% and 7%, 

respectively, compared to 100% weight on the exploitation part. For a 2-D problem, with 

500 maximum number of iterations, the parameter 𝑏 can be set to 0.995, i.e. after 200 

iterations and 400 iterations the weight on the exploration part is around 37% and 13%, 

respectively. Figure 3.4 presents the weight value applied to the exploration term at 

each iteration. 
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Figure 3.4. Weight at each iteration (𝑏 = 0.95). 

As the optimisation progresses, more sampling points are added to the model; the 

estimated error gradually loses weight and the focus is shifted to exploitation. The idea 

of weight shares some similarity to the temperature used in simulated annealing [30]; 

the drawback of this approach is that the weight on the exploration and exploitation 

parts is predetermined for each iteration step, which means that the programmer needs 

to be knowledgeable about the complexity of the problem to efficiently obtain the result. 

3.3.2   Dynamic balancing based on model quality 

When the complexity of a design problem is unknown, using a fixed weighting 

parameter could potentially lead to unwanted results, such as over-exploitation in the 

early stages or over-exploration in later stages of the optimisation process; both 

scenarios affect the modelling efficiency, however in the worst case, the program would 

fail to find the optimal point. 

Although this is a common problem in surrogate based optimisation, few solutions link 

this problem to the accuracy of the model itself. In this section, an efficient method is 

introduced to assess the surrogate model quality, which enables the program to 

automatically balance the weight on exploration and exploitation parts, i.e. creating a 

feedback loop from the optimisation result. 

The predictor deviation 𝑑 in iteration 𝑖𝑡𝑒𝑟 is defined as: 

𝑑𝑖𝑡𝑒𝑟 =  𝑓(𝒙𝑖𝑡𝑒𝑟) − 𝑃𝑟𝑒𝑑𝑖𝑡𝑒𝑟−1(𝒙𝑖𝑡𝑒𝑟)                                            (3.4) 

Where 𝒙𝑖𝑡𝑒𝑟  is the location of the infill point in the 𝑖𝑡𝑒𝑟𝑡ℎ  iteration, 𝑓(𝒙)  is the 

evaluated objective function at location 𝒙 and 𝑃𝑟𝑒𝑑𝑖𝑡𝑒𝑟−1(𝒙) is the predicted objective 

function value at location 𝒙 in iteration 𝑖𝑡𝑒𝑟 − 1. 

The deviation 𝑑𝑖𝑡𝑒𝑟 is calculated and recorded whenever a new infill point is defined. 

Finally, the historical root-mean-square deviation (RMSD) is:  
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𝑅𝑀𝑆𝐷 = √
∑ 𝑑𝑖𝑡𝑒𝑟

2𝑚
𝑖𝑡𝑒𝑟=1

𝑚
                                                       (3.5) 

where 𝑚 is the most recent iteration. 

To obtain a generalised weight term, an exponentially weighted RMSD was applied in 

this case to put more weight on recent results; the aim was to emphasise the recent 

prediction error to reflect the optimisation progress. The exponentially weighted RMSD 

is calculated using the formula: 

𝑅𝑀𝑆𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = √
∑ (1 − 𝛼)𝑚−𝑖𝑡𝑒𝑟 × 𝑑𝑖𝑡𝑒𝑟

2𝑚
𝑖𝑡𝑒𝑟=1

∑ (1 − 𝛼)𝑚−𝑖𝑡𝑒𝑟𝑚
𝑖𝑡𝑒𝑟=1

                            (3.6) 

where 𝛼 is the decay parameter and 0 < 𝛼 < 1. A larger 𝛼 will put less weight on past 

prediction errors and vice versa. When 𝛼 = 0, 𝑅𝑀𝑆𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is identical to 𝑅𝑀𝑆𝐷. 

We obtained a generalised weight term that represents the current optimisation 

progress in terms of model quality by taking the ratio of the exponentially weighted 

standard deviation 𝑅𝑀𝑆𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  and regular standard deviation 𝑅𝑀𝑆𝐷  of historical 

prediction errors: 

𝑣 = weighted_RMSD RMSD⁄                                                (3.7)                                                             

The parameter 𝑣 can be regarded as a measurement of model quality at any stage; the 

value of 𝑤𝑒𝑖𝑔ℎ𝑡 usually lies within the range of [0, 1 + 𝛼]; and α controls the gradient 

of the exponential weight function – unless 𝛼 is insignificant and the current prediction 

error is substantially larger than historical prediction errors. As the prediction errors 

decrease, 𝛼 will gradually move toward a smaller value close to zero. 

 

Figure 3.5. Kriging model at the end of the optimisation process. 
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Figure 3.5 displays the shape of the model at the end of optimisation (the program 

continued to explore the design region after the optimum was found) and Figure 3.6(a) 

presents the historical prediction error at each iteration. Furthermore, Figure 3.6(b) 

plots the standard deviation and exponentially weighted standard deviation at each 

iteration and Figure 3.6(c) is the weight values at the corresponding iterations. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.6. (a) Historical prediction error, (b) standard deviation and exponentially 

weighted standard deviation, (c) weight at corresponding iterations. 
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As can be seen in Figure 3.6 (a), the large positive historical prediction error at the 9th 

iteration indicates the objective function value of the new infill sampling points is much 

smaller than the predicted one in the previous iteration. Larger deviations of historical 

prediction errors are more often seen during the exploration stage, the prediction error 

is expected to decrease as more infill sampling points have been added and the kriging 

model becomes more accurate. As shown in Figure 3.6 (c), as the prediction error 

decreases (more accurate model), the parameter 𝑣 , and hence the weight on the 

exploration term in (3.1), also decrease. 

 

3.4   Test and comparisons 

We compared the standard EI sampling method and the proposed sampling scheme in 

this section. Figures 3.7 and 3.8 illustrate the final surrogate model built using these two 

infill criteria. Because both EI and the new sampling criterion are deterministic, running 

multiple optimisation tests on an identical test function will generate identical results; 

for this reason, the test function used in this chapter includes a noise term. Standard EI 

infill criterion and the new sampling criterion were tested on an identical test function 

and then the test function was rebuilt using a random noise term and another set of 

tests was executed. The test function is as follows: 

𝑓(𝑥) = 𝑎 ∙ 𝑐𝑜𝑠(𝑤(𝑥 − 𝑝))𝑒−(𝑤(𝑥−𝑝))
𝑚

+ 𝑏 ∙ 𝑠𝑖𝑛 (𝑒−(𝑣(𝑥−𝑞))
𝑘

)            (3.8) 

+𝑐 ∙ 𝑐𝑜𝑠(𝑢(𝑥 − 𝑟))𝑒−(𝑢(𝑥−𝑟))
𝑙

+ 𝑓𝑤𝑎𝑣𝑒     

 

where 𝑎 = −3.5, 𝑤 = 1, 𝑝 = 0.1, 𝑚 = 2, 𝑏 = −1.8, 𝑣 = 0.2, 𝑞1 = 0.75 , 𝑘 = 6, 𝑐 =

−2 , 𝑢 = 0.3 , 𝑞2 = 0.45 , 𝑙 = 4  and 𝑓𝑤𝑎𝑣𝑒  is an interpolation function of a set of 

randomly generated points. 

Figures 3.7 and 3.8 illustrate one of the test results. It should be noted that the EI infill 

criterion does not always converge on a local minimal point; EI typically fails to find the 

global optimum. 
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Figure 3.7. Final kriging model (standard EI). 

 

Figure 3.8. Final kriging model (Efficient sampling criterion). 

Figures 3.9 and 3.10 illustrate the convergence histories of the standard EI infill 

approach and the proposed infill approach. The proposed infill approach had a higher 

success rate of 96% compared to the standard EI approach, which was 74%. Figure 3.9 

indicates that the standard EI approach converges faster compared to the new infill 

criterion, but none of the failed EI processes run more than 25 iterations; this further 

indicates that duplicate design points were taken during the optimisation process, which 

is the consequence of over-exploitation. The new infill sampling criterion, on the other 

hand, converges more slowly but is more reliable and provides a much higher chance of 

finding the global optimum.  
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Figure 3.9. Convergence history of a standard EI approach (success rate = 37/50). 

 

Figure 3.10. Convergence history of a modified EI infill criterion (success rate = 48/50). 

 

3.5   Efficient evaluation of infill criteria 

3.5.1   Exhaustive search 

In the context of global optimisation (based on surrogate modelling), the location of the 

next sampling point is based on the infill point sampling scheme, which contains a set of 

rules or formulae. For example, the standard EI approach uses the predicted function 

value, the estimated error and the current optimal value as the input variables and the 

output is the expected improvement for that particular point; the point with the largest 

expected improvement is the next infill point. In order to reliably locate the point with 

maximum EI, all points within the design space need to be considered. Thus, the 

predicted objective function and the corresponding MSE need to be calculated at all 

points. This may seem straightforward for a one-dimensional problem, but it could 
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create another case of ‘combinational explosion’ in more practical, multi-dimensional 

problems if the same sampling interval is maintained for EI. With regard to four 

dimensions, 1/100 of a step in each direction would require 108 calculations to find the 

maximum EI, which would even create a computational dilemma for faster surrogate 

models. Conversely, a larger step of 1/10 would be easier to handle, but unlikely to 

capture the actual optimum. 

Figure 3.11 illustrates a one-dimensional example problem, showing the original 

objective function (dotted brown line) and the kriging model (bold blue line), while the 

bold cinnabar line at the bottom (with crosses on top) is the true EI curve. Moreover, 

101 EI sampling locations were evenly distributed within the design region with a fixed 

interval of 0.01. The small black crosses on top of the EI curve mark the sampled EI at 

these predefined locations. As presented in the figure, the sampled EI is a reasonable 

approximation of the true EI curve, but not overly accurate at the “critical” location 

around the maximum EI.  

 

Figure 3.11. EI at predefined sampling locations for a 1D test function 

An alternative to exhaustively searching for the maximum sampling criterion value using 

a predefined step size could be to treat the task as a small optimisation problem in its 

own right. A direct search global optimisation method (such as genetic algorithm, 

simulated annealing, particle swarm or gradient-based local optimisation methods) 

could be employed for such a purpose, which would effectively eliminate the 

aforementioned step-size problem. The drawback of using any heuristic optimisation 

algorithm to replace the exhaustive search is that, depending on the algorithm and its 

settings, there is always the possibility that the algorithm will not locate the optima of 

the infill criterion function. The deterministic local search methods are more effective 

and therefore, preferred in this scenario. 
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3.5.2   Gradient-based search 

Evidently, the calculated EI function is always zero at known design points and its 

optimal value always lies between two existing design points. Thus, it is possible to 

increase the efficiency of its optimisation by utilising the local gradient-based methods. 

In this way, roughly half the objective function prediction and MSE calculation can be 

reduced compared with the exhaustive search method.  

In Figure 3.12, the search begins from a known design location and gradually moves to 

the next design point; each process is terminated when the local maximum EI is found 

and the gradient becomes negative.  

 

Figure 3.12. Gradient search starts from known sampling points. 

Furthermore, a more efficient optimisation method would be to initiate the gradient 

search in the middle of two existing design points, as this is often the place where the 

maximum EI is found. This could speed up the process since it would only be necessary 

to calculate a few predictions of the objective function and the associated MSEs. As 

illustrated in Figure 3.13 below, the corresponding mid-point of two adjacent design 

points on the EI curve is marked by an “x”. The search began at this location and moved 

toward both the left and right until the gradient became negative (or positive for the 

left side). The total number of EI calculations decreased by 75%. 
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Figure 3.13. Gradient search starts from the mid-point of two sampling points. 

As can be seen from Figures 3.11, 3.12 and 3.13, even 100 sampling points on the EI 

curve in a one-dimensional problem cannot locate the maximum EI with any reasonable 

accuracy. By improving the efficiency of the sampling process for the EI function, 

sampling points can be concentrated on more important areas and consequently, can 

locate the maximum EI more accurately, as illustrated in Figure 3.14 below; while the 

predefined density of the sampling points for the EI is doubled (200 points), only 50% of 

the EI evaluation is required. 

 

Figure 3.14. Gradient search starts from the mid-point of two sampling points 

(sampling density doubled). 

Applying the same methodology to our proposed infill sampling approach, we obtained 

similar results. The 4th and 7th iterations are presented in Figures 3.15 and 3.16. 
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Figure 3.15. Gradient search starts from the mid-point of two sampling points 

(modified EI criterion at 4th iteration). 

 

Figure 3.16. Gradient search starts from the mid-point of two sampling points 

(modified EI criterion at 7th iteration). 

It is worth mentioning that in exceedingly rare scenarios – when there is a small number 

of known design sites in the design region (2-3 points in a 1D space) – the EI may contain 

two local maximum values between two adjacent design sites. Because this scenario 

only occurs in the beginning stage of the modelling process, when the sampling points 

are sparse, it could be countered by taking more initial sampling points or by using 

exhaustive searches in the beginning. 

For a multidimensional design space, in which the local maximum EI is located between 

multiple existing design sites, a multi-start strategy can be applied to replace a single 

starting point (as in the 1D case) by simply generating starting points in the middle of 

each pair of two existing design sites. This is a combination problem and the number of 
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starting points p for n known points is p = nC2. The formula for combination problems is 

as follows: 

𝑛𝐶𝑟 =
𝑛!

(𝑛 − 𝑟)!
×

1

𝑟!
 

where the symbol “!” stands for the factorial function. Hence, for 100 existing design 

points, with starting points located between each pair of existing design sites, the 

number of starting points 𝑝 is: 

𝑝 = 100𝐶2 =
100!

(100 − 2)!
×

1

2!
=

100 × 99

2
= 4950 

Hence – in this case – 4,950 starting points for the gradient descent calculations are 

generated. 

 

3.6   Conclusion 

A method for quantifying the model quality was presented in this chapter and a new 

infill sampling criterion was introduced. The new criterion utilises the information of 

model quality to dynamically self-balance the weight on exploration and exploitation 

and to perform better in the test problems, both in terms of efficiency and convergence 

rate. 

A basic gradient search method for infill sampling criterion evaluation was discussed; 

the new approach improved the accuracy of the optimisation process of infill sampling 

criterion, while significantly increasing the efficiency.  
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Chapter 4.   Robust optimisation  

 

4.1   Introduction 

Problem formulation: 

Minimise 𝑓(𝒙)                                                       (4.1) 

Subject to 𝑥 ∈ 𝐷 

𝑔𝑖(𝒙, 𝒖𝑖)  ≤ 0, 

      𝒖𝑖 ∈ 𝑈𝑖,  𝑖 = 1, 2 … , 𝑛. 

where 𝑓(𝑥) is the objective function to be optimised, 𝑔(𝑥) is the constraints and 𝒖𝑖 is 

the uncertainty set. 

Since the objective function is a description of the relationship between the input 

parameters and the output results in real-world problems, uncertainties are presented 

in the majority of situations. These uncertainties can be the result of manufacturing 

accuracy, material quality or environmental effects; to deal with the uncertainty, for 

example in the process of manufacturing a product, the manufacturer may wish to 

establish certain standards to control the quality of the product, often known as the 

design tolerance. A product’s quality is acceptable within this tolerance range, while 

others may be recycled or abandoned. To achieve the optimum output, with 

consideration for tolerance, optimisation with tolerance is proposed; this class of 

optimisation problems is sometimes called tolerance design optimisation or simply, 

robust optimisation. 

The history of robust optimisation can be traced back to 1989 when Taguchi first 

introduced the concept of the quality of a design [31]. He introduced the signal-to-noise 

ratio (SNR): 

𝑆𝑁𝑅 = −10𝑙𝑜𝑔10(𝑀𝑆𝐷)                                                 (4.2) 

where MSD is the mean squared deviation in objective function value 𝑦, and  

𝑀𝑆𝐷 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂)2

𝑛

𝑖=1

                                                   (4.3) 

where n is the number of observations, 𝑦𝑖 is the corresponding objective function value 

and 𝑦̂ is the target point at which robustness is evaluated. 

The target with the minimal objective function variance is obtained by maximising SNR. 

The problem with Taguchi’s method is that it does not scale well with higher dimension 
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problems; for an N dimensional/variables problem, the objective function evaluation is 

in order of 2𝑛.  

While the general mathematical theories of robust optimisation algorithms have been 

studied, the algorithm is generally directly implemented in practical problems. One 

example of recent research results is [32]. Recent published papers and journals have 

indicated that the development of robust algorithms tends to focus more on specific 

real-world problems. Depending on the type of uncertainty, they can be further 

classified into different classes of robust optimisation problems.  

 

4.2   Robustness measures 

Possible source of uncertainties [33]: 

• Environmental/external sources: 

Changes in the external environment are not described in the objective function. 

• Imperfection of the mathematical model: 

The objective function often is only an approximation of the design and may not be 

perfectly mapped to the practical problem. 

• Design tolerance/output uncertainty: 

Machines in the real-world situation are manufactured up to a certain degree of 

precision. Even if the optimum solution is known, the production line may not be 

capable of producing the exact design.  

 

Five types of robustness measures have been classified in [33] based on different types 

of uncertainties. 

• Deterministic robustness measure 

• Expected robustness measure 

• Probabilistic threshold robustness measure 

• Statistical feasibility robustness measure 

• Possibilistic robustness measure 

Deterministic robustness measure: The method implemented for this type of measure 

is the worst-case approach; the worst uncertainties are taken into consideration, 

forming an individual function in addition to the objective function that needs to be 

minimised, called the robust counterpart function. This type of robust design was 

considered in this project since the topic is subject to the robust design under 

deterministic uncertainties. 
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Expected robustness measure: The uncertainty obeys a distribution function (which is 

usually obtained based on statistics or experience). The robustness of the result is based 

on the expected value of the robust counterpart function. This type of problems are 

often solved as a multi-objective optimisation problem with the variance of the design 

being the additional objective. 

Probabilistic threshold robustness measure: This type of robustness measure is defined 

by the probability of the objective function that is smaller than a predefined threshold 

at a given location via repeated sampling.  

Statistical feasibility robustness measure: statistical feasibility robustness measure 

shares some similarities with the probabilistic threshold robustness measure; however, 

it handles uncertainties which are related to the constraints, and its robustness measure 

is defined by the probability of fulfilment of constraints.  

Possibilistic robustness measure: Unlike the other 4 types of robustness measures which 

are based on the complete information of the problem, uncertainties come from 

potential error sources are classified as possibilistic uncertainties; the information of 

these uncertainties are based on subjective estimations.  

More information about robustness measures can be found in [33], where the author 

has discussed each type of robustness measures in detail together with various types of 

uncertainties. In addition, some discussion on methods for handling problems with 

different type of robustness measures have also been given. 

Robust optimisation problems are distinguished by the robustness measure of the 

design; optimisation approaches to the problem depend on how uncertainty is treated. 

The first two types of robustness measures are more commonly found within the 

literature. In this chapter, we consider the first type of robustness measure, namely the 

deterministic robustness measure, to be the conservative approach to robust 

optimisation design. This type of problem for robust optimisation is also referred to as 

tolerance design. 

Unlike standard global optimisation problems, complex engineering robust optimisation 

designs are often problem-specific. Depending on the particular problem, the 

uncertainty measure is defined specifically and the solution varies accordingly. For 

expected robustness measures, the design problem can be treated as a multi-objective 

optimisation problem [32] [33] [34], where the uncertainty (variance) is another 

objective to be optimised along with the objective function (mean). The robust solution 

is then chosen from the Pareto front by the decision maker. When the uncertainty 

distribution variable is unknown, a more conservative approach is to solve the problem 

in the worst-case scenario.  

The work of Song Xiao on Kriging has developed several methods to address the 

robustness of the design based on the surrogate model, including the six sigma quality 

approach and enhancements made to improve the performance of the worst-case 
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optimisation method and average performance assessment [35] [36]. The six sigma 

approach has been found to outperform other methods in assessing the robustness 

measure of optimal solutions [35]. 

The output f of a black-box function, when the input variable x contains deterministic 

types of uncertainties, can be expressed by a simplified equation (ignoring possible 

other sources of uncertainties and assuming the uncertainty ε is independent of the 

input variable x) [33]: 

𝑓 = 𝑓(𝑥 + 𝜀)                                                              (4.4) 

where ε[–ε, ε], the distribution of uncertainty ε, is unknown, but the magnitude is 

bounded by a given range ε. 

 

Figure 4.1. Worst-case problem 1D examples. 

 

Figure 4.2. Worst-case problem 2D examples with constraints. 

Two simple examples are demonstrated in Figures 4.1 and 4.2. The 1D illustration 

reveals that, depending on the size of the uncertainty ε, the preferred worst-case robust 

optimum may differ from the original (theoretical) optimal point. This is due to the fact 

that when the parameter varies within the specified limits (e.g. imposed by 
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manufacturing tolerances), the performance worsens significantly, whereas the robust 

optimum ensures good performance throughout. The 2D example illustrates that the 

worst-case optimum needs to consider design constraints, as the optimum solution with 

uncertainties must not violate the infeasible region. 

4.3   A brief review of existing approaches 

For a deterministic type of uncertainty, the basic approach is to transform the robust 

optimisation problem into a standard optimisation problem by optimising the worst-

case of the original objective function (multiple objective function evaluations are 

needed at each design stage). The number of objective function calls may be significantly 

increased and many unimportant and possibly nearly duplicated design points will be 

allocated during this process, thus making the optimisation extremely inefficient. This 

large number of function calls will be of particular concern to designers, especially when 

the objective function is expensive to evaluate, which is often the case in 

electromechanical or electromagnetic design where the main tool for field modelling 

involves numerical computation (such as finite elements). 

Recently, a number of more efficient kriging-based approaches for solving worst-case 

optimisation problems have been proposed within the literature. The authors of [37] 

use the mean and variants to assess the robustness, while their proposed strategy 

utilises the gradient information computed from the kriging model. In [38], the EI infill 

sampling approach is combined with a relaxation procedure based on a kriging model. 

In [39], the EI infill sampling approach is applied to the worst-case response surface and 

calculated based on the kriging model. 

 

4.4   Worst-case problems  

Worst-case problems are also known as min-max problems; these two names are used 

interchangeably in the literature. The name describes the two main components within 

the optimisation process, that is solving a min-max problem is to find the location of the 

minimal worst-case objective function, where the worst-case objective function at a 

given location is equal to the maximum objective function value within the design 

tolerance of that location. 

A 1D-worst-case problem is presented in Figure 4.3; the tolerance in this case is 𝑥 ± 0.04. 

The grey line shows the original objective function, and the brown dashed line shows its 

worst-case objective function. 
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Figure 4.3. Original objective function and its worst-case objective function. 

One of the difficulties of robust optimisation using a surrogate modelling approach is 

that the surrogate model is built based on the known sampling location of the objective 

function, without counting the robustness measure and after accounting for the worst-

case scenario. The geography of the response surface can be quite different from the 

original objective function and this response surface is not known until the worst-case 

measure is applied to existing design sites. Therefore, the infill criteria based on the 

surrogate model might be misleading if the tolerance is comparatively large, resulting in 

inefficient sampling point allocation. 

A majority of the approaches used within the literature determine the robustness 

measure of the problem using the robust counterpart, where the uncertainty is added 

to the objective function; the robustness of this design site is evaluated after the point 

is taken. In the worst-case scenario, two additional sampling points are taken to 

compute the robustness counterpart. This approach is extremely inefficient, especially 

for computationally expensive design problems. An example of this approach is 

illustrated in Figure 4.4. In this chapter, we propose a more active approach that takes 

the robustness measure into consideration during the infill sampling process. 
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(a) 

 

(b) 

Figure 4.4. (a) Kriging model based a passive approach, (b) worst-case estimation. 

 

4.5   A two stage approach 

This section presents a two-stage approach for solving computationally expensive, 

worst-case optimisation problems. We focus on maximising the usage of available 

information, while delaying the calculation of the worst-case value at sampling points to 

achieve a more efficient sampling scheme for the worst-case type of robust design 

optimisation. 

The worst-case optimisation problem is often referred to as the minimax problem and 

is characterised by an extra “layer” of optimisation. Therefore, the infill sampling criteria 

for global optimisation are often found inappropriate within the context of the worst-

case optimisation problems. The worst-case value of the objective function at any given 
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point does not depend on information given by that point alone (including the kriging 

prediction, mean squared error MSE, gradient, etc.), since information from its 

neighbouring points also needs to be taken into account. 

4.5.1   First stage 

The algorithm consists of two stages: in the first stage, the kriging model is updated by 

sequentially adding infill points at each iteration based on the worst-case expected 

improvement (WCEI) – this expected improvement measure is recalculated from 

standard EI, by taking the minimal EI value within the worst-case region of that design 

point (design site):  

𝑊𝐶𝐸𝐼(𝑥) = max{min[𝐸𝐼(𝑥 + 𝜀)] , 0}                                                (4.5) 

𝑥 + 𝜀 ∈ 𝑋    

where X is a set of points located within the worst-case region of the unknown point x. 

A 1D example is illustrated in Figure 4.5, where the boundary ε of the worst-case design 

is ±0.3. 

 

 

Figure 4.5. The worst-case regions of existing design sites in a 1D example. 

The extra layer of the minimax problem is embedded within the WCEI; the new infill 

sampling point will be located where the minimal expected improvement around the 

target point is the largest. The WCEI is equal to zero at the locations within the worst-

case region of existing design sites; consequently, these areas are banned from being 

future infill locations at the model updating stage. During the process of model updating, 

the worst-case estimation of the objective function is computed simultaneously based 

on the kriging model that was constructed using the existing design sites at that iteration. 
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4.5.2   Second stage 

The second stage is triggered when the maximum WCEI within the design space 

becomes less than a predefined value or when stage one has exceeded its allowance, if 

such a limit has been imposed. An exploitation process occurs in stage two; the worst-

case region around the worst-case optimum is exploited and validated using a modified 

EI approach, where instead of calculating the improvement, an expected “deterioration” 

is estimated to indicate where the maximal worsening is located within the worst-case 

region of the worst-case optimum 

𝐸[𝐷(𝑥)] = {
(𝑦̂(𝑥) − 𝑦𝑤𝑐)Φ(𝑢(𝑥)) + 𝑠̂𝜙(𝑢) , 𝑠 > 0

0, 𝑠 = 0
               (4.6) 

 𝑢 =
𝑦̂(𝑥) − 𝑦𝑚𝑖𝑛

𝑠̂(𝑥)
                                                          (4.7) 

This process is repeated until the value of the expected deterioration is zero or smaller 

than a predefined value; at this stage, the location of the worst-case estimated optimum 

is added as the next infill point and the associated objective function is evaluated. When 

the range of the underlying objective function surface is large, both the location and 

value of the actual worst-case optimum can differ from the estimated one. Therefore, 

the above validation process provides a more accurate prediction within the area of 

interest and thus, helps the program efficiently and accurately locate the best worst-

case optimum. 

 

4.6   Examples 

4.6.1 Test function  

The worst-case optimisation routine following the two-stage approach is first illustrated 

using a 1D test example. Figure 4.6 presents the original test function and its associated 

worst-case distribution; for the purpose of illustration, the design tolerance is assumed 

to be ±0.035. It can be observed that both the landscape and, in particular, the position 

of the optimum differ noticeably between the original function and the worst-case 

version.  
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Figure 4.6. The original test function and its worst-case value. 

4.6.2 Stage-one 

In Figures 4.7 (a) to (f), the grey solid line depicts the objective function, while the blue 

dashed line represents the kriging prediction. The black solid line at the bottom of the 

figures shows the scaled values of infill criteria. 

Figure 4.7 (a) illustrates the design tolerance and the initial kriging model with 5 

sampling points, during stage-one, where new infill points are added based on the WCEI 

criterion. Figure 4.7 (b) shows the kriging model at the 10th iteration; it provides a better 

approximation since more sampling points are added. As shown in Figure 4.7 (c), the 

maximum WCEI within the design space is less than the predefined value of 10–3*, the 

optimisation solver then enters stage-two.  

Note*: This value can be specified by the designer based on the information available 

from the design problem; a smaller value will result in more infill points been added in 

stage one, consequently more exploration and exploitation before stage two; 10–3 is a 

reasonable value for the normalised test function in our case. 
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                (a) 

 

 

               (b) 
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                (c)  

Figure 4.7. (a) Design tolerance and initial kriging model, (b) kriging model with 10 

sampling points, (c) kriging model with 12 sampling points. 

4.6.3 Stage-two 

The optimisation solver enters stage two and the region around the estimated worst-

case optimum at x = 0.74 (see Figure 4.8(a)) is exploited. The ED infill criterion in Figure 

4.8(b) depicts the value of expected deterioration within this region. 

The kriging model is updated during the validation process, as in Figure 4.8 (c); the value 

of the expected deterioration is smaller than the predefined value 10–3 at the 15th 

iteration; the final worst-case optimum is then located at x = 0.72 in Figure 4.8 (d). The 

last step may be repeated multiple times if the updated kriging model shows a different 

estimated robust optimum from previous iterations. Figure 4.8 (e) presents the final 

shape of the estimated worst-case objective function and the underlying worst-case 

objective function.  
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 4.8. (a) Estimated worst-case model at the 12th iteration, (b) kriging model and 

ED infill sampling criterion at the 12th iteration, (c) maximum ED is less than 10-3 at the 

15th iteration, (d) estimated worst-case model at the 15th iteration, (e) final estimated 

worst-case function and the located worst-case optimum.  

As previously mentioned, the worst-case response surface of the original objective 

function may change dramatically from the original one. A number of additional results 

are provided by Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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(c) (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. (a), (c), (e) kriging models and the original test function, (b),(d),(f) predicted 

robust models and robust version of the original function. 

 

4.7   Solving practical problems  

4.7.1   T.E.A.M. 22 

T.E.A.M. workshop problems [40] consist of a set of practical electromagnetic 

optimisation design problems for benchmarking the performance of algorithms. A list of 

benchmark problems can be found on the International Compumag Society website. 

Each function evaluation requires the full finite element solution of a non-linear problem, 

which is computationally inefficient if directly used in combination with any optimisation 

method. Therefore, using a surrogate model based on optimisation techniques is 

preferred. 

(f) (e) 
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We tested the proposed approach on two practical benchmark problems. For both 

problems, the uncertainty boundary for each design parameter (upper and lower limit) 

was defined as 1% of their given design range. 

The superconducting magnetic energy storage device in T.E.A.M. problem 22 [41] 

contains two superconducting coils; the design objective was to achieve a minimal stray 

field when the stored energy was equal to 180 MJ. The configuration of the inner coil is 

delineated in the 3 Parameter (“discrete”) case, and therefore three parameters were 

optimised: namely, the radius R2, height h2 and thickness d2 of the outer coil, as indicated 

in Figure 4.10. 

 

 Figure 4.10. The superconducting magnetic energy storage device [40], [41]. 

The objective function is given as: 

𝑂𝐹 =
𝐵𝑠𝑡𝑟𝑎𝑦

2

𝐵𝑛𝑜𝑟𝑚
2

+
|𝐸 − 𝐸𝑟𝑒𝑓|

𝐸𝑟𝑒𝑓
                                               (4.8) 

where 𝐸𝑟𝑒𝑓 = 180 𝑀𝐽, 𝑩𝒏𝒐𝒓𝒎 = 3 𝜇𝑇 and 𝐵𝑠𝑡𝑟𝑎𝑦
2  is defined as: 

𝐵𝑠𝑡𝑟𝑎𝑦
2 =

∑ |𝐵𝑠𝑡𝑟𝑎𝑦,𝑖|
𝑛=22
𝑖=1

22
                                               (4.9) 

The magnetic field needs to meet certain physical conditions in order to guarantee 

superconductivity, as shown in Figure 4.11. This is known as the “quench condition”. 

Quench condition is modelled by following inequality constraint: 

|𝑱| + 6.4|𝑩| − 54.0 ≤ 0                                               (4.10) 

where 𝑱 is the current density and 𝑩 is the maximum magnetic flux density, measured 

in 𝐴/𝑚𝑚2 and 𝑇, respectively. 
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Figure 4.11. Critical curve of an industrial superconductor [40], [41]. 

 

Table 4.1 Comparison of performance of various optimisation methods (T.E.A.M. 22)  

Algorithm Optimum 
Optimum 

(MagNet) 
R2 d2 h2/2 

No of 

function calls 

GA 0.134 0.1270 3.040 0.386 0.240 2400 

SA 0.098 0.0916 3.078 0.390 0.237 5025 

HuTS 0.089 0.1034 3.080 0.380 0.246 3821 

NTS 0.089 0.1278 3.080 0.370 0.254 1800 

PBIL 0.101 0.110 3.110 0.421 0.241 3278 

Kriging EI 0.0875 0.0875 3.090 0.394 0.236 211 

Kriging AWEI 0.0875 0.0875 3.090 0.400 0.232 323 

Kriging WCEI  

(worst case) 
0.1459 0.1459 3.021 0.391 0.250 277 

Genetic algorithm GA [42]; Simulated Annealing SA [43]; Tabu Search HuTS [44]; 

Universal Tabu search [45]; New Tabu Search NTS [46]; Kriging EI [35]; Kriging AWEI [35] 

 

Table 4.1 summarises the findings by citing the results from other publications and 

including the robust “worst-case” design. To compare and analyse the optimal value, an 

additional ‘optimal value’ has been obtained by implementing an identical finite-

element model (FEM) setup (using MagNet software) for all the optimisation methods 

in the table. The outputs from the MagNet FEM are similar to the original values taken 

from the literature. The results show that kriging-assisted optimisation algorithms 

performed consistently well by achieving a marginally better solution with reduced 

effort (the number of necessary function calls reduced by almost an order of magnitude).  

Not surprisingly, the worst-case optimal value is slightly larger than the non-robust 

optimum obtained by other methods in Table 4.1; this indicates that the response 

surface around the optimum is not flat, but nevertheless relatively shallow. The location 
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of the worst-optimum also shows a slight difference from other optima, indicating that 

the response surface around the optimum is not symmetrical about R2, d2 or h2; however, 

a smaller value of R2 indicates the response surface being shallower towards smaller R2 

for the area within the specified 1% uncertainty of parameters, while the opposite 

conclusion can be drawn for parameter h2.  

 

Table 4.2 Comparison of time cost between various optimisation methods 

Algorithms 

Time (s) per 

103 iterations 

(algorithm)* 

Estimated time 

(ms) per iteration 

(algorithm) 

Time (s) per 

FEM call 

Number of 

iterations 

Estimated 

overall 

time (h) 

GA 3.302 3.302 ~22 2400 14.7 

SA 2.197 2.197 ~22 5025 30.7 

HuTS 5.347 5.347 ~22 3821 23.4 

UTS - - ~22 1800 ~11.0 

NTS - - ~22 3278 ~20.0 

Kriging EI 52.04 52.04 ~22 211 1.3 

Kriging AWEI 59.12 59.12 ~22 323 2.0 

Kriging WCEI  726.39 726.39 ~22 453 2.9 

*Note: Experiments were carried out on a 3.4GHz PC. The MATLAB codes for Universal 

Tabu search UTS and New Tabu Search NTS were not available; the times for running 

non-surrogate model-based optimisation algorithms are very small (around 1000 times 

smaller) compared to the time for each FEM call, hence they can be neglected without 

affecting the comparison. 

Table 4.2 displays the estimated overall time cost for each algorithm of Table 4.1. The 

overall time cost is estimated based on the time cost per FEM call, number of FEM calls, 

and the time consumed by the optimisation algorithm. Each algorithm has been set up 

to solve a dummy test function (computation cost of the objective function can be 

neglected), the algorithm carried out 1,000 iterations for the objective problem and the 

time cost for each iteration was estimated.  

It can be observed that the overall time cost of kriging-based approaches is much smaller 

than other direct search optimisation algorithms. This is mainly due to the high number 

of function calls used by these algorithms and the high computation cost of each 

objective function call. Since there is an extra layer of optimisation process in the 

proposed kriging-based approach for the worst-case optimisation, the time cost per 

iteration is much higher than for other regular kriging approaches. Nevertheless, when 

the objective function is time consuming to evaluate, kriging-based approaches have 

shown a great advantage in terms of time efficiency over other direct search 

optimisation methods. 
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4.7.2   T.E.A.M. 25 

The device presented in Figure 4.12 is a die press with an electromagnet used to create 

a strong magnetic field to orient magnetic powder in a component to produce an 

anisotropic permanent magnet. Figure 4.12 illustrates a close-up picture of the device; 

the model in Figure 4.13 was built with a 2D finite element model using MagNet 

software. The objective of this problem is to optimise the shape of the two die moulds 

so that the objective function is minimised.  

 

Figure 4.12. Device in T.E.A.M. problem 25. [37], [43]. 

 

Figure 4.13. Detailed 2D view of the device. 
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Problem description: 

In Figure 4.13, the shape g-h of the inner die mould is assumed to be a circle, while the 

inside shape i-j-m of the outer die mould is regarded as an ellipse and line j-k is parallel 

to the x-axis.  

The ampere-turns of each coil is 4253AT. 

The die press and electromagnet are made of steel and the B-H curve of the steel is given 

as: 

 

Figure 4.14. B/H curve of the steel.  

Table 4.3 Typical B/H curve values 

B(T) H(A/m) B(T) H(A/m) 

0 0 1.27 1164 

0.11 140 1.32 1299 

0.18 178 1.36 1462 

0.28 215 1.39 1640 

0.35 253 1.42 1851 

0.74 391 1.47 2262 

0.82 452 1.51 2685 

0.91 529 1.54 3038 

0.98 596 1.56 3395 

1.02 677 1.6 4094 

1.08 774 1.64 4756 

1.15 902 1.72 7079 
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The magnetic flux density is given by: 

{
𝐵𝑥 = 0.35 cos 𝜃 (𝑇)

𝐵𝑦 = 0.35 sin 𝜃 (𝑇)
                                                   (4.11) 

where 𝐵𝑥 and 𝐵𝑦 are the 𝑥 and 𝑦 components of flux density at a point along the e-f line 

at an angle of 𝜃. 

R1, L2, L3 and L4 are the design parameters to be optimised so that the objective 

function W is minimised. The objective function 𝑊 is: 

𝑊 = ∑ {(𝐵𝑥𝑖𝑝 − 𝐵𝑥𝑖𝑜)
2

+ (𝐵𝑦𝑖𝑝 − 𝐵𝑦𝑖𝑜)
2

}𝑛
𝑖=1                              (4.12)  

where 𝐵𝑥 and 𝐵𝑦 are the x and y components of magnetic flux density at points along 

the curve e-f, while subscripts p and o denote the calculated and desired values, 

respectively. The constraints are listed in Table 4.4 and the results in Table 4.5. 

 

Table 4.4 Constraints of the parameters 

Variable Lower-boundary 

(mm) 

Upper-boundary 

(mm) 

R1  5  9.4 

L2 12.6 18 

L3 14 45 

L4 4 19 

 

Table 4.5 Comparison of performance of various optimisation methods (T.E.A.M. 25) 

Algorithms 
Optimum 

(10-4) 

MagNet 

Optimum 

(10-4) 

R1 

(mm) 

L2 

(mm) 

L3 

(mm) 

L4 

(mm) 

No of 

function 

calls 

GA 2.686 1.3391 7.2996 14.174 14.001 14.326 3421 

SA 1.622 2.0696 7.2252 14.322 14.110 14.306 2145 

HuTS 0.500 1.3502 7.3780 14.613 14.371 14.204 1580 

UTS 1.050 1.4647 7.5487 14.908 14.506 14.416 931 

NTS 0.648 1.6907 7.4337 14.732 14.428 14.237 575 

Kriging EI 0.452 0.4527 7.2 14.1 14 14.5 265 

Kriging AWEI 0.412 0.4125 7.2 14 14 14.5 214 

Dual kriging 0.323 0.3231 7.1 13.9 14.014 14.273 234 

Kriging WCEI 

(worst case) 
5.4442 5.4442 7.104 13.891 14.035 14.270 453 

Genetic algorithm GA [42]; Simulated Annealing SA [43]; Tabu Search HuTS [44]; 

Universal Tabu search [45]; New Tabu Search NTS [46]; Kriging EI [35]; Kriging AWEI [35]; 

Dual kriging [47]. 
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Similarly to the previous T.E.A.M. problem 22, an additional ‘optimal value’ has been 

obtained by implementing an identical finite-element model (FEM) setup (using MagNet 

software) for all the optimisation methods in the table. The main observations resulting 

from the T.E.A.M. 25 study is broadly in line with what was previously demonstrated, 

although – on this occasion – the worst-case optimum obtained by kriging WCEI in Table 

4.5 is a magnitude larger compared to the non-robust optimum obtained by other 

kriging methods; this indicates that unlike in the previous case, the response surface 

around the optimum is much rougher and is likely to have steep hills around the 

optimum. The fact that the location of the worst-case optimum did not shift in a 

particular direction indicates that the response surface within the specified 1% 

uncertainty of parameters around the optimum location is equally rough and/or has 

steep hills. The higher number of FEM calls (452 FEM calls compared to  around 230 FEM 

calls) shows that many more infill sampling points had to be added to the model before 

the final solution was obtained; part of the reason may be due to the rough response 

surface around the optimum location, hence a larger number of FEM calls during the 

validation process. However, it should be noted that different initial sampling locations 

alone can cause a different total number of required FEM calls at the end; moreover, 

the worst-case optimisation solver may use a different number of function calls to 

obtain the final solution or converge to a different local/global optimum, even when an 

identical FEM is implemented.  

It is also interesting to note that for both T.E.A.M. problems, the originally published 

results (when the problems were first suggested) appear to be reasonably robust, more 

so than the subsequently offered solutions. Nevertheless, the most important 

conclusion from this study is that the kriging-assisted optimisation is reliable and offers 

superbly efficient computation, both for the “traditional” (global) optimisation and the 

robust formulation. Finally, the worst-case (minimax) approach appears to be a helpful 

methodology for robust optimisation. 

 

Table 4.6. Comparison of time cost between various optimisation methods 

Algorithms 

Time (s) per 

103 iterations 

(algorithm)* 

Estimated time 

(ms) per iteration 

(algorithm) 

Time (s) 

per FEM 

call 

Number of 

iterations 

Estimated 

overall 

time (h) 

GA 3.302 3.302 ~10 3421 9.5 

SA 2.197 2.197 ~10 2145 6 

HuTS 5.347 5.347 ~10 1580 4.4 

UTS - - ~10 931 2.6 

NTS - - ~10 575 1.6 

Kriging EI 52.04 52.04 ~10 265 0.7 

Kriging AWEI 59.12 59.12 ~10 214 0.6 

Dual kriging 80.20 80.90 ~10 234 0.7 

Kriging WCEI  726.39 726.39 ~10 453 1.3 
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*Note: As before, experiments were carried out on a 3.4GHz PC. The MATLAB codes for 

Universal Tabu search UTS and New Tabu Search NTS were not available; the times for 

running non-surrogate model-based optimisation algorithms are very small (around 

1000 times smaller) compared to the time for each FEM call, hence they can be neglected 

without affecting the comparison. 

In a similar comparison as before, Table 4.6 displays the estimated overall time cost of 

each algorithm of Table 4.5. The overall time cost was estimated based on the time cost 

per FEM call, the number of FEM calls, and the time consumed by the optimisation 

algorithm. Each algorithm has been set up to solve a dummy test function (where the 

computation cost of the objective function can be neglected); the algorithm carried out 

1,000 iterations for the objective problem and the time cost for each iteration was 

estimated.  

Comparing with the previous T.E.A.M. problem 22, the time cost per FEM call is 

approximately halved for the T.E.A.M. 25 problem. Although the overall time savings are 

somewhat smaller than for the previous T.E.A.M. problem, the kriging-based methods 

still show a great advantage in time consuming design optimisation problems. 

 

4.8   Conclusions 

A two-stage approach to worst-case optimisation problems was proposed and details of 

the algorithm discussed. The suggested method does not compute the worst-case value 

nor the corresponding robustness measure for any design site during the model 

updating stage. This is to avoid the objective function evaluation at a location that would 

contribute less to the overall model landscape, which would have occurred if the worst-

case value had been evaluated for the newly added infill point. Instead, the explicit 

search for the robust optimum occurs in the second stage after the model updating 

process has completed, including the addition of a validation process to exploit the 

region around the estimated worst-case optimum. A more efficient infill criterion 

selection algorithm was introduced. The proposed optimisation method was validated 

using simple test functions and two multi-dimensional practical electromagnetic design 

problems, T.E.A.M. 22 and T.E.A.M. 25. The test results indicate that, with the aid of 

kriging surrogate modelling techniques, the proposed methodology significantly 

reduces the number of FEM function calls compared to other methods and thus, is 

computationally significantly efficient for both global and robust optimisation. 
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Chapter 5.   Kriging for larger datasets 

 

5.1   Introduction 

Surrogate modelling techniques are helpful tools in design optimisation, especially when 

the underlying problem is computationally expensive. This situation frequently arises in 

the design of electromagnetic devices, where time-consuming finite element 

simulations may be necessary to ensure accurate performance prediction [7]. Kriging-

based methodologies have been shown to be particularly useful and accurate when 

estimating the underlying problem while reducing the number of required objective 

function calls. Unfortunately, the complexity of the algorithm increases, since solving 

the kriging model involves the inversion of a correlation matrix, which results in 𝑂(𝑛3) 

computation cost and 𝑂(𝑛2) storage cost[48]. Hence, depending on the computer’s 

hardware, there is a limitation on the maximum number of design points that a 

conventional kriging model may be built upon [49][50]. The exponential growth of the 

correlation matrix size led to the well-known bottle-neck of the kriging method. Thus, 

efficient application of kriging is often limited to smaller scale design problems. 

Much effort has been devoted to addressing this bottlenecking phenomenon that occurs 

when kriging methods are applied to large datasets. A majority of methods approximate 

the original matrix to handle large datasets, at the expense of accuracy. Approximation 

shares the same ideals as surrogate modelling itself; a kriging model is built to 

approximate a more computational expensive problem at the expense of the original 

problem’s accuracy. Some examples include: zooming-in modelling [7], moving-window 

kriging [51], covariance tapering [52] and fixed rank kriging [49]. Although these four 

methods provide valuable works on reducing the size of covariance matrixes, there are 

a number of limitations. For example, moving window Kriging[51] is not suitable for infill 

sampling-based optimisation and a popular EI criterion requires an MSE at unknown 

locations to be calculated to generate the next infill point. The moving window approach 

would either cause non-continuous MSE values at the boundaries of windows or 

generate different MSE values for the same unknown location due to different kriging 

models. The covariance matrix tapering approach relies on the sparseness of covariance 

matrixes. In MATLAB, the storage requirement for a sparse matrix with 50% zero 

elements and a full matrix is approximately the same; in other words, the percentage of 

zero elements in a sparse matrix needs to be greater than 50% for it to have an 

advantage in storage space over a conventional full matrix. This significantly limits the 

effectiveness of the covariance matrix tapering approach. Fixed rank kriging is designed 

to reduce the computational burden of massive datasets instead of addressing the 

memory problem.  
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In this chapter, we present two independent methods that address the memory 

problem in covariance matrices. The first approach is dual kriging, which builds two 

kriging models on two sets of data and separates the data using a critical points selection 

mechanism. The second approach involves model centring and points aggregation. Both 

methods enable the memory usage of the covariance matrix to be fixed at a constant 

level at the expense of information. 

 

5.2   Dual kriging 

The dual Kriging approach proposed in this chapter is based on the idea that as 

optimisation progresses, additional design points are added to the surrogate model; 

once the surrogate model (of the entire design space or an area within the design space) 

is reasonably accurate, only some of the sampling points are needed, especially those 

close to the areas considered potentially attractive. Thus, as the total number of 

sampling points increases and the computer’s memory limit is neared, we may instead 

remove some of the less attractive points from the current kriging model to keep the 

total number of points constant; the removed points may be used to create a secondary 

kriging model.  

Consider the kriging model in Figure 5.1 below, where the grey line shows the objective 

function and the blue dashed line shows the kriging model with 20 sampling points. 

Based on the ideas discussed in the previous paragraph, some points can potentially be 

removed, as illustrated in the Figure. 

 

Figure 5.1. Ordinary kriging model with 20 sampling points. 
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5.2.1   Points removal 

Design points that are located in a flat region away from the current global optimal or 

have a similar objective function value while geographically close to other known design 

points are considered to be less important. For each known design point, its nearest 𝑛 +

1 number of neighbour points is found, where 𝑛 equals the dimension of the problem, 

then weight the function value at each neighbour point, where the weight is inversely 

proportional to the Euclidean distance of the point and that neighbour. The weights are 

scaled so that they sum to 1. For the 𝑖𝑡ℎ existing point in the design space, the weight of 

its 𝑘𝑡ℎ nearest neighbour is given by: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑘(𝑖) =
1

𝑑𝑘
∙ (∑

1

𝑑𝑗

𝑛+1

𝑗=1

)

−1

                                        (5.1) 

where 𝑑𝑘  is the distance between the 𝑖𝑡ℎ  design point and its 𝑘𝑡ℎ nearest neighbour. 

The weighted value 𝑌𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 of all nearest neighbours at the location of the target point 

is therefore: 

𝑌𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑖) = ∑ (𝑤𝑒𝑖𝑔ℎ𝑡𝑗(𝑖) ∙ 𝑁(𝑗))

𝑛+1

𝑗=1

                                 (5.2) 

where 𝑁  is the function values of the neighbours of the 𝑖𝑡ℎ  existing point and the 

removal criterion 𝐶 is given by: 

𝐶(𝑖)  = |𝑌𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑖) − 𝑌(𝑖)|  ∙ ∑ 𝑑𝑗

𝑛+1

𝑗=1

                                  (5.3) 

where 𝑌(𝑖) is the function value at the 𝑖𝑡ℎ existing point. 

5.2.2   Points allocation 

Figure 5.2 is the plot of the memory savings curve against the preserved sampling points 

in the main Kriging, both in terms of percentage. There exists a trade-off between the 

gain of memory savings for each design point removed and the total percentage of 

memory savings. The gain of memory savings is largest at the left end of the curve 

(where its differentiation is largest), while the total amount of memory savings is largest 

at the right end of the curve 9where its differentiation is smallest). Thus, as more points 

are removed from the main kriging model, the memory savings decreases.  
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Figure 5.2. Efficiency of sampling points allocation.  

The overall reduced memory cost 𝑌 can be written as: 

𝑌 = 1 −
𝑚2 + 𝑛2

𝑁2
                                                       (5.4) 

The percentage of sampling points in the main kriging is:  

𝑋 =
𝑚

𝑁
                                                                    (5.5) 

where 𝑚 and 𝑛 are the number of sampling points in the main and secondary kriging; 𝑁 

is the total number of sampling points and 𝑁 = 𝑚 + 𝑛. 

Therefore, the relationship between the overall memory savings and the percentage of 

sampling points in Figure 5.1 can be calculated as: 

𝑌 = 2𝑋(1 − 𝑋)                                                           (5.6) 

Differentiating 𝑌 with respect to 𝑋, we obtain the point’s removal efficiency: 

𝑑𝑌

𝑑𝑋
= 2(1 − 2𝑋)                                                       (5.7) 

For 0 ≤ 𝑋 ≤ 0.5, the gain of memory savings for each design point removed is at its 

maximum when 𝑋 = 0 and minimum when 𝑋 = 0.5. 

To make the overall memory savings meaningful while retaining a relatively high gain of 

memory savings for each design point removed, we can choose to operate between 20% 

and 30% of the reduced number of points (shaded area). For example, at 20% (main 
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Kriging model preserving 80% of points) and 30% (main Kriging model preserving 70% 

of points), the memory saving is 32% and 42%, respectively. 

While applying dual kriging could potentially save computer memory demands by as 

much as 50% compared to a single kriging approach for the same number of sampling 

points, the major challenge of the dual kriging approach lies in the selection of the new 

sampling points. If only the main kriging model were to be considered, there is a risk of 

a new location to be at or close to a point which has just been removed. Thus, to inhibit 

this scenario, the location of the removed points must be recorded and taken into 

consideration during the infill point selection process. There are various possible ways 

to achieve this goal, such as using MSEs from both kriging models so that a modified 

MSE is used to replace the MSE calculated from a single model. The modified MSE is the 

product of the MSEs from the main and secondary kriging models. By using estimated 

error from both kriging models, information from previously sampled points is used 

efficiently. 

5.2.3   One-dimensional example 

The proposed dual kriging approach is illustrated by a 1D example in this section, the 

test function is given as follows: 

𝑓(𝑥) = 𝑎 ∙ 𝑐𝑜𝑠(𝑤(𝑥 − 𝑝))𝑒−(𝑤(𝑥−𝑝))
𝑚

+ 𝑏 ∙ 𝑠𝑖𝑛 (𝑒−(𝑣(𝑥−𝑞))
𝑘

)          (5.8) 

+𝑐 ∙ 𝑐𝑜𝑠(𝑢(𝑥 − 𝑟))𝑒−(𝑢(𝑥−𝑟))
𝑙

+ 𝑓𝑤𝑎𝑣𝑒     

where 𝑎 = −3.5, 𝑤 = 1, 𝑝 = 0.1, 𝑚 = 2, 𝑏 = −1.8, 𝑣 = 0.2, 𝑞1 = 0.75 , 𝑘 = 6, 𝑐 =

−2 , 𝑢 = 0.3 , 𝑞2 = 0.45 , 𝑙 = 4 , and 𝑓𝑤𝑎𝑣𝑒  is an interpolation function of a set of 

randomly generated points. 

The maximum number of sampling points is limited to 20. The second kriging starts 

when the number of existing points reaches 10 points, which equals half of the 

maximum number of sampling points allowed.  

The process is illustrated in Figures 5.3-5.9. The solid grey line is the underlying test 

function and the orange dashed line and points are the main kriging model and 

associated design points, respectively; the green dashed line and points are the 

secondary kriging model and associated design points, respectively; the solid black line 

is the infill criterion based on modified MSEs from both kriging models and the dashed 

vertical line represents the next infill location. As the optimisation progresses, the 

number of design points in the main kriging is maintained at 10, and the least important 

point is reallocated to the secondary kriging; at the 20th iteration each kriging model 

consists of 10 points, so that the covariance matrix size is reduced by 50 percent. 
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Figure 5.3. Dual kriging at the 10th iteration, no point has been removed yet. 

 

Figure 5.4. Dual kriging after the 12th iteration; two points have been removed from the 

main kriging. 
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Figure 5.5. Dual kriging after the 14th iteration, four points have been removed from the 

main kriging. 

 
Figure 5.6. Dual kriging after the 16th iteration, six points have been removed from the 

main kriging. 
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Figure 5.7. Dual kriging after the 20th iteration, ten points have been removed from the 

main kriging. 

 

Figure 5.8. Main kriging at the 20th iteration (10 points). 
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Figure 5.9. Secondary kriging at the 20th iteration (10 points). 

5.2.4   Solving a practical problem 

To illustrate the proposed optimisation methodology within the context of 

electromagnetic design, T.E.A.M. problem 25 was studied [11], which is a die press with 

an electromagnet for the orientation of magnetic powder (this is used to produce an 

anisotropic permanent magnet). Problem details are provided in section 4.7.2.  
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Figure 5.10. Detailed 2D view of the device.  

 

Table 5.1. Comparison of performance of various optimisation methods (T.E.A.M. 25) 

Algorithms 
Optimum 

(10-4) 

MagNet 

Optimum 

(10-4) 

R1 

(mm) 

L2 

(mm) 

L3 

(mm) 

L4 

(mm) 

No of 

functio

n calls 

GA 2.686 1.3391 7.2996 14.174 14.001 14.326 3421 

SA 1.622 2.0696 7.2252 14.322 14.110 14.306 2145 

HuTS 0.500 1.3502 7.3780 14.613 14.371 14.204 1580 

UTS 1.050 1.4647 7.5487 14.908 14.506 14.416 931 

NTS 0.648 1.6907 7.4337 14.732 14.428 14.237 575 

Kriging EI 0.452 0.4527 7.2 14.1 14 14.5 265 

Kriging AWEI 0.412 0.4125 7.2 14 14 14.5 214 

Dual kriging 0.323 0.3231 7.007 13.891 14.035 14.270 242 

Genetic algorithm GA [42]; Simulated Annealing SA [30]; Tabu Search HuTS [44]; 

Universal Tabu search [45]; New Tabu Search NTS [46]; Kriging EI and Kriging AWEI (with 

specified step size) [35]; 

As shown in Table 5.1 are additional ‘optimal values’ obtained by implementing an 

identical finite-element model (FEM) setup (using MagNet software) for all the 

optimisation methods in the table. 

The optimum location provided by the dual kriging approach is slightly different to those 

obtained by other optimisation methods in Table 5.1, while the optimal value is slightly 

improved. Parameters R1 and L2 are smaller than the ones found by other methods, L3 

and L4 is comparatively smaller too. This may be explained by looking at the results in 

Table 4.4 in Section 4.7.2 in Chapter 4; as the response surface around the optimum is 

comparatively rough, the function values may have differed by more than one 
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magnitude even with only a slight change in parameters (±1% uncertainty in parameters). 

Therefore, there exist a possibility that models used by other authors were less accurate 

(since the results were published much earlier). Another possible explanation is that due 

to the rough respond surface around the optimum location, the algorithm may have 

converged to different mini-local optima within that area. 

Table 5.2. Comparison of time cost between various optimisation methods 

Algorithms 

Time (s) per 

103 iterations 

(algorithm)* 

Estimated time 

(ms) per iteration 

(algorithm) 

Time (s) per 

FEM call 

Number of 

iterations 

Estimated 

overall 

time (h) 

GA 3.302 3.302 ~10 3421 9.5 

SA 2.197 2.197 ~10 2145 6 

HuTS 5.347 5.347 ~10 1580 4.4 

UTS - - ~10 931 2.6 

NTS - - ~10 575 1.6 

Kriging EI 52.04 52.04 ~10 265 0.7 

Kriging AWEI 59.12 59.12 ~10 214 0.6 

Dual kriging 80.20 80.90 ~10 234 0.7 

*Note: Again, the experiments were carried out on a 3.4GHz PC. The MATLAB codes for 

Universal Tabu search UTS and New Tabu Search NTS were not available, hence the time 

cost for running the algorithms were neglected. Nevertheless, the time cost for running 

non-surrogate model-based optimisation algorithms are comparably small; the time cost 

for each FEM call is more than 1000 times higher than the time consumed by the 

algorithm, hence it can be neglected without affecting the comparison. 

Again, in a similar comparison as before, Table 5.2 displays the estimated overall time 

cost of each algorithm of Table 5.1. The overall time cost was estimated based on the 

time cost per FEM call, the number of FEM calls, and the time consumed by the 

optimisation algorithm. Each algorithm has been set up to solve a dummy test function 

(where the computation cost of the objective function can be neglected); the algorithm 

carried out 1,000 iterations for the objective problem and the time cost for each 

iteration was estimated. 

The overall time cost of dual kriging and other kriging-based approaches is much smaller 

than other direct search optimisation algorithms as shown in the table, mainly due to 

the high number of function calls used by these algorithms and the high computation 

cost of each objective function call. In general, the kriging performed significantly better 

than other methods in terms of a better optimum. However, this is primarily due to the 

reduced computing times (measured in the number of necessary FE calculations). The 

dual kriging required marginally more iterations, but produced a slightly better result. In 

this sense, all kriging models are similar and superior to other methods. 
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Figure 5.11. Memory requirements for the covariance matrix at each iteration. 

The dual kriging algorithm was triggered after 120 FE calls, with one sampling point 

removed when a new one was added in subsequent iterations. The sizes of the 

covariance matrix in the kriging model for the “standard” AWEI [35] routine and the new 

dual algorithm are compared in Figure 5.11, as optimisation progresses. Memory savings 

on this occasion reached 36%. 

 

5.3   Kriging with points aggregation 

In this section, the kriging with points aggregation is proposed. This method involves 

locating the most interesting search area for the next infill point and then aggregating 

the points outside this centre area. Finally, a kriging model is built for the infill point 

search within the identified centre area.  

5.3.1   Centre positioning 

The objective of this step is to find a region within the search space that is most worth 

exploiting in the next iteration. Points located inside this region will be preserved, 

whereas points far from this region may be aggregated based on their distance to the 

region itself and the next infill sampling point will be placed within this region. 

To determine which region is more interesting, the following three factors are 

considered: 

1. Sample rate within that region; 

2. Standard deviation of the function value; 

3. Mean of the function value. 
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These three measures are defined by 𝐶1, 𝐶2 and 𝐶3, respectively: 

𝐶1 = 𝑅𝐶1

−1 × ∑‖𝒙𝒊 − 𝒄‖
𝟏
𝟐

𝑘

𝑖=1

,   𝑅𝐶1
= 𝑘 × max {‖𝒙𝒊 − 𝒄‖

𝟏
𝟐}                        (5.12) 

𝐶2 =  𝑅𝐶2

−1 × √
∑ (𝑦𝑖 − 𝜇)2𝑘

𝑖=1

𝑘
,   𝑅𝐶2

=
𝑟𝑎𝑛𝑔𝑒(𝒚)

2
                              (5.13) 

𝐶3 = 𝑅𝐶3

−1 × (𝑚𝑎𝑥(𝒀) − 
∑ −𝑤𝑖𝑦𝑖

𝑘
𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1

),   𝑅𝐶3
= 𝑟𝑎𝑛𝑔𝑒(𝒀),                   (5.14) 

𝑤 = 𝑒−𝑣−5(𝒙𝒊−𝒄)                                                              (5.15) 

where 𝒙𝑖  is the location of the 𝑖𝑡ℎ  known point, 𝒄 denotes the centre, 𝑘  defines the 

number of closest neighbourhood points around 𝒄, 𝑦𝑖  denotes the objective function 

values of the 𝑖𝑡ℎ  closest neighborhood points, 𝑤𝑖  is the weight term which has an 

inverse relationship with the distance from point 𝑖 to the centre 𝑐, 𝜇 is the mean of 𝑦 

and 𝑣 is the calculated probability.  

𝐶1  in (1) is the sum of the square roots of the Euclidean distances between the 

hypothetical centre c and k nearest points around it. The value of 𝐶1 is a measure of a 

sample rate within the region; it determines how close a hypothetical centre c is located 

in relation to its nearest k points, while the square root de-emphasises the importance 

of remote points. 

𝐶2  is the weighted standard deviation of the objective function values for all the 

neighbourhood points.  

Finally, 𝐶3  is the weighted mean of the objective function values for all the 

neighbourhood points. Each point is weighted by an exponential function 𝑤 , whose 

gradient is controlled by the parameter v. The smaller values of v apply less weight on 

remote points.  

Both 𝐶1  and 𝐶2  terms encourage exploration of the under-sampled and rough areas, 

respectively, while 𝐶3 focuses on the exploitation of the current optimum region. The 

final criterion for the model centre is a combination of the exploration term and the 

exploitation term: 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑐(𝑥) = {
𝐶1 + 𝐶2,    𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑣

𝐶3,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (5.16) 

The probability of exploration and exploitation is controlled by a parameter 𝑣, whose 

value is related to the root-mean-square deviation (RMSD) of the kriging model. Instead 

of a deterministic mixture of exploration and exploitation terms, a stochastic approach 

was applied to search for the objective at different stages while eliminating the risk of 

the deterministic criterion function being trapped in a local optimum.  
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(a) (b) 

The parameter 𝑣 is the ratio of the exponentially weighted RMSD and regular RMSD of 

historical prediction errors, a detailed study of which is presented in Chapter 3. The 

proposed approach automatically balances the exploration and the exploitation based 

on the kriging model quality in section 3.3.2 and the parameter 𝑣 is a suitable measure 

to switch the criterion between exploration and exploitation based on the model quality. 

In Figure 5.12, when more infill sampling points are added to the model, 𝑣 decreases as 

the RMSD decreases. The rate of decrement can be controlled by 𝛼, the details of which 

are also given in section 3.3.2. 

  

Figure 5.12. (a) The history of the prediction error, (b) the history of the value of 𝑣, as 

iterations progress. 

For an arbitrary location 𝑥 inside the design space, a corresponding 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑐 can be 

calculated. Subsequently, the location with the maximum 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑐 is defined as the 

model centre.  

Regardless of which criterion function is used, this optimisation stage involves finding 

the number of closest neighbourhood points k around 𝒄 and calculating the weighting 

term 𝑣 , which requires extra computational resources. Therefore, finding the 

hypothetical centre 𝒄 using exhaustive search is not practical. This task may be seen as 

a global optimisation problem with the input 𝒄, the output 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑐 and the objective 

function 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑐 = (𝐶1 + 𝐶2) or 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝑐 = 𝐶3. Because the centre only defines 

an area for the new infill point, an approximate solution will suffice at this step. Thus, a 

stochastic sequential global optimisation method simulated annealing is recommended 

for this task. The algorithm is simple, fast and its parameter is relatively easy to control. 

It may be argued that since the precision of estimating the intermediate optimum is not 

that important, a sequential method will have the advantage of fewer function calls and 

more flexibility over population-based methods. 
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The response surface of a 2D function is plotted in Figure 5.13, with the red crosses at 

the bottom marking the location of existing design points. Figures 5.14 (a) and (b) 

illustrate the criterion function for exploration and exploitation terms at the 90th 

iteration, respectively. As can be seen from the figures, the C1+C2 term encourages 

search in less sampled and non-smooth areas around x=[0.92,0.79], while the 𝐶3 

function suggests exploration of the area around the minimum at x=[0.20 0.27]. The test 

function is given as follows: 

𝑓(𝑥𝑗) = 𝑐 + 𝑎 ∏ 𝑐𝑜𝑠 (𝑤(𝑥𝑗 − 𝑝𝑗)) 𝑒−(𝑤(𝑥𝑗−𝑝𝑗))
𝑚𝑗=2

𝑗=1
                         (5.17) 

+𝑏 ∏ 𝑠𝑖𝑛 (𝑒−(𝑣(𝑥𝑗−𝑞𝑗))
𝑘

)
𝑗=2

𝑗=1
+ 𝑓𝑤𝑎𝑣𝑒 

where 𝑐 = 4.5, 𝑎 = 3.5, 𝑤 = 8.4, 𝑝1 = 0.2, 𝑝2 = 0.3, 𝑚 = 2, 𝑏 = 2.8, 𝑣 = 6.4, 𝑞1 =

6.5, 𝑞2 = 8, 𝑘 = 6, and 𝑓𝑤𝑎𝑣𝑒 is an interpolation function of a set of randomly generated 

points. 

 

Figure 5.13. A 2D test function and existing design points. 
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(a)                                                                           (b) 

Figure 5.14. (a) Exploration functions 𝐶1 + 𝐶2, (b) exploitation function 𝐶3. 

5.3.2   Outside points aggregation 

The objective of this step is to aggregate existing design points that are farther from the 

centre of the model into a smaller number of nodes (the “knots”), so that the total 

number of nodes and points in the model can be fitted into the memory. The problem 

of outside points aggregation involves hierarchical cluster analysis (HCA) [53] and a 

single variable optimisation design. The objective of HCA is to group outsider points into 

a set of clusters, so that the number of clusters is equal to the number of nodes. 

There is a variety of literature that concerns cluster analysis, in particular in the field of 

data science, and many algorithms have been published. Points aggregation can be 

treated as a k-mean clustering problem, in which there are significantly more clusters to 

be identified compared to conventional clustering problems. In this thesis, we 

developed a sequential algorithm for weighted points clustering, the pseudo code of 

which is detailed below: 

𝑓𝑜𝑟 𝑚 =  1: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

𝑓𝑜𝑟 𝑛 =  1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

∙  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

∙  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝑡𝑜 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 

𝑒𝑛𝑑 

∙  𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑥)𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 

  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒 

𝑖𝑓 𝑒 < 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  

∙  𝑎𝑑𝑑 𝑝𝑜𝑖𝑛𝑡(𝑚) 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑥) 

𝑒𝑙𝑠𝑒 

∙  𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

𝑒𝑛𝑑 

𝑒𝑛𝑑  
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The cluster’s centroid 𝒐 of a set of 𝑚 points 𝒙 is given by: 

𝒐(𝒙) =
1

𝑝
× ∑ 𝒙𝑖

𝑝

𝑖=1

                                                            (5.18) 

where 𝑝 is the number of points to be considered. 

The Euclidean distance is weighted by the distance between the cluster’s centroid 𝒐 and 

the model’s centre 𝒄, based on a correlation function. The dissimilarity is also weighted, 

since a larger distance results in a lower correlation and therefore, a loss in information 

due to points aggregation will have a smaller impact on the prediction result within the 

centre area. Therefore, the design space is normalised and each cluster’s centroid is 

weighted by the Gaussian function. 

The Gaussian correlation function in the kriging model is used to calculate the weight 𝑤; 

the original function is given by: 

𝑓(𝒙𝑖, 𝒙𝑗) = 𝑒−𝜃𝒅𝑖𝑗
2

                                                      (5.19) 

Because the hyper parameter 𝜃  needs to be tuned during the model construction 

process and is unknown at the stage of outside points aggregation, we specify 𝜃 = 2. 

Doing so provides a smoother decay in correlation and provides generally sound results 

when the underlying problem is unknown. 

The optimisation problem is defined as  𝑂𝐹(𝑑)  =  (𝑛 − 𝑞)2 , where 𝑑  is the input 

variable dissimilarity, 𝑛 is the number of nodes/clusters generated during the clustering 

process and 𝒄 is the number of nodes that can be fitted into the memory. The pseudo 

code provided above exhibits a basic workflow of the clustering process; to speed up 

the process, clusters with the minimum value of 𝑛 − 𝑐 are retained and a new clustering 

iteration begins with these existing clusters. The clustering process is terminated when 

the sum of the number of existing clusters and the number of unclassified points is less 

than the number of nodes previously calculated. 

The following example illustrates outside points aggregation applied to a 2D scenario. 

Figure 5.15 (a) exhibits the clustering without Gaussian weights, while Figure 5.15 (b) 

illustrates the clustering with the Gaussian weight terms applied. The problem consists 

of 1,000 observations, assuming that the memory can build a kriging model up to 500 

design points. We specify that 40% of the memory is used to store the interior points 

within the model’s central area, while the remaining 60% is used to store nodes related 

to outside points. The 800 points outside the centre area are aggregated into 300 nodes 

(a node may consist of a single point or a group of points).   
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(a) (b) 
  
 

Figure 5.15. (a) Clustering without Gaussian weight functions, (b) Clustering with 

Gaussian weight functions.  

 

5.3.3   A two-dimensional example 

The point aggregation technique is illustrated by 2D examples in Figures 5.16 to 5.22. 

For demonstration purpose, the maximum number of sampling points was limited to 50, 

while the number of available nodes for the kriging model was limited to 25, i.e. the 

covariance matrix would always have 252 elements despite the fact that 50 design points 

were sampled in total. Amongst the 25 nodes allowance, 60% space is allocated for 

points inside the centre region, i.e. 15 nodes (original points) inside and 10 nodes 

(aggregated points) outside.  

Figure 5.16 shows the objective function; the nodes including the aggregated points and 

original points are marked with an ‘x’ symbol, the red lines show he search path of the 

solver. When the number of sampling points reaches 25 (Figure 5.18) and an additional 

infill sampling point has been added (Figure 5.19), the points aggregation technique is 

triggered to keep the total number of nodes equals to 25. The blue circle shows the 

boundary of the centre region. 

The final kriging model after points aggregation has been applied is shown in Figure 5.22, 

and the response surface is compared to an ordinary kriging model with 50 points in 

Figure 5.23. As can be seen, the proposed method produces a reasonably accurate 

response surface for the region around the optimal solution, while achieving 75% 

reduction on the covariance matrix size (25 nodes compared to 50 nodes, 1 −

252 502⁄ = 0.75). 
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Figure 5.16. 2D-objective function. 

 

 

Figure 5.17. Ordinary kriging model (15 initial sampling points). 
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Figure 5.18. Ordinary kriging model (25 sampling points). 

 

 

Figure 5.19. Kriging with points aggregation (26 sampling points, 25 nodes). 
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Figure 5.20. Kriging with points aggregation (30 sampling points, 25 nodes). 

 

 

Figure 5.21. Kriging with points aggregation (40 sampling points, 25 nodes). 
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Figure 5.22. Kriging with points aggregation (50 sampling points, 25 nodes). 

 

                                                                    

 

Figure 5.23. (a) Ordinary kriging model (50 sampling points, 50 nodes), (b) Kriging with 

points aggregation (50 sampling points, 25 nodes) 

 

 

 

(a) (b) 
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5.3.4   Solving practical problem T.E.A.M. 22 

The superconducting magnetic energy storage device in T.E.A.M. problem 22 consists of 

two superconducting coils, as already explained in Section 4.7.2. The design objective is 

to minimise the stray magnetic field while maintaining the stored energy at 180 MJ (see 

Figure 5.24, also Figure 4.10), subject to specified quench conditions and geometrical 

constraints [63]. This is an 8-parameter version of the problem. 

 

𝑂𝐹 =
𝐵𝑠𝑡𝑟𝑎𝑦

2

𝐵𝑛𝑜𝑟𝑚
2

+
|𝐸 − 𝐸𝑟𝑒𝑓|

𝐸𝑟𝑒𝑓
 

𝐸𝑟𝑒𝑓 = 180 𝑀𝐽 

𝐵𝑛𝑜𝑟𝑚 = 200 𝜇𝑇 

𝐵𝑠𝑡𝑟𝑎𝑦
2 =

∑ |𝐵𝑠𝑡𝑟𝑎𝑦,𝑖|
𝑛=22
𝑖=1

22
 

,  

 

Figure 5.24. The superconducting magnetic energy storage device (T.E.A.M. 22) [63]. 

 

Table 5.3. Optimal design variables found by different algorithms 

Algorithm R1 (m) R2 (m) h1 (m) h2 (m) d1 (m) d2 (m) 
J1 

(A/mm2) 

J2 

(A/mm2) 

PSO 1 2.2647 1.1076 1.7766 0.5225 0.3442 28.1779 ‒5.4921 

Q-PSO 2.2947 2.6126 0.39 2.2704 0.3967 0.204 30 ‒21.293 

E-QPSO 1 1.8 0.38 3.6 0.5155 0.2851 19.9975 ‒6.3571 

GSA 1.939 2.823 0.37 1.101 0.399 0.195 22.5 ‒22.5 

ES 1.99 2.931 0.421 0.94 0.29 0.188 26.6 ‒26.6 

SAA 1.694 2.907 0.394 0.882 0.323 0.207 20.9 ‒20.9 

Kriging 

standard 
1 1.8 0.4 1.39 0.4 0.15 30 ‒30 

Kriging 

proposed 1) 
3.272 3.573 1.819 1.106 0.195 0.154 26.932 ‒23.259 

 1.11 2.319 3.193 0.28 0.259 0.734 22.5 ‒22.5 
 1.103 2.318 3.193 0.288 0.259 0.734 22.5 ‒22.5 

Original 

answer 
1.296 1.8 2.178 3.026 0.583 0.195 16.955 ‒ 18.91 

 

 

 



96 

` 

Table 5.4. Performance comparison between different algorithms 

Algorithm 
Objective 

function 

Constraints 

penalty 2) 

No. of 

FEM calls 

PSO 1.5673 85.0413 ∼6000 

Q-PSO 2.4016 13.3456 ∼6000 

E-QPSO 0.3464 0.3685 ∼6000 

GSA 1.5547 0.195 17150 

ES 0.4103 1.69235 4200 

SAA 1.0087 1.09395 14000 

Kriging standard 1.4065 32.9056 449 

Kriging proposed 1) 0.0383 0.0159 500 3) 
 0. 0028 0.0018 826 4) 
 0.0014 0.0003 829 4) 

Original answer 0.0033 5) 0 – 

PSO: particle swarm optimisation [54], Q-PSO: quantum-behaved particle swarm optimisation 

[55-57], E-QPSO: QPSO with exponential probability distribution [57], GSA: global search 

algorithm [58], ES: evolution strategy [58], SAA: simulated annealing algorithm [58], CGM: 

conjugate gradient method [58]. Results for PSO, Q-PSO, E-PSO, GSA, ES and SAA taken from [54] 

and [58]. The comparison is for the 8 parameter continuous case [63].  

Notes: 

1) The new kriging algorithm offers significant savings in memory related to the correlation 

matrices; this has been achieved by aggregating the outside points. 

2) Solutions from a number of previously published methods violated the quench condition; the 

degree by which this constraint was not met is given by the “penalty” (high values indicate 

severe violation). In some cases, neither the geometrical nor current density constraints were 

met.   

3) For a fairer comparison of memory usage between standard kriging and the proposed kriging 

method, the maximum number of iterations was set to 500, while maintaining a maximum 

of 375 nodes; a memory savings of roughly 50% was achieved for the correlation function 

and moreover, a better optimum was found. 

4) The proposed enhanced kriging method was allowed to continue the search with the number 

of nodes maintained at 500; improved results were thus achieved (better value for the 

objective function and lower constraint violation) after more iterations, at the modest 

expense of more FEM calls. 

5) The value of the objective function in the original specification was slightly different; it was 

recalculated here using a consistent FEM model for comparison. 
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Table 5.5. Comparison of time cost between various optimisation methods 

Algorithms 

Time (s) per 

103 iterations 

(algorithm)1) 

Estimated time 

(ms) per iteration 

(algorithm) 

Time (s) per 

FEM call 

Number of 

iterations 

Estimated 

overall 

time (h) 

PSO - - ~22 ∼6000 ~36.7 

Q-PSO - - ~22 ∼6000 ~36.7 

E-QPSO - - ~22 ∼6000 ~36.7 

GSA - - ~22 17150 ~105 

ES - - ~22 4200 ~25.7 

SAA - -  14000 ~85.6 

Kriging 

standard 
52.04 52.04 ~22 449 ~2.8 

Kriging 

proposed 
- 5522) ~22 500 ~3.1 

 - 4472) ~22 826 ~5.2 

 - 4492) ~22 829 ~5.2 

1) Experiments were carried out on a 3.4GHz PC. The MATLAB codes for PSO, Q-PSO, E-QPSO, 

GSA, ES and SAA were not available, but the times to run non-surrogate model-based 

optimisation algorithms are very short compared to the time required to execute each FEM, 

hence they can be neglected without affecting the comparison. 

2) The proposed kriging approach involves an extra computation overhead, thus the time cost 

per iteration increases slightly as more infill points are added, while this extra computation 

overhead is independent of the FEM model. Simulated annealing is roughly constant at each 

iteration, for each 1000 evaluations; its runtime is around 2 seconds. The KNN algorithm has 

complexity of O(dkn) (d: problem dimension, k: number of nearby points, n: number of total 

points) and is proportional to the number of existing design points; for 1000 existing points 

in the 8-D parameter space, searching for the 40% of neighbours in each iteration takes 

around 0.002 seconds. Moreover, the computation time for fitness functions in the model 

centring step is negligible. The points aggregation involves optimizing a convex single 

variable objective function; this process takes 10-15 iterations and total time approximately 

0.3 seconds for 1000 existing points in the 8-D parameter space. The overall computation 

overhead is therefore around 2 seconds. However, the computation overhead only occurs 

when the number of sampling points exceeds the maximum allowance. Therefore, for tests 

with different number of sampling points and the maximum nodes allowance, the average 

time cost per iteration is different. 

In this example, a penalty constraint has been imposed to the objective function, 

because inequality constraint is critical to ensure the conductivity states; the penalty has 

been directly applied to the objective function treated as a single objective problem 

instead of a bi-objective problem. As can be seen from Table 5.4, the proposed kriging 

approach has found an optimum at the 500th iteration which is quite different to those 

found by other methods in the table. It is possible that the proposed kriging method has 

not yet converged or simply converged to a local optimum. At the 826th and 829th 

iteration, it then found two solutions that are closer to those obtained by other methods. 

Because the problem dimension is large in this case (8 parameters), convergence 
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towards a global optimum cannot be guaranteed with confidence, as the sampling 

points are too sparse in the search space with a large number of parameters and there 

will be many areas left unexplored. This also explains why the optimum location 

obtained by all the methods differ significantly. 

The experiment results are summarised in Table 5.4. As on previous occasions, kriging 

has demonstrated its superiority by dramatically reducing the number of necessary 

function calls and thus, avoiding excessive use of the computationally expensive finite 

element software. Moreover, the addition of the points aggregation offers the 

additional flexibility of limiting the number of active points in the design space; this has 

the benefit of reducing the memory requirements for the solution without sacrificing 

the accuracy. Finally, the iterations were able to continue to achieve a better design with 

a modest increase of computational effort due to the need for more FEM calls. 

The computation costs of various optimisation algorithms have also been displayed in 

Table 5.5. Both the standard kriging approach and the kriging approach with points 

aggregation have shown a significant advantage in terms of overall computation time 

over other direct optimisation algorithms.  

A kriging-based optimisation approach for large datasets was proposed and its efficiency 

demonstrated using the T.E.A.M. 22 problem. The model centre positioning algorithm 

balances exploration and exploitation assisted by the use of a stochastic approach, 

which eliminates the risk of a deterministic criterion function being trapped in a local 

optimum. It was found that the size of the correlation matrices can be greatly reduced 

by applying points aggregation techniques. Indeed, the proposed approach can fit a 

large set of data into a limited size of memory and whereas information about remote 

points might be lost, this is alleviated by the use of points aggregation incorporating a 

new weighted clustering algorithm.  

 

5.4   Conclusion 

We briefly discussed the challenge of using the kriging model-based optimisation 

approach in handling problems with a large dataset and proposed two independent 

kriging-based approaches for handling such problems. In both cases, the problem was 

solved at the expense of some information, while the loss of information was kept as 

small as possible by utilising another layer of optimisation. Both methods presented in 

this chapter were tested against our test functions and T.E.A.M. practical benchmark 

problems and the results were compared to other algorithms. The test results indicate 

that the proposed methods provide a memory savings of 36% for the covariance matrix 

in the first case and 50% in the second case.  
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Chapter 6.   Multi-objective optimisation 

 

6.1   Introduction 

In previous chapters, only single objective optimisation problems were considered. In 

many practical design scenarios however, designers often have to deal with multiple 

conflicting objectives, in which the improvement of one objective may not be possible 

without the deterioration of another. Hence, compared to single objective optimisation 

problems, multi-objective optimisation problems (MOOPs) are more complex and more 

difficult to solve, and unlike single objective optimisation problems, there often exist 

multiple solutions for which decisions must be made. Optimisation involving multiple 

objectives is referred to as multi-objective optimisation (MOO).  

The development of multi-objective optimisation theory dates back to the late 1800s, 

when Francis Francis Ysidro Edgeworth (1845-1926) first defined the concept of trade-

off for multiple conflicting objectives [59]. Throughout the 20th century, the 

development of multi-objective optimisation was largely brought forward by studies in 

the area of engineering, mathematical economics and political science. 

Problem definition: 

Minimise {𝑓1(𝒙), 𝑓2(𝒙), 𝑓3(𝒙), … , 𝑓𝑛(𝒙)}                                 (6.1) 

Subject to 𝑥 ∈ 𝑫 

𝑔𝑖(𝒙)  ≤ 0, 

ℎ𝑖(𝒙) = 0,    𝑖 = 1, 2 … , 𝑛. 

where 𝑛 is the number of objectives, 𝑓(𝑥) is the objective function, 𝑫 is a non-empty 

set of feasible design points, 𝑔𝑖(𝑥)  are the inequality constraints and ℎ𝑖(𝒙)  are the 

equality constraints. 

6.1.1   Scalarization methods 

Scalarization methods are arguably the most widely used multi-objective approaches 

due to their simplicity. The general idea is to combine all the objectives to form a single 

objective problem. For problems with a priori knowledge of importance for each of the 

objectives; weights and scaling factors commonly used in scalarization methods can also 

reflect the designer’s preference. In cases in which the importance of each objective is 

not clear, by systematically varying the method parameters, scalarization methods are 

also able to generate a set of Pareto points. 

The most generic form of scalarization method is the weighted sum approach: 
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𝑌 = ∑ 𝑤𝑖𝐹𝑖(𝑥)

𝑛

𝑖=1

                                                       (6.2) 

where 𝑖  indicates the 𝑖𝑡ℎ  objective,  𝐹𝑖(𝑥)  is the 𝑖𝑡ℎ  objective function and 𝑤𝑖  is the 

weight applied to the 𝑖𝑡ℎ objective function.  

Other scalarization methods include: the weighted exponential sum method, the 

weighted min-max method and the weighted product method. For a comprehensive 

review of the scalarization methods, as well as other non-EA based approaches, readers 

are referred to [60]. 

6.1.2   Evolutionary algorithm-based methods 

An increasing number of evolutionary algorithm-based solution methods for MO 

problems have appeared in the literature since the mid-1980s. The vector evaluated 

genetic algorithm (VEGA) proposed in 1985 [61] is one of the earliest examples of multi-

objective evolutionary algorithms (MOEAs). During the past 30 years, numerous MOEAs 

have been proposed. Some of the most often cited are: niched Pareto genetic algorithm 

(NPGA) [63], strength Pareto evolutionary algorithm (SPEA), strength Pareto 

evolutionary algorithm-2 (SPEA2), Pareto-archived evolution strategy (PAES), Pareto 

envelope-based selection algorithm (PESA), Pareto envelope-based selection algorithm-

II (PESA-II), non-dominated sorting genetic algorithm (NSGA) [62], non-dominated 

sorting genetic algorithm NSGA-II [64] and particle swarm (PSO) based methods [65].  

The general opinion favours EAs as advantageous in solving MOO problems by often 

being population based, thus multiple solutions can be obtained in a single run. However, 

solutions to practical problems are usually expensive in terms of computational time 

and effort. In the context of electromagnetic devices, the finite element method is a 

common design tool; it often takes hours or even days to obtain a single solution. 

Therefore, surrogate model-based algorithms are often preferred.  

In addition to the aforementioned algorithms, an increasing number of indicator-based 

MO algorithms have been proposed in recent years; the indicator is used as a fitness 

measure for a set of Pareto points and – by optimising the indicator function – the MO 

problem essentially becomes a single objective optimisation problem, since the solver 

only needs to locate the optimal value of the indicator value and update the generation 

based on it. Examples include: epsilon indicator [66], R2 indicator [69], additive -ε 

indicator[67] and the hypervolume indicator[68]. Comparisons between indicators can 

be found in [66] [69] [70]. 

 



101 

` 

6.2   Hypervolume indicator 

A hypervolume indicator, also known as a Lebesgue measure or S metric, is the most 

widely used indicator and has been successfully applied to both EAs and surrogate-based 

algorithms. Hypervolume is the Lebesgue measure bounded by the non-dominated 

solutions and the reference point, for a normalised objective space; as [1 … 1] are often 

used as the reference points, the dimension of the array is equal to the number of 

objectives. Figures 6.1 (a) and (b) present the known design sites in the objective space 

and the corresponding hypervolume (grey area) of this set of points. The black dots 

represent the Pareto points.  

 

 

Figure 6.1. (a) Design points in the objective space (b) the hypervolume of the Pareto 

front. 

In kriging-based multi-objective optimisation, the hypervolume indicator is modified 

based on the ideal expected improvement (EI) infill criterion and the hybridised version, 

widely known as the expected hypervolume improvement (EHVI). The formula for EHVI 

is exceedingly similar to EI, except the expected improvement is measured in the 

hypervolume instead of the value of objective function in the search space. 

The hypervolume improvement (HVI) is the increment in hypervolume based on the new 

points and the old design points. Its analytical form is given by: 

𝐻𝑉𝐼 =  𝐻𝑉({𝑃𝐹, 𝑦}, 𝑟𝑒𝑓)  −  𝐻𝑉(𝑃𝐹, 𝑟𝑒𝑓)                                 (6.4) 

where 𝑃𝐹 stands for Pareto front, 𝐻𝑉(𝑃𝐹, 𝑟𝑒𝑓) stands for the hypervolume bounded 

by the Pareto front and the reference point 𝑟𝑒𝑓 and 𝑦 is the newly added design point.  

 

(a) (b) 
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The formula for EHVI is given in [71] [72]: 

 

𝐸𝐻𝑉𝐼 = ∫ ∫ ⋯ ∫ 𝐻𝑉𝐼[𝑓1(𝑥), 𝑓2(𝑥), ⋯ , 𝑓𝑛(𝑥)]
𝑟𝑒𝑓

−∞

𝑟𝑒𝑓

−∞

𝑟𝑒𝑓

−∞

                           (6.3) 

∙ 𝜙(𝐹1) ∙ 𝜙(𝐹2) ⋯ 𝜙(𝐹𝑛) 𝑑𝐹1𝑑𝐹2 ⋯ 𝑑𝐹𝑛 

where 𝜙(∙) is the probability density function and 𝑛 is the number of objectives. 

An example of a kriging-based multi-objective optimisation approach based on EHVI is 

illustrated in Figures 6.2 to 6.4. The dashed lines are the underlying test functions, the 

blue and orange lines represent the kriging model for two different objective functions 

at the 14th iteration. The location of the Pareto front is marked by red crosses on the 

test function.  

 

Figure 6.2. Kriging models in the search space. 

 

Figure 6.3. Expected hypervolume improvement in the search space. 
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Figure 6.4. Calculating the hypervolume via the Quasi Monte Carlo approach. 

As can be observed in Figure 6.4, the Monte Carlo approach only provides an 

approximation of the hypervolume measure; when the displacement of the new 

sampling points from the current set of Pareto points is small, its accuracy may not be 

sufficient. More sophisticated methods for computing the hypervolume have been 

proposed within the literature in recent years. Two algorithms (IIHSO and WFG) were 

proposed in the PhD thesis [74] and other examples can be found in [75], [76], [77], [78].  

The most important feature of a hypervolume indicator is that this measure is strictly 

monotonic to Pareto improvement [79]. In other words, infill points resulting in a higher 

hypervolume measure always improve the current Pareto solution. Despite this 

favourable feature, its high computational costs for higher dimensions is also widely 

known. The computation of hypervolume is an NP-hard problem: the complexity 

increases exponentially in number of objectives. 

 

6.3   Localised probability of improvement 

In this section, we introduce a novel approach to kriging-based multi-objective 

optimisation by utilising a local probability of improvement as the infill sampling 

criterion and the nearest neighbour check to ensure diversification and uniform 

distribution of the Pareto fronts.  

6.3.1   Probability of improvement 

Kriging provided both the predicted mean and the associated mean square error at an 

unknown location. The probability of improvement 𝑃𝑜𝐼 at any location is given by: 
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𝑃𝑜𝐼(𝒙) = Φ (
𝑦𝑡(𝒙) −  𝑦̂(𝒙)

𝑠̂(𝒙)
)                                              (6.5) 

where 𝑦𝑡 is the target of improvement, 𝑦̂ is the kriging predicted mean at location 𝒙, 𝑠̂2 

is the mean square error at location 𝒙 and Φ(∙) is the cumulative distribution function. 

From the above equation, it can be observed that the value of 𝑃𝑜𝐼  depends on the 

target 𝑦𝑡 , predicted mean 𝑦̂, and the mean square error 𝑠̂, where the target can be 

modified to obtain a “manipulated” value of the 𝑃𝑜𝐼. 

The algorithm presented in this section is a localised approach to calculate the 

probability of improvement at an unknown location. The term “localised” is added here 

because the redefined probability of improvement for each point is calculated based on 

their location in the objective space, and unknown points at different regions may have 

different location targets of improvement. Hence, for simplicity, we define the indicator 

as the 𝐿𝑃𝑜𝐼.  

𝐿𝑃𝑜𝐼  at a given location is an integrated measure calculated for two improvement 

targets. A target is calculated for a reference point and the reference point is taken 

based on the location of the unknown point 𝒙.  

6.3.2   The first improvement target 

The first improvement target 𝑦𝑒𝑥𝑡 associates with the minimum value of each individual 

objective function, the subscript 𝑒𝑥𝑡 stands for “extreme value”; and 𝑦𝑒𝑥𝑡 is given as:  

𝑦𝑒𝑥𝑡
𝑛 = 𝑦𝑚𝑖𝑛

𝑛 ∙ (1 − 𝑝)                                                 (6.6) 

where 𝑦𝑚𝑖𝑛
𝑛  is the known minimum value of the 𝑛𝑡ℎ  objective function and 𝑝 is the 

percentage of improvement to be defined; parameter 𝑝 is discussed later in this section. 

The corresponding 𝑃𝑜𝐼 is:  

𝑃𝑜𝐼𝑒𝑥𝑡
𝑛(𝒙) =  Φ (

𝑦𝑒𝑥𝑡
𝑛 −  𝑦̂𝑛(𝒙)

𝑠̂𝑛(𝒙)
)                                     (6.7) 

where 𝑦̂𝑛, 𝑠̂𝑛, 𝑦𝑒𝑥𝑡
𝑛  and 𝑃𝑜𝐼𝑒𝑥𝑡

𝑛  are the corresponding measures of the 𝑛𝑡ℎobjective 

function.  

For the first improvement target, we get 𝑛 number of 𝑃𝑜𝐼, which equals the number of 

objectives because the 𝑃𝑜𝐼𝑒𝑥𝑡 is calculated based on the extreme value (maximum) of 

each objective functions. We consider the maximum potential improvement for all 

individual objectives, hence:  

𝑃𝑜𝐼𝑒𝑥𝑡(𝒙) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒{𝑃𝑜𝐼𝑒𝑥𝑡
𝑛(𝒙)}                                      (6.8) 
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6.3.3   The second improvement target 

The second improvement target 𝑦𝑖𝑛𝑡
𝑛(𝒙) is associated with the reference point that is 

defined based on the location of 𝒙. The subscript 𝑖𝑛𝑡 stands for “intermediate” and 𝑦𝑟𝑒𝑓 

is calculated as:  

𝑦𝑖𝑛𝑡
𝑛 = 𝑦𝑟𝑒𝑓

𝑛 ∙ (1 − 𝑝)                                                   (6.9) 

where 𝑦𝑟𝑒𝑓 is the calculated reference point. 

To obtain the reference point 𝑦𝑟𝑒𝑓 , the algorithm finds the Pareto front for existing 

design sites using non-dominated sorting. For each closest set of Pareto points (the 

number points is equal to the number of objectives) it calculates the corresponding 

reference point. The coordinates for the reference point of each dimension is equal to 

the maximum value of the coordinates for these Pareto points in the same dimension. 

The coordinates for the corresponding reference point in the nth dimension 𝑅𝑒𝑓(𝑥𝑛) is 

given by: 

𝑦𝑟𝑒𝑓
𝑛 =  max {𝑌𝑛}                                                     (6.10) 

where 𝑌𝑛 is the collection of the 𝑛𝑡ℎ objective value for all of the points in that Pareto 

set. 

Taking a bi-objective problem as an example, assuming the reference point 𝑦𝑟𝑒𝑓 is to be 

determined for Pareto points 𝑃1  and 𝑃2 , the coordinates of 𝑃1  and 𝑃2  are hence 

denoted by [𝑃1. 𝑥1, 𝑃1. 𝑥2]  and [𝑃2. 𝑥1, 𝑃2. 𝑥2] , respectively. Note that 𝑥𝑛  is the 𝑛𝑡ℎ 

objective value at the location in the search space associated with 𝑃. The 𝑥1  and 𝑥2 

coordinates (in the objective space) of the reference point are thus described as follows: 

𝑦𝑟𝑒𝑓
1 = 𝑚𝑎𝑥{𝑃1. 𝑥1, 𝑃2. 𝑥1 }                                           (6.11) 

𝑦𝑟𝑒𝑓
1 = 𝑚𝑎𝑥{𝑃1. 𝑥2, 𝑃2. 𝑥2 }                                           (6.12) 

and the corresponding 𝑃𝑜𝐼 is given as: 

𝑃𝑜𝐼𝑟𝑒𝑓
𝑛(𝒙) =  Φ (

𝑦𝑖𝑛𝑡
𝑛(𝒙) −  𝑦̂𝑛(𝒙)

𝑠̂𝑛(𝒙)
)                                  (6.13) 

where 𝑦𝑟𝑒𝑓
𝑛, 𝑦̂𝑛, 𝑠̂𝑛, 𝑃𝑜𝐼𝑟𝑒𝑓

𝑛 and 𝑃𝑜𝐼𝑒𝑥𝑡
𝑛 are the corresponding measures of the 

𝑛𝑡ℎobjective function. 

We obtained 𝑛 number of 𝑃𝑜𝐼 for the second improvement target. However, unlike the 

first improvement target, the second one uses a localised target. Therefore, consider 

using the minimum potential improvement for all individual objectives and hence: 

𝐿𝑃𝑜𝐼𝑟𝑒𝑓(𝒙) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{𝑃𝑜𝐼𝑟𝑒𝑓
𝑛(𝒙)}                                   (6.14) 
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6.3.4   Integrated improvement target 

Finally, the proposed indicator 𝐿𝑃𝑜𝐼 for any given point is the maximum of these two 

probability of improvement measures, as follows:  

𝐿𝑃𝑜𝐼(𝒙) = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒{𝐿𝑃𝑜𝐼𝑟𝑒𝑓 , 𝑃𝑜𝐼𝑒𝑥𝑡}                                 (6.15) 

𝑃𝑜𝐼𝑒𝑥𝑡, as described by (6.8), is due to the fact that the minimum of each individual 

objective function is always present in the Pareto front, hence the PoI at each location 

𝒙  over the optimal target of that function is always considered. This term also 

contributes to the diversification of the Pareto front. 

Furthermore, 𝐿𝑃𝑜𝐼𝑟𝑒𝑓, as described by (6.14), can be treated as the maximum of the 

minimum potential improvement to a local target. This term helps to improve the Pareto 

front both toward the origin and in the direction of the objective value. It contributes to 

the diversification of the Pareto front. 

To obtain the next infill sampling point, the algorithm finds the location 𝒙 associated 

with the maximum 𝐿𝑃𝑜𝐼 measure in the objective space.  

6.3.5   Parameter 𝒑 

Parameter 𝑝 , as seen in (6.6) and (6.9), is associated with the magnitude of target 

improvement; it controls the convergence rate of the algorithm. A smaller improvement 

amount will guide the solver toward existing Pareto points, while a larger value will 

encourage the exploration of the design space. It is crucial to use a proper 𝑝, since too 

small a value may lead to a false Pareto front, while a large value may result in a slow 

convergence rate or zero probability of improvement at all unknown sites. Thus, it is 

better to dynamically correct the value while monitoring the convergence.  

We first provide a simple self-adjusted method for parameter 𝑝.  

First, the initial improvement target percentage 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is defined and then the 

parameter 𝑝 is calculated as: 

𝑝 = 𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ max {𝐿𝑃𝑜𝐼𝑝𝑟𝑒𝑣}                                            (6.16) 

where 𝐿𝑃𝑜𝐼𝑝𝑟𝑒𝑣 is the complete set of 𝐿𝑃𝑜𝐼 at the previous iteration. 

The next infill point is taken at the location with maximum 𝐿𝑃𝑜𝐼. Therefore, the solver 

tends to minimise the localised probability of improvement and converge toward the 

Pareto front. When the design space is well explored, or the 𝑝 is especially small, the 

solver will converge toward existing Pareto fronts; at this stage, it is common for the 

𝐿𝑃𝑜𝐼  to equal or come close to one at multiple unknown sites (extremely likely to 

improve over the target point). In order to obtain a uniformly distributed Pareto front, 

the algorithm selects candidates which have the largest Euclidean distance to existing 

Pareto points compared to the next infill sampling points. For this reason, the maximum 
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value of 𝐿𝑃𝑜𝐼 can be capped between 0.9 and 1 for faster exploitation of the existing 

Pareto front without degrading the overall performance 

 

6.4   Test functions and examples 

6.4.1   Bi-objective example 

Considering the following two test functions plotted in black dotted lines in Figure 6.5, 

the circles are sampled design points and the red and blue lines are kriging models built 

on existing samples. The red crosses mark the locations of all of the Pareto points for 

each objective function. The true Pareto points can be obtained by mapping all the 

feasible solutions on to the objective space and running a simple non-dominated sorting 

method (given in the appendix). When the Pareto points are found in the objective space, 

their corresponding location of 𝑥 in the search space is marked in the figure below.  

Figure 6.5. Kriging models at the 5th iteration. 

 

Figure 6.6. 𝐿𝑃𝑜𝐼 criterion at the 5th iteration. 

Figure 6.6 displays the 𝐿𝑃𝑜𝐼 criterion in the search space. While the maximum location 

is not obvious in the figure, the location at x=1 is sampled in the next iteration. 
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The kriging model in the objective space is illustrated in Figure 6.7. The dashed line 

shows all the feasible solution in the objective space for 0 ≤ 𝑥 ≤ 1 , the minor red 

crosses indicate the true Pareto front, and the blue solid line provides a direct mapping 

of two kriging models for the search space; it shows an estimation of all feasible 

solutions (when two kriging models are accurate enough, the blue solid line should 

coincide with the dashed line). Since the sampling points are too sparse at the early 

stage, the estimated model in the objective space is far from accurate and more infill 

sampling points need to be added. 

 

Figure 6.7. Kriging model in the objective space. 

Figure 6.8 shows that at the 17th iteration, kriging models are reasonably accurate in the 

search space. As can be seen in Figure 6.9, the solver has started to converge toward 

the two Pareto clusters (marked with red crosses in Figure 6.8). The kriging model in 

Figure 6.10 does not look as accurate and has left the location away from the Pareto 

front unexplored, because the probability of improvement on the existing Pareto front 

in these locations are relatively small. 
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Figure 6.8. Kriging models at the 17th iteration. 

 
Figure 6.9. 𝐿𝑃𝑜𝐼 criterion at the 17th iteration. 

 
Figure 6.10. Kriging model in the objective space. 
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Figure 6.11 displays the kriging models at the final iteration (40th iteration) and all of the 

sample points are plotted in Figure 6.12, where the true Pareto front is marked with red 

crosses. The solver has successfully converged and infill points are taken uniformly along 

the Pareto front. 

 

Figure 6.11. Kriging models at the 40th iteration. 

 

Figure 6.12. Design points in the objective space. 
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(a) (b) 

(a) (b) 

6.4.2   Bi-objectives problems and test results 

A large number of tests were conducted with different, randomly generated bi-objective 

test functions. The examples below start with 5 initial design points and 45 maximum 

iterations. Figures 6.13 and 6.14 display the final results from two randomly generated 

test functions.  

  

Figure 6.13. (a) Kriging models in the search space, (b) design points in the objective 

space. 

 

Figure 6.14. (a) Kriging models in the search space, (b) design points in the objective 

space. 
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6.4.3   Three objective problems and test results  

The problems in this section have three objective functions and each function has two 

variables. The maximum number of function evaluations is limited to 200. These test 

functions consist of random terms similar to those used in Section 3.3 in order to provide 

different response surfaces. For problems with higher dimensions and/or higher number 

of objectives, the Pareto points became sparser, hence locating all the Pareto points will 

be much harder. 

Two examples have been provided below. Figures 6.15 and 6.17 show response surfaces 

of three objection functions in each example. In Figures 6.16 and 6.18, the grey dots are 

all possible (feasible) solutions of the problem, the red crosses describe the true Pareto 

front shown in Figures 6.16(a) and 6.18(a). In Figures 6.16(b) and 6.18(b) the orange 

squares indicate the sampling points in the objective space, while the orange triangles 

in Figures 6.16(c) and 6.18(c) mark the located Pareto points. As can be seen from the 

examples below, the proposed multi-objective optimisation approach has produced a 

reasonable number of diversified Pareto points within a limited number of function calls 

(200 sampling points).  

 

 

Figure 6.15. (a) Response surface of objective 1, (b) response surface of objective 2, (c) 

response surface of objective 3. 

  

 

(a) (b) (c) 
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(a) 
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(c) 

Figure 6.16. (a) Plot of the true Pareto front, (b) design points in the objective space, 

(c) located Pareto points. 

 

 

 

 

 

Figure 6.17. (a) Response surface of objective 1, (b) response surface of objective 2, (c) 

response surface of objective 3. 

 

  

 

 

(c) (a) (b) 
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(a) 

 

 
(b) 
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(c) 

Figure 6.18. (a) Plot of the true Pareto front, (b) design points in the objective space, 

(c) located Pareto points. 

 

6.5   ZDT benchmark problems  

The method proposed in this chapter was tested on well-known ZDT multi-objective 

benchmark problems. The ZDT problems are a popular set of test functions proposed by 

Zitzler et al. (2000) [73] for benchmarking multi-objective optimisation algorithms. The 

ZDT test suit consists of 5 continuous multi-objective problems. The test function 

formulae are given in each section. Test results are plotted in Figures 6.19 to 6.23, the 

grey dots represent all the feasible solutions and the orange triangles are sampled 

design points. The result shows the sampling points distributed intensively around the 

Pareto region in the objective space, indicating the proposed kriging-based multi-

objective optimisation solver provides a clear convergence tendency towards the Pareto 

front. In addition, the diversification and uniformity of the Pareto points have been 

maintained. For each problem, the dimension 𝑛  has been set to 𝑛 = 2 , while the 

maximum number of function evaluations is limited to 200 and the number of initial 

sampling points equals to 10. 
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6.5.1   ZDT1  

𝑓1(𝑥) = 𝑥1, 𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑥)                                                                                            (6.17) 

where   

𝑔(𝑥) = 1 +
9(∑ 𝑥𝑖

𝑛
𝑖=2 )

(𝑛−1)
 , ℎ(𝑥) = 1 − √

𝑥1

𝑔(𝑥)
 , 𝑛 = 2                                                            (6.18) 

 

Figure 6.19. Design points in objective space (ZDT1).  

 

6.5.2   ZDT2 

𝑓1(𝑥) = 𝑥1, 𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑥)                                                                                            (6.17) 

where   

𝑔(𝑥) = 1 +
9(∑ 𝑥𝑖

𝑛
𝑖=2 )

(𝑛−1)
 , ℎ(𝑥) = 1 − (

𝑥1

𝑔(𝑥)
)

2

 , 𝑛 = 2                                                         (6.18) 
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Figure 6.20. Design points in the objective space (ZDT2).  

 

6.5.3   ZDT3 

𝑓1(𝑥) = 𝑥1, 𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑥)                                                                                            (6.19) 

where 

𝑔(𝑥) = 1 +
9(∑ 𝑥𝑖

𝑛
𝑖=2 )

(𝑛−1)
 , ℎ(𝑥) = 1 − √

𝑥1

𝑔(𝑥)
−

𝑥1

𝑔(𝑥)
sin(10𝜋𝑥1) , 𝑛 = 2                         (6.20) 

 
Figure 6.21. Design points in the objective space (ZDT3).  
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6.5.4   ZDT4 

𝑓1(𝑥) = 𝑥1, 𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑥)                                                                                            (6.21) 

where  

 𝑔(𝑥) = 1 + 10(𝑛 − 1) + ∑ [𝑥𝑖
2 − 10 cos(4𝜋𝑥𝑖)]𝑛

𝑖=2 , ℎ(𝑥) = 1 − √
𝑥1

𝑔(𝑥)
 , 𝑛 = 2 (6.22) 

 
Figure 6.22. Design points in the objective space (ZDT4).  

 

6.5.5   ZDT6 

𝑓1(𝑥) = 1 − 𝑒−4𝑥1 sin6(6𝜋𝑥1), 𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑥)                                                       (6.23) 

where   

𝑔(𝑥) = 1 + 9 (
(∑ 𝑥𝑖

𝑛
𝑖=2 )

(𝑛−1)
)

1

4
, ℎ(𝑥) = 1 − (

𝑓1(𝑥)

𝑔(𝑥)
)

2

 , 𝑛 = 2                                                 (6.24) 
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Figure 6.23. Design points in the objective space (ZDT4). 

 

6.6   Conclusion 

A novel approach to kriging-based multi objective optimisation was presented and 

details were discussed in this chapter. The proposed method was further tested against 

various random test function and the well-known ZDT benchmark test problems. Each 

of these test problems reproduces an interesting feature in multi-objective optimisation 

problems that may potentially cause difficulties for the optimisation algorithm. The 

proposed algorithm has successfully converged on the true Pareto front within a 

reasonable number of iterations. It has been shown that the solver is efficient and robust 

and provides a reasonably fast convergence rate toward the true Pareto front, while 

achieving both uniformity and divergence of the Pareto solution. 
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Chapter 7.   Conclusion 

 

7.1   Summary 

This PhD program aimed at reviewing and improving the application of current kriging-

based optimisation methods in robust and multi-objective design problems.  

To comply with the research objectives, Chapter 1 reviewed surrogate-based 

optimisation, including the theory of the kriging model, initial sampling and infill 

sampling. Chapters 2 through 6 consist of studies on independent topics within the 

context of kriging-based optimisation; namely, infill sampling plan, robust optimisation, 

large datasets and multi-objective optimisation. Each chapter consists of a brief review 

of the topic and proposes new methods.  

 

7.2   Contribution 

• An improved infill sampling plan that incorporates a novel approach to 

dynamically balance exploration and exploitation is proposed. The method uses 

feedback information from the model quality to automate the parameter 

settings. 

• A fast gradient-based infill criterion search method is proposed. The method 

significantly reduces the number of necessary infill criterion evaluations, 

consequently improving both the process’ efficiency and accuracy. 

• A two-step kriging-based robust optimisation approach for worst-case problems 

is proposed. By introducing an additional layer of optimisation during the infill 

process and a modified criterion for worst-case optimum allocation, the 

optimisation efficiency is increased. 

• A dual kriging approach is introduced. By reallocating less important points to 

the secondary kriging, the covariance matrix size can potentially be reduced by 

50%. Test results indicate that the proposed points reallocating criterion limits 

the impact of the removed points on the main kriging. 

• A kriging method with points aggregation is proposed. The method locates the 

optimal model centre and aggregates a selection of points via optimisation, thus 

limiting the impact of information losses on interested search areas. This 

approach maintains constant memory usage at specified levels and therefore, 

enables the designer to intake a larger number of infill points. 
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• A kriging-based multi-objective optimisation method is proposed. The novel 

indicator localised probability of improvement ( 𝐿𝑃𝑜𝐼 ) addresses both the 

divergence and uniformity of the Pareto solution, while imposing a low 

computational cost. Test results reveal that the proposed method has a clear 

convergence tendency toward the Pareto front. 

Referring back to the specific objectives formulated in Section 1.4 of the thesis it is 

therefore claimed that all of them have been met and some exceeded. While no single 

research program can completely answer the challenges of a specific problem, it can be 

argued that this work represents a step forward in efficient handling of kriging assisted 

design optimisation of electromagnetic devices. 

 

7.3   Future work 

The infill sampling and model-updating kriging-based optimisation is an iterative 

procedure that contributes to most time cost of the optimisation process, typically more 

than 99%. Currently, infill points are sampled sequentially. However, researchers may 

consider developing an infill criterion for multiple infill point intake in order to take 

advantage of parallel computational power. Undoubtedly, other programming issues 

also need to be solved, but the potential reward is significant. For a quad-core computer, 

parallel computation of basic arithmetics (i.e. all the threads are efficiently used and idle 

time is neglected) is approximately 3.4 times faster than single-core computation. In If 

designers can access more powerful computational resources, the algorithm’s potential 

could be significant. 

In addition to the difficulty in handling large datasets, kriging also has less flexibility in 

handling a wide range of problems: for example, problems with irregular or discontinued 

objective functions. Perhaps by designing an algorithm that maps the underlying 

problem to an unevenly scaled or modified search space, the kriging model could better 

fit the rescaled problem. For example, a response surface with a small complex area and 

a large flat area is mapped in a rescaled search space, where the complex area is 

enlarged while the flat area is narrowed. In this way, the complex region revives more 

“pixels” than other regions and both the sampling and model accuracy in the complex 

region could potentially improve. 

There exist opinions which suggest that the domain-specific AI is the future in many 

industries, machine learning may also be introduced to the task of designing an 

optimisation algorithm. A simple design framework generates a large number of test 

problems that mimic the targeted practical problems and runs the optimisation 

algorithms multiple times on each of the test problems, while recording the detailed 

movement of the algorithm at the specific condition. These movements are then 

classified as either good movements or bad movements. Once the entire process is 
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complete, a computer-stored table of algorithm behaviours with past performance can 

be generated. Consequently, this table can be attached to the algorithm as a directional 

reference for similar problems. Optimisation and machine learning share many 

similarities in their logic, and developments from any of them may have potential 

applications in another. Hence, it would be interesting to combine these two topics. 

The optimisation algorithms proposed in this thesis have been tested on various types 

of problems, including 1-D and 2-D test functions consist of multiple local optima, and 

practical benchmark problems T.E.A.M. 22 and T.E.A.M. 25. However the test did not 

expend to actual design problems, it would interesting and beneficial to implement the 

proposed algorithms to solve practical design optimisation problems. 

Finally, it has to be recognised – as already mentioned in Section 1.4 – that in some 

practical design approaches the manufacturer does not necessarily aim at finding the 

global optimum and will be perfectly satisfied with a simple improvement to the current 

design, in particular to avoid expensive changes to manufacturing processes, tooling, 

materials, etc. It would indeed be an interesting follow up to this project how such 

approach could be phrased in mathematical terms so as to benefit from the kriging 

techniques developed in this thesis. 

 

7.4   List of publications 

The following list shows all papers published related to this thesis, including one digest 

accepted for a conference in Poland to take place in September 2017. Copies of the 

papers may be found in Appendix A.  

 

Li, Y., Xiao, S., Rotaru, M. and Sykulski, J.K., 2016. A Dual Kriging Approach With Improved 

Points Selection Algorithm for Memory Efficient Surrogate Optimization in 

Electromagnetics. IEEE Transactions on Magnetics, 52(3), pp.1-4. 

 

Li, Y., Rotaru, M. and Sykulski, J.K., 2016. Kriging based robust optimisation algorithm for 

minimax problems in electromagnetics. Archives of Electrical Engineering, 65(4), pp.843-854. 

 

Li, Y., Xiao, S., Rotaru, M. and Sykulski, J.K., 2017. A Kriging-Based Optimization Approach for 

Large Data Sets Exploiting Points Aggregation Techniques. IEEE Transactions on 

Magnetics, 53(6), pp.1-4. 

 

Li, Y., Xiao, S., Rotaru, M. and Sykulski, J.K., 2017. Localized probability of improvement for 

kriging based multi-objective optimization. 18th International Symposium on Electromagnetic 

Fields in Mechatronics, September 2017, Lodz, Poland. (accepted) 
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Appendix B 

A summary of the codes used (a copy of all codes attached on a CD). 

The MATLAB codes used in this thesis are provided in this section, the content of the 

media and brief comments are given below, folder names are underlined, while file 

names are presented in bold. 

 

DACE 

The software package DACE is a MATLAB kriging tool box; the program files contained in 

this folder form the prerequisite to most of the other programs in this section. 

 

Chapter 2. Background review 

initial_sampling.m 

Contains code for random sampling and Quasi-Monte Carlo sampling approach 

 

Kriging_EI.m 

Contains code example of kriging with expected improvement (EI) as the infill criterion.  

 

Func_Krig_EI.m 

Sub function of Kriging_EI.m for calculating standard EI criterion. 

 

Chapter 3.   Efficient sampling plan 

Kriging_ESS.m 

Contains code example for using kriging and efficient sampling scheme as the infill 

criterion. 

 

Func_Krig_EI.m 

Sub function of Kriging_ESS.m for calculating standard EI criterion. 

 

Chapter 4.   Robust optimisation 

Kriging_WCEI.m 

Code example for the proposed minmax solver. 
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Func_Krig_WCEI.m 

Sub function of Kriging_WCEI.m for calculating expected worst-case improvement. 

 

Func_Krig_ED.m 

Sub function of Kriging_WCEI.m for calculating expected deterioration. 

 

Chapter 5.   Kriging for larger datasets 

Dualkriging.m 

Program code for dual kriging approach and example. 

 

Func_Krig_EI.m 

Sub function of Dualkriging.m for calculating standard EI criterion. 

 

AGkriging.m 

The program code for kriging with aggregation and example. 

 

TestFunc_2D.m 

Sub function of AGkriging.m, for setting up the test example. 

 

ffh_center.m 

Function handler for the centre criterion, sub function of AGkriging.m. Use simulated 

annealing or other global optimisers to optimise this function. 

 

Func_points_aggregation.m  

Function handler for the dissimilarity function, sub function of AGkriging.m. Use 

fminbnd or Script_clustering.m to optimise dissimilarity. 

 

Script_clustering.m 

Script for optimizing dissimilarity; in case the fminbnd optimiser fails, the program will 

use this function to optimise dissimilarity. 

Func_Krig_EI.m 
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Sub function of AGkriging.m for calculating standard EI criterion. 

 

Chapter 6.   Multi-objective optimisation 

MOkriging_LPoI.m 

Program code for kriging with the localised probability of improvement (LPoI) for 

multiobjective optimization problems. 

 

non_dominated_front.m 

Sub function of MOkriging_LPoI.m for dominate sorting, returning index. Author: 

Johannes W. Kruisselbrink, this file is a part of the Hypervolume Computation package 

available in MATLAB file exchange 

 

Func_MO_LPoI.m 

Sub function of MOkriging_LPoI.m for calculating the LPoI criterion. 

 

Func_plot_v3.m 

Sub function of MOkriging_LPoI.m for generating figures.  

 


