The University of Southampton
University of Southampton Institutional Repository

Joint impulsive noise estimation and data detection conceived for LDPC-coded DMT-based DSL systems

Joint impulsive noise estimation and data detection conceived for LDPC-coded DMT-based DSL systems
Joint impulsive noise estimation and data detection conceived for LDPC-coded DMT-based DSL systems
2169-3536
Bai, Tong
15e00a16-2ade-4fdb-a4d9-a490a526669a
Xu, Chao
5710a067-6320-4f5a-8689-7881f6c46252
Zhang, Rong
3be8f78f-f079-4a3f-a151-76ecd5f378f4
AI Rawi, Anas F.
fd805079-63c1-41b1-90ad-d69af616c008
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Bai, Tong
15e00a16-2ade-4fdb-a4d9-a490a526669a
Xu, Chao
5710a067-6320-4f5a-8689-7881f6c46252
Zhang, Rong
3be8f78f-f079-4a3f-a151-76ecd5f378f4
AI Rawi, Anas F.
fd805079-63c1-41b1-90ad-d69af616c008
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Bai, Tong, Xu, Chao, Zhang, Rong, AI Rawi, Anas F. and Hanzo, Lajos (2017) Joint impulsive noise estimation and data detection conceived for LDPC-coded DMT-based DSL systems. IEEE Access. (doi:10.1109/ACCESS.2017.2766603).

Record type: Article
Text
FINAL Article - Accepted Manuscript
Restricted to Repository staff only until 21 January 2018.
Request a copy

More information

Accepted/In Press date: 21 October 2017
e-pub ahead of print date: 26 October 2017

Identifiers

Local EPrints ID: 415536
URI: https://eprints.soton.ac.uk/id/eprint/415536
ISSN: 2169-3536
PURE UUID: 9ccd7dd8-2408-4850-82a5-6eaa0f70369e
ORCID for Chao Xu: ORCID iD orcid.org/0000-0002-8423-0342
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 14 Nov 2017 17:30
Last modified: 19 Jul 2019 01:22

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×