
Endogenous Ambiguity in Cheap Talk✩

Christian Kellner∗

Departement of Economics, University of Southampton, UK

Mark T. Le Quement

School of Economics, University of East Anglia, UK

Abstract

This paper proposes a model of ambiguous language. We consider a simple cheap talk game
in which a sender who faces an ambiguity averse receiver is able to perform ambiguous ran-
domization, i.e. to randomize according to unknown probabilities. We show that for any
standard influential communication equilibrium there exists an equilibrium featuring an am-
biguous communication strategy which Pareto-dominates it in terms of consistent planning
ex ante utilities. Ambiguity, by triggering worst-case decision-making by the receiver, shifts
the latter’s response to information towards the sender’s ideal action, thus encouraging more
information transmission.

Key words: Keywords: cheap talk, ambiguity JEL classification: D81, D83.

1. Introduction

Ambiguous language is a recurrent feature of economic and political communication. The
term Fedspeak for example refers to the cryptic language used by chairmen of the Federal
Reserve Board. On the face of it, the phenomenon of ambiguous language is puzzling because
it appears to gratuitously decrease the precision of transmitted information. Within the
standard cheap talk game à la Crawford and Sobel (1982) (CS in what follows), we find that
ambiguous language on the contrary increases the payoffs achievable by both parties.
An informed sender (S) faces an uninformed receiver (R) and S is known to favour

a higher action than R for any realization of the state. R is ambiguity averse and applies
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Max-Min expected utility in the presence of ambiguity. For the canonical Uniform-Quadratic
specification of the CS model, we find that S and R can both benefit from the use of an
ambiguous communication strategy according to which S conditions her messages on a
private draw from an Ellsberg urn. For any standard influential equilibrium, there exists
an ambiguous communication equilibrium which strictly Pareto-dominates it. Ambiguity
mitigates conflict by shifting upwards R’s response to information, which encourages greater
information transmission. S gains as she effectively faces a less misaligned receiver. R also
benefits because her suboptimal response to information is more than compensated by more
information transmission.
In CS, preference misalignment (i.e. bias) causes imprecise communication. Any equilib-

rium outcome can be implemented via a so-called partitional equilibrium. The state space
is divided into adjacent intervals 1, ..., N and S reveals the interval in which the state is
located by sending mi when the state is in interval i. Reducing bias causes the largest equi-
librium partition to become more informative (i.e. to have more and/or better distributed
intervals), yielding a higher expected payoff for both parties.
We propose a new communication strategy which exploits the dynamic inconsistency of

R’s behavior in the presence of ambiguity. By generating local ambiguity, communication
leadsR to act as if her preferences were less misaligned than they are. Given a set of standard
intervals 1, ..., N , S subdivides every standard interval i into two adjacent subintervals i−
and i+. If S draws a red ball from the Ellsberg urn, she sends mA

i if ω ∈ i− and mB
i if

ω ∈ i+. If instead S draws a blue ball, she uses the reciprocal rule, i.e. she sends mB
i if

ω ∈ i− and mA
i if ω ∈ i+. Upon observing mA

i and m
B
i , R is now Knighteanly uncertain

as to whether the state is situated in i− or i+. We model ambiguity aversion by assuming
Max-Min preferences. This involves evaluating every action according to its lowest expected
utility under all possible priors (i.e. all possible compositions of the urn) and picking the
action that maximizes the thus-constructed objective function. The key mechanism is that
if the left subinterval i− is significantly larger than the right subinterval i+, so that the
state is ex ante much more likely to be situated in i− than in i+, R (driven by worst-case
thinking) evaluates all low and middle actions as if certain that the state is in i+, no matter
how unlikely this event. R thus acts as if subjectively overweighting the event that the state
is in i+. As a result, she takes a higher action than the expected utility maximizing action
conditional on the event that the state is located in the standard interval i.
Our main contribution is to study Ellsbergian strategies within the classical Crawford

and Sobel (1982) cheap talk game. In so doing, we build on Bade (2010), Riedel and Sass
(2011), Azrieli and Teper (2011) and Riedel (2017), who introduce ambiguous strategies
and equilibrium under such strategies.1 The ambiguous communication strategy that we
introduce builds on Bose and Renou (2014). The latter state a revelation principle for setups
where the principal can use ambiguous communication to expand each agent’s prior about
the opponent’s type into a set of priors, thereby generating ambiguity and advantageously
affecting the behavior of the (ambiguity averse) agents. Our paper similarly uses ambiguous
communication to strategically generate ambiguity, but we examine communication without

1See also earlier work by Lo (1996) and Klibanoff (1996) on equilibrium in ambiguous beliefs.
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commitment within the Crawford and Sobel (1982) game with a focus on welfare. Our
results also relate closely to Chen and Gordon (2015), who show that any method that
shifts upwards the best response of R to any given interval (a property called "nestedness")
will improve communication. In this light, a contribution of our paper is to add a new
method (ambiguous communication strategies) for producing nestedness.
Our paper also contributes to a literature studying how vagueness alters the set of out-

comes in sender-receiver games. Blume, Board and Kawamura (2007), Blume and Board
(2014) as well as Gordon and Nöldeke (2015) consider cheap talk games with a noisy com-
munication channel that generates some randomness in the message received by R. They
find that channel noise helps foster communication by forcing pooling of S-types, which
helps R react less adversarially to messages, in turn encouraging S to reveal more. In the
partitional equilibria of Blume, Board and Kawamura (2007), R’s expectation given a mes-
sage is a weighted average of the conditional expectation without transmission error and
the ex ante mean. R’s expectation given a low message is distorted upwards, implying a
reduction in de facto preference misalignment. Blume and Board (2014) features a {0, 1}
state space and a continuum message space [0, 1]. While maximal informativeness entails
sending extreme messages (0 or 1), in equilibrium S uses an interior message in state 0,
thereby adding intentional vagueness to the exogenous vagueness (channel noise). Gordon
and Nöldeke (2015) find that S uses truth-distorting figures of speech (exaggeration, un-
derstatement). Our paper identifies benefits from noise as the above papers, differences
being that noise is exclusively voluntarily added by S, comes in a different form (ambiguity)
and affects R’s actions via a different motive (hedging). Finally, Lipman (2009) examines
cheap talk with aligned preferences and concludes that vagueness can be effi cient only if
the informed party has "vague views of the world". In this spirit, Kellner and Le Quement
(2017b) examines cheap talk with an ambiguous prior about the state. The communica-
tion strategy featured in S-optimal equilibria is not a partition but a randomization over
partitions, as in the present paper. Randomization obeys a known distribution in Kellner
and Le Quement (2017b) and instead an ambiguous one in this paper. It hedges S against
exogenous ambiguity in the former paper, while its function here is to induce hedging by R
against the endogenously generated ambiguity.
The paper proceeds as follows. Section 2 introduces the model. Section 3 contains our

main results. Section 4 discusses generalizations.

2. Model

There are two players, a sender S and a receiver R and only S has private information.
S privately observes the value of two random variables ω and θ. The random variable
ω, which corresponds to the payoff-relevant state of the world, is drawn from the uniform
distribution on [0, 1]. The variable θ is the payoff-irrelevant color of a ball drawn from an
Ellsberg urn containing balls of colors 1 and 2, where θ = θi if the drawn ball has color
i. The proportion ρ of balls of color 1 is Knighteanly unknown to S and R and the urn
is maximally ambiguous, any ρ in [0, 1] being considered possible. The timing of the game
is as follows. S observes ω and θ. She then picks a message m ∈ M, where M is a rich
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message space of cardinality |M |. After observing m, R picks an action a ∈ R. S has a
utility function denoted by US (a, ω, b) = − (ω + b− a)2, where b > 0. R’s utility function
is given by UR (a, ω) = − (ω − a)2 . R is ambiguity averse and applies the Max-Min decision
rule (Gilboa (1987), Gilboa and Schmeidler (1989)). In contrast, the ambiguity attitude of S
can be arbitrary. A standard communication strategy is given by a family q(. |ω ), ω ∈ [0, 1],
of distributions. Such a family defines a distribution over M for each value of ω and is thus
a mapping [0, 1] 7→ ∆|M |, where ∆|M | is the set of distributions over M . An Ellsbergian
communication strategy is given by a pair of standard communication strategies denoted
(q1(. |ω ), q2(. |ω )). S plays such a strategy by conditioning her choice of qi on the value of
θ, more precisely by using qi if θ = θi.2 A (mixed) strategy of R specifies a distribution
δ(. |m) over pure actions for any m ∈M. Letting ∆R denote the set of distributions over R,
a strategy of R is a mapping M 7→ ∆R.
Our equilibrium concept takes into account the possibility that S uses an Ellsbergian

strategy. We require consistent beliefs in the sense that for messages used on the equilibrium
path, R performs prior by prior Bayesian updating conditional on S’s equilibrium strategy.3

We furthermore require that at each information set at which a player is called upon to act,
the action chosen is optimal given the player’s beliefs and the other player’s equilibrium
strategy. S never faces ambiguity when called upon to act as she observes θ before choosing
a message and she hence simply maximizes expected utility. As to R, who is assumed ambi-
guity averse, our optimality requirement is that she chooses a Max-Min action conditional
on her beliefs given the message received. Note that in the absence of ambiguity, Max-Min
decision making reduces to expected utility maximization.
Formally, a strategy profile (q∗1(m |ω ), q∗2(m |ω )) , δ∗(a |m) and a belief system constitute

an equilibrium if the following conditions hold. First, ∀ (ω, i) ∈ [0, 1]×{1, 2} , any m∗ in the
support of q∗i (m |ω ) solves

max
m∈M

∫
a∈R

US(a, ω, b)δ∗(a |m)da. (1)

2While we refer to ω as the state and θ as the draw from an urn, an equivalent approach (see Hanany,
Klibanoff and Mukerji (2016)) would be to define the state as (ω, θ) , in which case the strategy of S would
be given by a distribution over M for each state (ω, θ) ∈ {θ1, θ2} × [0, 1].

3Note that prior by prior updating may entail dynamically inconsistent behavior. The latter refers
to behavior featuring ex post decision-making conditional on given information that is suboptimal from
an ex ante point of view. Hanany and Klibanoff (2007,2011) propose an alternative updating rule which
satisfies dynamic consistency. This rule however violates consequentialism, which requires that updated
preferences conditional on a given event only depend on the subevents that remain possible. This for
example entails that past choices do not affect the way in which an agent updates his preferences given an
event. Without restrictions on preferences, ambiguity aversion entails either violations of consequentialism
or dynamic consistency (or both). We refer to Siniscalchi (2011) for further theoretical discussion of this
issue. A dynamic Ellsberg experiment by Dominiak, Dürsch and Lefort (2012) finds that more subjects
satisfy consequentialism than dynamic consistency.
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Second, for each m, δ∗ solves

max
δ∈∆R

min
ρ∈[0,1]

∫ 1

0

(∫
a∈R

UR(a, ω)δ(a |m)da

)
p(ω |m, ρ)dω, (2)

where, if m is an equilibrium message, we have

p(ω |m, ρ) =

∑
i=1,2

p(θi |ρ)q∗i (m |ω )f(ω)∫ 1

0

∑
i=1,2

p(θi |ρ)q∗i (m |t)f(t)dt
.

The expression p(ω |m, ρ) denotes R’s posterior belief given message m and urn compo-
sition ρ, where the pdf of ω is denoted by f .
Regarding out of equilibirum beliefs, we simply assume that there is some equilibrium

message m̃ s.t. any out of equilibrium message gives rise to the same beliefs as m̃. Note
that by a standard argument, for any equilibrium featuring out of equilibrium messages, one
can trivially construct an outcome equivalent equilibrium featuring no out of equilibrium
messages.

3. Analysis

We know from CS that absent Ellsbergian strategies, any equilibrium is equivalent to one
featuring a partitional communication strategy. Given messages {mi}N−1

i=0 , such a strategy
is described by t0 = 0 < t1 < ... < tN = 1 s.t. S sends mi if ω ∈ (ti, ti+1], ∀i ∈ {0, ..., N − 1}
(and m0 if ω = 0). Denote R’s optimal action given ω ∈ (ti−1, ti] by a∗ne(ti−1, ti). The profile
{ti}N−1

i=1 constitutes a standard partitional equilibrium (of size N) iff

US(a∗ne(ti−1, ti), ti, b) = US(a∗ne(ti, ti+1), ti, b), i = 1, ..., N − 1. (3)

If b ≥ 1
4
, no informative communication is feasible whereas if b < 1

4
, there is a finite

N (b) ≥ 2 s.t. the maximal equilibrium size is N (b). For each N = 2, ..., N (b), there exists
a unique standard equilibrium of size N , denoted E(b,N) and featuring threshold profile
{ti(b,N)}N−1

i=1 . The maximal size N (b) is weakly decreasing in b. Holding constant the
equilibrium size N , S and R’s expected payoff decreases in b. Holding constant the bias
b, S and R favor equilibria of greater size. Given that S’s bias is b, we denote S and R’s
expected payoff given E(b,N) by respectively πS(E(b,N)) and πR(E(b,N)).
We now introduce the notion of Ellsbergian partitional communication strategies.

Definition 1. An Ellsbergian partitional communication strategy is defined as follows. Let
there be two profiles of thresholds {ti}Ni=0 and {ci}

N−1
i=0 s.t. t0 = 0 < t1 < ... < tN−1 < tN = 1

and ci ∈ (ti, ti+1], i = 0, ..., N−1. Given θ = θ1, S sendsmA
i with probability one if ω ∈ (ti, ci)

and instead mB
i with probability one if ω ∈ [ci, ti+1], i = 0, ..., N − 1. Given θ = θ2, S sends

mB
i with probability one if ω ∈ (ti, ci) and instead mA

i with probability one if ω ∈ [ci, ti+1],
i = 0, ..., N − 1.
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An Ellsbergian communication strategy summarized by
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
adds Ells-

bergian randomization to a standard partitional strategy and involves two steps. First,
determine the interval i to which ω belongs. Second, randomize over two "local" and recip-
rocal partitional strategies defined on (ti, ti+1] by conditioning on a draw from an Ellsberg
urn. One local partitional strategy sends mA

i if ω ∈ (ti, ci) and mB
i if ω ∈ [ci, ti+1]. The other

local partitional strategy does the opposite. We refer to N as the size of a given Ellsbergian
partitional strategy featuring {ti}N−1

i=1 . We now characterize R’s best response to messages
given an Ellsbergian partitional strategy.

Lemma 1. Given the Ellsbergian partitional communication strategy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
,

R’s best response to mA
i and m

B
i is identical. Denote it by a

∗
e(ti, ti+1, ci).

a) a∗e satisfies E
[
UR(a∗e, ω) |ω ∈ (ti, ci)

]
= E

[
UR(a∗e, ω) |ω ∈ [ci, ti+1]

]
,

b) a∗e(ti, ti+1, ci) = ti+ti+1+ci
3

.

Proof: see Appendix.
While the formal proof of the above result is in the Appendix, we now provide an intuition

as to how the Max-Min action is constructed and how it can be higher than the standard best
response. Given the concavity of UR, it follows from Jensen’s inequality that we can restrict
ourselves w.l.o.g. to pure actions by R (see step 1 in the proof of Lemma 1). Figure 1 below
shows the expected utility of (pure) actions given various urn compositions (ρs). We set
ti = 0, ti+1 = .75 and ci = .6. Continuous curves correspond to E

[
UR(a, ω)

∣∣mA
i , ρ = 1

]
and

E
[
UR(a, ω)

∣∣mA
i , ρ = 0

]
while dashed curves correspond to interior values of ρ

(
1
4
, 1

2
and 3

4

)
.

The Max-Min best response to mA
i corresponds to the intersection of the two continuous

curves, as explained below.

Figure 1: Expected utility over actions given various urn compositions.

Upon observing (say) mA
i , R performs prior by prior updating. R now knows that ω

belongs to the interval (ti, ti+1] and ρ affects the probability attributed to the subintervals
(ti, ci) and [ci, ti+1]. If ρ = 1 (0), mA

i implies that ω ∈ (ti, ci) ([ci, ti+1]). If instead ρ ∈ (0, 1) ,
6



both subintervals are assigned positive probability. R’s Max-Min action aftermA
i is obtained

by maximizing a lower envelope. Consider the set of expected utility curves implied by
different ρs given mA

i , each of which is a concave and single-peaked function of a. For any
a, the highest and lowest expected utility across ρs corresponds to either ρ = 0 or ρ = 1.
The Max-Min action is at the unique intersection of these two latter curves and thus fully
hedges R against ambiguity, i.e. yields the same expected utility for any ρ. Given mB

i , the
ρ = 0 and the ρ = 1 curves are interchanged w.r.t. the case of mA

i . The Max-Min best
response given mB

i is thus the same as given m
A
i and also fully hedges R.

To see that one can have a∗e(ti, ti+1, ci) > a∗ne(ti, ti+1), consider ci very close to ti+1.While
a∗ne(ti, ti+1) maximizes E

[
UR(a, ω) |ω ∈ (ti, ti+1]

]
, a∗e(ti, ti+1, ci) instead roughly corresponds

to the action at which E
[
UR(a, ω) |ω ∈ (ti, ti+1)

]
and E

[
UR(a, ω) |ω = ti+1

]
intersect. If

(ti, ci) is significantly larger than [ci, ti+1], so that ω is much more likely ex ante to belong to
the former than to the latter, R acts as if subjectively overweighting the event ω ∈ [ci, ti+1].
Worst-case thinking leads her to evaluate all low and middle actions as if certain that
ω ∈ [ci, ti+1].
Summarizing formally, for any i ∈ {0, ..., N − 1} it holds true that:

E
[
UR(a∗e(ti, ti+1, ci), ω)

∣∣mA
i , ρ

]
= E

[
UR(a∗e(ti, ti+1, ci), ω)

∣∣mA
i , ρ

′ ] , ∀ρ, ρ′ ∈ [0, 1] , (4)

and

E
[
UR(a∗e(ti, ti+1, ci), ω)

∣∣mA
i , ρ

]
= E

[
UR(a∗e(ti, ti+1, ci), ω)

∣∣mB
i , ρ

]
, ∀ρ ∈ [0, 1] . (5)

Note that the set of priors in (4) contains 1
2
. Setting ρ = 1

2
, mA

i implies a uniform
conditional distribution of ω on (ti, ti+1] so that the LHS in (4) reduces to

− 1

ti+1 − ti

∫ ti+1

ti

(ω − a∗e(ti, ti+1, ci))
2 dω.

We speak of the above expression as R’s interim payoff given mA
i . We now characterize

incentive conditions for S. The key aspect here is that randomization by S involves messages
which trigger identical actions by R.

Lemma 2. An equilibrium featuring the Ellsbergian partitional strategy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
exists if and only if

US(a∗e(ti−1, ti, ci−1), ti, b) = US(a∗e(ti, ti+1, ci), ti, b), i = 1, ..., N − 1. (6)

Proof: For all i ∈ {0, ..., N − 1} ,mA
i and m

B
i trigger an identical best response, so S

is indifferent between mA
i and mB

i for any ω ∈ (ti, ti+1]. We thus only need to consider
deviations across messages carrying different subscripts. Condition (6) ensures that ∀i ∈
{1, ..., N − 1} , S is indifferent between messages mA

i−1 and m
A
i given ω = ti. The condition

also ensures that S prefersmA
i tom

A
i−1 if ω ∈ (ti, ti+1] and prefersmA

i−1 tom
A
i if ω ∈ (ti−1, ti].

�
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Note that (6) is identical to the standard equilibrium condition in CS (see (3)), except
that R’s best response is now a∗e(ti, ti+1, ci) instead of a∗ne(ti, ti+1).
The examined Ellsbergian equilibria feature no ex ante ambiguity: Conditional on ω ∈

(ti, ti+1], for any θ the action a∗e(ti, ti+1, ci) is chosen with probability one. In an Ellsbergian

equilibrium featuring
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
, our measure of S’s welfare is simply the following

expected payoff function:

N−1∑
i=0

P (ω ∈ (ti, ti+1])E
[
US(a∗e(ti, ti+1, ci), ω, b) |ω ∈ (ti, ti+1)

]
(7)

= −
N−1∑
i=0

∫ ti+1

ti

((ω + b)− a∗e(ti, ti+1, ci))
2 dω.

Our measure of R’s welfare is her consistent planning ex ante utility, i.e. her ex ante utility
anticipating that she responds to mj

i , j ∈ {A,B} , with action a∗e(ti, ti+1, ci). It is given as
follows

N−1∑
i=0

P (ω ∈ (ti, ti+1])E
[
UR(a∗e(ti, ti+1, ci), ω) |ω ∈ (ti, ti+1)

]
(8)

= −
N−1∑
i=0

∫ ti+1

ti

(ω − a∗e(ti, ti+1, ci))
2 dω.

Note that R’s equilibrium action profile does not maximize her ex ante utility given
S’s equilibrium communication strategy, as choosing a∗ne(ti, ti+1) for every i would yield a
strictly higher ex ante utility. Hence, Ellsbergian communication generates dynamically
inconsistent behavior by R. Expression (8) is also R’s expected payoff if S uses a standard
partitional strategy {ti}N−1

i=1 and R can commit to respond to mi with a∗e(ti, ti+1, ci), i =
0, ..., N − 1. Finally, note that (8) also corresponds to the expected interim payoff of R,
given the arguments appearing above Lemma 2. We simply speak of R’s expected payoff in
what follows. We now state our main result.

Proposition 1. Given b and N ≥ 2, if the standard equilibrium E(b,N) exists, there is an

ε > 0 s.t. ∀ε ≤ ε, there exists an Ellsbergian equilibrium Ẽ summarized by
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
which satisfies:
a) ti = ti(b− ε,N), i = 1, ..., N − 1.
b) a∗e(ti, ti+1, ci) = a∗ne(ti, ti+1) + ε, i = 0, ..., N − 1.

c) S ′s expected payoff in Ẽ equals πS(E(b−ε,N)), i.e. is the same as the (strictly larger)
expected payoff obtained in E (b− ε,N) by a sender with bias b− ε.
d) R′s expected payoff in Ẽ is strictly larger than her expected payoff in E (b,N) .

Proof: See Appendix.
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The result states that if there exists an informative standard equilibrium, then there
exists an Ellsbergian equilibrium that Pareto-dominates it. Ellsbergian randomization has
two effects. The first (and direct) effect is to distort upwards R’s response to given intervals,
making her behave as if her preferences were closer to S ′s than they actually are. The second
(and indirect) effect is to generate new equilibria in which more information is transmitted.
S benefits from both of these effects, this being an instance of Theorem 2 (part ii)) in Chen
and Gordon (2015) which states that S prefers to face a receiver with more aligned interests.
The direct effect hurts R as her response to any given standard interval becomes ex ante
suboptimal. The indirect effect is beneficial to R and echoes Theorem 3 (part ii)) in Chen
and Gordon (2015), which states that R prefers to face the largest equilibrium partition
corresponding to a different R with more aligned interests than herself. An Envelope The-
orem argument ensures that the trade-off between the two effects is resolved positively for
ε low enough (i.e. if ambiguity is suffi ciently small), the direct negative effect being only
second-order.
Conceptually, our result is reminiscent of insights on delegation appearing in Chen and

Gordon (2015) and in Dessein (2002). In the former, R prefers to delegate decision making to
another receiver who has the same preferences but a more optimistic belief than herself. The
indirect informational gains outweigh the direct cost of delegating to an intermediary whose
prior is different. In Dessein (2002), R may prefer to delegate the decision to a third party
with preferences in between hers and S’s. One way to interpret Proposition 1 (w.r.t. R’s
welfare) is that an ambiguity neutral R, on which the Ellsergian randomization introduced
in this paper has no effect, prefers to delegate to an ambiguity-averse receiver.
We now add three more specific results concerning respectively 1) the existence of equi-

libria with equally-sized intervals, 2) the fact that Ellsbergian randomization can generate
the possibility of informative communication and 3) the existence of so-called ambiguous
babbling equilibria.
Consider the following Ellsbergian communication strategy. Set {ti}N−1

i=1 so as to create
N equally sized standard intervals and set ci ∈ (ti, ti+1] such that a∗e(ti, ti+1, ci) = ti+ti+1

2
+ b

(assuming that this is feasible). For each (ti, ti+1], R thus picks S’s optimal action conditional
on ω ∈ (ti, ti+1]. If such a strategy profile constitutes an equilibrium, we call it an equal
intervals equilibrium of size N . The appeal of such an equilibrium is that it implements S’s
optimal decision rule given a restriction to (at most) N different actions being taken with
positive probability.
Following Sobel (2013), we say that a given Ellsbergian equilibrium features informative

communication if messages affect beliefs, i.e. if it is not true that for each ρ ∈ [0, 1] , p(. |m, ρ)
is constant across equilibrium messages. Denote 〈x〉 as the largest integer smaller than x.

Proposition 2. 1. For all b ≤ 1
12
the largest equal intervals equilibrium has size N̂(b) ≡

〈
1
6b

〉
and there exists an equal intervals equilibrium of every size N ∈

{
2, ..., N̂(b)

}
. If b > 1

12
,

there exists no informative equal intervals equilibrium. 2. For all b ≤ 1
18
, larger equal

intervals equilibria Pareto-dominate smaller ones. 3. For all b ≤ 1
18
, the largest equal

intervals equilibrium Pareto-dominates the largest standard equilibrium.
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Proof: See Appendix.
Unlike in Proposition 1, the positive welfare result for R stated in Point 2 does not rely

on an Envelope Theorem argument. In the considered equilibrium construction, the shift in
R’s response to information away from the ex ante optimal response is potentially large, so
that the direct negative effect of biasing R’s actions is not a priori guaranteed to be second
order as compared to the indirect and positive (informational) effect achieved. The result
shows that for this class of equilibria, as long as b ≤ 1

18
, this latter effect dominates.

Next, we show that Ellsbergian equilibria can help overcome babbling in a way that is
beneficial to one or both parties. Recall that for b > 1

4
, no informative standard equilibrium

exists.

Remark 1. 1. For all b ∈
(

1
4
, 1

3

)
, there exists an informative Ellsbergian partitional equilib-

rium in which S ′s expected payoff is strictly larger than in the standard babbling equilibrium.
2. For all b < (1+

√
6)

12
' 0.28, there exists an informative Ellsbergian partitional equilib-

rium in which both S and R′s expected payoff is strictly larger than in the standard babbling
equilibrium.

Proof: See Appendix.
We conclude our main analysis with a remark on the role of communication in our setup.

Following Sobel (2013), we define the notions of influential and payoff-relevant communica-
tion. Communication is influential if it affects actions, i.e. if δ(. |m) is not constant across
equilibrium messages. Communication is payoff-relevant if at least one agent’s expected pay-
off differs from that implied by R’s ex ante payoff maximizing action. Sobel (2013) writes
for the standard case: "In order for communication to be payoff-relevant for R it must be
both informative and influential." and "Relative to babbling, payoff-relevant communication
must increase R’s expected utility but may make S worse off.". We now show that both of
these properties break down once allowing for Ellsbergian strategies. Equilibrium commu-
nication can be payoff-relevant without being either informative or influential and it can be
payoff-relevant while making S better-off and R worse-off.

Remark 2. There exists an equilibrium featuring non-informative, non-influential and payoff-
relevant communication, in which S (R) obtains an expected payoff that is strictly larger
(smaller) than in the standard babbling equilibrium.

Proof: By Lemma 1, there exists ε > 0 s.t. for any ε ≤ ε, one can find a c ∈ [0, 1]
yielding a∗e(0, 1, c) = a∗ne(0, 1) + ε. Also, given b > 0, for any ε ≤ b it holds true that∫ 1

0

US (a∗ne(0, 1) + ε, ω, b) dω >

∫ 1

0

US (a∗ne(0, 1), ω, b) dω.

As to R, note that she necessarily loses in ex ante terms whenever a∗e(0, 1, c) shifts away
from a∗ne(0, 1). �
We call the constructed equilibrium an Ellsbergian babbling equilibrium. The different

equilibrium messages do not generate different sets of posteriors. Communication is thus
10



non-informative, implying that it is non-influential. It however generates a set of posteriors
leading R to pick a∗e(0, 1, c) 6= a∗ne(0, 1). R loses ex ante because a∗e(0, 1, c) > a∗ne(0, 1).
Conversely, S gains ex ante as long as a∗e(0, 1, c) is not too high. The equilibrium can be
refined away if we make listening optional for R, i.e. add a participation constraint requiring
that listening increases R’s ex ante payoff.4 Our main Proposition concerns equilibria that
satisfy such a constraint.

4. Generalizations and robustness

As shown in a working paper version of this paper (Kellner and Le Quement, 2017a),
our results extend beyond the uniform-quadratic specification to environments satisfying
Condition M (introduced in CS) and an added condition.
A key issue is to which extent Ellsbergian randomization can shift R’s actions upwards

if the urn available to S is not fully ambiguous but instead characterized by ρ ∈ [ρ, ρ] with
0 < ρ < ρ < 1. We provide a partial positive answer. Assuming that S uses the Ellsbergian

strategy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
, we identify suffi cient conditions on ρ, ρ such that for every

i ∈ {0, ..., N−1}, R’s best response to mA
i and m

B
i is still given by a

∗
e(ti, ti+1, ci) = ti+ti+1+ci

3
.

In what follows, let a∗[ρ,ρ](ti, ti+1, ci,m
j
i ) denote the Max-Min action of R conditional on m

j
i ,

j ∈ {A,B} , given an urn characterized by ρ ∈ [ρ, ρ] and assuming that S uses the Ellsbergian

strategy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
.

Remark 3. Let ρ < 1/2 < ρ and let γ
(
ρ, ρ
)
≡ minρ∈{ρ,1−ρ}

√
(1−3(1−ρ)ρ)−1/2

1−2ρ
, so that

γ
(
ρ, ρ
)
∈
(
0, 1

2

)
. Assume that S uses the Ellsbergian strategy

(
{ti}N−1

i=1 , {ci}N−1
i=0

)
. For any

i ∈ {0, ..., N − 1}, if

(ti + ti+1)/2 ≤ ci ≤ (ti + ti+1)/2 + γ
(
ρ, ρ
)

(ti+1 − ti),

then it holds true that

a∗[ρ,ρ](ti, ti+1, ci,m
A
i ) = a∗[ρ,ρ](ti, ti+1, ci,m

B
i ) =

ti + ti+1 + ci
3

.

Proof: See Appendix.
Figure 1 illustrates the result. Suppose that ρ = 1

4
and ρ = 3

4
as in the dotted curves,

meaning that the continuous curves corresponding to ρ ∈ {0, 1} should be ignored. The
Max-Min action after mA

i (and m
B
i ) is the same as in the case of ρ = 0 and ρ = 1. It is

given by the intersection of the ρ = 1
4
and ρ = 3

4
curves. Note that if the set of probabilities

shrinks further, R’s response no longer fully hedges against ambiguity.

4The argument relies on the fact that the decision maker is sophisticated in the sense that she anticipates
her future preference reversal. See Siniscalchi (2011).
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Finally, we would expect our main result to survive under alternative decision rules such
as the α-Max-Min or the smooth ambiguity model. The key is that these would not entirely
neutralize Ellsbergian randomization’s ability to induce a shift in R’s actions away from the
standard best responses.5

5. Appendix

5.1. Proof of Lemma 1
Step 1We show in this step that it is without loss of generality to assume that the Max-

Min action of R is a pure action. Consider any (non-degenerate) mixed action ã of R given by
a distribution g̃ over R. Denote by a (ã) the pure action satisfying a (ã) =

∫
R ag̃(a)da. Recall

that the payoff function UR is concave. It follows by Jensen’s inequality that the expected
payoff of ã is weakly smaller than that of a (ã) given any state ω, i.e.

∫
R U

R(a, ω)g̃(a)da ≤
UR(a (ã) , ω) ∀ω. Hence, for any distribution of the state with pdf f̂ , it holds true that∫ 1

0

(∫
R
UR(a, ω)g̃(a)da

)
f̂(ω)dω ≤

∫ 1

0

UR(a (ã) , ω)f̂(ω)dω.

It follows that

min
f̂

∫ 1

0

(∫
R
UR(a, ω)g̃(a)da

)
f̂(ω)dω ≤ min

f̂

∫ 1

0

UR(a (ã) , ω)f̂(ω)dω.

We may conclude that for any mixed action (identified by g̃(a)) there is a pure action
that yields a weakly higher conditional Max-Min expected utility. Focusing on pure actions
is thus without loss of generality.
Step 2 This proves Point a). Let E

[
UR(a, ω)|mA

i , ρ
]
denote the expected utility implied

by action a conditional on message mA
i and ρ, assuming that S uses

(
{tr}N−1

r=1 , {cr}N−1
r=0

)
.

Observe that

E
[
UR(a, ω)|mA

i , ρ
]

=
Pr(θ1|mA

i , ρ)E
[
UR(a, ω)|ω ∈ (ti, ci)

]
+

(1− Pr(θ1|mA
i , ρ))E

[
UR(a, ω)|ω ∈ [ci, ti+1]

] ,
where Pr(θ1|mA

i , ρ) = ρ(ci−ti)
ρ(ci−ti)+(1−ρ)(ti+1−ci) . Hence E

[
UR(a, ω)|mA

i , ρ
]
is strictly increas-

ing in ρ if E
[
UR(a, ω)|ω ∈ (ti, ci)

]
> E

[
UR(a, ω)|ω ∈ [ci, ti+1]

]
. One easily computes that

the latter inequality holds true if a < ti+ti+1+ci
3

. Instead, E
[
UR(a, ω)|mA

i , ρ
]
is strictly

decreasing in ρ if a > ti+ti+1+ci
3

. Finally, it is constant in ρ if E
[
UR(a, ω)|ω ∈ (ti, ci)

]
=

E
[
UR(a, ω)|ω ∈ [ci, ti+1]

]
, i.e. if a = ti+ti+1+ci

3
. Thus if a < ti+ti+1+ci

3
, then

min
ρ
E
[
UR(a, ω)|mA

i , ρ
]

= E
[
UR(a, ω)|mA

i , 0
]

= E
[
UR(a, ω)|ω ∈ [ci, ti+1]

]
,

5Since the smooth ambiguity model is a second-order model of ambiguity (see Lang (2017)), R’s best
response would however not entirely hedge her against ambiguity. This would raise new issues w.r.t. the
evaluation of R’s equilibrium welfare.
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while if a > ti+ti+1+ci
3

, then

min
ρ
E
[
UR(a, ω)|mA

i , ρ
]

= E
[
UR(a, ω)|mA

i , 1
]

= E
[
UR(a, ω)|ω ∈ (ti, ci)

]
.

Note furthermore that E
[
UR(a, ω)|ω ∈ (ti, ci)

]
is convex with a maximum at a = ti+ci

2
<

ti+ti+1+ci
3

. Hence E
[
UR(a, ω)|ω ∈ (ti, ci)

]
is decreasing if a > ti+ti+1+ci

3
. By a similar argu-

ment, E
[
UR(a, ω)|ω ∈ [ci, ti+1]

]
is increasing if a < ti+ti+1+ci

3
. Thus, minρE

[
UR(a, ω)|mA

i , ρ
]

is maximized at a∗ = ti+ti+1+ci
3

, so that it holds true that E
[
UR(a∗, ω)|ω ∈ (ti, ci)

]
=

E
[
UR(a∗, ω)|ω ∈ [ci, ti+1]

]
.

Step 3 This proves that the best response to respectively mA
i and m

B
i is identical. Note

thatE
[
UR(a, ω)|mA

i , ρ
]

= E[UR(a, ω)|mB
i , 1−ρ] and thus for all a,minρ E

[
UR(a, ω)|mB

i , ρ
]

=
minρ E

[
UR(a, ω)|mA

i , ρ
]
. Hence, the objective function maximized by R, and thus the im-

plied optimal action, is the same after mA
i and m

B
i . �

5.2. Proof of Proposition 1

Outline Step 1 defines ε. Step 2 introduces an Ellsbergian communication strategy
satisfying a) and ensuring that R’s best response satisfies b). Step 3 shows that S’s strategy
is indeed an equilibrium strategy. Steps 4 and 5 respectively prove c) and d).
Step 1 Assume that E(b,N) exists. As stated in CS, ti(b,N) = 1

N
− 2bi(N − i)

and ti(b,N) − ti−1(b,N) = 1
N

+ 2b(2i − N − 1). Hence, for any b,N, it is true that
mini∈{0,...,N−1}{ti+1(b,N) − ti(b,N)} = t1(b,N) − t0(b,N) = 1

N
− 2b(N − 1) and thus

mini∈{0,...,N−1}{ti+1(b,N)−ti(b,N)} is strictly decreasing in b. Let ε = min
{

1
6N
− 1

3
b(N − 1), bN

2−1
N2+2

}
,

which implies ε < b.

Step 2 Consider the Ellsbergian communication strategy
(
{ti(b− ε,N)}N−1

i=1 , {ci}N−1
i=0

)
,

where ci = ti(b−ε,N)+ti+1(b−ε,N)
2

+ 3ε for all i ∈ {0, ..., N − 1} . Consider any ε ≤ ε. Clearly,
ci > ti(b− ε,N). Since ε ≤ mini∈{0,...,N−1}{ti+1(b,N)− ti(b,N)}/6 < mini∈{0,...,N−1}{ti+1(b−
ε,N) − ti(b − ε,N)}/6, it follows that 3ε < (ti+1(b− ε,N)− ti(b− ε,N)) /2 for all i ∈
{0, ..., N−1}. Hence ci < ti+1(b−ε,N), so that all ci satisfy ci ∈ (ti(b−ε,N), ti+1(b−ε,N)].
Furthermore, we have a∗e(ti(b− ε,N), ti+1(b− ε,N), ci) = ti(b−ε,N)+ti+1(b−ε,N)

2
+ ε = a∗ne(ti(b−

ε,N), ti+1(b− ε,N)) + ε.
Step 3 Note that US (a, ω, b− ε) = −(ω + (b − ε) − a)2 = −(ω + b − (a + ε))2 =

US (a+ ε, ω, b). Recall that given a sender with bias b − ε, a necessary condition for the
existence of the non-Ellsbergian equilibrium E (b− ε,N) is:

US (a∗ne(ti−1(b− ε,N), ti(b− ε,N)), ti(b− ε,N), b− ε)
= US (a∗ne(ti(b− ε,N), ti+1(b− ε,N)), ti(b− ε,N), b− ε) , ∀i ∈ {1, ..., N − 1} .

The above set of equalities, combined with Point b), implies that

US (a∗e(ti−1(b− ε,N), ti(b− ε,N), ci−1), ti(b− ε,N), b)

= US (a∗e(ti(b− ε,N), ti+1(b− ε,N), ci), ti(b− ε,N), b) ,∀i ∈ {1, ..., N − 1} .
13



By Lemma 2, it follows that for ε ≤ ε, an equilibrium featuring the Ellsbergian comm-
munication strategy

(
{ti(b− ε)}N−1

i=1 , {ci}N−1
i=0

)
exists.

Step 4 The expected payoff of S in Ẽ is given by

−
N−1∑
i=0

∫ ti+1(b−ε,N)

ti(b−ε,N)

(
(ω + b)− ti(b− ε,N) + ti+1(b− ε,N) + ci

3

)2

dω

= −
N−1∑
i=0

∫ ti+1(b−ε,N)

ti(b−ε,N)

(
ω + (b− ε)− ti(b− ε,N) + ti+1(b− ε,N)

2

)2

dω

= πS(E(b− ε,N)) = − 1

12N2
− (b− ε)2(N2 + 2)

3
> πS(E(b,N)),

where the inequality follows since ε ≤ ε < b.
Step 5 The expected payoff of R in Ẽ is given by

−
N−1∑
i=0

∫ ti+1(b−ε,N)

ti(b−ε,N)

(
ω − ti(b− ε,N) + ti+1(b− ε,N) + ci

3

)2

dω

= −
N−1∑
i=0

∫ ti+1(b−ε,N)

ti(b−ε,N)

(
ω − ti(b− ε,N) + ti+1(b− ε,N)

2
− ε
)2

dω

= − 1

12N2
− (b− ε)2(N2 − 1)

3
− ε2.

The above expected payoff is higher than πR(E(b,N)) = − 1
12N2 − b2(N2−1)

3
if (and only

if) ε < 2bN
2−1

N2+2
, which is true since we assumed ε ≤ ε ≤ bN

2−1
N2+2

. �

5.3. Proof of Proposition 2
Step 1 This proves Point 1). For i ∈ {0, ..., N − 1}, let ti = i

N
and let ci be such that

ti + ti+1 + ci
3

=
ti + ti+1

2
+ b. (9)

For any i ∈ {0, ..., N − 1} , condition (9) is feasible iff
ti + ti+1

2
+ b ≤ ti + 2ti+1

3
,

which is equivalent to b ≤ ti+1−ti
6

, which in turn simplifies to b ≤ 1
6N
. Assuming b ≤ 1

6N
,

the constructed strategy is an equilibrium iff for any i ∈ {1, ..., N − 1} , we have

−
(
ti−1 + ti + ci−1

3
− ti − b

)2

= −
(
ti + ti+1 + ci

3
− ti − b

)2

.

The above, using (9) and ti = i
N
, simplifies to

(
1

2N

)2
=
(
− 1

2N

)2
, which is always true. The

condition 6Nb ≤ 1 means that for given b, there exists an equal intervals equilibrium of size
N (denoted Ê(b,N)) if and only if N ≤ N̂(b) =

〈
1
6b

〉
.
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Step 2 This proves Point 2). Denote by πS(Ê(b,N)) the expected payoff of S in Ê(b,N)

and denote by πR(Ê(b,N)) the expected payoff of R in Ê(b,N).

πR(Ê(b,N)) = −
N∑
i=1

∫ i
N

i−1
N

(
ω −

( i−1
N

+ i
N

2
+ b

))2

dω

= −
N∑
i=1

(
− 1

12

(
i− 1

N
− i

N

)3

−
(
i− 1

N
− i

N

)
b2

)
= −b2 − 1

12N2
.

It can similarly be shown that πS(Ê(b,N)) = − 1
12N2 . Both πS(Ê(b,N)) and πR(Ê(b,N))

are increasing in N . The condition b ≤ 1
18
guarantees that Ê(b, 3) exists.

Step 3 This proves Point 3). For b ≤ 1
18
, N̂(b) ≥ N(b) ≥ 3. It is immediate that

πS(Ê(b,N ′)) > πS(E(b,N)) given N ′ ≥ N. On the other hand, πR(Ê(b,N))− πR(E(b,N))
equals

−b2 − 1

12N2
−
(
− 1

12N2
− b2(N2 − 1)

3

)
=

1

3
b2
(
N2 − 4

)
,

which is strictly positive for any N > 2. Thus, πR(Ê(b,N(b))) > πR(E(b,N(b))), for any
b ≤ 1

18
. In turn, Point 2) implies πR(Ê(b, N̂(b))) > πR(Ê(b,N(b))). �

5.4. Proof of Remark 1

Let E(b, 1) be the standard babbling equilibrium. We consider an Ellsbergian partitional
equilibrium Ẽ(b, 2) featuring a two-intervals partition. We consider the Ellsbergian strategy
featuring t1 =

(
2
3
− 2

3
ε− 2b

)
∈ (0, 1) , c0 = t1 − ε and c1 = 1 − ε. It must hold true that

a∗e(0, t1, c0) = t1+t1−ε
3

and a∗e(t1, 1, c1) = t1+1+1−ε
3

. By Lemma 2, this strategy is an equilibrium
strategy if t1 satisfies

t1 + 1 + 1− ε
3

− t1 − b = t1 + b− t1 + t1 − ε
3

,

which is true for t1 = 2
3
− 2

3
ε− 2b.

Denote by πS(Ẽ(b, 2)) the expected payoff of S in Ẽ(b, 2) and denote by πR(Ẽ(b, 2)) the

expected payoff of R in Ẽ(b, 2). πS
(
Ẽ(b, 2)

)
is given by:

−
∫ t1

0

(
(ω + b)−

(
t1 + t1 − ε

3

))2

dω −
∫ 1

t1

(
(ω + b)−

(
t1 + 1 + 1− ε

3

))2

dω

=
8

3
b3 +

8

3
b2ε− 25

9
b2 +

8

9
bε2 − 50

27
bε+

11

27
b+

8

81
ε3 − 25

81
ε2 +

11

81
ε− 1

27
.

For any b ∈
[

1
4
, 1

3

)
, for ε small enough πS

(
Ẽ(b, 2)

)
is thus strictly larger than πS(E(b, 1)) =

−b2 − 1
12
.
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On the other hand, πR
(
Ẽ(b, 2)

)
is given by

−
∫ t1

0

(
ω −

(
t1 + t1 − ε

3

))2

dω −
∫ 1

t1

(
ω −

(
t1 + 1 + 1− ε

3

))2

dω

=
8

9
b2ε− 4

3
b2 +

16

27
bε2 − 28

27
bε+

2

9
b+

8

81
ε3 − 25

81
ε2 +

11

81
ε− 1

27
.

For any b < 1
12

(1 +
√

6) ' 0.28, for ε small enough πR
(
Ẽ(b, 2)

)
is thus strictly larger

than πR(E(b, 1)) = − 1
12
. �

5.5. Proof of Remark 3
Outline We state and prove a sequence of results which together prove Remark 3.
Step 1 minρE

[
UR(a, ω)|mA

i , ρ
]
equals E

[
UR(a, ω)|mA

i , ρ
]
if a < ti+ti+1+ci

3
while it

instead equals E
[
UR(a, ω)|mA

i , ρ
]
if a > ti+ti+1+ci

3
.

Proof: This was proved in Step 2 of the proof of Lemma 1.
Step 2 Let a∗ρ(ti, ti+1, ci,m

A
i ) be the maximizer of E

[
UR(a, ω)|mA

i , ρ
]
. Then a∗ρ is

decreasing in ρ.
Proof: The FOC ∂E

[
UR (a, ω) |mA

i , ρ
]
/∂a = 0 yields a∗ρ(ti, ti+1, ci,m

A
i ) =

c2i (1−2ρ)+t2i ρ−t2i+1(1−ρ)

2(ci(1−2ρ)+tiρ−ti+1(1−ρ))
.

Note that ∂a∗ρ(ti, ti+1, ci,m
A
i )/∂ρ = − (ti+1−ti)(ci−ti)(ti+1−ci)

2(ci(1−2ρ)+tiρ−ti+1(1−ρ))2
< 0.

Step 3 Given ci > (ti + ti+1)/2, it holds true that a∗[ρ,ρ](ti, ti+1, ci,m
A
i ) = ti+ci+ti+1

3
if

a∗ρ(ti, ti+1, ci,m
A
i ) ≥ ti+ci+ti+1

3
.

Proof: Recall first that a∗1/2(ti, ti+1, ci,m
A
i ) = ti+ti+1

2
. By Step 2, a∗ρ(ti, ti+1, ci,m

A
i ) <

ti+ti+1
2

. Since ti+ci+ti+1
3

> ti+ti+1
2

, a∗ρ(ti, ti+1, ci,m
A
i ) < ti+ci+ti+1

3
. Concavity ofE

[
UR(a, ω)|mA

i , ρ
]

in a implies that E
[
UR(a, ω)|mA

i , ρ
]
is decreasing in a if a > ti+ci+ti+1

3
. Concavity of

E
[
UR(a, ω)|mA

i , ρ
]
in a also implies that if a∗ρ(ti, ti+1, ci,m

A
i ) ≥ ti+ci+ti+1

3
, thenE

[
UR(a, ω)|mA

i , ρ
]
is

increasing in a for a < ti+ci+ti+1
3

.Recalling Step 1, we may conclude that if a∗ρ(ti, ti+1, ci,m
A
i ) ≥

ti+ci+ti+1
3

, then a∗[ρ,ρ](ti, ti+1, ci,m
A
i ) = ti+ci+ti+1

3
.

Step 4 Let γ̂(ρ) =

√
(1−3(1−ρ)ρ)−1/2

1−2ρ
and let ρ ∈ (0, 1

2
). Then: a) a∗ρ(ti, ti+1, ci,m

A
i ) =

ti+ci+ti+1
3

iff ci = (ti + ti+1)/2 + (ti+1 − ti)γ̂(ρ). b) a∗ρ(ti, ti+1, ci,m
A
i ) > ti+ci+ti+1

3
if ci ∈[ ti+ti+1

2
, (ti + ti+1)/2 + (ti+1 − ti)γ̂(ρ)

)
.

Proof: Concerning Part a), straightforward algebra shows that ci = (ti+ ti+1)/2+(ti+1−
ti)γ̂(ρ) is the only value of ci in

(
ti+t+1

2
, ti+1

]
that satisfies the equality a∗ρ(ti, ti+1, ci,m

A
i ) =

ti+ci+ti+1
3

. Part b) is proved as follows. First, note that a∗ρ(ti, ti+1, (ti + ti+1)/2,mA
i ) =

(ti + ti+1)/2 + (ti+1 − ti)(1− 2ρ)/4 > (ti + ti+1 + (ti + ti+1)/2)/3. Combining this with Part
a) and the fact that a∗ρ(ti, ti+1, ci,m

A
i ) − ti+ci+ti+1

3
is continuous in ci on

[
ti+t+1

2
, ti+1

]
, the

statement of Part b) follows.
Step 5 Since mB

i only reverses the role of the two ball colors θ1 and θ2, we may conclude
that a∗[ρ,ρ](ti, ti+1, ci,m

B
i ) = ti+ci+ti+1

3
if (ti + ti+1)/2 ≤ ci ≤ (ti + ti+1)/2 + (ti+1− ti)γ̂(1− ρ).

Step 6 Remark 3 follows from steps 3-5 if one sets γ = minρ∈{ρ,1−ρ} γ̂(ρ). �
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