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Abstract

We synthesise the existing theory of graph sampling. We propose a formal def-

inition of sampling in finite graphs, and provide a classification of potential graph

parameters. We develop a general approach of Horvitz-Thompson estimation to T -

stage snowball sampling, and present various reformulations of some common network

sampling methods in the literature in terms of the outlined graph sampling theory.
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1 Introduction

Many technological, social and biological phenomena exhibit a network structure that may

be the interest of study; see e.g. Newman (2010). As an example of technological networks,

consider the Internet as consisting of routers that are connected to each other via cables.

There are two types of objects, namely routers and cables. A router must be connected

to a cable to be included in the Internet, and a cable must have two routers at both ends.

As another example, consider the social network of kinships. Again, there are two types

of objects, namely persons and kinships. Each person must have two or more kinships,

and each kinship must represent a connection between two persons. However, while it is

obvious that any two routers must be connected by cables to each other either directly or

via other routers in the Internet, it is not sure that any two persons can be connected to

each other in the network of kinships. The difference can be articulated in terms of some

appropriate characterisation of their respective network structures.

Following Frank (1980, 2011), we refer to network as a valued graph, and graph as the

formal structure of a network. The structure of a network, i.e. a graph, is defined as a

collection of nodes and edges (between the nodes); measures may be attached to the nodes

or the edges or both to form a valued graph, i.e. a network. For a statistical approach to

networks one may choose to model the entire population network as a random realisation, or
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to exploit the variation over possible sample networks taken from a given fixed population

network. Graph sampling theory deals with the structure of a network under the latter

perspective. In comparison, finite-population sampling (Neyman, 1934; Cochran, 1977)

can mostly be envisaged as sampling in a ‘graph’ with no edges at all. We shall refer to

such a setting as list sampling.

Ove Frank has undoubtedly made the most contributions to the existing graph sampling

theory. See e.g. Frank (1977c, 1979, 1980b, 1981, 2011) for his own summary. However, the

numerous works of Frank scatter over several decades, and are not easily appreciable as a

whole. For instance, Frank derives results for different samples of nodes (Frank, 1971; 1977c;

1994), dyads (Frank, 1971; 1977a; 1977b; 1979) or triads (Frank, 1971; 1979). But he never

proposes a formal definition of the “sample graph” which unifies the different samples.

Or, Frank studies various characteristics of a graph, such as order (Frank, 1971; 1977c;

1994), size (Frank, 1971; 1977a; 1977b; 1979), degree distribution (Frank, 1971; 1980a),

connectedness (Frank, 1971; 1978), etc. But he never provides a structure of possible graph

parameters which allows one to classify and contrast the different interests of study. Finally,

Frank does not appear to have articulated the role of graph sampling theory in relation to

some common “network sampling methods” (e.g. Birnbaum and Sirken, 1965; Thompson,

1990; Lavalleè, 2007), which “are not explicitly stated as graph problems but which can be

given such formulations” (Frank, 1977c).

The aim of this paper is to synthesise and extend the existing graph sampling theory,

many elements of which are only implicit in Frank’s works. In particular, we propose a

definition of sample graph taken from a given population graph, together with the relevant

observation procedures that enable sampling in a graph (Section 2). In Section 3, we

provide a structure of graph totals and graph parameters, which reflects the extended

scope of investigation that can be difficult or impossible using only a list representation.

Next, we develop a general approach to HT-estimation under arbitrary T -stage snowball

sampling (Section 4). In Section 5, we present various graph sampling reformulations of

multiplicity sampling (Birnbaum and Sirken, 1965), indirect sampling (Lavalleè, 2007) and

adaptive cluster sampling (Thompson, 1990), all of which are referred to as unconventional

sampling methods in contrast to the more familiar finite-population sampling methods, such

as stratified multi-stage sampling. Finally, some concluding remarks are given in Section

6, together with a couple of topics of current research.

2 Sampling on a graph

2.1 Terms and notations

A graph G = (U,A) consists of a set of nodes U and a set of edges A. Define |U | = N and

|A| = R as the order and size of G, respectively. Let Aij ⊂ A be the set of all edges from i

to j; let aij = |Aij| be its size. If aij > 1 for some i, j ∈ U , the graph is called a multigraph;
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it is a simple graph if aij = 0, 1. The edges in Ai+ =
⋃
j∈U Aij and A+i =

⋃
j∈U Aji

are called the outedges and inedges at i, respectively. Let ai+ = |Ai+| =
∑

j∈U aij and

a+i = |A+i| =
∑

j∈U aji. The node i is incident to each outedge or inedge at i. The number

of edges incident at a node i is called the degree of i, denoted by di = ai+ +a+i. Two nodes

i and j are adjacent if there exists at least one edge between them, i.e. aij + aji > 1. For

any edge in Aij, i is called its initial node and j its terminal node. Let αi be the successors

of i, which are the terminal nodes of outedges at i; let βi be the predecessors of i, which

are the initial nodes of inedges at i. For a simple graph, we have ai+ = |αi| and a+i = |βi|.
A graph is said to be directed (i.e. a digraph) if Ai+ 6= A+i; it is undirected if Ai+ = A+i,

in which case there is no distinction between outedge and inedge, so that di = ai+ = a+i,

and αi = βi. Finally, an edge aii connecting the same node i is called a loop, which can

sometimes be a useful means of representation. Whether or not loops are included in the

definitions of the terms and notations above is purely a matter of convention.

Remark Adjacency refers to relationship between nodes, as objects of the same kind;

incidence refers to relationship between nodes and edges, i.e. objects of different kinds.

Remark Let the N×N adjacency matrix A have elements aij = |Aij|. It is defined to be

symmetric for undirected graphs. Put the diagonal degree matrix D = diag(A1N×1). The

Laplacian matrix L = D−A sums to 0 by row and column, which is of central interest in

Spectral Graph Theory (e.g. Chung, 1997).

2.2 Definition of sample graph

Denote by s1 an initial sample of nodes, for s1 ⊆ U . Under a probability design, let πi

and πij (or π̄i and π̄ij) be the probabilities of inclusion (or exclusion) of respectively a node

and a pair of nodes in s1. (The exclusion probability of i is the probability of i 6∈ s1, and

the exclusion probability of a pair (i, j) is the probability that neither i nor j is in s1.)

A defining feature of sampling on graphs is that one makes use of the edges to select the

sample graph, denoted by Gs. Given s1, the relevant edges are either in α(s1) =
⋃
i∈s1 αi or

β(s1) =
⋃
i∈s1 βi, where α(s1) = β(s1) for undirected graphs. An observation procedure of

the edges needs to be specified, and the observed edges can be given in terms of a reference

set of node pairs, denoted by s2 where s2 ⊆ U × U , under the convention that the set of

edges Aij are observed whenever (ij) ∈ s2. Notice that generally speaking (ij) and (ji) are

considered as two distinct elements in U × U . Denote by π(ij) (or π̄(ij)) the corresponding

inclusion (or exclusion) probability of (ij) ∈ s2, and by π(ij)(kl) (or π̄(ij)(kl)) the inclusion (or

exclusion) probability of these two pairs in s2. Denote by As = A(s2) the edge set inherent

of s2, and Us = s1 ∪ Inc(As) the union of s1 and those nodes that are incident to As. The

sample graph is Gs =
(
Us, As

)
.

3



Example 1 Let U = {1, 2, 3}, and a12 = 1. Suppose s1 = {1}. Provided s2 = s1 × α(s1),

where α(s1) = {2} in this case, the sample graph Gs has As = A(s2) = A12 and Us = {1, 2}.
The same sample graph can equally be given by s′2 = s1 × U , since A(s′2) = A12 = A(s2).

Observation procedure Frank (1977c) considers several observation procedures, which

can be formalised as follows. First, given s1, a procedure is induced if Aij is observed iff

both i ∈ s1 and j ∈ s1, or incident reciprocal if Aij and Aji are both observed provided

either i ∈ s1 or j ∈ s1. Second, for digraphs, an incident non-reciprocal procedure is

forward if Aij is observed provided i ∈ s1, or backward if Aij is observed provided j ∈ s1.
For example, provided i ∈ s1 and j 6∈ s1 and aij > 0 and aji > 0, we would observe both

Aji and Aji given an incident reciprocal procedure; only Aij if it is incident forward; only

Aji if it is incident backward; neither Aij nor Aji given an induced procedure from s1.

Initial sampling of edges Sample graph initiated by a sample of edges can be defined

analogously. Bernoulli or Poisson sampling can be useful, because it is not required to know

all the edges in advance. Notice that when one is interested in the totals or other functions

of the edges of a graph, initial Bernoulli or Poisson sampling of edges is meaningful – see

e.g. Frank (1977c, Section 12), whereas initial simple random sampling (of edges) would

have been a trivial set-up, because one would need to know all the edges to start with.

2.3 Some graph sampling methods

We describe some sampling methods based on the aforementioned observation procedures.

Frank (1977c) elicited several sampling methods based on the aforementioned observation

procedures. We include several alternative specifications which are marked by †. By way

of introduction, the first- and second-order inclusion probabilities of (ij) in s2 are given

in terms of the relevant inclusion probabilities in s1, which facilitates Horvitz-Thompson

(HT) estimation of any totals defined on U × U . As will be illustrated, given s1 and the

observation procedure, the sample graph can be specified using different reference sets s2,

but the inclusion probabilities are more readily obtained for some choices of s2.

(i) s2 = s1 × s1 [Induced]: Both (ij) ∈ s2 and (ji) ∈ s2 iff i ∈ s1 and j ∈ s1. Then,

π(ij) = πij and π(ij)(kl) = πijkl.

(ii.1) s2 = s1 × sa, sa = α(s1) ∪ s1 [Incident forward]: (ij) ∈ s2 iff i ∈ s1 and j ∈ sa. Let

Bj = {j} ∪ βj, i.e. itself and its predecessors, then j ∈ sa iff Bj ∩ s1 6= ∅. Thus,

π̄(ij) = π̄i + π̄Bj
− π̄Bj∪{i}.
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Similarly, (ij), (kl) ∈ s2 iff i, k ∈ s1 and Bj ∩ s1 6= ∅ and Bl ∩ s1 6= ∅, so that

π̄(ij)(kl) = π̄ik + π̄Bj∪{k} + π̄Bl∪{i} + π̄Bj∪Bl

− π̄Bj∪{i,k} − π̄Bl∪{i,k} − π̄Bj∪Bl∪{i} − π̄Bj∪Bl∪{k} + π̄Bj∪Bl∪{i,k}.

(ii.2) s2 = s1×U [Incident forward]: (ij) ∈ s2 iff i ∈ s1. Then, π(ij) = πi and π(ij)(kl) = πik.

Remark The sample edge set A(s2) is the same in (ii.2) and (ii.1), because the observation

procedure is the same given s1. For the estimation of any total over A, the two reference

sets would yield the same HT-estimate: any (ij) ∈ s2 with aij = 0 does not contribute to

the estimate, regardless of its π(ij); whereas for any (ij) ∈ s2 with aij > 0, we have π(ij) = πi

given s2 in (ii.2), just as one would have obtained in (ii.1) since Bj = Bj ∪ {i} provided

aij > 0. But it appears easier to arrive at π(ij) and the HT-estimator in (ii.2) than (ii.1).

(ii.3)† s2 = sb×α(s1), sb = s1∩β
(
α(s1)

)
[Incident forward]: This is the smallest Cartesian

product that contains the same sample edge set as in (ii.1) and (ii.2).

(ii.4)† s2 =
⋃
i∈s1

i × αi, where i × αi = ∅ if αi = ∅ [Incident, forward]: Only (ij) with

aij > 0 is included s2. This is the smallest reference set for the same Gs in (ii.1) - (ii.4).

(iii) s2 = sa × sa, ss = α(s1) ∪ s1 [Induced from sa]: (ij) ∈ s2 even if i ∈ sa \ s1 and

j ∈ sa \ s1. Similarly to (ii.1), (ij) ∈ s2 iff Bi ∩ s1 6= ∅ and Bj ∩ s1 6= ∅, and so on. Then,

π̄(ij) = π̄Bi
+ π̄Bj

− π̄Bi∪Bj
,

π̄(ij)(kl) = π̄Bi∪Bk
+ π̄Bi∪Bl

+ π̄Bj∪Bk
+ π̄Bj∪Bl

− π̄Bi∪Bk∪Bl
− π̄Bj∪Bk∪Bl

− π̄Bi∪Bj∪Bk
− π̄Bi∪Bj∪Bl

+ π̄Bi∪Bj∪Bk∪Bl
.

Remark Observation of the edges between i ∈ sa \ s1 and j ∈ sa \ s1 may be demanding

in practice, even when the observation procedure is reciprocal. For example, let the node

be email account. Then, by surveying i ∈ s1 only, it is possible to observe all the email

accounts that have exchanges with i due to reciprocality. But one would have to survey

the accounts in αi \ s1 additionally, in order to satisfy the requirement of (iii).

(iv.1) s2 = s1 × U ∪ U × s1 [Incident reciprocal]: (ij) 6∈ s2 iff i 6∈ s1 and j 6∈ s1. Then,

π(ij) = 1− π̄ij and π(ij)(kl) = 1− π̄ij − π̄kl + π̄ijkl.

(iv.2)† s2 = s1 × sa ∪ sa × s1, sa = α(s1) ∪ s1 [Incident reciprocal]: We have sa × sa =

s2∪ (sa \s1)× (sa \s1), where the two sets on the right-hand side are disjoint. The inclusion

probabilities can thus be derived from those in (iii) and those of (sa\s1)×(sa\s1). However,
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the sample edge set A(s2) is the same as in (iv.1), and it is straightforward to derive the

HT-estimator of any total over A based on the reference set s2 specified in (iv.1).

(iv.3)† s2 =
( ⋃
i∈s1

i×αi
)
∪
( ⋃
i∈s1

βi× i
)

[Incident reciprocal]: This is the smallest reference

set of the sample edge set in (iv.1) - (iv.3).

Example 2 Figure 1 illustrates the four sampling methods (i) - (iv) described above, all

of which are based on the same initial sample s1 = {3, 6, 10}.

3 Graph parameter and HT-estimation

Frank (1980b) reviews some statistical problems based on population graphs. In a list

representation, the target population U is a collection of elements, which are associated

with certain values of interest. In a graph representation G = (U,A), the elements in U

can be the nodes that have relations to each other, which are presented by the edges in A.

It becomes feasible to investigate the interactions between the elements, their structural

positions, etc. which are difficult or unnatural using a list representation. The extended

scope of investigation is above all reflected in the formulation of the target parameter. In

this Section, we provide our own classification of the potential target parameters based on

a graph in terms of graph totals and graph parameters.

Graph total and graph parameter Let Mk be a subset of U , where |Mk| = k. Let Ck
be the set of all possible Mk’s, where |Ck| = N ![k!(N − k)!]−1. Let G(Mk) be the subgraph

induced by Mk. Let y
(
G(Mk)

)
, or simply y(Mk), be a function of integer or real value. The

corresponding k-th order graph total is given by

θ =
∑
Mk∈Ck

y(Mk). (1)

We refer to functions of graph totals as graph parameters.

Remark Network totals can as well be defined by (1), where y(·) can incorporate the

values associated with the nodes and edges of the induced subgraph G(Mk).

Motif A subset M ⊂ U with specific characteristics is said to be a motif, denoted by [M ].

For example, denote by [i : di = 3] a 1st-order motif, i.e. a node with degree 3. Or, denote

by [i, j : aij = aji = 1] the motif of a pair of nodes with mutual simple relationship, or by

[i, j : aij = aji = 0] the motif of a pair of non-adjacent nodes. A motif may or may not

have a specific order, giving rise to graph totals with or without given orders.
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Figure 1: Population graph (top) and four sample graphs (i) - (iv) based on s1 = {3, 6, 10}.
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3.1 Graph totals of a given order

3.1.1 First-order graph total: M1 = {i}

Each M1 corresponds to a node. In principle any first-order graph total can be dealt with

by a list sampling method that does not make use of the edges, against which one can

evaluate the efficiency of any graph sampling method. For the two parameters given below,

estimation of the order by snowball sampling is considered by Frank (1971, 1977c, 1994),

and estimation of the degree distribution is considered by Frank (1971, 1980a).

Order (of G) Let y(i) ≡ 1, for i ∈ U . Then, θ = |U | = N .

Number of degree-d nodes Let y(i) = δ(di = d) indicate whether or not di equals d,

for i ∈ U . Then, θ is the number of nodes with degree d.

3.1.2 Second-order graph total: M2 = {i, j}

An M2 of a pair of nodes is called a dyad, for M2 ⊂ U and |M2| = 2. Some dyad totals are

considered by Frank (1971, 1979).

Size (of G) Let y(M2) = aij + aji be the adjacency count between i and j in a digraph,

or y(M2) = aij for an undirected graph. Then, θ =
∑

M2∈C2 y(M2) = R is the size (of G).

Remark If there are loops, one can let y(M1) = aii for M1 = {i}, and θ′ =
∑

M1∈C1 y(M1).

Then, R = θ + θ′ is a graph parameter based on a 1st- and a 2nd-order graph totals.

Remark Let Nd be the no. degree-d nodes, which is a 1st-order graph total. Then,

2R =
∑
i∈U

di =
D∑
d=1

dNd, where D = max
i∈U

di.

This is an example where a higher-order graph total (R) can be ‘reduced’ to lower-order

graph parameters (Nd). Such reduction can potentially be helpful in practice, e.g. when it

is possible to observe the degree of a sample node without identifying its successors.

Number of adjacent pairs Let y(M2) = δ(aij + aji > 0) indicate whether i and j are

adjacent. Then, θ is the total number of adjacent pairs in G. Its ratio to |C2| provides a

graph parameter, i.e. an index of immediacy in the graph. Minimum immediacy is the case

when a graph consists of only isolated nodes, and maximum immediacy if the graph is a

clique, where every pair of distinct nodes are adjacent with each other.
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Number of mutual relationships Let y(M2) = δ(aijaji > 0) indicate whether i and j

have reciprocal edges between them, in which case their relationship is mutual. Then, θ is

the number of mutual relationships in the graph. Goodman (1961) studies the estimation

of the number of mutual relationships in a special digraph, where ai+ = 1 for all i ∈ U .

3.1.3 Third-order graph total: M3 = {i, j, h}

An M3 of three nodes is called a triad, for M3 ⊂ U and |M3| = 3. Some triad totals are

considered by Frank (1971, 1977a, 1977b, 1979).

Number of triads Let y(M3) = δ(aijajhaih > 0) indicate whether the three nodes form a

triangle in an undirected graph. Then, θ∗ by (1) is the total number of triangles. Triangles

on undirected graphs are intrinsically related to equivalence relationships: for a relationship

(represented by an edge) to be transitive, every pair of connected nodes must be adjacent;

hence, any three connected nodes must form a triangle. For a simple undirected graph,

transitivity is the case iff θ′ = 0, when θ′ is given by (1), where

y(M3) = aijajh(1− ahi) + aihajh(1− aij) + aijaih(1− ajh).

Provided this is not the case, one can e.g. still measure the extent of transitivity by

τ = θ∗/(θ∗ + θ′),

i.e. a graph parameter. Next, for digraphs and ordered (jih), let z(jih) = ajiaihahj be the

count of strongly connected triangles from j via i and h back to j. Let M̃3 contain all the

possible orderings of M3, i.e. (ijh), (ihj), (jih), (jhi), (hij) and (hji). Then, the number

of strongly connected triangles in a digraph is given by (1), where

y(M3) =
∑

(ijh)∈M̃3

z(ijh).

Remark For undirected simple graphs, Frank (1981) shows that there exists an explicit

relationship between the mean and variance of the degree distribution and the triads of the

graph. Let the numbers of triads of respective size 3, 2 and 1 be given by

θ3,3 =
∑
M3∈C3

aijajhaih,

θ3,2 =
∑
M3∈C3

aijaih(1− ajh) + aijajh(1− aih) + aihajh(1− aij),

θ3,1 =
∑
M3∈C3

aij(1− ajh)(1− aih) + aih(1− aij)(1− ajh) + ajh(1− aij)(1− aih).
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Let µ =
∑N

d=1 dNd/N = 2R/N and σ2 = Q/N − µ2, where Q =
∑N

d=1 d
2Nd. We have

R =
1

N − 2

(
θ3,1 + 2θ3,2 + 3θ3,3

)
, Q =

2

N − 1

(
θ3,1 +Nθ3,2 + 3(N − 1)θ3,3

)
.

3.2 Graph totals of unspecified order

A motif is sometimes defined in an order-free manner. Insofar as the corresponding total

can be given as a function of graph totals of specific orders, it can be considered a graph

parameter. Below are some examples that are related to the connectedness of a graph. The

number of connected components is considered by Frank (1971, 1978).

Number of connected components The subgraph induced from Mk is a connected

component of order k, provided there exists a path for any i 6= j ∈ Mk and aij = aji = 0

for any i ∈ Mk and j 6∈ Mk, in which case let y(Mk) = 1 but let y(Mk) = 0 otherwise.

Then, θk given by (1) is the number of connected components of order k. The number of

connected components (i.e. as a motif of unspecified order) is the graph parameter given

by θ =
∑N

k=1 θk. At one end, where A = ∅, i.e. there are no edges at all in the graph, we

have θ = N = θ1 and θk = 0 for k > 1. At the other end, where there exists a path between

any two nodes, we have θ = θN = 1 and θk = 0 for k < N .

Number of trees in a forest In a simple graph, a motif [Mk] is a tree if the number of

edges in G(Mk) is k − 1. As an example where θ can be reduced to a specific graph total,

suppose the undirected graph is a forest, where every connected component is a tree. We

have then θ = N −R, where R is the size of the graph, which is a 2nd-order parameter.

Number of cliques A clique is a connected component, where there exists an edge

between any two nodes of the component. It is a motif of unspecified order. The subgraph

induced by a clique is said to be complete. A clustered population can be represented by a

graph, where each cluster of population elements (i.e. nodes) form a clique, and two nodes

i and j are adjacent iff the two belong to the same cluster.

Index of demographic mobility Given the population of a region (U), let there be

an undirected edge between two persons i and j if their family trees intersect, say, within

the last century, i.e. they are relatives of each other within a ‘distance’ of 100 years.

Each connected component in this graph G is a clique. The ratio between the number of

connected components θ and N , where N is the maximum possible θ, provides an index of

demographic mobility that varies between 1/N and 1. Alternatively, an index can be given

by the ratio between the number of edges R and |C2|, which varies between 0 and 1, and is

a function of a 2nd-order graph total. This is an example where the target parameter can

be specified in terms of a lower-order graph total than higher-order totals.
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Remark In the context of estimating the number of connected components, Frank (1971)

discusses the situation where observation is obtained about whether a pair of sample nodes

are connected in the graph, without necessarily including the paths between them in the

sample graph. The observation feature is embedded in the definition of the graph here.

Geodesics in a graph Let an undirected graph G be connected, i.e. U = MN is a

connected component. The geodesic between nodes i and j is the shortest path between

them, denoted by [Mk], where Mk contains the nodes on the geodesic, including i and j.

A geodesic [Mk] is a motif of order k, whereas geodesic is generally a motif of unspecified

order. Let θ be the harmonic mean of the length of the geodesics in G, which is a closeness

centrality measure (Newman, 2010). For instance, it is at its minimum value 1 if G is

complete. Alternatively, let y(M2) = 1/(k − 1), provided [Mk] is the geodesic between i

and j, so that θ can equally be given as a 2nd-order graph parameter. Again, this is an

example where a lower-order graph parameter can be used as the target parameter instead

of alternatives involving higher-order graph totals, provided the required observation.

3.3 HT-estimation

A basic estimation approach in graph sampling is the HT-estimator of a graph total (1).

Provided the inclusion probability π(Mk) for Mk ∈ Ck, the HT-estimator is given by

θ̂ =
∑
Mk∈Ck

δ[Mk]y(Mk)/π(Mk), (2)

where δ[Mk] = 1 if [Mk] is observed and π(Mk) is its inclusion probability. The observation of

[Mk] means not only Mk ⊆ Us, but also it is possible to identify whether Mk is a particular

motif in order to compute y(Mk). The probability π(Mk) is defined with respect to a chosen

reference set s2 and the corresponding sample graph Gs. It follows that a motif [Mk] is

observed in Gs if Mk ⊆ Us and Mk ×Mk ⊆ s2. More detailed explanation of π(Mk) will be

given in Section 4. The example below illustrates the idea.

Example 3 Consider an undirected simple graph. Let 3-node star be the motif of interest,

and y(M3) = aijaih(1− ajh) + aijajh(1− aih) + aihajh(1− aij) the corresponding indicator.

Suppose incident observation and s2 = s1 × U . Consider M3 = {i, j, h} ⊂ Us. To be able

to identify whether it is the motif of interest, all the three pairs (ij), (ih) and (jh) need to

be in s2; accordingly, π(M3) = Pr
(
(ij) ∈ s2, (ih) ∈ s2, (jh) ∈ s2

)
. An example where this is

not the case is i ∈ s1 and j, h ∈ α(s1) \ s1, so that the observed part of this triad is a star,

but one cannot be sure if ajh = 0 in the population graph, because (jh) 6∈ s2.

Symmetric designs The inclusion probability π(Mk) depends on the sampling design

of initial s1. At various places, Frank consider simple random sampling (SRS) without

11



replacement, Bernoulli sampling and Poisson sampling for selecting the initial sample. In

particular, a sampling design is symmetric (Frank, 1977a) if the inclusion probability πMk
=

Pr(Mk ∈ s1) only depends on k but is a constant of Mk, for all 1 ≤ k ≤ N . SRS with

or without replacement and Bernoulli sampling are all symmetric designs. SRS without

replacement is the only symmetric design with fixed sample size of distinct elements.

Approximate approach The initial inclusion probability πMk
has a simpler expression

under Bernoulli sampling than under an SRS design. Provided negligible sampling fraction

of s1, many authors use Bernoulli sampling with probability p = |s1|/N to approximate any

symmetric designs. Similarly, initial unequal probability sampling may be approximated by

Poisson sampling with the same πi, for i ∈ U , provided negligible sampling fraction |s1|/N .

Finally, Monte Carlo simulation (Fattorini, 2006) may be used to approximate the relevant

πMk
under sampling without replacement.

4 T -stage snowball sampling

An incident observation procedure (Section 2.3) provides the means to enlarge a set of

sample nodes by their out-of-sample adjacent nodes. It yields a method of 1-stage snowball

sampling, which can be extended successively to yield the T -stage snowball sampling. Below

we assume that all the successors are included in the sample. But it is possible to take

only some of the successors at each stage (e.g. Snijders, 1992). In particular, taking one

successor each time yields a T -stage walk (e.g. Klovdahl, 1989). Two different observation

procedures will be considered, i.e. incident forward in digraphs and incident reciprocal

in directed or undirected graphs. We develop general formulae for inclusion probabilities

under T -stage snowball sampling. It is shown that additional observation features are

necessary for the HT-estimator based on T -stage snowball sampling, which will be referred

to as incident ancestral. Previously, Goodman (1961) has studied the estimation of mutual

relationships between i and j, where aijaji > 0 for i 6= j ∈ U , based on T -stage snowball

sampling in a special digraph with fixed ai+ ≡ 1; Frank (1977c) and Frank and Snijders

(1994) considered explicitly HT-estimation based on 1-stage snowball sampling.

Sample graph Gs = (Us, As) Let s1,0 be the initial sample of seeds, and α(s1,0) its

successors. Let U0 ⊆ U be the set of possible initial sample nodes. The additional nodes

s1,1 = α(s1,0) \ s1,0 are called the fist-wave snowball sample, which are the seeds of the

second-wave snowball sample, and so on. At the t-th stage, let s1,t = α(s1,t−1) \
( t−1⋃
h=0

s1,h
)

be the t-th stage seeds, for t = 1, 2, ..., T . If s1,t = ∅, set s1,t+1 = · · · = s1,T = ∅ and

terminate, otherwise move to stage t + 1. Let s1 =
T−1⋃
t=0

s1,t be the sample of seeds. This

may result in two different sample graphs.

12



I. Let s2 = s1×U provided incident forward observation in digraphs, such that the sample

graph Gs has edge set As =
⋃
i∈s1

⋃
j∈αi

Aij and node set Us = s1 ∪ α(s1).

II. Let s2 = s1×U ∪U × s1 provided incident reciprocal observation, digraphs or not, such

that Gs has edge set As =
⋃
i∈s1

⋃
j∈αi

(Aij ∪ Aji) and node set Us = s1 ∪ α(s1).

Remark One may disregard any loops in snowball sampling, because they do not affect

the propagation of the waves of nodes, but only cause complications to their definition.

4.1 Inclusion probabilities of nodes and edges in Gs

Below we develop the inclusion probabilities π(i) and π(i)(j) of nodes in Us, and π(ij) and

π(ij)(hl) of edges in As, under T -stage snowball sampling with s2 as specified above.

Forward observation in digraphs The stage-specific seed samples s1,0, ..., s1,T−1 are

disjoint, so that each observed edge, denoted by 〈ij〉 ∈ As, can only be included at a

particular stage. For i ∈ U , let β
[0]
i = U0 ∩ {i}; let β

[t]
i = U0 ∩

(
β(β

[t−1]
i ) \

( t−1⋃
h=0

β
[h]
i

))
be its

t-th generation predecessors, for t > 0, which consists of the nodes that would lead to i in

t-stages from s1,0 but not sooner. Notice that β
[0]
i , β

[1]
i , β

[2]
i , ... are disjoint. We have

π(i) = 1− π̄Bi
for Bi =

T⋃
t=0

β
[t]
i ,

π(ij) = 1− π̄Bij
for Bij =

T−1⋃
t=0

β
[t]
i .

The respective joint inclusion probabilities follow as π(i)(j) = 1 − π̄Bi
− π̄Bj

+ π̄Bi∪Bj
and

π(ij)(hl) = 1− π̄Bij
− π̄Bhl

+ π̄Bij∪Bhl
.

Incident reciprocal observation Each 〈ij〉 ∈ As can only be included at a particular

stage, where either i or j is in the seed sample, regardless if the graph is directed or not.

For i ∈ U , let ηi = {j ∈ U ; aij+aji > 0} be the set of its adjacent nodes. Let η
[0]
i = U0∩{i};

let η
[t]
i = U0 ∩

(
η(η

[t−1]
i ) \

( t−1⋃
h=0

η
[h]
i

))
be its t-th step neighbours, for t > 0, which are the

nodes that would lead to i in t-stages from s1,0 but not sooner. We have

π(i) = 1− π̄Ri
for Ri =

T⋃
t=0

η
[t]
i , (3)

π(ij) = 1− π̄Rij
for Rij =

T−1⋃
t=0

η
[t]
i ∪ η

[t]
j . (4)
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The respective joint inclusion probabilities follow as π(i)(j) = 1 − π̄Ri
− π̄Rj

+ π̄Ri∪Rj
and

π(ij)(hl) = 1− π̄Rij
− π̄Rhl

+ π̄Rij∪Rhl
.

Incident ancestral observation procedure It is thus clear that additional features of

the observation procedure is required in order to calculate π(i) and π(i)(j) given any T ≥ 1,

or π(ij) and π(ij)(hl) given any T ≥ 2. Reciprocal or not, an incident procedure is said to be

ancestral in addition, if one is able to observe all the nodes that would lead to the inclusion

of a node i ∈ Us, which will be referred to as its ancestors. These are the predecessors of

various generations for forward observation in digraphs, or the neighbours of various steps

for reciprocal observation in directed or undirected graphs. Notice that the edges connecting

the sample nodes in Us and their out-of-sample ancestors are not included in the sample

graph Gs. More comments regarding the connections between snowball sampling and some

well-known network sampling methods will be given in Section 5.

Remark Frank (1971) defines the reach at i as the order of the connected component

containing node i. The requirement of observing the reach, without including the whole

connected component in the sample graph, is similar to that of an ancestral observation

procedure, even though the two are clearly different.

Example 4 To illustrate the inclusion probabilities (3) and (4), consider the population

graph G = (U,A), and a sample graph Gs = (Us, As) by 2-stage snowball sampling, with

the initial sample s1,0 = {3, 4} by SRS with sample size 2. The 1st- and 2nd-wave snowball

samples are s1,1 = {8, 9, 10} and s1,2 = {1, 5, 7}, respectively. The sample of seeds is

s1 = {3, 4, 8, 9, 10}. Both G and Gs are given in Figure 2. To the left of Figure 3, the true

node inclusion probabilities π(i) are plotted against those given by (3), where there are 5

distinct values; to the right, the true edge inclusion probabilities π(ij) are plotted against

those given by (4), where there are 4 distinct values. In both cases, the true inclusion

probabilities are calculated directly over the 45 possible initial samples of size 2.

4.2 Arbitrary Mk with k ≥ 2 and s2 = s1 × U ∪ U × s1

To fix the idea, consider incident reciprocal observation in directed or undirected graphs.

Notice that one can as well let s2 = s1 × U in the case of undirected graphs.

Definition of π(Mk) for Mk ⊂ U To be clear, write {i1, i2, ..., ik} for Mk ⊂ U . Let

M
(h)
k = Mk \ {ih} be the subset obtained by dropping ih from Mk, for h = 1, ..., k. As

explained in Section 3.3, to be able to identify the motif [Mk], there can be at most one

node in Mk that belongs to the last wave of snowball sample (s1,T ). In other words, at least

14
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Figure 2: Population graph G with 10 nodes and 11 edges (left), a sample graph Gs by
2-stage snowball sampling starting from s1,0 = {3, 4} by simple random sampling (right).

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Node

inclusion probability

tr
ue

 in
cl

us
io

n 
pr

ob
ab

ili
ty

0.70 0.75 0.80 0.85 0.90

0.
70

0.
75

0.
80

0.
85

0.
90

Edge

inclusion probability

tr
ue

 in
cl

us
io

n 
pr

ob
ab

ili
ty

Figure 3: Inclusion probability π(i): true vs. (3), left; π(ij): true vs. (4), right.

one of the k subsets M
(h)
k must be in the sample of seeds s1. We have

π(Mk) = Pr
(
M

(1)
k ⊆ s1 or M

(2)
k ⊆ s1 or · · · or M

(k)
k ⊆ s1 or Mk ⊆ s1

)
=

k∑
h=1

Pr
(
M

(h)
k ⊆ s1

)
− (k − 1)Pr

(
Mk ⊆ s1

)
, (5)

where Pr
(
Mk ⊆ s1

)
= π(i1)(i2)···(ik) is joint inclusion probability of the relevant nodes in s1,

similarly for Pr
(
M

(h)
k ⊆ s1

)
, where h = 1, ..., k. The expression (5) follows from noting

{M (h)
k ⊆ s1} ∩ {Mk ⊆ s1} = {Mk ⊆ s1}, and {M (h)

k ⊆ s1} ∩ {M (l)
k ⊆ s1} = {Mk ⊆ s1}, and(

{M (h)
k ⊆ s1} \ {Mk ⊆ s1}

)
∩
(
{M (l)

k ⊆ s1} \ {Mk ⊆ s1}
)

= ∅.

Joint inclusion probability π(Mk)(M
′
k)

For Mk ⊂ U and M ′
k ⊂ U , the joint observation

of [Mk] and [M ′
k] requires that (i) at most one node i in s1,T , provided i ∈Mk ∩M ′

k, or (ii)
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at most two nodes i, j in s1,T , provided i ∈Mk \M ′
k and j ∈M ′

k \Mk. Put M = Mk ∪M ′
k.

The relevant subsets are M (i) for all i ∈ Mk ∩ M ′
k, and M (ij) for all i ∈ Mk \ M ′

k and

j ∈M ′
k \Mk. The joint inclusion probability π(Mk)(M

′
k)

follows, similarly as above for π(Mk),

as the probability that at least one of these subsets is in the sample of seeds s1.

Probability π(i1)(i2)···(ik) In the case of k = 2, π(i)(j) is as given earlier in Section 4.1. To

express π(i1)(i2)···(ik) in terms of the probabilities for the initial seed sample s1,0, we have

π(i1)(i2)···(ik) =
∑
L⊆Mk

(−1)|L|π̄(L), (6)

where L includes ∅, and |L| is its cardinality, and π̄(L) is the exclusion probability

π̄(L) = Pr(L ∩ s1 = ∅) = Pr(RL ∩ s1,0 = ∅) = π̄RL
=
∑
D⊆RL

(−1)|D|πD, (7)

where RL =
⋃
i∈L

Ri and Ri =
⋃T−1
t=0 η

[t]
i is the ancestors of i up to the T − 1 steps, and πD is

joint inclusion probability of the nodes in D in the initial sample of seeds s1,0.

4.3 Arbitray Mk with k ≥ 2 and s∗2 = s1 × s1

By dropping the nodes s1,T of the last wave of T -stage snowball sampling, we ensure that

the motif of any subset Mk ∈ s1 is observable. The idea is developed below.

Definition of π(Mk) for Mk ⊆ s1 Let Gs = (Us, As) be the sample graph of T -stage

snowball sampling, with reference set s2 = s1 × U ∪ U × s1. Let G∗s = (U∗s , A
∗
s) be the

reduced sample graph obtained from dropping s1,T , with reference set s∗2 = s1 × s1, where

A∗s = As \ {〈ij〉; i ∈ s1, j ∈ s1,T} and U∗s = Us \ s1,T = s1. Notice that A∗s contains all the

edges between any i, j ∈ s1 in the population graph G, and G∗s is the same sample graph

that is obtained from s1 by induced observation directly. It follows that one observes the

motif for any Mk ∈ s1, so that the inclusion probability π(Mk) is given by

π(Mk) = Pr
(
Mk ⊆ s1

)
= π(i1)(i2)···(ik), (8)

where π(i1)(i2)···(ik) is given by (6) and (7) as before.

Joint inclusion probability π(Mk)(M
′
k)

For Mk ⊂ s1 and M ′
k ⊂ s1, the joint observation

of [Mk] and [M ′
k] requires simply M = Mk ∪ M ′

k ⊆ s1. The joint inclusion probability

π(Mk)(M
′
k)

is therefore given by π(M) on replacing Mk by M in (8), (6) and (7).

Other reduced graphs The sample graph G∗s is obtained from dropping the T -th wave

nodes s1,T . Rewrite G∗s as G
(T−1)
s ; it can be reduced to G

(T−2)
s by dropping s1,T−1 as well.
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This yields G
(T−2)
s as the induced graph among s1 \ s1,T−1. The inclusion probability π(Mk)

for Mk ⊂ A
(T−2)
s can be derived similarly as (8). Carrying on like this, one obtains in the

end the reduced graph G
(0)
s , with reference set s2 = s1,0 × s1,0, which is just the induced

graph among s1,0. The inclusion probability π(Mk) for Mk ∈ s1,0 is πMk
= Pr

(
Mk ⊆ s1,0

)
directly. Notice that the sample graph G

(0)
s under T -stage snowball sampling can equally

be obtained as G
(0)
s under 1-stage snowball sampling. It follows that the additional T − 1

wave-samples would simply have been wasted, had one only used G
(0)
s for estimation. For

the same reason it is equally implausible to use G
(1)
s , ..., G

(T−2)
s . However, G

(T−1)
s = G∗s is

different because the last wave serves to establish G∗s as an induced sub-population graph,

i.e. with no potentially missing edges among the relevant nodes.

Comparisons between G∗s and Gs On the one hand, whichever motif of interest, Gs

always has a larger or equal number of observations than G∗s. Hence, one may expect a loss

of efficiency with G∗s. On the other hand, estimation based on Gs requires more computation

than G∗s. Firstly, for any Mk ⊆ s1, it requires about k times extra computation for π(Mk) by

(5) than by (8). This is due to the need to compute the probability of possibly observing

Mk as M
(h)
k ⊂ s1 and h ∈ s1,T , even if Mk is observed as Mk ⊂ s1, which is unnecessary with

respect to s∗2, where the observations are restricted to those among the nodes in s1 without

involving s1,T . Secondly, corresponding to each Mk ⊆ s1, there are additional observations

with respect to s2, which are all the possible M ′
k = {M (h)

k , j;h ∈ Mk, j 6∈ s1}, because the

motif of such an M ′
k can be identified. The motif of any M ′

k is unknown, if it differs from

any Mk ⊆ s1 by at least two nodes.

Example 5 To illustrate the inclusion probabilities (5) and (8), consider the population

graph G = (U,A) in Figure 4, where |U | = 13 and |A| = 19, together with the two 2-stage

snowball sample graphs Gs and G∗s, both with s1,0 = {4, 5, 10} by SRS of sample size 3.

We have s1,1 = {1, 2, 8, 9}, s1,2 = {3, 6, 12, 13} and s1 = {1, 2, 4, 5, 8, 9, 10}. Table 1 lists 6

selected triad (M3) inclusion probabilities given by (5) and (8), respectively, with respect

to s2 = s1 × U and s∗2 = s1 × s1. These are seen to be equal to the true probabilities

calculated directly over all possible initial samples s1,0, under SRS of sample size 3. Table

2 shows the estimates of the four 3rd-order graph totals θ̂3,h, for h = 0, 1, 2, 3, which are

as defined in Section 3.1.3, based on these two sample graphs Gs and G∗s. The expectation

and standard error of each estimators are also given in Table 2, which an be evaluated

directly over all the possible initial sample s1,0. The true totals in the population graph G

are (θ3,0, θ3,1, θ3,2, θ3,3) = (121, 123, 40, 2). Clearly, both HT-estimators are unbiased, and

using G∗s entails a loss of efficiency against Gs, as commented earlier.
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Figure 4: Population graph G with 13 nodes and 19 edges (top); sample graphs Gs (bottom
left) and G∗s (bottom right) by 2-stage snowball sampling with initial s1,0 = {4, 5, 10}.

4.4 Proportional representative sampling in graphs

A traditional sampling method is sometimes said to be (proportional) representative if the

sample distribution of the survey values of interest is an unbiased estimator of the popula-

tion distribution directly. This is the case provided equal probability selection. Equipped

with the general formulae for π(Mk) under T -stage snowball sampling, below we propose

and examine a proportional representativeness concept for graph sampling.

Graph proportional representativeness Let mk 6= m′k be two distinct motifs of the

order k. A graph sampling method is k-th order proportionally representative (PRk) if

E[θs]/θ = E[θ′s]/θ
′, (9)

where θ is the number of mk in the population graph G, and θs that of the observed mk

in the sample graph Gs with reference set s2, and similarly with θ′ and θ′s for m′k. Let

y(Mk) = 1 if [Mk] = mk and 0 otherwise. Let δ[Mk] be the observation indicator with
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Table 1: Inclusion probability π(M3) of selected M3 = {i1, i2, i3}
With s2 = s1 × U With s∗2 = s1 × s1

i1 i2 i3 By (5) True By (8) True
1 2 3 0.9230769 0.9230769 0.5664336 0.5664336
1 2 4 0.8531469 0.8531469 0.2657343 0.2657343
1 3 4 0.8321678 0.8321678 0.2027972 0.2027972
2 3 4 0.8531469 0.8531469 0.2552448 0.2552448
1 2 5 0.8671329 0.8671329 0.6223776 0.6223776
1 3 5 0.8881119 0.8881119 0.5384615 0.5384615

Table 2: Third-order graph total estimate, expectation and standard error

Based on sample graph Gs θ̂3,0 θ̂3,1 θ̂3,2 θ̂3,3
Estimate 96.251 89.260 26.289 2.515
Expectation 121 123 40 2
Standard error 22.977 18.591 7.025 0.768

Based on sample graph G∗s θ̂3,0 θ̂3,1 θ̂3,2 θ̂3,3
Estimate 59.128 63.209 19.211 1.607
Expectation 121 123 40 2
Standard error 78.694 49.929 15.038 1.195

respect to s2. We have θ =
∑

Mk∈Ck y(Mk) and θs =
∑

Mk∈Ck δ[Mk]y(Mk). Clearly, a graph

sampling method will be PRk if π(Mk) is a constant for different motifs of order k. Under

any PRk design, one may estimate the relative frequency between mk and m′k by θs/θ
′
s.

Result 1. Induced observation from s1 is PRk for k ≥ 1, provided s2 = s1 × s1
and symmetric design p(s1). The result follows since, for any Mk ⊂ As = s1, we have

π(Mk) = πMk
, which is a constant of [Mk] by virtue of symmetric design p(s1).

Result 2. One-stage snowball sampling is PRk for k ≥ 2, provided s2 = s1 ×
U ∪U × s1 and symmetric design p(s1). Suppose first reciprocal observation. We have

Ri = {i}∪η[1]i , whose cardinality varies for different nodes in G. It follows that π(M1) = π(i)

by (3) is not a constant over U , i.e. the design is not PR1. Next, for Mk with k ≥ 2, π(Mk)

by (5) depends on k + 1 probabilities given by (6) and (7). Each relevant probability π̄(L)

is only a function of |RL| provided symmetric design p(s1), where RL =
⋃
i∈L

Ri = L since

Ri = {i} given T = 1. It follows that |RL| = |L| regardless of the nodes in Mk, such that

π(Mk) is a constant of Mk, i.e. PRk. Similarly for forward observation in digraphs.

Remark Setting s∗2 = s1 × s1 yields induced sample graph from s1 and Result 1.

Result 3. T -stage snowball sampling is generally not PRk for k ≥ 1 and T ≥ 2,

despite symmetric design p(s1). As under 1-stage snowball sampling, the design is not
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PR1. Whether by (5) or (8) for k ≥ 2, π(Mk) depends on π̄(L) in (6), which is only a function

of |RL| provided symmetric design p(s1). However, given T ≥ 2 and |L|, RL =
⋃
i∈L

Ri

generally varies for different L, so that neither RL nor |RL| is a constant of the nodes in

Mk, i.e. the design is not PRk. Similarly for forward observation in digraphs.

5 Network sampling methods

As prominent examples from the network sampling literature we consider here multiplicity

sampling (Birnbaum and Sirken, 1965), indirect sampling (Lavalleè, 2007) and adaptive

cluster sampling (Thompson, 1990). Below we first summarise broadly their characteris-

tics in terms of target parameter, sampling and estimator, and then discuss four salient

applications of these methods using the snowball sampling theory developed in Section 4.

Target parameter In all the network sampling methods mentioned above, the target

parameter is the total of a value associated with each node of the graph, denoted by yi for

i ∈ U , which can be referred to as a 1st-order network total θ =
∑

i∈U yi in light of (1).

This does not differ from that when “conventional” sampling methods are applied for the

same purpose, where Sirken (2005) uses the term conventional in contrast to network. In

other words, these network sampling methods have so far only been applied to overcome

either certain deficiency of frame or lack of efficiency of the traditional sampling methods,

as discussed below in terms of sampling and estimator, but not in order to study genuine

network totals or parameters, which are of orders higher than one.

Sampling Like in the definition of sample graph, these network sampling methods start

with an initial sample s1. The sampling frame of s1 can be direct or indirect. In the latter

case, the sampling units are not the population elements. This may be necessary because

a frame of the population elements is unavailable, such as when siblings are identified by

following up kins to the household members of an initial sample of households (Sirken,

2005). Or, a frame of the elements may be available but is unethical to use, such as when

children are accessed via a sample of parents (Lavalleè, 2007). In cases a direct frame

of elements is used, the initial sample s1 may be inefficient due to the low prevalence of

in-scope target population elements, so that an observation procedure depending on the

network relationship (between the elements) is used to increase the effective sample size.

This is the case with adaptive cluster sampling (Thompson, 1989).

Estimator For 1-st order network parameters (1), where the population elements are

represented as nodes in the population graph G = (U,A), the HT-estimator (2) is defined

for the observed nodes in the sample graph Gs = (Us, As). Another approach in the

aforementioned methods is the HT-estimator defined for the selected sampling units. Let
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F be the frame of sampling units, where l ∈ F has inclusion probability πl. We have∑
l∈F

zl =
∑
l∈F

(∑
i∈U

wliyi

)
=
∑
i∈U

yi
∑
l∈F

wli =
∑
i∈U

yi = θ,

where zl =
∑

i∈U wliyi is a value constructed for the sampling units, based on any chosen

weights, provided
∑

k∈F wki = 1, as noted by Birnbaum and Sirken (1965). The corre-

sponding HT-estimator that is unbiased for θ can be given by

θ̃HT =
∑
l∈s1

zl/πl =
∑
l∈F

zlδl/πl, (10)

where δl = 1 if l ∈ s1 and 0 otherwise. To ensure that zl can be calculated no matter which

actual sample s1, the weights wli must not depend on s1. A common approach is to set

wli = 1/mi, where l a sampling unit in s1 which gives rise to i, and mi is the number of all

sampling units in F that could lead to the observation of i, for i ∈ U . The number mi is

referred to as the multiplicity of the element (Birnbaum and Sirken, 1965). The observation

of mi for each sample element is the same kind of requirement as the observation of the

ancestors of a node in Us under snowball sampling. The literature is inconclusive on the

relative efficiency between the two estimators (2) and (10).

5.1 Sampling patients via hospitals

Birnbaum and Sirken (1965) consider this situation, without using graph representation.

To fix the idea, suppose a sample of hospitals is selected according to a probability design.

From each sample hospital, one observes a number of patients of a given type, who are

treated at this hospital. Let the target parameter θ be the population size of such patients.

The complication arises from the fact that a patient may receive treatment at more than

one hospital. Sirken (2005) refers to conventional sampling where every population element

is linked to one and only one sampling unit, whereas in the case of network sampling a

population element (i.e. patient of a certain type) can be linked to a varying number of

sampling units (i.e. hospitals). Sirken (2005) refers to ‘cluster’ as the group of population

elements which are linked to the same sampling unit, and ‘network’ the group of sampling

units which are linked to the same population element. The distinction between cluster

and network here needs to be accounted for in estimation.

(P) Projection graph The HT-estimator (2) can be obtained using the following graph

sampling set-up. Denote by H the known set of hospitals and P the unknown set of in-

scope patients, where θ = |P |. Let G = (U,A) have U = H ∪P . For any i ∈ H and j ∈ P ,

aij ∈ A iff patient j receives treatment at hospital i. Let the simple graph be undirected.

Notice that (H,P ) form a bipartition of U , where there are no other edges at all except

those that project H onto P . Given s1 ⊂ H = U0, let s2 = s1 × P for 1-stage snowball
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sampling. The observation procedure must be incident ancestral, so that mi is observed for

i ∈ α(s1), without including in the sample graph Gs all the edges that are incident at i but

outside of s2. The inclusion probability π(i) is given by (3), where we have η
[0]
i = ∅ since

U0 ∩ P = ∅, and η
[1]
i = βi, so that Ri = βi and |Ri| = mi. Let yi = 1 for all i ∈ P .

Remark The HT-estimator (2) and (10) correspond to the first two estimators proposed

by Birnbaum and Sirken (1965). Their third estimator is defined for the edges in the

projection graph, which however lacks a formulation that allows it to be applied generally.

Two-stage snowball sampling Consider 2-stage snowball sampling in the same graph,

under which the observation procedure is incident but needs not be ancestral in addition.

Given s1,0 ⊂ H, let s1,1 = α(s1,0) ⊆ P and s1,2 = α(s1,1) ⊆ H, i.e. reverse projection. The

HT-estimator (2) makes only use of the nodes (i.e. motif of interest) in s1,1, where yi ≡ 1,

and π(i) is given by (3), for which Ri = βi is fully observed due to the addition of s1,2.

5.2 Sampling children via parents

Lavalleè (2007) considers this situation. Children are the population elements. Suppose a

sample of parents is selected according to a probability design. One obtains all the children

of each sample parent. Without losing generality, let the target parameter θ be the number

of children who are not orphans. The same complication arises from the fact that a child

may be accessed via two parents if they are both in the sampling frame. Clearly, the

situation is conceptually the same as sampling patients via hospitals above.

Remark Lavalleè (2007) represents the situation using the same graph (P) above, where

U = P ∪C, and P consists of the parents and C the children. The HT-estimator (2) based

on either 1- or 2-stage snowball sampling formulation is the same as above, with yi ≡ 1 for

i ∈ C. Lavalleè (2007) considers only the HT-estimator (10).

(M) Multigraph Put G = (U,A) where U = P and A = C, i.e. with parents as the

nodes and children as the edges. Let Aij represent the aij children of parents i and j. Let

loops Aii at node i represent the aii children of single-parent i. Given s1 = s1,0 ⊂ P = U0,

let s1,1 = α(s1,0) \ s1,0, i.e. 1-stage snowball sampling. The incident observation procedure

is ancestral by construction here. Let s2 = s1×U . The inclusion probability π(ij) of a child

〈ij〉 ∈ A is given by (4), where η
[0]
i = {i} and η

[0]
j = {j} under 1-stage snowball sampling;

whereas π(ii) of a child 〈ii〉 of a single parent is also given by (4), where η
[0]
i = {i}.

Remark Making population elements the edges of the graph is not convenient for the

hospital-patient application, because while each child corresponds to only one edge, each

patient may appear as multiple edges incident to different nodes (i.e. hospitals).
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5.3 Sampling siblings via households

Sirken (2005) discusses this situation, without resorting to explicit graph representation.

To fix the idea, suppose a sample of households is selected according to a probability design.

For each member of the household, one obtains all the siblings who may or may not live in

the same household. The observation elements are siblings, denoted by S, which excludes

anyone who has no siblings. Without losing generality, let θ be the number of siblings.

(2P) Twice projection graph Denote by H the households, P the persons, and S the

siblings, where i ∈ S is considered a different element to j ∈ P , even if i and j refer to the

same person in real life. Let G = (U,A), where U = H ∪P ∪ S and A = AHP ∪APS. Each

Ahj ⊂ AHP is such that h ∈ H and j ∈ P , i.e. AHP projects H onto P ; each Aij ∈ APS is

such that i ∈ P and j ∈ S are siblings, including when the two refer to the same person, i.e.

APS projects P onto S. Let the twice projection graph from H to P to S be undirected.

Consider 2-stage snowball sampling starting from s1,0 ⊂ H = U0. Let s2 = s1 × U , where

s1 = s1,0∪s1,1 is the sample of seeds. The observation procedure must be incident ancestral,

provided which the HT-estimator (2) is only based on s1,2. For i ∈ S, we have yi = 1 and

π(i) given by (3), where η
[0]
i = η

[1]
i = 0 because it can only be reached from s1,0 in exactly

two waves, and ηi = η
[2]
i where |ηi| = mi is the number of households that can lead to i

from s1,0, i.e. its multiplicity according to Birnbaum and Sirken (1965).

(PR) Projection relation graph Put G = (U,A), where U = H ∪P . Let aij ∈ A if (i)

person j belongs to household i, or (ii) persons i and j are siblings of each other. The edges

of type (i) project H on to P , whereas those of type (ii) are relations within P . Notice

that each group of siblings form a clique; a person without siblings is a single-node clique.

To ensure ancestral observation, consider 3-stage snowball sampling. Given s1,0 ⊂ H = U0,

s1,1 consists of the members of the households in s1,0, and s1,2 the siblings of s1,1 which are

outside of the initial sample households, and s1,3 ⊆ H consists of the households to s1,2.

Let s2 = s1×U , where s1 = s1,0∪ s1,1∪ s1,2. The HT-estimator (2) makes use of i ∈ s1∩S,

with yi ≡ 1. The corresponding π(i) is given by (3), where η
[0]
i = 0, and η

[1]
i is the household

of i, and η
[2]
i contains the households of its out-of-household siblings. In other words, ηi

contains all the households that can lead to i, where |ηi| = mi.

Remark Sampling in the graphs (2P) and (PR) makes use of relationships among the

population elements, unlike sampling of patients or children in the projection graph (P).

(HP) Hypernode projection graph Let each clique in the graph (PR) above be a

hypernode — all the nodes of a hypernode are always observed together or not at all. Let

G = (U,A), where U = H ∪ P , and P consists of all the hypernodes of P . Let aij = 1

iff at least one node in the hypernode j belongs to household i. This yields an undirected

simple graph as the hypernode projection graph. Consider 2-stage snowball sampling with
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U0 = H as in the projection graph, such that observation is ancestral by construction. Both

HT-estimators (2) and (10) follow directly, where yi is the number of nodes in i ∈ P .

5.4 Adaptive cluster sampling of rare species

In contrast to conventional sampling, Thompson (1990) characterises adaptive sampling

designs as those in which the procedure to include units in the sample depends on the

values of interest observed during the survey. To fix the idea, suppose an area is divided

into (spatial) grids as the units of sampling and observation. Each grid in an initial sample

of grids is surveyed for a given species of interest. If it is not found there, one would move

on to another grid in the initial sample. However, whenever the species is found in grid i,

one would survey each of its neighbour grids in four directions, beyond the initial sample,

provided not all of them have been surveyed before. This observation procedure can help to

increase the number of in-scope grids, compared to random sampling of the same amount

of grids, provided the species is more likely to be found given that it is found in a neighbour

grid than otherwise. Once in a new grid, the procedure is repeated and the survey may

or may not continue to the neighbour grids, depending on the finding in the current grid.

The sampling is finished if no new grids can be added to the sample, or if one has reached

a predetermined limit in terms of the number of surveyed grids, time, resource, etc. The

observed in-scope grids form sampling as well as observation clusters, in the sense that all

the member grids of a cluster are sampled and observed if any one of them is.

(T) Transitive graph Adaptive cluster sampling (ACS) can be represented as 2-stage

snowball sampling in a transitive graph as follows. Let G = (U,A), where U contains all the

grids in ACS. Let UA contain all the grids where the rare species is present. Let U c
A = U\UA.

Let aij = 1 iff i, j ∈ UA and i and j belong to the same observation cluster under the ACS.

This yields an undirected simple transitive graph, where each i ∈ U c
A is an isolated node,

and each group of connected nodes in UA form a clique. Without losing generality, let

θ = |UA|. The snowball sampling starts with s1,0 ⊂ U = U0, i.e. any grid can be selected

initially. Let s1,1 = α(s1,0). Notice that the isolated nodes in s1,0 do not lead to any nodes

in s1,1, while a connected node in s1,0 leads to all the nodes in ies observation cluster but

none in U c
A, since edges exist only among the nodes in UA. In reality, a neighbour grid of

i ∈ UA ∩ s1,0 which belongs to U c
A is also surveyed, but it will not lead to any additional

nodes in the next wave, nor will it be the motif of interest in estimation. It is therefore

convenient to represent this adaptive nature of the ACS by not including in s1,1 any node

from U c
A at all. The 2nd-wave snowball sample will be empty, i.e. s1,2 = ∅, because all the

connected nodes in a clique will already be observed either in s1,0 or s1,1. But the 2nd-stage

is needed to ensure that the observation is ancestral by construction. The HT-estimator (2)

uses every node i ∈ s1 = s1,0 ∪ s1,1, with yi = 1, and π(i) is given by (3), where η
[0]
i = {i},

and η
[1]
i contains all its adjacent nodes.
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Remark The graph (T) is the same as the relation part of the graph (PR) in the case

of sampling siblings via households. The projection part is not necessary here because the

initial sampling uses a direct frame, unlike the other applications above.

Remark The ACS can as well be represented by the graph (HP), with the cliques in the

graph (T) above as the hypernodes. Both HT-estimators (2) and (10) follow directly.

6 Concluding remarks

In this paper we synthesised the existing graph sampling theory, and made several exten-

sions of our own. We proposed a definition of sample graph, to replace the different samples

of nodes, dyads, triads, etc. This provides formally an analogy between sample graph as

a sub-population graph and sample as a sub-population. Next, we developed a general

approach of HT-estimation based on arbitrary T -stage snowball sampling. It is clarified

that design-based estimation based on snowball sampling requires the observation proce-

dure to be ancestral, which can be hard to fulfil in many practical applications of snowball

or snowball-like sampling, including the estimation of a clandestine target population size.

Without satisfying the ancestral requirement, the estimation will have to be based on an

appropriate statistical model instead.

We presented various graph sampling formulations of the existing design-based network

sampling methods. It is seen that different graph representations reveal the different estima-

tors more or less readily, so the choice matters in applications. The graph sampling theory

provides a more general and flexible framework to study and compare these unconventional

methods, and to develop possible alternatives and modifications.

Moreover, it transpires that these existing network sampling methods do not really

differ from conventional sampling with respect to the target parameter. We believe that

the scope of investigation can be greatly extended if one starts to consider other genuine

network parameters, which can only be studied using a graph representation. Two research

directions can be identified in this respect. First, we are currently examining the scope of

problems that can be studied using the (hypernode) projection graph, and the properties of

the design-based estimation methods. Second, it seems intuitive that a lower-order network

parameter can be estimated using a ‘smaller’ or more fragmented sample graph than a

higher-order parameter. It is therefore interesting to understand better the conditions,

by which a high-order network parameter can be expressed as a function of lower-order

parameters. Although this is perhaps more of a mathematical than statistical problem, such

transformations can potentially be very useful for the applications of the graph sampling

theory. Developing a comprehensive finite-graph sampling theory, beyond the established

finite-population sampling theory, seems an exciting area for future research.
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